
Boundary-Layer Meteorology (2022) 183:273–294
https://doi.org/10.1007/s10546-021-00679-1

RESEARCH ART ICLE

Pollutant Concentration Changes During the COVID-19
Lockdown in Barcelona and Surrounding Regions:
Modification of Diurnal Cycles and Limited Role of
Meteorological Conditions

Miguel García-Dalmau1 ·Mireia Udina1 · Joan Bech1 · Yolanda Sola1 ·
Joan Montolio1,2 · Clara Jaén1,3

Received: 17 March 2021 / Accepted: 11 October 2021 / Published online: 27 December 2021
© The Author(s) 2021

Abstract
One of the consequences of the COVID-19 lockdowns has been the modification of the air
quality in many cities around the world. This study focuses on the variations in pollutant
concentrations and how important meteorological conditions were for those variations in
Barcelona and the surrounding area during the 2020 lockdown. Boundary-layer height, wind
speed, and precipitation were compared between mid-March and April 2016–2019 (pre-
lockdown) and the same period in 2020 (during lockdown). The results show the limited
influence of meteorological factors on horizontal and vertical dispersion conditions. Com-
pared with the pre-lockdown period, during lockdown the boundary-layer height slightly
increased by between 5% and 9%, mean wind speed was very similar, and the fraction of
days with rainfall increased only marginally, from 0.33 to 0.34, even though April 2020 was
extremely wet in the study area. Variations in nitrogen dioxide (NO2), particulate matter with
a diameter less than 10 μm (PM10), and ozone (O3) concentrations over a 10-year period
showed a 66% reduction in NO2, 37% reduction in PM10, and 27% increase in O3 at a traffic
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274 M. García-Dalmau et al.

station in Barcelona. The differences in the daily concentration cycle between weekends and
weekdays were heavily smoothed for all pollutants considered. The afternoon NO2 peak at
the traffic station was suppressed compared with the average daily cycle. The analysis of
ozone was extended to the regional scale, revealing lower concentrations at rural sites and
higher ones in urban zones, especially in Barcelona and the surrounding area. The results
presented not only complement previous air quality COVID-19 lockdown studies but also
provide insights into the effects of road-traffic reduction.

Keywords Air quality · Boundary-layer height · COVID-19 · Lockdown

1 Introduction

The lockdown that took place in Spain from mid-March to April 2020 due to the COVID-19
outbreak caused many economical activities to stop and, as a consequence, the reduction
of emissions of primary pollutants in the atmosphere, including nitrogen oxides (NOx ) and
particulate matter with a diameter less than 10 μm (PM10). The immediate consequences
were a general improvement in air quality (Habibi et al. 2020), although large parts of the
population in urban areas who are at risk were still breathing air that does not meet the air
quality guidelines of the World Health Organization (WHO).

Atmospheric pollutant concentrations are highly dependent on the amount of emissions,
although meteorological factors, such as wind speed and direction, solar radiation, precipi-
tation, and temperature inversions also influence air pollutant levels. More specifically, the
capacity of the atmosphere to cause the mixing, dispersion, and dilution of pollutants in the
air is mainly driven by the wind speed and the boundary-layer depth (e.g., Emeis and Schäfer
2006; Sicard et al. 2006; Lee et al. 2019; Xiang et al. 2019; Udina et al. 2020; Yang et al.
2020). If the wind speed increases, pollutant concentrations decrease because the pollutants
are dispersed and diluted. Besides, for a given wind speed, the planetary boundary-layer
depth, (PBL) (zi ) determines the volume of air where pollutant species can be diluted, so that
higher (lower) pollutant concentrations would be expected with shallower (deeper) PBLs. In
order to estimate the PBL depth, several methods can be applied using atmospheric radioson-
des and ceilometers (Eresmaa et al. 2006; Hennemuth and Lammert 2006; Seidel et al. 2010;
Lotteraner and Piringer 2016; Kotthaus and Grimmond 2018; García-Franco et al. 2018) and
the results have been used to explain the air pollutant concentrations (Pandolfi et al. 2013;
Lee et al. 2018, 2019).

In addition to primary pollutants, O3, a secondary pollutant formed in complex chemical
reactions involving NOx and volatile organic compounds (VOCs) in the presence of high
ultraviolet irradiance, can be strongly affected by a reduction in emissions. Tropospheric
O3 surface concentrations depend on the type of area (rural or urban) and on variations in
precursors. Basically there are two ozone sensitivity regimes regulated by the ratio between
NOx and VOCs, and ozone may react to changes in both VOC and NOx concentrations. In
rural or suburban areas, where VOCs are dominant, ozone increases when NOx increases.
On the other hand, in urban areas where NOx are dominant, ozone may increase if NOx are
reduced (Sillman and He 2002).

Many authors have explored the consequences of COVID-19 lockdowns on air quality
around the world, in relation to reducing the global burden of disease (Venter et al. 2020;
Chauhan and Singh 2020; Nie et al. 2021). Most urban areas experienced a reduction in
primary air pollutants during lockdown (Habibi et al. 2020; Burns et al. 2021; Velders et al.
2021; He et al. 2021). In China, NO2 levels were reduced globally by 30% (He et al. 2020;
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Wang et al. 2021; Liu et al. 2020) and even 53% in northern regions (Shi and Brasseur
2020; Li et al. 2020; Chu et al. 2021). In the city of Wuhan, particulate matter was reduced
(Sulaymon et al. 2021) by 53% according to Sicard et al. (2020). Shi and Brasseur (2020)
showed an increase in ozone concentration by a factor of 2.2± 0.2 after a NO2 reduction of
54± 7%. In Delhi, India, a reduction of 50% of PM10 and PM2.5 was reported (Mahato et al.
2020; Dumka et al. 2021). In Portugal, Gama et al. (2020) found a higher reduction in NO2

(41%) than for PM10 (18%), which was more significant at traffic stations (NO2 > 60%),
while greater reductions in PM10 occurred in Poland, up to a maximum of 34% (Filonchyk
et al. 2020). In Spain, early results after the lockdown including a 15-day analysis concluded
that there was a 51% reduction in NO2 and a 30% reduction in PM10 in Barcelona in
comparison with levels recorded during the previous months (Tobías et al. 2020). Baldasano
(2020) reported an average reduction in NO2 of 62% inMadrid and 50% in Barcelona during
March 2020. Petetin et al. (2020) calculated an average reduction of 50% in NO2 during
lockdown over Spain, using machine learning, while Mesas-Carrascosa et al. (2020) showed
a significant correlation between population activity and the reduction in NO2 in Spain using
TROPOsphericMonitoring Instrument (TROPOMI) of Sentinel-5P images. Briz-Redón et al.
(2020) showed a greater reduction in NO2 in the most heavily populated cities of Spain, a
less significant reduction in PM10, and an increase in O3.

Most previous studies based their analysis on the comparison of pollutant concentrations
before and after lockdown in different locations around the world. Some of them (e.g., Shi
and Brasseur 2020; Tobías et al. 2020) mentioned the need to include detailed meteorological
information for a complete understanding of the observed variations. Recent studies included
meteorological variables to assess their influence on the measured concentration levels using
machine learning with data from ERA5 reanalysis (Petetin et al. 2020), adjusting for sea-
sonality and meteorology temporally (Goldberg et al. 2020; Hörmann et al. 2021) or using
a linear regression model with observations from surface stations (Briz-Redón et al. 2020).
However, to the best of our knowledge, none have addressed the influence of meteorological
factors including the horizontal and vertical dispersion conditions above the surface, and none
have used several years for the comparison between average conditions before and during
lockdown. Therefore, the aim of this paper is to determine the derived effects of the lockdown
measures on air pollution concentrations considering the influence of meteorological factors
on dispersion conditions from a local-scale perspective. The concentrations of NO2, PM10,
andO3 were explored frommid-March to April 2020 in comparisonwithmeasurements from
the previous 10 years in Barcelona and the surrounding area (north-east Iberian Peninsula).
Meteorological factors included the wind speed at different heights, boundary-layer depth,
and precipitation.

Section 2 describes the methodology employed, with a brief explanation of the study area,
the datasets and the analytical methods for meteorological factors. Section 3 presents the
results divided into two parts: (i) the analysis of meteorological conditions using parameters
to establish the horizontal and vertical dispersion factors and (ii) the variation in air pollutant
concentrations during the lockdown, including the daily variation between and within days
and the effects on tropospheric ozone. The results are discussed in Sect. 4 and conclusions
are presented in Sect. 5.
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276 M. García-Dalmau et al.

Fig. 1 a Location of the area of study, 15 air quality zones (ZQA), type of measurement stations (U = urban,
S = suburban, R = rural) and sites selected for the study (orange dots), including the suburban site Vic; b
Enlargement of ZQA 1 with urban traffic and urban background stations (orange dots), UB site (blue dot)
corresponding to the launch site of the radiosonde and the ceilometer location. The AutomaticWeather Station
(AWS) (pink dot) corresponds to the automatic meteorological station at the Observatori Fabra
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2 Material andMethods

2.1 Study Area

Figure 1 shows the area of study, centred in Catalonia in the north-east of the Iberian Penin-
sula. The regional administration manages a dense air quality network (XVPCA) with 78
automatic stations and 106 manual stations. The territory is divided into 14 air quality zones
(ZQA) with similar emission and dispersion conditions, within which there is at least one
pollutant measurement station per zone. The stations are classified according to the degree
of urbanization —urban (U), suburban (S) or rural (R)— and the dominant pollution source
—background (B), industrial (I) or traffic (T) (XVPCA 2020). They measure the most criti-
cal pollutants in Catalonia (NO2, PM10, and tropospheric O3, among others). In the region
of study there are two areas where the legal thresholds of pollutants are usually exceeded:
i) the Barcelona urban area and its surroundings (NO2 and PM10), and ii) the Vic plane
and its surroundings, where O3 peaks occur during summer when the sea breeze transports
ozone precursors from urban regions inland to the rural plane (Jaén et al. 2021). Therefore,
the XVPCA measurement stations used to analyze the air quality in this study included two
urban stations in Barcelona: a traffic station (Eixample) and a background station (Palau
Reial), hereafter called traffic and background respectively, and a suburban inland station in
Vic (hereafter called suburban) —see Fig. 1 and Table 1.

2.2 Data

The meteorological study was performed using data from atmospheric radiosondes, a
ceilometer, and an automatic surface meteorological station. The air quality was analyzed
using the XVPCA network data. The comparison involving meteorological variables was
based on two periods: i) from 14 March to 30 April of 2016–2019 (combining 4 years of
data), called the “pre-lockdown" (hereafter PLD) period and ii) from 14 March to 30 April
2020, called the “during lockdown" (hereafter DLD) period. The comparison of pollutant
concentrations used data from the same months from the PLD period over 10 years, from
2010 to 2019, while the DLD period was the same.

Atmospheric radiosondes (RSD) located at the UB site (see Fig.1b) provided the vertical
atmospheric profile. Data of RSD were obtained from the Barcelona radiosonde station,
operated by the Meteorological Service of Catalonia and located in the Faculty of Physics
of the University of Barcelona (41.385◦N, 2.118◦E) at 98 m above sea level (a.s.l.). The
Barcelona RSD has a long time series, beginning in 1998 and has been integrated into the
Global Meteorological Network since 2008. It has been running automatically since 2013
with the Meteomodem M10 radiosonde model (Meteomodem 2021). In this study, we use
the midday RSD data from 14 March to 30 April 2016 to 2020, considering 1100 UTC as

Table 1 Air quality network automatic measurement stations (XVPCA)

Class Area, Type Location Location Pollutants

Traffic Urban, Traffic Barcelona (Eixample) 41.385◦N, 2.154◦E NOX, PM10, O3

Background Urban, Background Barcelona (Palau Reial) 41.387◦N, 2.116◦E NOX, PM10, O3

Suburban Suburban, Background Vic (Estadi) 41.934◦N, 2.240◦E PM10, O3
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the launching time. The temperature and specific humidity profiles were used to estimate the
PBL depth (see Sect. 2.3). The wind speed was used to provide information about horizontal
dispersion in the vertical atmospheric layers within the boundary-layer.

A laser ceilometer (CL-31, Vaisala Inc., Finland) has been in operation at the UB site
since August 2015. It is equipped with an InGaAs diode laser that sends 910 nm light
pulses. It has a measurement range up to 7.6 km, 10-m vertical resolution and a temporal
resolution of 16 s, providing vertical backscattering profiles. The PBL depth was computed
using the Vaisala Boundary-Layer View software (BL-VIEW), which estimates up to three
planetary boundary layers and cloud heights using the enhanced gradient method averaging
every 10 min, automatically filtering out rainy conditions (VAISALA 2020). The PBL depth
estimated from ceilometer data is used from mid-March to April (2016–2020) at 1110 UTC
and is compared with the estimations from the RSD data, as the estimated nearest time when
the sonde of the RSD reached the PBL top.

In order to ensure the PBL depth was only computed in non-rainy conditions, precipitation
data were obtained from the station also located on the UB site. The wind speed (VV ) and
rainfall data (RAI N ) from an automatic surface weather station (AWS) located at Barcelona
Observatori Fabra (41.419◦N, 2.124◦E) were also used. The station is located on the north-
western edge of Barcelona, on a mountain slope about 400 m a.s.l., and therefore is less
influenced by the urban environment. Meteorological analysis including PBL depth, VV ,
and RAI N was performed for the two considered temporal periods, PLD (2016–2019) and
DLD (2020).

2.3 AppliedMethods

In order to estimate vertical dispersion conditions, the PBL depth was computed for days
without rain for values before and during lockdown. The PBL top establishes the upper limit
of the air volume in which the pollutants accumulate. During the daytime, the mixed layer
is characterized by profiles of constant potential temperature, humidity, and refractivity. The
PBL depth was calculated using two different algorithms.

The first method used (hereafter RAOB) is based on the methodology of Wang and Wang
(2014) called the “Gradient Detector" methodology, including modifications by Yuval et al.
(2020). This algorithm uses RSD data, computing the gradients of potential temperature
(θ ), specific humidity (q), relative humidity (RH ), and refractivity (N ) with a fourth-order
discrete-derivative approximation. The specific humidity is calculated as

q = rd
rv

e

p − e
, (1)

where rd = 287.05 J kg−1 K−1 and rv = 461.50 J kg−1 K−1 are the specific gas constants
for dry air and water vapour respectively, e is the water vapour pressure, calculated using
e = RHes , es is the saturation water vapour pressure, computed from the Magnus–Tetens
expression, and p is the atmospheric pressure. Refractivity was computed as (Bech et al.
2003)

N = 77.6
p

T
+ 373000

e

T 2 , (2)

where p is the pressure (in hPa) and T is the air temperature (in K). As the typical temperature
and humidity profiles show sharp variations at the top of the boundary layer, the PBL top
is identified as the height at which the maximum gradient of θ and minima gradients of
q , RH and N are located. Gradient peaks were located using an automated function from
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Scipy software (Virtanen et al. 2020), equipped with a quality filter to dismiss unreliable PBL
depths. To provide high quality values, PBL depths lower than 250 m were discarded.

The secondmethod usedwas the BL-VIEWEnhancedGradientmethod (VAISALA2020)
followed by a selection algorithm, hereafter called CEIL. The Vaisala BL-View software
estimates the boundary-layer height from the analysis of the vertical backscattering profile.
More specifically, it is based on the so-called “Gradient Method”, which relates the highest
negative gradient of the backscatter coefficient with the top of the PBL. The algorithm is
enhanced with vertical and temporal averaging processes to reduce false-positive PBL depth
identifications induced by clouds, precipitation and fog (Münkel and Roininen 2010). The
result is a robust algorithm that detects up to three possible PBL depth estimates from the
same vertical profile. We used this criterion and then selected the candidate of PBL depth
following the methodology of Lotteraner and Piringer (2016). The final PBL depth value
was only considered when the meteorological station set on the UB site did not register
precipitation during the previous 5 h (between 0600 UTC and 1110 UTC).

Horizontal dispersion was analyzed using data of wind speed from two sources. The wind
speed from the AWS was used as a background reference (at 411 m a.s.l.). The wind speed
obtained from RSD data was averaged for four layers from the surface up to the PBL top
selected using the RAOB method according to the following height intervals

VV1 = VV (z)|z ∈ [0, 0.1zi ),
VV2 = VV (z)|z ∈ [0.1zi , 0.25zi ),
VV3 = VV (z)|z ∈ [0.25zi , 0.5zi ),
VV4 = VV (z)|z ∈ [0.5zi , zi ).

In order to quantify pollutant removal from the atmosphere through wet deposition, pre-
cipitation data were gathered from the selected AWS.

The results are shown using boxplots, which present several statistics. The box size repre-
sents the inter-quartile distance from the 25th percentile (Q1) up to the 75th percentile (Q3),
representing the inter-quartile range (I QR), which depends on the values and the dispersion
of the plotted series. Themedian value of the points within the bin is shown using a horizontal
line inside the box. The upper (lower) whisker extends to the maximum (minimum) datum
position at Q3 + 1.5I QR (Q3 − 1.5I QR). Outliers are marked with dots above/below the
whiskers. In the wind speed boxplots, outliers are not shown to make the plots clearer.

3 Results

The results are divided into two sections: the meteorological conditions and the pollutant
concentration variation.

3.1 Meteorological Conditions

Statistical data from the PBL depth obtained using the two algorithms, RAOB and CEIL, are
summarized in Table 2 and Fig. 2. All days without rain were considered, including clear sky
and cloudy days. Firstly, a comparison between the RAOB and CEIL methods shows that the
PBL depth determined using the RAOB method were greater than those determined using
the CEIL method. This is what we expected based on the characteristics of these algorithms,
since RAOB methodology is very sensitive to humidity, temperature, and refractivity shifts,
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Table 2 Statistics (mean, standard deviation, and percentiles) of the PBL depth PBLH computed with the
two algorithms, RAOB and CEIL, for March and April, comparing the PLD period 2016–2019 and the DLD
period in 2020

Measurement Mean (m) Std (m) 5th (m) 25th (m) 50th (m) 75th (m) 95th (m)

PBLH RAOB PLD 1090 470 390 650 1120 1430 1860

PBLH RAOB DLD 1140 450 570 730 1140 1440 1980

PBLH CEIL PLD 880 320 450 620 830 1100 1430

PBLH CEIL DLD 960 340 490 670 920 1190 1570

which is more likely to occur in higher layers. Moreover, the CEIL method tends to select
lower PBL depth candidates since the quality of backscattering signal decreases with height.
Regarding the difference between the pre-lockdown (PLD, 2016–2019) and during lockdown
periods (DLD, 2020), the results for the RAOB algorithm showed a mean PBL depth of 1090
m and a standard deviation of 470 m for the PLD period, while the mean PBL depth was
1140m, with a standard deviation of 450m for the DLD period. There was, therefore, a slight
increase in the PBL depth during lockdown of around 5%. Regarding the CEIL algorithm,
a mean of 880 m with a standard deviation of 320 m was found during PLD period (2016–
2019), and a mean PBL depth of 960 m and standard deviation of 340 m was found in the
DLD period, representing an increase of 9% during lockdown weeks.

In order to explore the PBL depth at times other than midday, we computed the daily cycle
of the PBL depth obtained by the CEIL method (Fig. 3). In general, the median DLD PBL
depth was close to the median PLD PBL depth, although some differences can be seen. At
night, between 0000 and 0200 UTC, the PBL depth during the lockdown was greater than in
the PLD period, reaching its 75th percentile, although the interquartile difference was very
small. Another interesting deviation was observed around 0900 to 1200 UTC, when greater
PBL depths were estimated for the DLD period. In both cases a deeper PBL would lead to
more dilution of the pollutant species, which would have favoured the decrease in pollutant
concentrations recorded during the lockdown period.

Regarding the wind speed (VV ), similar statistics were obtained for both periods. The
mean wind speed at the AWS station was almost the same in the DLD period, 4.3 m s−1, as
in the PLD period, 4.2 m s−1, with similar standard deviations of 2.3 m s−1 and 2.4 m s−1

respectively. Analysis of different vertical layers (Fig. 4) reveals lower median VV values
in the first two layers, from the surface up to the 25% percentile of the PBL depth during
the DLD period than in the PLD period. In contrast, at heights between 25–50% of the PBL
depth the wind speed increased in the DLD period. Therefore, dispersion condition near the
surface were worse during lockdown and slightly better in the middle of the PBL. The 25th
percentiles present modest differences, with higher values in the DLD period, while at high
percentiles the pattern changed, and stronger winds occurred in the PLD, although this might
partly reflect the larger amount of data analyzed in this case.

Rainfall also showed a similar pattern in the two time periods (Table 3). Rain was detected
at the station roughly once every three days. However, during 2020, the amount of precipita-
tion per rain episode was substantially higher: 17.4 mm day−1 compared with 7.5 mm day−1

in the 2016–2019 period. Additionally, the fraction of 30-min periods of rain (rainy 30-
min/total 30-min) doubled in the DLD period (third column in Table 3). Overall, the data
indicate longer and more abundant rain episodes in the 2020 period. In fact, April 2020 rain-
fall accumulation was the highest in 107 years of data (SMC 2020). However, the number of
rainy days was the same in the PLD and DLD periods, leading to the likelihood of similar
pollutant removal from the atmosphere.
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Fig. 2 Boxplots of PBL depth (zi ) computed for pre-lockdown (PLD) period (orange) and during lockdown
(DLD) period (blue) using the RAOB and CEIL algorithms

Fig. 3 Daily cycle of the PBL
depth (zi ) from 14 March to 30
April for the 4 year PLD period
(blue) and for 2020 in the
lockdown (DLD) period
(orange). Solid thick lines
correspond to median PBLHs and
25th and 75th PBLH percentiles
are delimited by the blue
semi-transparent shaded area for
the PLD period and by the dashed
orange lines for the DLD period

z i

3.2 Variations in Air Pollutant Concentrations During Lockdown

The differences in concentration of NO2, PM10, and O3 between the DLD period and the
2010–2019 PLD period were explored by analyzing the daily variation and the daily cycles
of pollutant concentrations. Ozone variations were also analyzed from a regional point of
view using spatial distribution maps.
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Fig. 4 Boxplot of wind speed (VV ) at the AWS station and at different layers within the boundary-layer
(VVi ). Orange boxes represent data from the PLD period and blue boxes represent data from the DLD period

Table 3 Rainfall statistics at the AWS meteorological station. A day is considered as rainy if more than 0.1
mm is measured

Period Rainy day ratio Half-hour rainy ratio Total rainfall Rainfall/Day Rainfall/Rain day
(Rainy days/total
days)

(Rainy 30-min/total
30-min)

(mm) (mm day−1) (mm day−1)

PLD (2016–2019) 0.33 (63/192) 0.05 (485/9216) 118 2.5 7.5

DLD (2020) 0.34 (18/48) 0.11 (263/2305) 313 6.5 17.4

Total rainfall considers rainfall recorded from 14 March to 30 April in both PLD (471 mm divided by 4 years)
and DLD periods

3.2.1 Daily Variation in Barcelona

NO2 concentrations were strongly reduced in the DLD period at the traffic site (Fig. 5a). The
daily mean concentrations recorded during March and April (57 µ g m−3) in the PLD period
declined to 19 µ g m−3 in the DLD period, equivalent to a reduction of 66% (Table 4). From
14 to 16 March 2020, when the lockdown started, there was a sudden reduction in maximum
1-h NO2 concentrations throughout the DLD period, in many cases far below the minimum
values recorded in the PLD period. Throughout the DLD period the values remained below
the WHO-recommended maximum concentration (200 µ g m−3). It can also be seen that the
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Fig. 5 Pollutant concentrations: a NO2 1-h daily maximum, b PM10 daily mean, and c O3 maximum of the
8-h rolling averages during March and April at the traffic station. Data shown correspond to the median of
PLD period 2010–2019 (thick blue line) with the 25th and 75th percentiles (shaded dark blue) and the 2010–
2019 daily minimum and maximum (shaded light blue), concentration during lockdown in 2020 (DLD) (solid
orange line), and the first 13 days ofMarch 2020 just before the lockdown in 2020 (BLD) (dashed orange line).
Grey vertical areas identify rainy days during 2020. Horizontal lines represent WHO air pollution guidelines
(until September 2021). Boxplots represent PLD period data (blue box and whiskers) including the DLDmean
value (orange dot) on the same reference axis the corresponding main plot

mean daily NO2 maximumwas located above the lower whisker of the PLD boxplot (Fig. 5a).
In addition, rain occurred during the last week of March 2020, leading to a decrease in NO2

concentrations, but there was no decrease in other rainy periods (see gray vertical areas in
Fig. 5). The urban background monitoring station shows smaller absolute differences than
the traffic site except for the NO2 mean daily maximum (Table 4): NO2 median values during
the PLD period were around 30–40 µ g m−3 and DLD values were between 10 and 20 µ

g m−3. The vast majority of DLD data was lower than the 25th percentile PLD. Nevertheless,
the fractional reduction between the two time periods was similar to that at the traffic site,
i.e., a 62% reduction in NO2 levels (from 34 µ g m−3 to 13 µ g m−3).
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Table 4 Concentrations and relative differences (Rdiff) in % between the PLD (2010–2019) and DLD (2020)
periods for the traffic and background stations, showing the mean of the daily mean concentration of NO2
(first row), the mean of the 1-h daily maximum NO2 (second row), the mean of the daily mean concentration
of PM10 (third row), and the mean of the daily maximum of the 8-h rolling averages of O3 (last row)

Traffic Background

PLD (µg m−3) DLD (µg m−3) RDiff (%) PLD (µg m−3) DLD (µg m−3) RDiff (%)

NO2 daily mean 57 19 −66 34 13 −62

NO2 daily max 98 42 −57 79 32 −60

PM10 daily mean 28 18 −37 20 14 −31

O3 8-h max 67 83 +23 85 94 +11

PM10 concentrations were below the 25th percentile at both the traffic and background
stations, except during the first lockdown week (Fig. 5b). The difference between the PLD
and DLD periods was not as significant as it was for NO2 but was gradual until the third week
ofMarch, when concentrations showed small variations between 15µ gm−3 and 20µ gm−3.
After the third week of March, concentration were detected between the 75th percentile and
the corresponding minimum of the 2010–2019 period except in the rainy third week of April,
when the 2020 values marked a new minimum. The average PM10 concentration during the
DLD period was lower than the 25th percentile of the PLD years, as seen in the boxplot in
Fig. 5b.

In contrast to NO2 and PM10 concentrations, ozone levels increase in the DLD period
in Barcelona, especially at the traffic station (Fig. 5c). The daily maximum of 8-h rolling
average of ozone increased to values above the PLD 75th percentile after 14th March, and
stayed at this level for almost the entire lockdown period at the traffic station. In many cases
the measured concentrations exceed the corresponding daily maximum 8-h rolling average
of the 2010–2019 period. The last week of March and third week of April showed a local
drop in ozone concentrations corresponding to rainy periods, which hinder ozone formation
and lead to ozone removal from the atmosphere. The daily maximum of the 8-h rolling
mean increased from 67 µg m−3 in the PLD period to 83 µg m−3 in the DLD period, a
23% increase, situating the DLD data above the 75th PLD percentile. In addition, during
a short period in the April DLD period the WHO standard for the daily maximum of the
8-h rolling mean of ozone (100 µg m−3) was exceeded. A smaller increase was observed
at the background station (not shown), where the increase compared to the PLD mean was
11%. Unlike at the traffic station, where the vast majority of values were higher than the 75th
percentile, here they are found between the 50th percentile and the maximum during the PLD
period. The observed ozone increase can be attributed to the already known sensitivity of the
ozone regime in urban areas, where the VOCs/NOx ratio is relatively low, which leads ozone
to increase when NO2 decreases (Sillman and He 2002). This ozone regime sensitivity has
been observed in other cities around the world (Shi and Brasseur 2020; Cazorla et al. 2021).

3.2.2 Daily Cycle Variation

Figure 6 shows the averaged daily cycle of NO2 concentrations at selected traffic and back-
ground locations on weekdays (left panels Fig. 6) and at weekends (right panels Fig. 6). A
strong decline in NO2 concentrations was observed during the 2020 lockdown in comparison
with the 10-year mean. The morning peak around 0800 local time (LT, local time = UTC
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a b

dc

Fig. 6 Daily NO2 concentration cycle at traffic and background stations. Thick blue line corresponds to the
median of the PLD period including data from mid March and April of 2010–2019 and the shaded blue limits
mark the 25th and 75th percentiles. The thick orange line corresponds to the DLDmedian including data from
mid March and April of 2020, and the shaded orange limits mark the 25th and 75th percentiles. Left panels
correspond to weekdays and right panels to weekends. Local time (LT) corresponds to UTC + 1)

+ 1 h) was strongly reduced while the evening peak around 2000 LT was suppressed in the
DLD period, mostly at the traffic station and on weekdays. Remarkable differences were
also found in the maximum hourly value (morning/evening peak), as shown in Table 5. The
traffic site showed a 58% decrease in the maximum of the hourly mean, from 90 µg m−3 to
37 µg m−3, whereas the background site showed a 63% reduction from 65 µg m−3 to 24
µg m−3.

The daily cycles of PM10 for weekdays and weekends are shown in Fig. 7, for the traffic
and background sites. The mean PM10 concentrations at the traffic station were reduced by
40% on weekdays during lockdown while the maximummorning mean was reduced by 49%
(from 40 µg m−3 to 20 µg m−3). The differences were most remarkable from 0700 LT (LT,
local time = UTC + 1 h) to 2300 LT on weekdays, when the DLD median values were far
below the 25th percentile of the PLD concentrations. At the background station, variations
between periods were smaller, with a 35% reduction of the mean period value and a 44%
reduction of the daily maximum.

In order to assess the possible influence of increased precipitation during the lockdown
period, variations in pollutant concentration were calculated without considering hours of
precipitation. The results show small variations in the mean concentrations presented in
Table 5. On weekdays, the mean of the NO2 daily maximum increased by only 1 µg m−3

at the traffic site, while PM10 stayed at the same mean concentrations. The largest change
seen without considering the precipitation hours was in the maximum of the daily maximum
of the 8-h rolling averages of O3 at the background site at weekends, with an increase of
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a b

c d

Fig. 7 The same as in Fig. 6 but for PM10 concentrations

3 µg m−3. This indicates a residual effect of the pollutant wet deposition produced by the
increased rainfall for the DLD period.

Figure 8 presents the daily cycle of O3 concentration. As already mentioned in Sect. 3.2.1,
the tropospheric O3 concentrations increased at both the traffic and background stations in
the DLD period. The traffic site showed the highest increase with a sustained increase of
approximately 15-20 µg m−3 during all weekday hours, i.e., above the 75th percentile of the
PLD period. In addition, the disappearance of the NO2 evening peak may have played a role
in the slower ozone depletion in the evening and night-time. The behaviour at the urban traffic
and the urban background siteswas similar in theDLDperiod and previous differences during
the PLD period were reduced, for instance, in the 0600–0900 LT concentration reductions
and in the 1500 LT maximum value.

Some of the differences observed in the PLD period between weekends and weekdays
(smaller NO2 and PM10 peaks) at both stations were suppressed during the DLD period.
Regarding ozone, the usual increase in weekend concentration during the daytime in urban
areas still occurred, except in the early morning when the O3 concentrations in the DLD
period strongly decreased. This can be attributed to the fact that the concentration differences
between weekends and weekdays were mostly suppressed during lockdown thus resulting in
similar behaviours for both. Conversely, during the pre-lockdown weekends ozone was not
depleted in urban areas because of the absence of the morning NO2 peak.

3.2.3 Effects on Tropospheric Ozone

The daily cycle of ozone concentrations at a suburban station located downwind of the
Barcelona urban area was analyzed in order to assess the influence of the reduction of NOx
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fe

c d

a b

Fig. 8 The same as in Fig. 6 but for O3 concentrations at traffic, background, and suburban stations

and its role as an O3 precursor. In contrast to the rise in ozone levels observed at the urban
traffic and urban background monitoring sites, in 2020 there was a small decrease in ozone
concentrations at the suburban site (Fig. 8e, f). On weekdays, a decline in concentration
was detected between the PLD and DLD periods (58 µ g m−3 to 57 µg m−3). There was a
balance between a lower ozone depletion between 0600 LT to 0900 LT due to the absence
of titration during these hours as the NOx emissions were reduced, and a strong decrease in
the daily hourly maximum, from 97 µg m−3 to 83 µg m−3, a 14% reduction (Table 5). On
weekends, the PLD and DLD periods presented a similar tendency during night-time, again
with a strong decrease in hourly maximum concentrations, from 100 µg m−3 to 87 µg m−3,
a 13% reduction. To further illustrate the ozone behaviour, Fig. 9 shows a map including all
available pollutant stations showing relative differences in tropospheric ozone concentration
between the DLD and PLD means, where positive (negative) values indicate an increase
(decrease) in ozone concentrations during lockdown. Two different sensitivity regimes were
observed according to the type of area of the stations. Most of the urban stations showed an
increase in ozone concentration in the DLD period (as shown in Figs. 5c, 8c, d), whereas
rural stations tended to show a decrease in ozone concentrations. Based on the sensitivity
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Fig. 9 Relative difference in the mean concentration of O3 during the 2010–2019 PLD period and the
2020 DLD period. Each station is represented by a coloured circle indicating the percentage of increase
(orange and red colours) or decrease (green colours) in ozone. The percentage was calculated as ([O3DLD ] −
[O3PLD ])/[O3PLD ] × 100. Transparent circles indicate that the pollutant was not measured at the station

regime explanation, in rural environments where the VOCs/NOx ratio was relatively high, a
reduction in NOx led to a reduction in ozone (as shown in Fig. 8e, f). Conversely, in urban
environments the reduction in NOx implies an increase in ozone concentrations. A decrease
in VOCs during the DLD period could also have played a role, although variations in VOC
emissions were not quantified in this study.

4 Discussion

A statistical analysis of meteorological conditions at the UB Barcelona and AWS sites was
conducted to compare the dispersion conditions between the 2020 DLD and 2016–2019
PLD periods at the local scale of Barcelona and its surroundings. Dispersion conditions in
the vertical dimension, determined by the computed PBL depth, were similar in both periods,
but slightly better in 2020. The surface and upper-level wind speeds were also comparable in
the periods studied, but thewet deposition inMarch andApril 2020was greater than the 2016–
2019 mean. Nevertheless, the number of rainy days per analyzed period was similar, leading
to the likelihood of similar pollutant removal from the atmosphere in both periods. Although
some authors have pointed out that differences in meteorological conditions between 2020
and 2019 could have played a role in the drastic reduction in NO2 concentrations (Baldasano
2020; Tobías et al. 2020), the local-scale meteorological analysis conducted here suggests
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that the meteorological factors involved in vertical and horizontal dispersion conditions had a
limited effect on the reduction in pollutant concentrations in Barcelona and its surroundings.
These results are consistent with those of Petetin et al. (2020) who also demonstrated that the
changes in NO2 concentrations during lockdownwere not directly related to the variability in
meteorological conditions in Spain. Conversely, Goldberg et al. (2020) analyzed TROPOMI
satellite-based NO2 data including wind speed and direction from ERA5 reanalysis and
revealed that meteorological patterns were especially favourable for low NO2 concentrations
in the United States.

The strong decrease in NO2 concentrations can be linked to the reduction in anthropogenic
activities in Barcelona. Reports from the regional Government (GENCAT 2020) indicate an
abrupt reduction in the traffic emission sector, up to 70% on weekdays and 95% at weekends
on main roads, 55% reduction in maritime transport operations, and between 95% to 97%
decrease in air traffic operations.

Measurements of NO2 column height taken by ESA and NASA satellites (Muhammad
et al. 2020) show reductions of up to 30% in some of the epicentres of COVID-19 such as
China, Italy, Spain, and theUnitedStates.Data from theEuropeanEnvironmentAgency (EEA
2020) indicate that Rome, Paris, Toulouse, and Madrid traffic stations presented a reduction
between 50% and 60% in NO2 concentrations, in a comparison between 2018–2019 and
2020, slightly less than the percentages shown here. In the present study the calculated mean
reduction in NO2 during the lockdown period at the traffic site was higher (66%) than that
reported by Baldasano (2020) and Tobías et al. (2020), probably because we considered
a longer period for the PLD conditions (2010–2019). The mean percentage decrease in
PM10 was similar to that found in previous studies (around 30%). In agreement with Briz-
Redón et al. (2020), Tobías et al. (2020), Viteri et al. (2020) and Sulaymon et al. (2021),
ozone concentration increased in urban areas during the 2020 lockdown, associated with the
reduction in NO2 levels. In contrast, ozone decreased in rural areas located downwind of the
urban emission sources.

5 Conclusions

Meteorological dispersion conditions including vertical and horizontal dispersion and wet
deposition differed slightly between the PLD and DLD periods in Barcelona. Surface and
boundary-layer wind speedswere similar in both periods, leading to a comparable horizontal-
dispersion capacity of the atmosphere. Regarding vertical dispersion, the PBLH increased
slightly in the DLD period (a median of 1090 m PLD and 1140 m DLD for the RAOB
algorithm and 880 m PLD and 960 mDLD for the CEIL method at midday), giving a slightly
greater volume of air in which pollutants can be diluted. In addition, the number of rainy
days within the periods analyzedwas similar (0.33 in 2016–2019, 0.34 during 2020) although
rainfall amount was higher during 2020.

Our results indicate that the variation in pollutants in Barcelona was mainly caused by the
emission changes that occurred during lockdown. As these emission changes were mostly
caused by restrictions on mobility and by a reduction in productive activities, there was a
reduction in NO2 and PM10 levels detected at the traffic and background stations. This was
particularly evident at the traffic station, with a mean NO2 reduction from 57 µg m−3 in
the PLD period to 19 µg m−3 in the DLD period (66% fractional decrease), and a PM10
reduction from 28µgm−3 in the PLDperiod to 18µgm−3 in theDLDperiod (36% fractional
decrease). The differences betweenweekdays andweekends decreased to the extent that there
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were similar pollutant concentrations in both periods during the lockdown. Furthermore, the
afternoon NO2 peak at the traffic site was suppressed and the morning PM10 peak magnitude
was lowered during lockdown.

Tropospheric ozone showed different patterns of behaviour according to the degree of
urbanization close to the measurement site, leading to a certain ozone regime sensitivity
driven by the limiting precursor at the station. Thus, urban areas showed an increase in ozone
concentrations due to theNOx reduction, while rural stations (NOx -sensitive areas) presented
a decrease or a stabilization of the ozone mean value of the daily mean ozone and its daily
maximum. The traffic station produced the most extreme example of the former behaviour,
with the standard for the daily maximum of the 8-h rolling means of the ozone guideline
being exceeded during certain periods. On the other hand, the suburban station showed a
decrease in the mean of hourly maximum ozone values from 97 µg m−3 in the PLD period
to 83 µg m−3 in the DLD period, producing the well known weekend effect in rural areas,
where drastic reductions in NO2 in urban areas lead to a reduction in ozone at rural sites
located downwind from the urban emitting sources. Furthermore, because of the reduction
in NOx precursors, night-time depletion also diminished, giving higher minima in the DLD
period. This was noticeable on weekdays, when the difference in emissions between the PLD
and DLD periods was more remarkable. It should be noted that the results presented here not
only complement previous air quality COVID-19 lockdown studies but also provide insights
into the effects of road traffic reduction under different meteorological conditions, whichmay
be useful for planning or assessing future regulatory traffic-related air pollution measures.

Future work may include an analysis of different methodologies to estimate PBL depths
for different meteorological conditions. In addition, broadening the meteorological variables
measured would extend the scope of the analysis. A meteorological-dispersion factor anal-
ysis in other locations with similar instrumentation availability, at least a radiosonde and a
ceilometer, would be valuable to confirm or refute the validity of the results collected around
the urban areas affected by COVID-19.
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