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Abstract 17 

Statistical learning has been proposed as a mechanism to structure and segment the continuous flow of 18 

information in several sensory modalities. Previous studies proposed that the medial temporal lobe, and 19 

in particular the hippocampus, may be crucial to parse the stream in the visual modality. However, the 20 

involvement of the hippocampus in auditory statistical learning, and specifically in speech segmentation 21 

is less clear. To explore the role of the hippocampus in speech segmentation based on statistical 22 

learning, we exposed seven pharmaco-resistant temporal lobe epilepsy patients to a continuous stream 23 

of trisyllabic pseudowords and recorded intracranial stereotaxic electro-encephalography (sEEG). We 24 

used frequency-tagging analysis to quantify neuronal synchronization of the hippocampus and auditory 25 

regions to the temporal structure of words and syllables of the learning stream. We also analyzed the 26 

event-related potentials (ERPs) of the test to evaluate the role of both regions in the recognition of newly 27 

segmented words. Results show that while auditory regions highly respond to syllable frequency, the 28 

hippocampus responds mostly to word frequency. Moreover, ERPs collected in the hippocampus show 29 

clear sensitivity to the familiarity of the items. These findings provide direct evidence of the 30 

involvement of the hippocampus in the speech segmentation process and suggest a hierarchical 31 

organization of auditory information during speech processing. 32 

Keywords: Hippocampus, statistical learning, frequency tagging, SEEG, speech segmentation 33 
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 45 

 46 

Introduction 47 

Humans are daily exposed to a massive amount of information. Finding a structure in the 48 

sensory flow is necessary to make sense of the world. A structure can emerge thanks to regularities in 49 

the input tracked by computing low-order statistics (Reber, 1967; Frost et al., 2015). Statistical learning 50 

(SL) is a domain-general learning mechanism through which learners track statistical regularities of 51 

motor (Hunt & Aslin, 2001), visual (Fisher & Aslin, 2002), and auditory sequences (Saffran et al., 1996, 52 

1999; see Frost et al., 2015 for a review). 53 

Speech segmentation is one of the first problems that language learners must deal with when 54 

learning a new language (Graf-Estes et al., 2007; François et al., 2017). SL has been proposed as a 55 

possible mechanism that allows segmenting words from fluent speech (Cutler & Butterfield, 1992; 56 

Saffran et al., 1996). This process can occur incidentally and without effort via simple exposure, as in 57 

the case of infants (Saffran et al., 1997; Turk-Browne et al., 2005; Saffran et al., 1999). Although several 58 

behavioral (Cutler & Butterfield, 1992; Saffran et al., 1996; Schön et al., 2008) and electrophysiological 59 

studies (Sanders et al., 2002; Cunillera et al., 2006; de Diego-Balaguer et al., 2007; Abla et al., 2008; 60 

François et al., 2014; 2017) have explored the bases of SL, the underlying precise brain network 61 

dynamics are not clear yet. 62 

Capitalizing on a high spatial resolution, functional magnetic resonance imaging (fMRI) studies 63 

have allowed to decipher the brain regions supporting SL in the auditory and visual modalities. Results 64 

showed activations of modality-specific brain regions during exposure to learning streams (Turk-65 

Browne et al., 2009; Bischoff-Grethe et al., 2000; McNealy et al., 2006; Cunillera et al., 2009; Karuza 66 

et al., 2013). Specifically, fMRI speech segmentation studies consistently observed functional 67 

activations of typical language areas such as the middle and superior temporal regions (MTG & STG) 68 

and the inferior frontal gyrus (IFG; McNealy et al., 2006; Cunillera et al., 2009; Karuza et al., 2013). 69 

However, activations of the hippocampus were also observed in a few SL studies (Turk-Browne et al., 70 

2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016; Barascud et al., 2016). The 71 

interplay between cortical and subcortical structures during SL fits well with cognitive models 72 

proposing that complementary neural systems may account for human learning abilities (Davis & 73 

Gaskell, 2009; McClelland et al., 1995). Specifically, these models suggest that learning and memory 74 

processes may occur in two different stages. The medial temporal structures would support the initial 75 

acquisition and formation of memory traces, while neocortical regions may participate in their long-76 

term storage. Interestingly, the hippocampus has been proposed to play a crucial role in segmenting 77 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

continuous sensory inputs into discrete events (Radvansky & Zacks, 2017). Recent studies on event 78 

memory formation propose that the interplay between sensory regions and the hippocampus may 79 

support the creation of boundaries between events. Specifically, while sensory areas seem to be 80 

responsible for fine-grained boundaries, the hippocampus instead supports cortical information binding 81 

into memory traces (Baldassano et al., 2017; Ben-Yakov & Dudai, 2011; Zacks et al., 2001; Speer et 82 

al., 2007). Further, recent studies on vocabulary acquisition based on associative or contextual learning 83 

consistently show functional activations of the hippocampus during the early stages of learning 84 

(Bartolotti et al., 2017; Breitenstein et al., 2005; Covington & Duff, 2016; Ripollés et al., 2016; Züst et 85 

al., 2019). However, direct human electrophysiological evidence for the role of the hippocampus in 86 

extracting pattern regularities in speech is still missing.  87 

Recently, electrophysiological studies have capitalized on the brain property to oscillate at the 88 

frequency of a continuous auditory stimulus to explore the neural mechanisms supporting the 89 

hierarchical processing of speech and music (Nozaradan et al., 2014; Giraud & Poeppel, 2012; Poeppel 90 

& Teng, 2020). Specifically, frequency tagging analysis have been successfully applied to surface EEG 91 

or MEG recordings to quantify the amount of neural synchronization to syllable, pairs of syllables and 92 

words during speech segmentation tasks (Buiatti et al., 2009; Ding et al., 2016; Batterink & Paller, 93 

2017). In a recent study, Henin and colleagues (2020) collected intracortical brain responses from 94 

human epileptic patients during an auditory and a visual SL task. They applied frequency-tagging to 95 

electrocorticography (EcoG) data to show that neural response in the STG synchronized to both 96 

syllables and word frequency. They also found synchronized neural response to word frequency in the 97 

IFG and Anterior Temporal Lobe. However, no evidence of neural synchronization was observed in the 98 

hippocampus possibly due to a limited access provided by EcoG probes. Nonetheless, using a more 99 

indirect method based on multivariate pattern similarity analysis, they were able to show the 100 

involvement of the hippocampus in word identity during learning.  101 

Here, we gathered intracranial recordings from 7 patients with pharmaco-resistant temporal 102 

lobe epilepsy implanted with depth electrodes to directly assess the contribution of the auditory cortex 103 

and the hippocampus during a speech segmentation task based on SL. Participants passively listened to 104 

4 minutes of an artificial statistically structured speech stream and were tested on their ability to 105 

recognize the newly segmented words. We used frequency-tagging to quantify the level of neural 106 

synchronization in auditory and hippocampal regions to the constitutive elements of the inputs, namely 107 

syllables, pairs of syllables and tri-syllabic words during the learning phase. We expected auditory 108 

regions to show a peak in the power spectrum corresponding to the syllable rate reflecting phonological 109 

processing, while the hippocampus was expected to exhibit high neural synchronization to pairs of 110 

syllables and word frequencies, reflecting its role in speech segmentation. Moreover, previous reports 111 

studying memory have extensively shown the involvement of the hippocampus (Ripollés et al., 2016; 112 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 2000; Ranganath et 113 

al., 2004). Therefore, we also analyzed the event-related potentials (ERPs) collected during the 114 

behavioural test to evaluate the contribution of both regions during the recall of newly segmented words.  115 

Methods 116 

Participants 117 

Seven patients with pharmaco-resistant temporal lobe epilepsy (4 females, mean age = 29; range 18-118 

45) participated in the study (see Table 1). Patients were implanted with depth electrodes for clinical 119 

reasons to determine the epileptic zone before they underwent neurosurgical treatment at the La Timone 120 

Hospital in Marseille (France). The location of the implanted electrodes was solely determined by 121 

clinical criteria. Patients provided informed consent prior to the experimental session, and the study was 122 

approved by the Institutional Review Board of the French Institute of Health (IRB00003888). No part 123 

of the study procedures was pre-registered prior to the research being conducted. 124 

Table 1: Patients clinical description 125 

Patients Gender Age 

(years) 

Hemispheric 

dominance 

Epileptogenic 

zone 

Depth 

electrodes 

Hippocampal 

electrodes 

P1  F 29 L L temporal 4R + 10L Both 

P2  F 45 L R temporal 10R + 2L Both 

P3  F 18 L R temporal 5R + 4L Both 

P4  F 23 Atypical L temporal 1R + 12L L 

P5 M 19 L L temporal 2R + 11L R 

P6 M  42  L L Frontal  1R + 13L L 

P7 M  33  L R Frontal & 

Parietal 

 14R  R 

M male, F female, L left, R right 126 

Data acquisition & electrode localization 127 
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The sEEG signal was recorded using depth electrodes of 0.8 mm diameter containing 10 to 15 electrodes 128 

contacts (Alcis, Besançon, France). The electrode contacts were 2 mm long and were spaced from each 129 

other by 1.5 mm. Data was recorded using a BrainAmp amplifier system (Brain Products GmbH, 130 

Munich, Germany), sampled at 1000 Hz and high-passed filtered at 0.016 Hz. During the acquisition, 131 

recordings were referenced to a single scalp-electrode located at Cz. Contact data was offline converted 132 

to virtual channels using a bipolar montage approach (closest-neighbor contact reference) to increase 133 

spatial resolution and reduce passive volume diffusion from neighboring areas (Mercier et al., 2017).  134 

To precisely localize the channels, a procedure similar to the one used in the iELVis toolbox was applied 135 

(Groppe et al., 2017). First, we manually identified the location of each channel centroid on the post-136 

implant CT scan using the Gardel software (Medina et al., 2018). Second, we performed volumetric 137 

segmentation and cortical reconstruction on the pre-implant MRI with the Freesurfer image analysis 138 

suite (documented and freely available for download online http://surfer.nmr.mgh.harvard.edu/). Third, 139 

we mapped channel locations to the pre-implant MRI brain (processed with FreeSurfer) and to the MNI 140 

template, using SPM12 methods (Penny et al., 2011), through the FieldTrip toolbox (Oostenveld et al., 141 

2011). The co-registration to the patient brain was done via a rigid, affine transformation to respect 142 

individual anatomy. The normalization to the MNI template was done through a non-linear 143 

transformation to map channels to a standardized space and allow brain regions labeling using the 144 

Destrieux atlas (Destrieux et al., 2010). The definition of hippocampal and primary auditory channels 145 

was determined using a combination of automatic atlas labeling and visual inspection of the anatomical 146 

data in 2D and 3D representations (see Figure 1). 147 

 148 

Figure 1. sEEG channel location. Colored dots indicate the channel location for each patient in auditory (dark-colored) and 149 
hippocampal (light-colored) regions. Light gray represents the cortical sheet of the FreeSurfer brain template. The shaded area 150 
depicts the hippocampus.  151 

Experimental procedure 152 

We used a similar experimental design to the one used in our previous studies with healthy adults and 153 

children (Schön et al., 2008; François & Schön 2010; 2011; François et al., 2013; 2014). Specifically, 154 
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the experimental procedure consisted of two consecutive phases, an implicit learning phase followed 155 

by an explicit 2-alternative forced-choice (2AFC) task. Before starting the implicit learning phase, 156 

patients were asked to listen carefully to one single auditory stream without explicit instructions of 157 

learning (see Stimuli section for a description of the speech streams). Importantly, we did our best to 158 

keep the entire procedure implicit. During the learning phase, patients were exposed to a single 159 

continuous speech stream that was composed of 4 pseudo-words presented 60 times each, thus leading 160 

to a single continuous stream of 240 words that lasted 4 min. Immediately after this learning phase, 161 

patients performed the behavioural 2AFC task that lasted 5 min. During each trial of the test, patients 162 

were presented with two consecutive auditory words and had to press one of two buttons to indicate 163 

which of two words (first or second item) most closely resembled what they had just heard in the 164 

continuous stream (see Figure 2). Importantly, one test item was a word from the learning stream while 165 

the other was a “nonword” that was never heard before the test. Each familiar word of the language 166 

(word) was presented with each unfamiliar word (nonwords), making up 16 pairs that were repeated 167 

twice, thus leading to 32 test trials.  168 

 169 

Figure 2. Illustration of the experimental procedure. After being exposed to a continuous stream of statistically structured 170 
syllables/words without instruction of learning (A), participants performed a 2AFC task to assess the level of learning (B). The 171 
auditory cortex should preferentially respond to the syllable frequency reflecting the tracking of low-order speech structure. 172 
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The hippocampus should preferentially respond to the word frequency reflecting the creation of event boundaries during the 173 
learning. 174 

 175 

Stimuli  176 

The language consisted of four consonants (‘p’, ‘t’, ‘k’, ‘d’) and three vowels (‘o’, ‘i’, ‘y’), which were 177 

combined into a set of eleven syllables. The exact syllable length was set to 300 ms. These syllables 178 

were then combined to give rise to 4 tri-syllabic words (POKIDY, DITOKI, PIDYTI, and KOPIDO). 179 

The stream was built by random concatenation of the four pseudowords and synthesized using Mbrola 180 

(http://tcts.fpms.ac.be/synthesis/mbrola.html). More precisely, the speech stream was built by 181 

concatenating seven minimal sequences of non-coarticulated syllables respecting the constraint of not 182 

repeating the same word twice in a row. Importantly, no acoustic cues have been inserted at word 183 

boundaries. In the test, the items consisted of the four words used in the learning phase and four 184 

nonwords created by pseudo-randomly mixing the syllables of the words from the language TOPIDY, 185 

DYPOKI, KOKITI, and PIDITO. 186 

SEEG Data analysis: Frequency tagging (learning phase) 187 

For each patient, sEEG data, in a bipolar montage, were visually inspected using AnyWave software 188 

(Colombet et al., 2015), and channels with artifacts or epileptic activity were excluded from the analysis. 189 

Continuous sEEG recordings acquired during the learning task were filtered using a 0.5 Hz high pass 190 

filter to remove slow drifts in the recorded signal. Then, epochs time-locked to the onset of each word 191 

were created by segmenting the continuous EEG data from 4 words before and 4 after the stimulus 192 

yielding epochs of 8-word length (lasting 7.2 s). Epochs were partially overlapping, yet we took care to 193 

use an overlap equal to twice the size of the word to ensure that possible artifacts would not lead to a 194 

spurious peak at the word frequency. A baseline correction was applied (-3.6 to 0 s). Epochs with high 195 

amplitude values were excluded (threshold: mean +2 SD). Epochs were averaged and transformed to 196 

the frequency domain using a discrete Fourier transformation (Matlab; Natick, MA). Importantly, by 197 

computing averages, similarly to other frequency tagging studies (Nozaradan et al., 2021; Jonas et al., 198 

2016), we remove non time-locked activity (intrinsic oscillations), enhance the signal-to-noise ratio of 199 

EEG activities time locked to the patterns and only focus on evoked activity. We extracted the power 200 

values for each target frequency (word frequency: 1.11 Hz; two-syllables frequency: 1.67 Hz; syllable 201 

frequency: 3.33 Hz). Power values at the target frequencies were obtained for each patient and channel. 202 

SEEG Data analysis: ERP analysis (Test phase) 203 

We used a similar strategy with the sEEG data collected during the 2AFC test. First, we changed to a 204 

bipolar montage to increase spatial resolution, high-pass filtered at 0.5 Hz and low-pass filtered at 20 205 
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Hz. Then, we created epochs time-locked to the item onset using a -100 ms 1200 ms time-window. A 206 

baseline correction was applied (-100 to 0 ms). We only report analyses of channels in the hippocampus 207 

and the primary auditory cortex. 208 

Statistical analyses 209 

For each patient and for each target frequency (word, syllable & two syllables), we computed the 210 

distribution of power values across all contacts (between 140 and 200 contacts per patient, spanning 211 

several brain regions beyond the primary auditory cortex and the hippocampus). Since the distribution 212 

was not normal, we used a non-parametric threshold (median + 2.5 interquartile range, IQR) to 213 

determine whether hippocampal and auditory contacts showed a significant response at the target 214 

frequencies, as compared to overall channels (see Figure 3).  215 

 Whenever more than one channel was present in the same region (primary auditory or hippocampus), 216 

the average power values of the two channels was used. For patients with bilateral implantation and 217 

artifact free hippocampi, the average power values of channels located in both hemispheres was used. 218 

Finally, to assess the power differences between hippocampal and auditory channels for each patient at 219 

word, two-syllable, and syllable frequencies, we normalized the data across channels for each frequency 220 

and patient and applied the Wilcoxon test.  221 

 222 

Figure 3. Example of the methodology used to define significant hippocampal implication. Histograms of power response of 223 
all contacts (N ~ 150) to word, two-syllable, and syllable target frequencies for Patient 6. Power values above the threshold 224 
(median plus 2.5 IQR) are represented by red bars. Black arrows indicate the frequency bins where the hippocampal power 225 
response falls. In this example, the hippocampal response is significant at the word and two-syllable frequencies (arrow on red 226 
bars) but not at the syllable frequency (arrow on blue bars). 227 

To analyze the ERP data of the test phase, we first compared the amplitude of the ERPs to words and 228 

nonwords using mean amplitude values in successive 50 ms time-windows between 250 and 700 ms 229 

post-stimulus onset. Then, we computed a mixed-model including each trial (one value per trial per 230 

condition per patient: val~conditions+trials+(1|subjects)). 231 

Results 232 
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Test phase: The level of performance in the 2AFC test reveals that the percentage of correct explicit 233 

word recognition did not differ from chance level (range: 25-56%, p > .05, wilcoxon signed-rank) thus 234 

confirming previous results of impaired explicit word recall in patients with epilepsy (Schapiro et al., 235 

2014; Henin et al., 2021). Importantly, however, as shown on Figure 4, the ERP data show a significant 236 

difference between words and nonwords in hippocampal channels in the 250-400 (beta = -18.8; CI = -237 

33.3 -4.2; p <.01) and 550-700 ms (beta = -19.6, CI = -35.9 -3.2; p < .01) time-windows. A significant 238 

effect over a single 50 ms time window, between 350 and 400 ms, is also found over auditory channels 239 

(beta = -8.4, CI = -16.5 -0.7; p < .05). Overall, these results confirm that patients did segment the words 240 

during the learning phase and that the hippocampus is particularly sensitive to the familiarity of the 241 

items. 242 

 243 

Figure 4. ERPs to words and nonwords in hippocampal contacts (bipolar montage) averaged across 6 patients obtained during 244 
the 2AFC task. The thick and dashed lines show the mean of ERPs to words and nonwords respectively. The shaded areas 245 
correspond to the standard error of the mean in each condition. The grey areas depict the two time-windows showing significant 246 
differences between the two conditions.  247 

 248 

Learning phase: Clear power spectrum peaks at word and syllable frequencies are visible over auditory 249 

and hippocampal contacts (see Figure 5A).  250 

For the syllable frequency, all patients except one exhibited a clear peak in contacts located within the 251 

primary auditory cortex (raw data median = 12.24; IQR = 315.69). Five patients also showed significant 252 

responses at this target frequency in hippocampal contacts although much smaller than auditory 253 

responses (raw data median = 1.62; IQR = 2.76). 254 

For the word-frequency, all patients except one (Patient 4) showed a significant response in 255 

hippocampal contacts (raw data median = 3.86; IQR = 15.95). Three patients also showed a significant 256 

response to word-frequency in auditory contacts although smaller than hippocampal responses (raw 257 

data median = 1.62; IQR = 8.73). 258 
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For the two-syllable frequency, all patients showed a significant response at hippocampal contacts (raw 259 

data median = 4.79; IQR = 5.87). By contrast, none of the patients showed a significant response to the 260 

two-syllable frequency in auditory contacts (raw data median = 0.59; IQR = 0.71). 261 

The amplitude of the peaks in the power spectrum of the hippocampus differed from that in auditory 262 

regions across all target frequencies (word frequency: Cohen d = 0.5; p = .01; two-syllable frequency: 263 

d = 0.46; p = .01; syllable frequency: d = 0.7; p = .03). 264 

 265 

Figure 5. A) Example of a patient (Patient 7) power response of hippocampal and auditory electrodes to word frequency (red), 266 
two-syllable frequency (green) and syllable frequency (blue). B) Average of all patients' neural responses to word, two-267 
syllables and syllable frequencies in hippocampus and auditory regions (z-score normalized data). Black lines indicate the 268 
median of all patients and box plots indicate the interquartile range. 269 

 270 

Discussion 271 

In the present study, we directly assessed the contribution of auditory regions and the 272 

hippocampus during speech segmentation based on SL. Pharmaco-resistant epileptic patients implanted 273 

with sEEG depth electrodes listened to a continuous stream of statistically organized syllables. The 274 

frequency-tagging analysis reveals that the hippocampus preferentially responds to word-frequency. By 275 

contrast, auditory regions preferentially tune their response to syllable frequency (see Figure 5B). 276 

Although previous studies have suggested the involvement of MTL regions and especially the 277 

hippocampus in SL based on indirect measures, we provide the first direct evidence for its role during 278 

speech segmentation based on SL.  279 

Previous neuropsychological studies showed that patients with lesions of the MTL are impaired 280 

in extracting auditory and visual statistical patterns (Schapiro et al., 2014; Covington, Brown-Schmidt 281 
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& Duff, 2018). In a single case study, a patient with complete bilateral loss of hippocampus and 282 

extensive damage to surrounding MTL regions could not recall familiar sequences in a visual SL task 283 

(Schapiro et al., 2014). However, Covington and colleagues (2018) showed that patients with 284 

hippocampal damage could perform above chance level in SL tasks, although they were overall 285 

impaired in comparison to healthy controls. Therefore, although the hippocampus might participate and 286 

to a certain extent facilitate statistical learning by strengthening associations between input elements, 287 

its participation might not be strictly necessary and other non-hippocampal cortical regions could 288 

support SL. 289 

In the current work, patients, most of whom had temporal lobe epilepsy, performed poorly in 290 

the explicit recognition test as patients with MTL lesions. By contrast, they presented robust neural 291 

tuning at target frequencies corresponding to different levels of the speech hierarchy (i.e., word, 292 

syllable, and pair of syllables) during the learning phase. This result indicates that learning did take 293 

place and that the hippocampus was functional with respect to statistical learning. It also confirms that 294 

implicit online measures of learning based on electrophysiological data are more sensitive than 295 

behavioural measures (François, Tillmann & Schön, 2012). Indeed, the analysis of the ERPs collected 296 

during the 2AFC task also revealed significant differences between words and nonwords over 297 

hippocampal channels. This result fits well with previous studies on speech segmentation based on SL 298 

showing functional activations of the hippocampus during speech segmentation tasks (Turk-Browne et 299 

al., 2009; Schapiro, Kustner, & Turk-Browne 2012; Schapiro et al., 2016; Barascud et al., 2016). A 300 

similar familiarity effect has been also reported when focusing on the 2AFC test (François & Schön, 301 

2010, 2011; De Diego Balaguer et al., 2007). These studies used scalp EEG to show that healthy adults 302 

exhibited a larger negativity for unfamiliar than for newly learned. However, the percentage of correct 303 

explicit word recognition did not differ from chance level. Similar discrepancies between behavioural 304 

and neural data have been reported in previous neuroimaging studies of speech segmentation based on 305 

SL in healthy adults (François & Schön, 2010, 2011; McNealy et al., 2006; Turk-Browne et al., 2009; 306 

Sanders et al., 2002) and in patients with MTL damage (Henin et al., 2021; Schapiro et al., 2014; 307 

Covington, Brown-Schmidt & Duff, 2018). Moreover, the role of the hippocampus and MTL region 308 

during recognition memory tasks has largely been demonstrated in both healthy adults and patients with 309 

damage to the MTL (Brown & Aggleton, 2001; Düzel et al., 2001; Eldridge et al., 2000; Stark & Squire, 310 

2000; Ranganath et al., 2004). Here, we used an implicit procedure during the learning phase and 311 

evaluated the learning using an explicit behavioural task that requires the conscious recognition of 312 

word-forms presented auditorily. While our approach has the advantage of being of a very short 313 

duration, the 2AFC task has been largely criticized for its low sensitivity due to different factors 314 

(François, Tillmann & Schön, 2012; Batterink et al., 2015; Siegelman, Bogaerts & Frost, 2017; 315 

Siegelman et al., 2018; Frost, Armstrong & Christiansen, 2019; Christiansen, 2019; ). For instance, the 316 

AFC task requires participants to make an explicit judgment on two presented items without feedback, 317 
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which might be particularly challenging in the case of the relatively weak memory traces created during 318 

the implicit learning phase (Schön & François, 2011; Rodriguez-Fornells et al., 2009). Moreover, the 319 

design of the AFC test trials does not allow differentiating between word recognition and nonword 320 

rejection as it is the case when using a lexical decision task (François et al., 2016; Ramos-Escobar et 321 

al., 2021). Recent studies on speech segmentation based on SL have elegantly proposed innovative 322 

designs to overcome the weaknesses associated with the use of explicit tests. Of particular relevance is 323 

the use of implicit measures such as EEG, sEEG, or Reaction-Times collected during the learning or an 324 

online test phase (see for example François et al., 2016, 2017; de Diego Balaguer et al., 2007 for the 325 

analysis of ERPs to illegal items without explicit recognition) that seem more appropriate and sensitive 326 

to fully capture implicit learning processes (Kim, Seitz, Feenstra, & Shams, 2009; Kóbor et al., 2020; 327 

Turk-Browne et al., 2005; Batterink & Paller, 2017; Siegelman, Bogaerts & Frost, 2017).  328 

Previous studies with surface EEG or MEG have successfully used frequency tagging to track 329 

the patterns of cortical synchronization supporting the hierarchical processing of speech (Buiatti et al., 330 

2009; Ding et al., 2016; Batterink & Paller., 2017; see Poeppel & Teng, 2020 for a review). Importantly 331 

however, while functional activations of the hippocampus have been consistently reported during visual 332 

SL tasks (Turk-Browne et al., 2009; Schapiro, Kustner & Turk-Browne 2012), this was not the case 333 

using sequences of syllables (McNealy et al., 2006; Cunillera et al., 2009; Karuza et al., 2013). Further, 334 

in a recent study, Henin and colleagues gathered brain responses to statistically structured auditory and 335 

visual sequences in 26 patients with MTL epilepsy (Henin et al., 2021). Using similar frequency tagging 336 

analysis applied to EcoG data, they found clear neural response at both two-syllable and word 337 

frequencies over multiple cortical regions. However, evidence for a contribution of the hippocampus 338 

was only observed with a more indirect analysis based on representational similarities (dissimilarity 339 

measures). Here, instead of using grid electrodes located at the surface of the cortex (referenced to 340 

subdural/skull contacts), we used depth sEEG electrodes and in particular bipolar montages that allow 341 

a high spatial resolution and directly quantifying neural response at the population level in the auditory 342 

cortex and in the hippocampus. Results are clear cut in showing that auditory regions significantly 343 

respond to syllable frequency but not to word frequency. Crucially, we observe an opposite pattern in 344 

the hippocampus with an ample response to longer units (i.e., pairs of syllables and words, see Figure 345 

5B).  346 

These results strongly corroborate a hierarchical organization of auditory information during 347 

speech segmentation. Moreover, the hippocampal response to both pairs of syllables and word 348 

frequencies sheds light on the neural validity of speech segmentation models. According to the 349 

PARSER model, continuous speech is segmented by extracting small chunks of increasing size based 350 

on the computation of temporal proximity and associative learning mechanisms. Through repetition, 351 

these chunks are consolidated and stored, allowing explicit behavioural recognition of the newly learned 352 
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items (Perruchet & Vinter, 1998). More recent work on event memory formation for spatial or temporal 353 

sequences proposes that sensory regions and the hippocampus hierarchically contribute to creating 354 

boundaries between events contained in long passages (Baldassano et al., 2017; Radvansky & Zacks, 355 

2017; Ben-Yakov & Dudai, 2011; see also Zacks & Swallow, 2007). For instance, the encoding and 356 

recall of narratives may involve the encoding of small temporal chunks in primary sensory regions. 357 

Long events encoding would occur in higher-level brain regions, including cortical areas and the 358 

hippocampus (Baldassano et al., 2017). Importantly, Schapiro and colleagues (2017) recently proposed 359 

a neuroanatomically plausible model of hippocampal functioning during continuous sequence learning 360 

such as SL. Specifically, they exposed an artificial neural network mimicking the functional and 361 

anatomical properties of the hippocampus to continuous sequences of items with different temporal 362 

regularities. Results suggested the existence of complementary learning systems in the hippocampus 363 

where specific neural pathways differently contribute to learning depending on the type of input. Our 364 

findings are in line with the idea that the hippocampus is sensitive to pattern regularities found in the 365 

environment. It seems reasonable to think that the hippocampus is also sensitive to the co-occurrence 366 

of syllable pairs as for visual sequences (Schapiro et al., 2017; Turk-Browne et al., 2009). Taken 367 

together, our data suggest a hierarchical organization of auditory information during speech processing, 368 

where both cortical and hippocampal regions contribute to language learning. While the clear response 369 

at syllable frequency in primary auditory areas may reflect the tracking of the phonological structure, 370 

the hippocampus would be involved in the encoding and storage of larger units as previously proposed 371 

in different neurocomputational models of chunking (Baldassano et al., 2017; Schapiro et al., 2017). 372 

Taken together, our data suggest that the hippocampus plays an important role in speech segmentation 373 

and language learning using a more direct measure of neural activity than previously described 374 

(Schapiro et al., 2014; Covington, Brown-Schmidt & Duff, 2018; Duff & Brown-Schmidt, 2012; 375 

Kepinska et al., 2018). 376 

Nonetheless, our study presents methodological limitations that prevent us from drawing 377 

definite conclusions on the role of the hippocampus in speech segmentation in the general population. 378 

First, the complex clinical history of these temporal lobe epileptic patients may affect verbal memory 379 

storage and executive functions thus, explaining impaired performance at test (Zamarian et al., 2011; 380 

Saling, 2009; Squire et al., 2004). Second, while there is evidence for left lateralized activations in the 381 

Inferior and Superior Temporal Gyri during speech segmentation based on SL (Cunillera et al., 2009; 382 

McNealy et al., 2006; Karuza et al., 2013), it is still unclear as to whether asymmetric processing also 383 

takes place in the hippocampus. In our small population, only one of the patients (P4), implanted over 384 

the left hemisphere, did not significantly respond to word frequency in the hippocampus. Clinical 385 

exploration revealed that this patient had an atypical language dominance to the right hemisphere, 386 

probably induced by a disease-related atypical functioning of the hippocampus. Thus, further work on 387 

a larger sample and possibly bilateral implantations is needed to explore the possibility of a hippocampal 388 
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asymmetry. Finally, Schapiro and colleagues (2017) showed that the anterior part of the hippocampus 389 

where the monosynaptic pathway connects the entorhinal cortex to the “cornu ammonis 1” is more 390 

involved in SL than the posterior part. Again, determining possible functional differences related to 391 

topographical gradients in hippocampal structures will require further investigations with a larger 392 

number of patients. 393 

Conclusion 394 

Here, we directly assessed the role of the hippocampus in speech segmentation based on SL. 395 

We showed that the hippocampus neural response synchronizes with the word-level time scale but not 396 

with the syllable-level time scale. Conversely, auditory regions consistently responded to syllable 397 

frequency but not to word frequency. Moreover, we found clear neural evidence for the contribution of 398 

the hippocampus in the recall of newly segmented words. These findings provide preliminary but direct 399 

evidence in humans for the involvement of the hippocampus in the brain network that orchestrates 400 

auditory speech segmentation based on SL.  401 
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