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Abstract: With the currently available materials and technologies it is difficult to mimic the mechanical
properties of soft living tissues. Additionally, another significant problem is the lack of information
about the mechanical properties of these tissues. Alternatively, the use of phantoms offers a promising
solution to simulate biological bodies. For this reason, to advance in the state-of-the-art a wide range
of organs (e.g., liver, heart, kidney as well as brain) and hydrogels (e.g., agarose, polyvinyl alcohol
–PVA–, Phytagel –PHY– and methacrylate gelatine –GelMA–) were tested regarding their mechanical
properties. For that, viscoelastic behavior, hardness, as well as a non-linear elastic mechanical
response were measured. It was seen that there was a significant difference among the results for the
different mentioned soft tissues. Some of them appear to be more elastic than viscous as well as being
softer or harder. With all this information in mind, a correlation between the mechanical properties
of the organs and the different materials was performed. The next conclusions were drawn: (1) to
mimic the liver, the best material is 1% wt agarose; (2) to mimic the heart, the best material is 2% wt
agarose; (3) to mimic the kidney, the best material is 4% wt GelMA; and (4) to mimic the brain, the
best materials are 4% wt GelMA and 1% wt agarose. Neither PVA nor PHY was selected to mimic
any of the studied tissues.

Keywords: dynamic mechanical analysis; hardness; hydrogels; materials; mimicking; soft tissues;
tissue scaffolding; viscoelasticity; Warner–Braztler shear test

1. Introduction

Hydrogels are hydrophilic gels, polymer networks that are swollen with water as the
dispersion medium. They are an excellent solution for different medical applications such
as bone regeneration [1,2], tissue engineering [3,4] or, soft-tissue-mimicking [5].

Regarding the latter application, studying the mechanical characterization of real soft
tissues is an important approach to understanding how they are deformed during different
clinical scenarios such as surgeries. In this way, different solutions could be developed
to reduce soft tissue damage. Nonetheless, using real biological tissues can be difficult
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for two reasons: (1) accessibility, and (2) ethics [6]. In this way, a possible solution could
be to use surgical planning prototypes, also known as phantoms, which are simulated
biological bodies.

Surgeons only have a short period to carry out complex technical tasks during the
operation. Therefore, it could be vital to know in advance what exactly must be done,
during surgery to shorten the operation duration and thereby reduce surgical-related risks.
However, to date doctors have not received enough training and methods to face this
problem [7]. Additionally, different studies demonstrated that surgeons who trained with
physical models had better skills in comparison with those who did not have the same
opportunity [8].

Considering this, it is necessary to find materials that mimic the properties of biological
tissues. Until now, different materials such as silicones, hydrogels, or photopolymer
resins were studied [6,9–23]: PVA, PHY, agar, gelatine, alginate, hydrogels or Sylgard
527 (PDMS) and Sylgard 184 (Silicone Elastomer), as well as photopolymer resins for
Additive Manufacturing (e.g., VeroWhite+, a rigid general purpose, high resolution, opaque
white material; and TangoPlus+, which simulates thermoplastic elastomers with flexible,
rubber-like qualities; both of them developed by Stratasys®). Additionally, it is worth
mentioning that there are other biopolymeric materials such as aerogels that can be used
for tissue engineering and regenerative medicine [24,25]. For example, Yahya et al. [24]
highlighted the main challenges of biopolymer-based scaffolds and the prospects of using
these materials in regenerative medicine.

Of these materials, hydrogels (hydrophilic water-based gels [26]) were mainly used in
different studies; yet they only focused on one or two organs. For example, Forte et al. [18]
and Leibinger et al. [17] mimicked the brain tissue by developing a composite hydrogel (6%
wt PVA/0.85% wt PHY [18] and 5% wt PVA/0.59% wt PHY [17]). Additionally, Tan et al. [6]
mimicked three soft living tissues (brain, lung, and liver) by molding in a petri dish using
different compositions of PVA and PHY. It was determined that the best compositions for
each organ were the following: (1) to mimic the brain, 2.5% wt PVA + 1.2% wt PHY; (2) to
mimic the lung, 11% wt PVA; and (3) to mimic the liver, 14% wt PVA + 2% wt PHY. This
study was the first important step for the realization of surgical planning training devices
and tools. Dister et al. [23] measured similar viscoelastic properties of the brain tissue
by developing a 0.5% wt alginate/0.5% wt gelatine. Adams et al. [9] used the molding
technique for obtaining different soft kidney phantoms using silicone elastomer, agarose
gel, or PDMS.

Among these studies, not all of them covered in-depth viscoelastic properties as well
as the Shore hardness of the materials. These two properties are important parameters that
are normally measured in soft-tissue-biomechanics.

Regarding the viscoelastic properties, few studies covered the viscoelasticity of soft
tissues in recent years. For instance, Chatelin et al. [27] reviewed the viscoelastic properties
of the brain tissue studied during the last 50 years. Then, Estermann et al. [28] studied
the viscoelasticity of the liver tissue using DMA. It was found that at a frequency of
1 Hz the storage and loss modulus measured at porcine and bovine liver were extremely
high. For example, the storage and loss modulus for the porcine is 488.3 ± 163.9 kPa
and 52.23 ± 28.91 kPa, respectively. Other studies [29–31], on the other hand, showed
lower values in the range of 0.5–9 kPa and 0.07–1 kPa for the storage and loss modulus,
respectively. Focusing on the kidney, as it happened with the liver, some discrepancy
was seen [32,33]. For example, Charles [32] measured high values: for E′, around 40 kPa;
and for E′′, around 17 kPa whereas Amador [33] got lower values for storage and loss
modulus: 4.5–5.5 kPa (for η = 10 Pa·s) and 4.5–9 kPa (for η = 100 Pa·s) and 0.026–1.08 kPa
(for η = 10 Pa·s) and 0.25–2.2 kPa (for η = 100 Pa·s), respectively. The heart [34] has a storage
modulus (E′), which varies from 20 KPa at 0.5 Hz to 40 KPa at 3.5 Hz. On the other hand,
the loss modulus (E′′) values are between 3 kPa at 0.5 Hz and 8 kPa at 3.5 Hz.

On the other hand, another important parameter is hardness, which can be mea-
sured either by indentation or abrasion. For the soft biological tissues, macroindentation
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has been previously used to measure the organs’ hardness. The hardness is a tactile
property, which is useful by manual palpation to distinguish healthy from pathological
tissues [22]. In this way, it is an important parameter to take into consideration. There are
various types of hardness tests for hard materials such as Vickers (HV), Brinell (HB), or
Rockwell (HR). Regarding the characterization of the soft tissues, Shore hardness is the
most commonly used [5,13,22,35–37]. As an example of this, Yoon et al. [35] measured a
15.06 ± 2.64 Shore 00 in a healthy human liver. Additionally, Estermann et al. [22] mea-
sured a 30.52 ± 1.52 Shore 00 for a porcine liver, whereas for a bovine liver was 25.67 ± 2.61
Shore 00. Additionally, with the Shore hardness test, the shear stiffness of the soft tissue
can be obtained as described in [38]. Regarding the pancreas, Belyaev et al. [13] and Foitzik
et al. [36] measured a 20 Shore 00 and 26.3 ± 2.5 Shore 00, respectively. Then, Riedle
et al. [37] obtained different values, even harder: for the arcus aortae, 13.4 ± 1.9 Shore A;
for the thoracic aorta, 17.1 ± 1.4 Shore A; and for the aorta abdominalis, 17.6 ± 1.2 Shore A.

Additionally, from the authors’ knowledge, less research has been carried out studying
the cut feeling (related to shear strength), a crucial factor to be considered during surgical
procedures [39]. Quantifying this property can be vital in the tissue-mimicking field to
achieve more realistic phantoms. Warner-Bratzer (WB) shear test is used widely in food
science to evaluate meat or animal muscle tenderness. The test is considered as an empirical
method; however, some authors have found a statistical correlation between the maximum
tensile force (mechanical property) and WB shear force in beef muscle, related to the
strength of the muscle fibers [40].

Overall, the present paper aims to address several soft living tissues mimicking using
different hydrogels. For that, the measurement of the viscoelastic properties will be carried
out using the DMA (Dynamic Mechanical Analysis) technique and the hardness using a
Shore Hardness durometer as well as the cut feeling concept by carrying out the Warner–
Bratzler shear test. In this way, the mimicking between six hydrogels (based on agarose,
PVA, PHY, and GelMA) and four soft living tissues (liver, heart, kidney, and brain) can be
achieved. The reason for the large extent of organs and materials, which is a novelty in
this research field, is both the wide range of values detected in previous articles and the
intention to be able to use the mimicking data obtained to address, in a future stage, the
3D printing of multi-material prototypes. Therefore, this study offers originality not only
because the Warner–Bratzler Shear test can be used as a new mimicking method, but also
due to the wide range of soft living tissues and materials that are analyzed.

2. Results and Discussion

In this study, we aimed to mimic several soft living tissues with different materials
taking into consideration several parameters: (1) viscoelastic properties using compression
tests (E′ and E′′); (2) Shore hardness; and (3) the “cut feeling” concept by carrying out the
Warner–Bratzler shear test, which measured the forces (shear strength) profile along the
cut. The materials that are out of range of the soft-tissue-biomechanics are not included in
the different plots.

2.1. Liver

Firstly, the liver Shore hardness obtained in our experiments is 13 ± 4.5 Shore 00,
which has been measured as is described in Section 4.3.2. This value is similar to the result
obtained by Yoon et al. [35], which is 15.06 ± 2.64 Shore 00 in a healthy liver. Additionally,
Estermann et al. [22] measured a 30.52 ± 1.52 Shore 00 for a porcine liver, whereas for a
bovine liver was 25.67 ± 2.61 Shore 00. Higher numbers on the scale indicate a greater
resistance to indentation and, hence, harder materials. In this study, the material which
matched more closely the hardness of the liver tissue is 1% wt agarose gel (14± 2.5 Shore 00).
Regarding this material, Oflaz et al. [13] obtained a value of 27.25 ± 2.72 Shore 00 for 1%
wt agarose gel. Secondly, this study measured a liver tissue storage and loss modulus
of 1.2 ± 0.5 kPa and 0.27 ± 0.17 kPa, respectively. These results were similar to other
studies [29–31] which showed values in the range of 0.5–9 kPa and 0.07–1 kPa for the
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storage and loss modulus, respectively. On the other hand, Estermann et al. [28] also
studied the viscoelasticity of the liver tissue. However, it was found that at a frequency of
1 Hz the storage and loss modulus measured at porcine and bovine liver were extremely
high, which is not common for soft tissues. For example, the storage and loss modulus
for the porcine liver is 488.3 ± 163.9 kPa and 52.23 ± 28.91 kPa, respectively [28]. Then,
Figure 1 shows the best materials for mimicking the viscoelastic properties of the liver. In
both storage and loss modulus, the 6% wt PVA/1% wt PHY-1FT hydrogel that undergoes
one freeze-thaw cycle seemed to be the best option. This composite hydrogel was also used
with similar PVA and PHY amounts by Tan et al. [6]. In terms of the Warner–Bratzler shear
test, Figure 1C shows the liver tissue cutting profile. The peaks observed might be related
to the presence of internal blood vessels as are veins and arteries. Additionally, it might
also be because it is a heterogeneous organ. Regarding the mimicking, among all materials,
no hydrogel was able to match its cutting profile. Finally, it is important to highlight the
mimicking achieved in other studies. For example, de Jong et al. investigated that a 4%
wt PVA hydrogel that undergoes two freeze-thaw cycles can mimic the liver tissue. For
instance, Tan et al. [6] studied a composition hydrogel of 14% wt PVA/2.1% wt PHY that
undergoes one freeze-thaw cycle was determined to mimic the liver.
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A statistical analysis was carried out to clarify the effectiveness of the present tissue-
mimicking analysis. Table 1 shows the statistical analysis of the liver and the closest
materials using the t-test. If the p-value is higher than 0.05, the null hypothesis stated before
is not rejected and the material matches the organ.
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Table 1. Statistical analysis of the liver (p-value). SH: Shore Hardness. E′: Storage Elastic Modulus.
E′′: Loss Elastic Modulus. WB: Warner–Bratzler shear test. X states that this material is not able to
mimic the tissue and, that is why no statistical analysis is carried out.

SH E′ E′′ WB

1% wt agarose 0.044 X 0.069 X
2% wt agarose X X X X
4% wt GelMA X X 0.01 X

2% wt PHY X X X X
6% wt PVA/1% wt PHY-1FT X 0.016 0.008 X
6% wt PVA/1% wt PHY-2FT X X X X

2.2. Heart

Firstly, the heart Shore hardness is 20 ± 7.5 Shore 00, which means that it is harder
than the liver. This might be because the heart is a muscle. Riedle et al. [38] obtained
different values, even harder: for the arcus aortae, 13.4 ± 1.9 Shore A; for the thoracic aorta,
17.1 ± 1.4 Shore A; and for the aorta abdominals, 17.6 ± 1.2 Shore A. In this study, the
material which matched more closely the hardness of the heart tissue is 1% wt agarose gel
(14 ± 2.5 Shore 00). Secondly, this study measured a heart tissue storage and loss modulus
of 14.5 ± 5.5 kPa and 3.40 ± 1.87 kPa, respectively. Regarding the storage modulus, the
values of our study are lower than the values measured by Ramadan et al. [34] from 20 kPa
at 0.5 Hz to 40 kPa at 3.5 Hz. On the other hand, the loss modulus (E′′) values are between
3 kPa at 0.5 Hz and 8 kPa at 3.5 Hz, which are close to our results. In addition, the stiffness
lies from 400 to 800 N/m with a phase shift around 0.175. In our study, the phase shift is
0.22, which means that a more vicious behavior was obtained. Then, Figure 2A,B show
the best materials for mimicking the viscoelastic properties of the heart. In both storage
and loss modulus, 2% wt agarose gel seemed to be the best material for mimicking the
viscoelastic behavior of the heart. In terms of the Warner–Bratzler shear test, Figure 2C
shows the heart tissue seems to have a straight slope at the beginning of the cutting profile
since the samples used did not take into consideration the possible holes in which the blood
flows. Additionally, it is interesting to see that the maximum is higher than some of the
other soft tissues, which might due to the presence of the cardiac muscles. Regarding the
“cut feeling” mimicking, 2% wt agarose is the material that more closely resembles the
mechanical properties of native heart tissue. Although as can be seen in Figure 2C, it is
still far from the heart tissue. This means a higher amount of agarose would be needed. In
the literature, however, different materials have been used for the mimicking of the heart
tissue. For instance, Yoo et al. [41] used the material jetting technology for 3D printing the
heart. For that, the most flexible material (TangoPlus FullCure resin) for the heart, a solid
material (VeroWhite) for the platform and stools, and a mixture of the 2 print materials for
valvar annuli were used. In another study, Riedle et al. [42] 3D printed in red translucent
silicone with a Shore A hardness of 20 (ACEO® Silicone GP Shore A 20, Wacker Chemie
AG) using the ACEO®-technology.

A statistical analysis was carried out to clarify the effectiveness of the present tissue-
mimicking analysis. Table 2 shows the statistical analysis of the heart and the closest
materials using the t-test. If the p-value is higher than 0.05, the null hypothesis stated before
is not rejected and this means that the material matches the real organ.
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Table 2. Statistical analysis of the heart (p-value). SH: Shore Hardness. E′: Storage Elastic Modulus.
E′′: Loss Elastic Modulus. WB: Warner–Bratzler shear test. X states that this material is not able to
mimic the tissue and, that is why no statistical analysis is carried out.

SH E′ E′′ WB

1% wt agarose 0.42 X X X
2% wt agarose X 0.28 0.98 X
4% wt GelMA X 0.18 X X

2% wt PHY X X X X
6% wt PVA/1% wt PHY-1FT X X X X
6% wt PVA/1% wt PHY-2FT X X X X

2.3. Kidney

Firstly, the kidney Shore hardness is 36 ± 10 Shore 00, which is the hardest soft tissue
measured, and the materials which matched more closely are 2% wt agarose (37 ± 5
Shore 00) and 4% wt GelMA (32 ± 4 Shore 00). Secondly, a kidney tissue storage and
loss modulus of 2.38 ± 0.43 kPa and 0.40 ± 0.08 kPa were obtained, respectively. Then,
Figure 3A,B show the best materials for mimicking the viscoelastic properties of the kidney.
In both storage and loss modulus, different materials appear to be the best option. On the
one hand, the storage modulus of 6% wt PVA/1% wt PHY-1FT makes it the best material
to mimic the elastic part of the kidney. On the other hand, in terms of the loss modulus
part vicious, the closest materials are 1% wt agarose as well as 4% wt GelMA. Concerning
the Warner–Bratzler shear test, Figure 3C shows that the best material is 2% wt agarose.



Gels 2022, 8, 40 7 of 14

Finally, Adams et al. [9] 3D printed different kidney models using the molding technique.
The kidney models were made of silicone elastomer, agarose gel, and PDMS. For example,
the agarose gel we developed would be an option.
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A statistical analysis was carried out to clarify the effectiveness of the present tissue-
mimicking analysis. Table 3 shows the statistical analysis of the kidney and the closest
materials using the t-test. If the p-value is higher than 0.05, the null hypothesis stated before
is not rejected and the material matches the organ.

Table 3. Statistical analysis of the kidney (p-value). SH: Shore Hardness. E′: Storage Elastic Modulus.
E′′: Loss Elastic Modulus. WB: Warner–Bratzler shear test. X states that this material is not able to
mimic the tissue and, that is why no statistical analysis is carried out.

SH E′ E′′ WB

1% wt agarose X X 0.10 X
2% wt agarose 0.59 X X 0.02
4% wt GelMA 0.42 X 0.03 X

2% wt PHY X X X X
6% wt PVA/1% wt PHY-1FT X 0.02 X X
6% wt PVA/1% wt PHY-2FT X X X X



Gels 2022, 8, 40 8 of 14

2.4. Brain

Firstly, the brain Shore hardness is 4.5 ± 1.5 Shore 00, which matches the hardness
of 2% wt Phytagel (8 ± 2 Shore 00) more closely. Secondly, a brain tissue storage and
loss modulus of 2.6 ± 0.84 kPa and 0.47 ± 0.19 kPa were measured, respectively. Then,
Figure 4A,B show the best materials for mimicking the viscoelastic properties of the brain.
In both storage and loss modulus, different materials appear to be the best option. On
the one hand, the storage modulus of 6% wt PVA/1% wt PHY-1FT is the best material to
mimic the elastic part of the brain. On the other hand, in terms of the loss modulus part
(vicious part), the closest materials are 1% wt agarose and 4% wt GelMA. Then, Dister
et al. [23] measured similar viscoelastic properties of the brain tissue by developing a 0.5%
wt alginate/0.5% wt gelatine. Concerning the Warner–Bratzler shear test, Figure 4C shows
that there are several options: 1% wt agarose, 4% wt GelMA, and 2% wt PHY. Finally,
Forte et al. [18] mimicked the brain tissue by developing a composite hydrogel (6% wt
PVA/0.85% wt PHY), which then was used for manufacturing a phantom.
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A statistical analysis was carried out to clarify the effectiveness of the present tissue-
mimicking analysis. Table 4 shows the statistical analysis of the brain and the closest
materials using the t-test. If the p-value is higher than 0.05, the null hypothesis stated before
is not rejected and the material matches the organ.
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Table 4. Statistical analysis of the brain (p-value). SH: Shore Hardness. E′: Storage Elastic Modulus.
E′′: Loss Elastic Modulus. WB: Warner–Bratzler shear test. X states that this material is not able to
mimic the tissue and, that is why no statistical analysis is carried out.

SH E′ E′′ WB

1% wt agarose X X 0.70 0.02
2% wt agarose X X X X
4% wt GelMA X X 0.61 0.12

2% wt PHY X X X 3.89 × 10−3

6% wt PVA/1% wt PHY-1FT X 0.34 X X
6% wt PVA/1% wt PHY-2FT X X X X

2.5. Qualitative Summary

According to the previous results, Table 5 summarizes all values of the tissue-mimicking
study.

Table 5. Qualitative summary of the mimicking. SH: shore hardness; DMA (E′′); DMA (E′′); WB
(Warner–Bratzler). 4 corresponds that a material can mimic a certain organ in terms of a certain
property.

Liver Heart Kidney Brain

SH E′ E′′ WB SH E′ E′′ WB SH E′ E′′ WB SH E′ E′′ WB

1% wt Agar 4 4 4 4 4 4

2% wt Agar 4 4 4

4% wt GelMA 4 4 4 4 4 4

2% wt PHY 4

6% wt PVA/1% wt
PHY-1FT 4 4 4 4

6% wt PVA/1% wt
PHY-1FT

3. Conclusions

In the present work, different materials were tested regarding their viscoelastic behav-
ior, and hardness, as well as their non-linear elastic mechanical response.

All in all, it was seen that the mimicking of soft living tissues is a difficult task, due to
the high complexity of organs. Most of them are composed of different tissues that play a
key role in terms of structure and mechanical behavior.

According to all the mimicking results that are summarized in the qualitative summary
(see Table 5) and statistics, the following are the best materials for mimicking each organ:
(1) to mimic the liver, the best materials are 1% wt agarose and CH-1FT; (2) to mimic the
heart, the best material is 2% wt agarose; (3) to mimic the kidney, the best material is 4% wt
GelMA; and (4) to mimic the brain, the best material is 4% wt GelMA and 1% wt agarose.

Among the different materials, hydrogels are an option for the molding technique,
since they offer a good consistency. Additionally, they are soft as well as mostly transparent.
In this way, the implications of the current research are interesting for the manufacture of
phantoms to be used in medical imaging, preoperative surgical planning in hospitals by
doctors, etc.

There is still a lot of work to do in the present field, but this is an excellent starting
point for continuing with future research studies in the mimicking of soft living tissues.

4. Materials and Methods
4.1. Biological Tissue Sample Preparation

Lamb organ (liver, heart, brain, and pancreas) specimens were procured from a local
supplier within 24 hours’ post-mortem. These organs were chosen for three different
reasons: (1) they cover a high range of different mechanical properties; (2) surgeons often
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need to accomplish complex surgical tasks in these organs (for example, with the liver a
hepatectomy for the tumor removal or very delicate operations in the heart or brain); and
(3) there is a lack of knowledge in the mimicking of these four. On the other hand, for the
DMA and Warner–Bratzler shear testing, the biological tissues (n = 6) were cut using a
biopsy punch (16 mm in diameter) to get cylindrical samples: 16 mm diameter and 8 mm
height. Regarding the Shore hardness (n = 6), no sample preparation was needed as it was
directly measured on the tissue’s surface.

4.2. Hydrogels Sample Preparation

The hydrogels that were synthetized are: 1% wt and 2% wt agarose gels, 4% wt GelMA,
2% wt PHY, and 6% wt PVA/ 1% wt PHY with one or two freeze-thaw -FT- cycles. These
materials were chosen because of their softness. For the DMA and Warner–Bratzler shear
testing, the materials’ samples (n = 6) were cut using a biopsy punch (16 mm in diameter) to
get cylindrical samples: 16 mm diameter and 8 mm height. Regarding the Shore hardness
(n = 6), no sample preparation was needed.

4.2.1. Agarose Gels

Agarose is a linear polymer with a molecular weight of about 120,000, consisting
of alternating D-galactose and 3,6-anhydro-L-galactopyranose linked by α-(1→3) and β-
(1→4) glycosidic bonds [43]. The 1% wt and 2% wt agarose gels were produced by mixing
deionized water and agarose powder (supplied by Químics Dalmau, Barcelona, Spain).
The 1% wt and 2% wt agarose powder amounts were added to the deionized water and
magnetically stirred and heated at 90 ◦C until fully mixed.

4.2.2. GelMA

Gelatine consists of a large number of glycine, proline, and 4-hydroxy proline
residues [44]. Methacrylate gelatine (GelMA) was synthesized following a previously
described protocol [44]. In short, type A porcine skin gelatin (Sigma Aldrich, San Lui, USA)
was mixed at 10% (w/v) into phosphate-buffered saline (PBS) at 60 ◦C and stirred until fully
dissolved. Methacrylic anhydride was added at a rate of 0.5 mL/min to the gelatin solution
under stirred conditions at 50 ◦C and allowed to react for 1 h. Following a 5 dilution
with additional warm (40 ◦C) PBS to stop the reaction, the mixture was dialyzed against
distilled water using 12–14 kDa cutoff dialysis tubing for 1 week at 40 ◦C. The solution
was lyophilized to generate a porous white foam. GelMA was dissolved into deionized
water at 4% (w/v) at 37 ◦C, and Irgacure 2959® (BASF, Mannheim, Germany) was used as
a photoinitiator at 0.7% w/v. The photoinitiator was dissolved into ethanol absolute (1:2
w/v), and then added to GelMA solution. To crosslink GelMA, UV light (365 nm, RegenHU,
Villaz-Saint-Pierre, Switzerland) was used.

4.2.3. PHY Gels

Phytagel is produced from a bacterial substrate that is composed of rhamnose, glu-
curonic acid, and glucose. This polymer is composed of repeating tetrasaccharide units that
will form a gel in the presence of mono- or divalent cations [45]. A 2% wt PHY solution was
prepared by mixing deionized water and PHY powder, supplied by Sigma Aldrich, San
Luis, AR, USA. A 2% wt PHY powder was added to the deionized water and magnetically
stirred and heated at 90 ◦C for 1 h until fully mixed. Then, the solution could cool down.

4.2.4. PVA/PHY Composite Hydrogel (CH)

The composite hydrogel (CH) was produced by mixing PVA (molecular weight
85–124 Da) and PHY, both supplied by Sigma Aldrich, San Luism USA. See Figure 5.
PVA is an atactic material that is composed of the 1,3-diol linkages, some of them occur
depending on the conditions for the polymerization of the vinyl ester precursor [46]. Solu-
tions were prepared separately with the corresponding amount of powder and deionized
water as described in Tan et al. [46]. Amounts of 6% wt PVA and 1% wt PHY powder
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amounts were added to the deionized water and magnetically stirred and heated at 93 ◦C
for 1 h. Then, when the particles and deionized water were mixed, the solutions could cool
down. Afterward, the separate solutions were combined at a 1:1 weight ratio and stirred at
70 ◦C for 1h. Finally, the samples were physically cross-linked by undergoing one or two
freeze-thaw (FT) cycles (24 h) of −18 ◦C for 16 h, and then the samples were thawed at
room temperature for 8 h.
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4.3. Parameters for the Mimicking of Soft Tissues
4.3.1. Dynamic Mechanical Analysis (DMA)

DMA is a technique that applies an oscillating force to a material/tissue sample and
analyzes the response of the sample to that force [47]. The samples were tested using a
DMA Q800 equipment of TA Instruments at 37 ◦C, 1 Hz and a pre-load force of 0.001 N.
DMA in compression calculate the storage modulus (E′), which is the elastic part of the
sample; and the loss modulus (E′′), which is the vicious part of the sample.

4.3.2. Shore Hardness Test

Shore hardness is a measurement of the resistance of a sample to indentation. There are
different scales based on ASTM D2240 testing standards [48]: A, B, C, D, DO, E, M, O, OO,
OOO, OOO-S, and R. Each scale results in having values between 0 and 100, where higher
values indicate that a sample is harder. The shore is a key parameter for the mimicking of
soft living tissues because it measures the consistency of the samples. This is an important
aspect of the perception of surgeons.

STM D2240-Durometer Hardness method was used [48]. For that, Shore Durometer
Type 00 and 000, supplied by Baxlo, Instrumentos de Medida y Precisión, S.L., Barcelona,
Spain, were used for measuring the hardness of the biological tissues (different measure-
ments were done at different parts of the anatomical structure) and material samples. Shore
Durometer Type A was also used, but only showed values in the heart.

4.3.3. Warner–Bratzler Shear Test

Warner–Bratzler shear test is commonly used in the food industry as a standard char-
acterization method. For example, it has been used to determine the best meat tenderness
(toughness) for various types of meat. The Warner–Bratzler consists of a steel frame which
is supporting a triangular shear blade (see Figure 6A).
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Figure 6. (A) Liver sample ready for being cut using the Warner–Bratzler. (B) Warner–Bratzler shear
test method.

The analysis of the Warner–Bratzler shear test was carried out by focusing on four
different parameters: (1) breaking force is the force peak where the cut starts (it is either
before the curve is starting to flatten and reaching the maximum force or when there is a
change in the curve like a small hole); (2) maximum cutting force is the maximum force of
the plot when the sample is being cut; (3) adjustment area is the area under curve until the
braking force, and (4) cutting area is the area under the curve from the breaking force until
the end.

For creating a tissue-mimicking material for surgical training, the Warner–Bratzler
shear test was carried out. This technique is related to the surgeon’s cut feeling operating.
A texturometer Texture Analyser TA.XT.plus (Stable Micro Systems, Surrey, UK) was used
with a 50 N load cell (Figure 2A). Maximum shear force (N) and area under the curve (J)
were measured using the Warner–Bratzler probe. The speed is 1 mm/s during 35 mm of
cut. The height of the sample was measured with a digital micrometer.

4.4. Statistical Analysis

Statistics were performed using MATLAB R20. Organs mimicking using different
materials was assessed using paired sample t-test to compare if the material can mimic the
organ by focusing on the parameters of the Warner–Bratzler Shear test (maximum force),
DMA, and Shore hardness. Data are represented as mean ± SEM (Standard Error of the
Mean). p ≤ 0.05 (*), p ≤ 0.01(**), and p ≤ 0.001 (***). The null hypothesis states that an
organ and a material are equal. If the p-value is lower than 0.05, the hypothesis is rejected;
and consequently, it is confirmed that the material cannot mimic the organ. This analysis
was only carried out with the most similar materials that can be seen in Figures 1–4.
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