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Abstract

The main goal of this thesis is to present ARCH and GARCH models, key concepts in
Time Series Analysis. These models are extremely useful when describing the behavior
of Financial time series (i.e. Stock returns, Exchange rates, Economic indexs...), because
they deal with volatility (variation of price in a delimited time period). The discipline
of Time Series Analysis as a whole is introduced, as well as its main concepts, which
are needed to further explore the useful properties behind ARCH and GARCH. We put
special emphasis in developing a consistent theory of Estimation and Forecasting (i.e
determinate the parameters of a model and predict future values) for Time Series Analysis,
which serves as a justification for estimating and predicting ARCH and GARCH models.
Practical examples are given using the R statistics package.
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“S’ha d’escriure amb llibertat, amb gust, amb plaer,
però amb la màxima observació possible”

Josep Pla, Notes del Capvesprol (1979)

“The aims of life are the best defense against death”
Primo Levi, The Drowned and the Saved (1986)
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1 Introduction

Observation and intuition tells us that there are many phenomena that evolve through
time. Whether it is the population of a country, the global temperature, company earn-
ings, seismic waves or financial returns, we are in front of a broad range of measurements
whose values change as time passes. Plotting the data according to its time t clearly
showed us if there was an existing tendency or not. So the next question was: Could a
model be inferred? Could we predict future values? The field of Time Series Analysis
was born.

But a reasonable question might come to mind. Considering that Time Series Analysis
is a fairly modern discipline in Mathematics and Statistics, what are its precedents and
why do they fail? The answer is not trivial, but it has to do with the fact that pre-
vious models assumed that the observations or adjacent points in time are independent
and identically distributed. It was not hard to see in a given plot that there was an
underlying correlation between observed values, that in some way xn depends on x1. The
concept Auto-covariance tackles this idea. The auto-covariance of a set of observations
{x1, . . . , xn} if is inferred from the statistical notion of covariance (x is the sample mean
of n observations)

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x)(xt − x).

We refer to h as the lag. The lag indicates the time difference between two values.
Autocovariance (or autocorrelation, as we will see) is key, but another issue specific to
time series rose: do they exhibit any sort of regularity over time? One can argue that
financial returns do not feature this at a first glance. We will delve into this idea of
regularity, which in the Time Series context we define as stationarity.

Stochastic Processes is a major field of interest in modern mathematics. We could call
Time Series Analysis a subset (a large one, noticeably!) of this global set. Simplifying, a
stochastic process is a sequence {Xt}t≥0 of random variables in a probability set, which
are indexed by time t, which is roughly the same as a time series. Hence, Time Series
Analysis, inherits all the probability and statistical theory behind Stochastic Processes,
but it focuses on developing mathematical results that serve the needs of analytical re-
search: An estimation of a model that describes a time series, and how to predict future
values at time t+ 1, . . . , t+ h.

Classical regression, which is a valid model for many situations, usually falls short for
some Time Series. In the early 20th century, Autoregressive models became a revolution
in the sense that they were not only considering the value at time t, but past values
t − 1, . . . , t − p. Therefore, AR(p) (Autoregressive models of order p) expressed Xt as a
function of past values:

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + ωt

where φ1, . . . , φp are constants and ωt is a white noise (mean 0 and finite variance).

Today, we can find an extensive and rigorous theory on autoregressive models. Many
books and papers have made them the purpose of their investigation. However, there
are not our object of study. 40 years go, mathematicians and economists noticed that
AR(p) models were failing to model most cases of financial-type returns. Whether these
were stock returns, exchange rates, or monetary measures (GDP, GNP), volatility was
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not part of the equation. This is because AR(p) type models are homoskedastic, meaning
that the conditional variance (which is time-dependent) was constant. This does not work
well for finance, since instability usually is clustered in very specific moments of time. As
one notices, this does not happen in a population time series or in a study of average
temperatures since brusque changes hardly ever occur. A need for new modeling options
was growing.

Robert F. Engle (1942-), who is currently a professor at NYU Stern, is responsible
for having developed ARCH in the 1980s, new models that captured volatility. Professor
Engle was awarded the Nobel Prize in Economics in 2003 for this major discovery. Tim
Bollerslev (1958-), instructor at Duke University, is credited for having furthered the
investigation of ARCH models, and in his thesis presented in 1986 under the supervision
of prof. Engle himself, he presented GARCH models, which expressed variance not only
as a function of the past returns, but of the past variances as well.

This thesis is divided into two main parts. We start by presenting extensive theoretical
background for the study of financial returns, which means we start with a thorough
presentation of ARCH and GARCH models. This gives way to chapter 3, in which we
give a strong mathematical theory concerning Estimation and Prediction of Time Series.
As we mentioned earlier, these are two crucial aspects when studying object of this kind.
The second part (end of chapter 3 and chapter 4) is devoted to a deep study of a few
real situations of financial returns. Analysis is performed with the R statistical package,
an excellent tool for Time Series and for any other statistical needs. We end our journey
asking ourselves if deficiencies have been found in ARCH and GARCH models, and as
we move into the 21st century, what is the current state of investigation in stochastic
volatility models.
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2 Time Series. ARCH and GARCH models

2.1 Basic Concepts in Time Series Analysis

In this chapter we will go over the basic definitions that are needed to begin our study of
ARCH and GARCH models and their properties, which is the first goal of our research.
Proofs of important results will be given, and for the rest we will refer to relevant literature.

Definition 2.1. Let (Ω,F ,P) be a probability set. A stochastic process X is a map

X : (ω, t) ∈ Ω× T −→ Xt(ω) ∈ R

that is mesurable (i.e. X−1(B) ∈ F × B for all B ∈ B(R)) Note that we have a function
dependent not only on time but also on an element that belongs to a probability set.
Intuitively, we can say a stochastic process is a collection of random variables X(t) indexed
by t ∈ T, where T = N,Z. Since our focus are time series, from now on we will refer
to the collection {Xt}t∈N as a time series. We now introduce a few fundamental notions
concerning the study of time series.

Definition 2.2. Let {Xt} be a time series. For all s, t ∈ T, the autocovariance function
is:

γ(s, t) = E
[(
Xs − E(Xs)

)(
Xt − E(Xt)

)]
.

Observation 2.3. Note the following:

(1) γ(t, t) = E
[(
Xt − E(Xt)

)2]
is the second-order moment.

(2) The term autocovariance can be used interchangeably with the term covariance.
Autocovariance may be prefered since we are in a time series context.

The following lemma is a useful recall from Statistics.

Lemma 2.4. γ(s, t) = E(XsXt)− E(Xs)E(Xt).

Proof.

γ(s, t) = E
[(
Xs − E(Xs)

)(
Xt − E(Xt)

)]
= E

[
XsXt −XsE(Xt)− E(Xs)Xt + E(Xs)E(Xt)

]
= E(XsXt)− E(Xs)E(Xt)− E(Xs)E(Xt) + E(Xs)E(Xt)

= E(XsXt)− E(Xs)E(Xt).

For simplicity, sometimes we want to express the set of all the autocovariance functions
∀s, t ≤ n We can express the time series as a vector of random variables
X = (X1, . . . , Xn)T

Definition 2.5. The variance-covariance matrix or autocovariance matrix is defined as

Γ(X) = E[(X − E(X))(X − E(X))T ].
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An alternative expression which is easily deduced is:

Γ(X) =


Var(X1) γ(1, 2) . . . γ(1, n)
γ(2, 1) Var(X2) . . . γ(2, n)

...
...

. . .
...

γ(n, 1) γ(n, 2) . . . Var(Xn)

 .

Now let us consider combinations of random variables, which will be necessary in section 3.
Given X = (X1, . . . , Xn)T a vector of random variables, we write the linear combination
of random variables as L(X1, . . . , Xn) = a1X1 + . . .+ anXn or in abbreviated notation as
L(X1, . . . , Xn) = aTX where a = (a1, . . . , an)T is a vector of a1 . . . an ∈ R constants.

Lemma 2.6. V ar(aTX) = 0 for a 6= 0 if and only if Γ is singular.

Proof. By definition of variance we have:

Var(aTX) = E
(
aTX(aTX)T

)
− E(aTX)(E(aTX))T

= aTE(XXT )a− aTE(X)E(X)Ta

= aT
(
E(XXT )− E(X)E(X)T

)
a

= aTΓ(X)a

the last equal sign is a consequence of a generalized version of Lemma 2.4. Also, since
Var(aTX) = 0 we have aTΓ(X)a = 0 which means that Γ(X) has a 0 eigenvalue and
hence it is singular. We recall from a Linear Algebra result that a matrix A is invertible if
and only if every eigenvalue is nonzero. We now have both implications, which concludes
the proof.

Definition 2.7. Let X be a random variable with E(X) = µ and variance Var(X) = σ2.
The skewness and kurtosis are respectively defined as:

• S(X) = E

(
X − µ
σ

)3

• K(X) = E

(
X − µ
σ

)4

Both skewness and kurtosis refer to the shape of our distribution. Skewness measures the
asymmetry of a given distribution whereas kurtosis depicts the tail thickness of a given
distribution. If S(X) > 0 the asymmetry is to the right (the right tail is longer), and
the opposite holds for S(X) < 0. Kurtosis larger than 3 means that our distribution
is“heavy-tailed” and we call it leptokurtic. On the contrary, if the kurtosis is smaller than
3 our distribution is “light-tailed” and it is called platykurtic.

Definition 2.8. A time series {Yt t ∈ Z} is strictly stationary if the law of the set
{Yt1 , Yt2 , . . . Ytk} is identical to the law of the shifted set {Yt1+h, Yt2+h, . . . Ytk+h} (where
h ≥ 0).

Definition 2.9. A time series {Yt t ∈ Z} is stationary if the following conditions are
fulfilled:
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1. E(Yt) = µ i.e. the expected value is constant and does not depend on time.

2. γ(s, t) depends only on the difference |s− t| noted by l, which we call the lag.

Observation 2.10. In the case of a stationary time series, we shall write γ(l) = γ(s, t)
where l = s− t.

Definition 2.11. The autocorrelation function of a stationary time series is:

ρ(l) =
γ(l)

γ(0)
, l ≥ 0

Proposition 2.12. Let {Yt t ∈ Z} be a stationary time series. The following holds:

(a) γ(l) = γ(−l) (symmetry)

(b) |γ(l)| ≤ γ(0)

(c) −1 ≤ ρ(l) ≤ 1

Proof.

(a) γ(l) = γ(t+ l − t) = E
[(
Yt+l − E(Yt+l)

)(
Yt − E(Yt)

)]
= E

[(
Yt − E(Yt)

)(
Yt+l − E(Yt+l)

)]
= γ(t− (t+ l)) = γ(−l).

(b) |γ(l)| =
∣∣E(Yt − E(Yt)

)(
Yt+l − E(Yt+l)

)∣∣ ≤ E(∣∣Yt − E(Yt)
∣∣∣∣Yt+l − E(Yt+l)

∣∣)
≤ E

(∣∣Yt−E(Yt)
∣∣2) 1

2
(∣∣Yt+l−E(Yt+l)

∣∣2) 1
2 =

√
γ(0)

√
γ(0) = γ(0) , where in the first

inequality we have used Jensen’s inequality and in the second inequality we apply
Cauchy-Schwarz’s Inequality.

(c) Using (b) we have

∣∣∣∣ γ(l)

γ(0)

∣∣∣∣ ≤ γ(0)

γ(0)
= 1 .

Examples 2.13. Relevant Time Series examples

1. White Noise (WN). Uncorrelated sequence of random variables {εt} with E(εt) =
0 and finite and constant variance Var(εt) = σ2 for all t. If the random variables
are independently and identically distributed we shall write εt ∼iid noise. If the
random variables have a normal law, we call it a Gaussian White Noise (GWN).

2. AR(p). An autoregressive model of order p is defined as the time series {Yt t ∈ Z}
such that

Yt = φ1Yt−1 + φ2Yt−2 + · · ·φpYt−p + ωt

where ωt is a GWN. We can rewrite this as φ(B)Yt = ωt where φ(B) is called the
autoregressive operator and is defined as

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp

where B is the backshift operator : BYt = Yt−1.

5



3. MA(q). A moving average model of order q is defined as the time series {Yt t ∈ Z}
such that

Yt = ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q

where ωt is GWN. As in the previous example, we consider writing the model as
Yt = θ(B)ωt where

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q

is the moving average operator.

4. ARMA(p,q) An autoregressive moving average model is a stationary time series
{Yt t ∈ Z} such that

Yt = φ1Yt−1 + φ2Yt−2 + · · ·φpYt−p + ωt + θ1ωt−1 + θ2ωt−2 + · · ·+ θqωt−q

where ωt is GWN. It is evident that AR(p) and MA(q) models are restrictions of the
ARMA(p,q) when q = 0 and p = 0, respectively. We can abbreviate the expression
above by using the operators introduced, we write: φ(B)Yt = θ(B)ωt

ARMA models are crucial for a theory of Time Series, though they are not the main focus
of this thesis. However, there are two main concepts of ARMA models which are worth
mentioning. These are causality and invertibility. We introduce the ARMA invertible
model now, and we will talk about the causal ARMA model in section 3.5.

Definition 2.14. Let {Yt} be an ARMA model with its corresponding polynomial rep-
resentation φ(B)Yt = θ(B)ωt . We say that {Yt} is invertible if there exists a sequence of
constants {πj} such that

∑∞
j=0 |πj | <∞ and

ωt =
∞∑
j=0

πjYt−j , t = 0, 1 . . . , n.

The following result assesses the invertibility of ARMA processes. We include it because
the proposition that states the condition for stationary GARCH’s will use it.

Theorem 2.15. Let {Yt} be an ARMA(p,q) process. Given the polynomial represen-
tation of this process we suppose that the polynomials φ(·) and θ(·) have no common
zeroes. Then {Yt} is invertible if and only if θ(z) 6= 0 for all z ∈ C such that |z| ≤ 1. The
coefficients {πj} (Definition 2.14) are determined by the relation

π(z) =

∞∑
j=0

πjz
j =

φ(z)

θ(z)
|z| ≤ 1. (2.1)

Proof. By hypothesis, θ(z) 6= 0 if |z| ≤ 1. Then, 1/θ(z) can be expanded as a power series

1

θ(z)
=
∞∑
j=0

ηjz
j = η(z), |z| < 1 + ε

for ε > 0. If we apply η(B) to both sides of the equation φ(B)Yt = θ(B)ωt we get

η(B)φ(B)Yt = η(B)θ(B)ωt = ωt.
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This would give us

ωt =
∞∑
j=0

πjYt−j

where the sequence {πj} is the one determined in (2.1). We got to the definition of an
invertible process as we wanted to. Evidently, these last steps are not as immediate as they
seem. One has to argue that the operators η(z) =

∑∞
j=0 ηjz

j for
∑∞

j=0 |ηj | <∞ inherit the
algebraic properties of power series (in this case, the product). This, is a consequence of a
technical probability result which shows that series of the type ψ(B)Yt =

∑∞
j=−∞ ψjYt−j

converges absolutely with probability one and in mean square to the same limit (Yt has to
be stationary). In addition, if we write Zt = ψ(B)Yt then the process is stationary with
autocovariance function γZ(h) =

∑∞
j,k=−∞ ψjψkγ(h− j+ k). In other words, stationarity

and the autocovariance function are preserved by the operator ψ(B). This clearly exceeds
our scope, but it must be mentioned.
Conversely, we now suppose that {Yt} is invertible, which means ωt =

∑∞
j=0 πjYt−j for a

sequence of coefficients {πj} such that
∑∞

j=0 |πj | <∞. Then:

φ(B)ωt = π(B)φ(B)Yt = π(B)θ(B)ωt

If we define ξ(z) = π(z)θ(z) =
∑∞

j=0 ξjz
j with |z| ≤ 1 , we can write this as

p∑
j=0

θjωt−j =
∞∑
j=0

ξjωt−j

and if we multiply on both sides by ωt−k and take the expected value we obtain ξk = θk,
for k = 0, . . . , p and ξk = 0 for k > p. Therefore:

φ(z) = ξ(z) = π(z)θ(z), |z| ≤ 1.

By hypothesis we have that φ(z) and θ(z) have no common zeroes, and since |π(z)| ≤ ∞
for |z| ≤ 1, we conclude that θ(z) cannot be zero for |z| ≤ 1.

2.2 Financial theory basics

Definition 2.16. The simple return of an asset at time t is defined by the following
quotient:

Rt =
Pt − Pt−1

Pt−1
.

For instance, if we intend to work with daily returns, we subtract the closing price with
the opening price and divided it by the opening price. If we want to calculate the average
return over k periods, this is defined as follows:

Rt(k) =

( k−1∏
j=0

(1 +Rt−j)

) 1
k

− 1.

Definition 2.17. The log return at time t is defined as the following quotient:

rt = log
Pt
Pt−1

= log(1 +Rt).
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If we want to average the return for k periods we get

rt(k) = log(1 +Rt(k)) =
1

k
log

k−1∏
j=0

(1 +Rt−j) =
1

k

k−1∑
j=0

log(1 +Rt−j) =
1

k

k−1∑
j=0

rt−j .

We note that the final expression is the arithmetic average. One might ask themselves
how simple and log returns compare. Taylor approximation of log(1 + x) shows us that
the difference is negligible:

log(1 + x) = x+O(x2).

This translates as log(1 +Rt) ≈ Rt for Rt close to zero. A rule of thumb is that if one is
studying time series with a high frequency, i.e. daily values, if Rt are under 10% we can
use simple returns and log returns indistinctly.

In finance, asset returns may not follow a linear trend, and the variation in price may
be substantial in short periods of time. This is what volatility tackles. Heuristically, we
can say that volatility is a measurement that shows us the degree of variation in prices.
Mathematically this reminds us of standard deviation, but we will refine this definition
in the next section.

2.2.1 Stylized facts

The term “stylize” means to conform to a particular style, to conventionalize. So a stylized
fact tends to be a broad generalization that is fundamentally true, but may contain some
imprecisions in the detail. These facts are employed in many social sciences, also in the
economic market. Prof. Rama Cont, in [3] developed a thorough list, which we summarize
below.

• “Heavy tails”: The unconditional distribution of returns has heavier / fatter tails
than a normal distribution. This is because crashes and booms happen often. Cont
also notes that even after correcting the returns, which means that we take into ac-
count volatility clustering (GARCH models) the conditional distribution still shows
heavy tails.

• “Asymmetry”: The unconditional distribution of returns is negatively skewed. This
means that negative returns (i.e. losses) are more common than positive ones.

• “Aggregated Gaussianity”: If we should increase the time interval in which we
calculate the returns (weekly, monthly etc.) we notice that the unconditional returns
get closer to a normal distribution.

• “Absence of correlation / Strong correlation in absolute returns”: For the most
part, returns will not show autocorrelation except for very small time intervals.
However, if we consider the absolute returns time series, we will observe strong
autocorrelation. Cont describes that it decays over time similar to an exponential
distribution with β ∈ [0.2, 0.4].

• “Volatility clustering”: This means that periods of volatility are clustered, which
causes a positive autocorrelation. Large returns will be followed by large returns,
positive or negative (recall previous fact). This has to do with heteroskedasticity.
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We will see this in more detail, but if {Ft−1} is the “information available” at time
t− 1, we have

Var(rt | Ft−1) 6= Var(rt−1)

meaning that the variability depends on the recent changes.

• “Correlation varies through time”: It may be high during periods with increased
volatility.

2.3 Review and Relevant Results in Probability Theory

What follows is a brief probability review that helps us to define the notion of volatility
in financial markets, but most importantly, it allows us to deepen our study of ARCH
and GARCH models. We also include some important results which we will need in order
to prove some theorems for ARCH and GARCH.

Definition 2.18. Let (Ω,F , P ) be a probability set. If G ⊆ F is a σ-algebra, we define
the random variable

E(X | G)

as the conditional expectation. Using the Radon-Nykodim theorem we can prove the ex-
istence and uniqueness of the variable, as well as its measurability, but this exceeds our
purpose.

Under the same conditions, we define the conditional variance as

Var(X | G) = E[(X − E(X|G))2)|G].

Lemma 2.19. Under the previous assumptions, let X,Y be integrable random variables.
The following holds.

(1) E(E(X | G)) = E(X) (law of total expectation)

(2) If Y is G-mesurable and X · Y is integrable, then E(XY | G) = Y E(X | G)

(3) Var(X) = E(Var(X | G)) + Var(E(X | G)) (law of total variance)

Definition 2.20. Let (Ω,F , P ) be a probability set. A filtration is a sequence of σ-
algebras F := {Fn, n ∈ T} such that

• Fn ⊆ F , ∀n ∈ T

• Fn−1 ⊆ Fn, ∀n ∈ T.

Theorem 2.21. (Kolmogorov’s Strong Law of Large Numbers) Let {Xn n ≥ 1} be a
sequence of random i.i.d variables. Let us suppose E(X1) <∞. Then:

lim
n→∞

X1 + . . .+Xn

n
= E(X1) a.s.

Proof. cf [10], pp.175-185.
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Theorem 2.22. (Chung-Fuchs) Let {Xn n ≥ 1} be a sequence of random i.i.d variables.
If E(X1) = 0 and E(|X1|) > 0, then lim sup

∑n
j=1Xi = +∞.

Proof. cf [13].

We gave an heuristic introduction to volatility in the previous section, but the question
is if there is a way to model it in mathematical terms. As we will show in detail, ARCH and
GARCH models appeared in the 80s because previous models were grossly failing when
modeling financial returns. A coherent but not widely accepted definition of volatility is
the subsequent definition.

Definition 2.23. The volatility of a time series {Xt} is defined as the conditional variance
Vol = Var(Xt|Ft−1).

2.4 ARCH and GARCH models

The question we must assess is the growing need for ARCH and GARCH models. A naive
answer to this question could start by stating that ARMA type models assume constant
conditional variance. This assumption becomes a an inconvenient when we try to model
the volatility of the finance market, since the definition of volatility and the stylized facts
go against it. This was one of the reasons led to the appearance of ARCH and GARCH
models, which we owe to Engle in 1982, and later developments by Bollerslev in 1986. In
2003, Engle was awarded the Nobel Prize in Economics. ARCH models were cited as one
of his most important contributions.

Definition 2.24. A time series is homoskedastic if V ar(Yt|Ft−1) = σ2 for all t. If this
does not hold, the time series is heteroskedastic.

Example 2.25. It is easily shown that the AR(1) model is homoskedastic. Note also
that in an AR(1) model E(Yt | Ft−1) = φYt−1 and Var(Yt | Ft−1) =Var(εt) = σ2.

Definition 2.26. A time series {Yt t ∈ Z} is an ARCH(p) model (Auto Regressive
Conditional Heteroskedastic) if its second order moment is finite and causal (not future
dependent) such that:

Yt = σtεt t ∈ Z

σ2
t = α0 +

p∑
i=1

αiY
2
t−i p ≥ 1

where εt is a GWN(0, 1) and α0, . . . , αp are the parameters of the model, which are
positive.

Observation 2.27. The definition above of an ARCH model is the most widely used,
and we follow many texts in Time Series such as [1] that use it. However, other sources
give other less restrictive definitions of an ARCH model. In the case of [5], the authors
distinguish between strong ARCH, semi-strong ARCH or weak ARCH. For instance, in
the case of the semi-strong ARCH, we do not require for εt to be i.i.d. Other authors
consider that εt need not be GWN(0,1), and relax the condition to i.i.d. with mean 0 and
variance 1. These considerations may alter some theoretical results.
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Figure 2.1: Generated ARCH(1) model, with α0 = 0.25 and α1 = 0.5

Proposition 2.28. The conditional variance of the process Yt is σ2
t , and it is autoregres-

sive. Moreover, ARCH(p) is heteroskedastic.

Proof. Let Ft = σ{Yk k ≤ t} be the natural filtration of the process. We want to compute
the conditional variance of Yt, as it follows:

Var(Yt | Ft−1) = E(Y 2
t | Ft−1)− E

(
Yt | Ft−1

)2
= E(σ2

t ε
2
t | Ft−1)− E

(
σtεt | Ft−1

)2
= E(σ2

t ε
2
t | Ft−1)− σtE

(
εt | Ft−1

)2
= σ2

tE(ε2
t | Ft−1)− σtE

(
εt
)2

= σ2
tE(ε2

t ) = σ2
t

where have used that since εt is GWN. Also, by definition of the variance of εj , E(ε2
t ) = 1

which gives us our conclusion. Note that the conditional variance is autorregressive by
its definition. Since it is not a constant, this model is heteroskedastic.

Proposition 2.29. The returns Yt are a martingale difference: they have mean zero and
are uncorrelated.

Proof. Let Ft = σ{Yk k ≤ t} be the natural filtration of the process. Then, using Lemma
2.19 (1):

E(Yt) = E
(
E(σtεt | Ft−1)

)
.

Let us calculate the conditional mean:

E(Yt | Ft−1) = E(σtεt | Ft−1) = σtE(εt | Ft−1) = E(εt) = 0

where we have used property 2.19 (2) and the fact the σ2
t is Ft−1-measurable. We also

note that εt is independent of Ft−1. Going back to our initial calculation we now get
E(Yt) = E(σtE(0)) = 0. We now compute the autocovariance function

γ(l) = cov(Yt, Yt+l) = E(Yt − E(Yt))(Yt+l − E(Yt+l))

= E(YtYt+l) = E(E(YtYt+l | Ft+l−1))
(1)
= E(YtE(Yt+l | Ft+l−1)) = 0.

(1) follows from Lemma 2.19 (2), since Yt is Ft+l−1-measurable (or in other words, it
belongs to the generated filtration). The final equality is inferred by what we just saw
before.

11



Proposition 2.30. The squared returns Y 2
t of an ARCH(1) follow an AR(1) model.

Proof. We start by squaring Yt and writing the ARCH(1) equations as follows

Y 2
t = σ2

t ε
2
t

α0 + α1Y
2
t−1 = σ2

t .

Subtracting them we get Y 2
t − α0 − α1Y

2
t−1 = σ2

t (ε
2
t − 1) Writing vt = σ2

t (ε
2
t − 1) gives us

Y 2
t = α0 + α1Y

2
t−1 + vt, which is an AR(1) model as long as we prove vt is a white noise.

We must show then that the expected value is 0, the variance is finite and constant and
last, that given a lag l, the two different instances are uncorrelated. As said, the expected
value and the variance must be constant.

E(vt) = E(σ2
t (ε

2
t − 1)) = E(E(σ2

t (ε
2
t − 1) | Ft−1)) = E(σ2

tE(ε2t − 1 | Ft−1)) =

E(σ2
t )E(ε2t − 1) = E(σ2

t )
(
E(ε2t )− E(1)

)
= 0

where we have applied that σ2
t is Ft−1-measurable and εt is independent from Ft−1 because

it is GWN.

Var(vt) = E(v2
t )− E(vt)

2 = E(E(v2
t | Ft−1)) = E(E(σ4

t (ε
2
t − 1)2 | Ft−1)) =

E(σ4
tE((ε2

t − 1)2 | Ft−1)) = E(σ4
t )E((ε2

t − 1)2) = E(σ4
t )Var(ε2

t ) = 2E(σ4
t )

where we have used E((ε2
t − 1)2) = E(ε2

t − E(ε2
t )) = Var(ε2

t ) = V ar(χ2
1) = 2. The

variance of vt is constant, since E(Y 4
t ) = E(σ4

t ε
4
t ) = E(σ4

t ) · 3. This is inferred from
Var(ε2

t ) = E(ε4
t ) − E(εt)

4 Finally, we check the autocovariance function (i.e. vt is a
centered white noise):

γ(l) = cov(vt, vt+l) = E(σ2
t (ε

2
t − 1)σ2

t+l(ε
2
t+l − 1)) = E(E[σ2

t (ε
2
t − 1)σ2

t+l(ε
2
t+l − 1) | Ft+l−1]) =

E[σ2
t (ε

2
t − 1)E(σ2

t+l(ε
2
t+l − 1) | Ft+l−1)] = 0

because ε2
t is independent of Ft+l−1 and σ2

t is Ft+l−1-measurable.

Theorem 2.31. If α ≥ 0 and α ∈ [0, 1), the process:

Yt =

√√√√ ∞∑
l=0

α0α1ε2
t ε

2
t−l

is a strictly stationary process that solves ARCH(1) equations.

Proof. Found in [2].

Corollary 2.32. The expected value and the variance of the returns are constant provided
α1 ∈ [0, 1).

Proof. This is immediate: Since Yt is strictly stationary, the expected value and the
variance are constant. Let us calculate E(Y 2

t ) (which is the actual variance, since we
have shown E(Yt) = 0). If we define Ft = σ{Yk k ≤ t},

E(Y 2
t ) = E(E(Y 2

t |Ft−1)) = E(E(σ2
t ε

2
t |Ft−1)) = E(σ2

tE(ε2
t |Ft−1)) = E(σ2

tE(ε2
t )) = E(σ2

t ).

12



Therefore:

E(Y 2
t ) = E(σ2

t ) = E(α0 + α1Y
2
t−1).

If we apply what we just saw, which is E(Y 2
t ) = E(Y 2

t−1)

E(Y 2
t ) =

α0

1− α1
.

Proposition 2.33. The returns Yt follow a leptokurtic distribution, and we have

K(Yt) = 3
1− α2

1

1− 3α2
1

.

Proof. We start by observing:

E(σ4
t ) = E((α0 + α1Yt−1)2) = α2

0 + α2
1E(Y 4

t−1) + 2α0α1E(Y 2
t−1).

By the previous corollary we have:

E(Y 2
t ) =

α0

1− α1
.

Since Yt is strictly stationary, we know that E(Y 4
t−1) is constant for any t. Recall also

from 2.30 that E(Y 4
t ) = 3E(σ4

t ). If we write k = E(Y 4
t−1)

k

3
= α2

0 + α2
1k + 2α0α1

α0

1− α1

(1− 3α2
1)k = 3α2

0 + 6α2
0α1

1

1− α1
.

Finally, we get:

E(Y 4
t ) =

3α2
0(1 + α1)

(1− α1)(1− 3α1)2
.

Observe this quantity is well defined as long as α1 <
1√
3
' 0.5774. By definition of

kurtosis:

K(Yt) =
E(Y 4

t )

(Var(Y 2
t ))2

=
3(1− α1)(1 + α1)

(1− 3α2
1)

= 3
1− α2

1

1− 3α2
1

≥ 3.

The kurtosis is greater or equal than 3, which is the definition of a leptokurtic distribution.
This satisfies the stylized fact which stated that returns have ”heavy-tails”.

Example 2.34. We consider ARCH(1) model generated with parameters α0 = 0.25 and
α1 = 0.5 shown in Figure 2.1. Now we can deepen our study thanks to results obtained
above. If we calculate the mean of the returns, we get:

> mean(y)

[1] -0.0146146

13



This is close to zero. As it is obvious, calculating the mean at a given time t will never
yield an exact zero value. If we plot the ACF we see that the returns are uncorrelated.
We build a plot for the volatility so we can see that the conditional variance changes
through time which means the process is heteroskedastic.

Figure 2.2: ACF function for the generated ARCH(1) model , with α0 = 0.25 and α1 = 0.5

Figure 2.3: Volatility plot of the ARCH(1) model generated in figure 2.1

Bollerslev wrote in 1986 an article [12], where he developed an extension of the ARCH
model called the GARCH model (G stands for Generalized). The main difference is that
GARCH is a function of two parameters, but it maintains the underlying structure of the
ARCH process.

Definition 2.35. GARCH (1,1) is defined as:

Yt = σtεt

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1

(2.2)

where εt is GWN(0,1) and the parameters α0, α1, β1 are the parameters of the model and
greater than 0.
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Figure 2.4: Generated GARCH(1,1) model, with α0 = 0.5, α1 = 0.2 and β1 = 0.7

Lemma 2.36. The squared returns of a GARCH(1,1) model can be rewritten as an
ARMA(1,1) model

Proof. Substracting the term σ2
t on both sides of the equation in (2.2) gives us

Y 2
t − σ2

t = σ2
t (ε

2
t − 1). (2.3)

For time t− 1 we consider the same substraction multiplied by β1:

β1(Y 2
t−1 − σ2

t−1) = β1σ
2
t−1(ε2

t−1 − 1). (2.4)

Substracting (2.3) - (2.4) we get:

β1(Y 2
t−1 − σ2

t−1)− Y 2
t + σ2

t = β1σ
2
t−1(ε2

t−1 − 1)− σ2
t (ε

2
t − 1).

We define vt = σ2
t (ε

2
t − 1) :

β1(Y 2
t−1 − σ2

t−1)− Y 2
t + α0 + α1Y

2
t−1 + β1σ

2
t−1 = β1vt−1 − vt

Finally, rearranging the terms gives us: Y 2
t = α0 + (α1 + β1)Y 2

t−1 + vt − β1vt−1.

Proposition 2.37. Let {Yt} be a GARCH(1,1) model. The following holds:

(1) If Var(Yt) = σ2 then Var(Yt) =
α0

1− α1 − β1
.

(2) K(Yt) =
3(1 + α1 + β1)(1− α1 − β1)

1− β2
1 − 2α1β1 − 3α2

1

and it is a leptokurtic distribution.

Proof.

(1) Using similar arguments as in Proposition 2.33 we have

σ2 = Var(Yt) = E(Y 2
t ) = E(α0 + α1Y

2
t−1 + β1σ

2
t−1)

= α0 + α1σ
2 + β1E(σ2

t−1) = α0 + σ2(α1 + β1)

It easy to prove that E(σ2
t−1) = σ2 as long as we use that σ2

t−1 = V ar(Yt−1|Ft−2.
Rearranging the terms gives us

σ2 =
α0

1− α1 − β1

Note that we need α1 + β1 < 1, which is the condition for second-order stationary,
as we will see later on.
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After a few basic properties for ARCH(1) and GARCH(1,1) have been discussed, we can
go on a never-ending path of complex mathematical results that have been . One of the
main and most remarkable ones is from 1990 and was proven by Nelson in [7] and can
also be found [6]. We include it below.

Lemma 2.38. (Root test) Given
∑
an, infinite series, if the quantity lim supn→∞

n
√
|an|

is less than 1 the series converges absolutely. It diverges if the quantity is strictly bigger
than 1.

Theorem 2.39. Suppose α0 > 0 and α1, β1 ≥ 0. The GARCH(1,1) equations have a
strictly stationary solution if and only if E[log(α1ε

2
t−1 + β1)] < 0, which is unique and

determined by:

σ2
t = α0

(
1 +

∞∑
j=1

j∏
i=1

(α1ε
2
t−i + β1)

)
. (2.5)

Proof. We write the conditional variance as σ2
t = α0 + (α1ε

2
t−1 + β1)σ2

t−1). If we reiterate
the expression in the following manner:

σ2
t = α0 + (α1 + ε2

t−1 + β1)

(
α0 + (α1ε

2
t−2 + β1)

(
α0 + (α1ε

2
t−3 + β1)σ2

t−3

))
...

we get for the k-th step:

σ2
t = α0

(
1 +

k∑
j=1

j∏
i=1

(α1ε
2
t−i + β1)

)
+

( k+1∏
i=1

(α1ε
2
t−i + β1)

)
σ2
t−k−1

= ft(k) +

( k+1∏
i=1

(α1ε
2
t−i + β1)

)
σ2
t−k−1

where ft(k) is just to simplify the notation. Note that ft = limk→∞ ft(k) belongs to R+.
Similiar to what we saw before, we can define:

ft(k) = α0 + (α1ε
2
t−1 + β1)ft(k − 1)

and as k →∞

ft = α0 + (α1ε
2
t−1 + β1)ft.

Let us suppose E[log(α1ε
2
t−1 + β1)] < 0. We apply by Strong Law of Large Numbers

(Theorem 2.21) to the sequence {log(α1ε
2
t−i + β1)}, which is i.i.d because εt−i are i.i.d

( j∏
i=1

(α1ε
2
t−i + β1)

) 1
j

= exp

(
1

j

j∑
i=1

log(α1ε
2
t−i + β1)

)
−→ eE[log(α1ε2t+β1)] a.s

with j → ∞. If we go to expression (2.5) and apply the Root Test to the infinite series
in ft. we know the series converges a.s. (Note that eE[log(α1ε2t+β1)] < 1)) so the limit
process ft is finite. This means that if we define Yt =

√
ftεt we have a strictly stationary
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GARCH(1,1) model.
Now we have to prove the uniqueness. Let Ỹt = σ̃2

t εt be another strictly stationary
solution.

σ̃2
t = ft(k) +

( k+1∏
i=1

(α1ε
2
t−i + β1)

)
σ̃2
t−k−1.

Subtracting the limit ft on both sides

σ̃2
t − ft = ft(k)− ft +

( k+1∏
i=1

(α1ε
2
t−i + β1)

)
σ̃2
t−k−1.

Obviously ft(k) − ft → 0 as k → ∞. Since the series that defines ft converges a.s., we
have that

k∏
i=1

(α1ε
2
t−i + β1)σ̃2

t−k−1 −→ 0 in probability 1

as k tends to infinity, where have also used that σ̃2
t−k−1 is independent of k by stationarity

of the series. In conclusion, this gives us P (σ̃2
t −ft > ε) = 0, as k →∞, this means σ̃2

t = ft
a.s. Let us discard the remaining cases. If E[log(α1ε

2
t +β1)] > 0, if we repeat the reasoning

with the Strong Law of Large Numbers we get that eE[log(α1ε2t+β1)] > 1 a.s., leading to
the divergence of the series a.s when k →∞. Therefore if α0 > 0 we have ft = +∞ a.s.
For E[log(α1ε

2
t + β1)] = 0, we argue by contradiction. We suppose that there exists a

strictly stationary solution. Note that

σ2
t ≥ α0

(
1 +

k∑
j=1

j∏
i=1

(α1ε
2
t−i + β1)

)
.

Applying the same idea as before which used the Strong Law of Large Numbers we have
that α0

∏j
i=1(α1ε

2
t−i + β1)→ 0 a.s. Alternatively

j∑
i=1

log(α1ε
2
t−i + β1) + logα0 → −∞

as j →∞. But the Chung-Fuchs theorem tells us that lim sup
∑j

i=1 log(α1ε
2
t−i+β1) = +∞

with probability 1, which is a contradiction.

Corollary 2.40. A GARCH(1,1) is second order stationary if and only if α1 + β1 < 1.

Proof. Let us suppose that α1 + β1 < 1. By Jensen’s inequality for concave functions we
have E[log(α1ε

2
t +β1)] ≤ log(E[α1ε

2
t +β1]) = log(α1 +β1) < 0. By theorem 2.39, we have

that σ2
t is a stationary solution for the GARCH(1,1) equations.
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Conversely, we compute E(σ2
t ). Since GARCH(1,1) is a stationary process:

E(σ2
t ) = E

[
α0

(
1 +

∞∑
j=1

j∏
i=1

(α1ε
2
t−i + β1)

)]

= α0

(
1 +

∞∑
j=1

E[

j∏
i=1

(α1ε
2
t−i + β1)]

)

= α0(1 +

∞∑
j=1

(α1 + β1)j)

=
α0

1− (α1 + β1)

which is finite if α1 + β1 < 1.

Corollary 2.41. For a GARCH(1,1) model, with initial conditions at t = 0, we have:

E[log(α1ε
2
t + β1)] > 0 then σ2

t
t→∞−→ +∞ a.s.

In addition, if E[(log(ε2
t )] <∞, then:

E[log(α1ε
2
t + β1)] > 0 then Y 2

t
t→∞−→ +∞ a.s.

These are called the conditions for explosion.

Proof. Recall from Theorem 2.39 that we have the following inequalities:

σ2
t ≥ α0

(
1 +

t−1∑
j=1

j∏
i=1

(α1ε
2
t−i + β1)

)
≥ α0

t−1∏
i=1

(α1ε
2
t−i + β1).

If we take the lim inf on both sides:

lim inf
t→∞

1

t
log(σ2

t ) ≥ lim inf
t→∞

1

t

t−1∑
i=1

log(α1ε
2
t−i + β1) = γ.

Which gives us log σ2
t →∞ and σ2

t →∞. Similarly:

lim inf
t→∞

1

t
log(Y 2

t ) = lim inf
t→∞

1

t
(log σ2

t + log ε2
t ) ≥ γ + lim inf

t→∞

1

t
log(ε2

t ) = γ.
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3 Estimation and Prediction

This chapter is devoted to Estimation and Prediction of ARCH and GARCH models.
This is the fundamental objective when studying time series, once we try to fit a specific
model to observed values {xt}≥0, can we estimate the parameters of our model ? If we
have x1, . . . , xn values, can we predict what will the value xn+1 be?. This is the main
focus of this chapter.

We will develop our theory in the context of Hilbert spaces, which allows us to rigorously
present the Classical Regression problem. In Chapter 4 we will see why this method fails
for most financial time series, despite having already seen some answers to this question
in the previous chapter. Also, functional analysis works well in developing a consistent
theory about Prediction and Estimation with time series. Simple examples in R will given
in order to illustrate the theoretical results.

3.1 Sampled parameters and Estimation

In the previous chapter, we went over theoretical properties of time series. In Chapter
4, we will be working with real data, hence we will be considering a finite number of
observations {y1, . . . , yn}. A few statistical notions must be introduced, which differ
slightly from the theoretical definition.

Definition 3.1. The sample mean and sample variance are defined as:

y =
1

n

n∑
t=1

yt σ2 =
1

n

n∑
i=1

(yt − y)2.

Recall that the sample mean is an unbiased estimator of the expected value whereas the
sample variance is not.

Definitions 3.2. The sample autocovariance function is defined as

γ̂(l) =
1

n

n−l∑
t=1

(yt+l − y)(yt − y).

And the sample autocorrelation function (ACF) is defined as

ρ̂(l) =
γ̂(l)

γ̂(0)
.

Theorem 3.3. Let {Yt} be iid and fourth-moment finite, with n sufficiently large. The

sample ACF ρ̂(l) where l = 1, . . . , h′ (h′ arbitrarily fixed) is approximately normally

distributed with zero mean and standard deviation σ
ρ̂(l)

=
1√
n

.

Proof. Can be found in [1] pp. 482-490.

3.2 The Classical Regression Model

Recall basic functional analysis definitions: A pre-Hilbert space is a vector space with an
inner product. A Banach space is a normed space such that the distance induced by the
norm is complete (i.e. every Cauchy sequence converges). A Hilbert space is a pre-Hilbert
space if it is a Banach space with the norm induced by the inner product.
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Theorem 3.4. (Projection theorem) Let H be a Hilbert space and Y ⊂ H a closed
subset. Then H = Y ⊕ Y ⊥, i.e. given x ∈ H there exists a unique yx ∈ Y and zx ∈ Y ⊥
such that x = yx + zx. In addition:

(a) yx is the only vector of Y that satisfies x− yx ⊥ Y

(b) d(x, Y ) = ‖x− yx‖ and d(x, Y ⊥) = ‖x− zx‖ = ‖yx‖

Also, d(x, Y ) = ‖x− yx‖ = infy∈Y ‖x− y‖ �

Corollary 3.5. Under the hypothesis of Theorem 3.4 we have the Prediction Equations:

〈x− yx, y〉 = 0 ∀y. (3.1)

Also, PY x denotes the projection of x on a closed subspace Y of a Hilbert space H, and
it fulfills the following properties:

Proposition 3.6. Let H be a Hilbert space, Y ⊂ H closed and PY the projection in Y
(called projection operator / projection mapping) The following properties hold.

(1) PY is linear, i.e. PY (αx+ βx′) = αPY x+ βPY x
′.

(2) PY x = x for all x ∈ Y . Hence P 2
Y x = PY x, meaning PY is a projection of H on Y.

(3) We have QY x = (I − PY )x ∈ Y ⊥ for all x ∈ H and QY x = x for all x ∈ Y ⊥.

(4) For every x ∈ H we have x = PY x + QY x and ‖x‖2 = ‖PY x‖2 + ‖QY x‖2 for all
x ∈ H

(5) If Y1 ⊆ Y2 if and only if PY1PY2x = PY1x for all x ∈ H. �

Theorem 3.7. Let H = Rn, xi ∈ Rn for i = 1 . . .m and Y = span[x1, . . . , xm]. Then:

PY x = Xβ

where x ∈ Rn, X is a n×m matrix whose j-th column is xj and

XTXβ = XTx.

The previous equation has at least one solution for β ∈ Rn but Xβ is the same for all
solutions. There is exactly one solution if and only if XTX is invertible and in this case

PY x = X(XTX)−1XTx.

Proof. We start by noting that PY x ∈ Y , so we write it as PY x =
∑n

i=1 βixi = Xβ
for β = (β1, . . . , βm)T ∈ Rn. Using Corollary 3.5 we write 〈Xβ, xj〉 = 〈x, xj〉, for
j = 1, . . . ,m. Equivalently, in matrix form we write XTXβ = XTx. The existence of β
follows from the existence of PY x. Xβ is the same for all solutions because PY x is unique
by Theorem 3.4.

In the context of the multiple linear regression model, the response variable Yt is a function
of parameters called regressors: Yt = β1Xt,1 + β2Xt,2 + . . . + βpXt,p + εt, being εt ∼ iid
noise(0, σ2). (these restrictions imposed on εt are sometimes referred to Gauss-Markov
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conditions) We want to estimate the vector β. This is done by least squares estimation,
which minimizes the following quantity:

SSR =
n∑
t=1

ε2
t =

n∑
t=1

(
Yt −

p∑
i=1

βiXt,i

)2

.

Note that SSR stands for Sum of Squared residuals. To simplify notation, it is not
uncommon to use matrices and vectors:

Y =

Y1
...
Yn

 X =


X1,1 . . . X1,p

X2,1 . . . X2,p
...

. . .
...

Xn,1 . . . Xn,p

 β =

β1
...
βp

 ε =

ε1
...
εn

 .

Now the least squares estimation problem looks like:

SSR =

n∑
t=1

ε2
t = εT ε = (Y −Xβ)T (Y −Xβ) = ‖Y −Xβ‖2.

Thanks to the Projection theorem we notice that minimizing the sum is done by finding
the projection y on to the linear space M = span{X.,1, . . . X.,p} where X.,j signifies the
j-th column of the matrix. For each instance, the vector found minimizes the SSR. By
theorem 3.7 we have:

β̂ = (XTX)−1XTY.

Definition 3.8. The residuals of the regression are defined as:

ε̂ = Y − Ŷ = Y −Xβ̂ = MY = M(Xβ + ε) = (MX)β +Mε = Mε

defined as M = In−P . By Proposition 3.6 we have that M defines a projection onto Y ⊥.

Proposition 3.9. Under the Gauss-Markov conditions (i.e. εt ∼ i.i.d noise with mean 0
and variance σ2)), we have:

(a) The estimator β̂ is unbiased.

(b) The estimator for the variance of β̂ is Var(β̂) = σ2(XTX)−1.

Proof. Let us prove (a),
E(β̂) = E((XTX)−1XTY ) = (XTX)−1XTE(Y ) = (XTX)−1XTXβ = β.

3.3 Prediction theory

The idea behind prediction theory is simple: Given y1, . . . , yt observations of Y1, . . . , Yt
random variables, can we predict Yt+1, . . . , Yt+p?

Lemma 3.10. L2(Ω,F ,P) is a Hilbert space with the inner product

〈X,Y 〉 = E(XY ) =

∫
Ω
XY dP

for all X,Y ∈ L2. (i.e. X,Y are square-integrable) �
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Definition 3.11. Given {Xn, n ≥ 1} a sequence of random variables of L2(Ω,F ,P).
The variables converge in mean square convergence to a random variable X if

lim
n→∞

E(|Xn −X|2) = 0.

Naively, if M ⊂ L2, and Y ∈ L2 we can assume that finding the best mean-square
predictor Y consists in finding Ŷ such that:

‖Y − Ŷ ‖2 = inf
Z∈M

E(|Y − Z|2).

We observe that the conditions are quasi-identical to the projection theorem. So the
best mean square predictor is given by the projection of Y into subset M . We now
introduce an alternative definition for conditional expectation, which we must interpret
in the following manner: If G ⊂ F , the best predictor of Y is based in the information of
G. So the following definition is consistent.

Definition 3.12. Let M be a closed subset of L2. If X ∈ L2 we define the conditional
expectation of X given M as

EMX = PMX.

Note that this definition of Conditional Expectation is more restricted than the one given
in Definition 2.19. Despite having the general definition, since all this section works under
the L2 space structure, Definition 3.11 suffices.
Now, if Z1, . . . , Zn ∈ L2(Ω,F ,P) and X ∈ L2 we can extend the definition 3.11 to
EM(Z1,...,Zn)X where M(Z1, . . . , Zn) is defined as the closed subspace of L2 generated by
the variables in L2 of the form φ(Z1, . . . , Zn) for some Borel function φ : Rn → R. Now, by
the projection theorem the Conditional Expectation EM(Z1,...,Zn) is the best mean square
predictor for X. By the prediction equations (3.1):

〈X − PMX,W 〉 = 0 ∀W ∈M
〈X,W 〉 = 〈PMX,W 〉
E(XW ) = E(EMXW ).

We avoid going into the details of this definition because of the technicalities it presents.
Extensive information is found in [4].

3.3.1 The best linear predictor

The prediction equations above give us a final expression that can be very hard to
calculate. We consider an alternative: If X1, . . . , Xn ∈ L2 and span(1, X1, . . . , Xn) ⊆
M(X1, . . . , Xn) then we write

Pspan{1,X1,...,Xn}Y =
n∑
i=0

αiXi, X0 = 1. (3.2)

By the prediction equations in (3.1), (3.2) satisfies:〈 n∑
i=0

αiXi, Xj

〉
= 〈Y,Xj〉 j = 0, . . . n

n∑
i=0

αiE(XiXj) = E(Y Xj) j = 0, . . . n

These equation have a unique solution thanks to the Projection Theorem.
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Notation 3.13. P (Y | X1, . . . Xn) = α̂0 + α̂1X1 + . . .+ α̂nXn denotes the optimal linear
predictor.
We have now seen a general statement for our problem. Given that E(Y | X1, . . . , Xn)
can be a tedious calculation, we defined f(X1, . . . , Xn) = E(Y | X1, . . . , Xn) = α0 +
α1X1 + . . . αnXn which has a solution guaranteed by the projection theorem. Recall that
our objective is to minimize prediction errors, which are defined as follows.

Definition 3.14. The expressions E[(Y−E(Y |X1, . . . , Xn))2] or E[(Y−P (Y |X1, . . . , Xn))2]
are called prediction errors.

Let us start solving the optimal linear predictor problem. We want to find
P (Y | X1, . . . Xn) = α̂0 + α̂1X1 + . . .+ α̂nXn. The Prediction Equations (3.1) give:

〈Y − P (Y |X1, . . . , Xn, 1〉 = 0

〈Y − P (Y |X1, . . . , Xn), Xt〉 = 0 t = 1, . . . n.

The previous equations are equivalent to

α0 + α1E(X1) + . . . αnE(Xn) = E(Y )

α0E(X1) + α1E(X2
1 ) + . . .+ αnE(X1Xn) = E(X1Y )

...

α0E(Xn) + α1E(X1) + . . .+ αnE(X2
n) = E(XnY )

(3.3)

To simplify notation, we define αT = (α0, . . . , αn), µTX = (E(X0), . . . , E(Xn)). This gives
us:

α0 = E(Y )− αTµX

If we multiply the equation by E(Xt) for t = 1, . . . , n.

α0E(Xt) = E(Xt)E(Y )− E(Xt)α
TµX ∀t = 1, . . . n.

Substituting this expression in the the equations 1, . . . , n from the system (3.3) we get:(
E(Xt)E(Y )− E(Xt)α

TµX

)
+ E(Xt)E(X1)α1 + . . .+ E(Xt)E(Xn) = E(Xn)E(Y ) t = 1, . . . n.

Recall that Lemma 2.5 gives us γ(s, t) = E(XsXt)−E(Xt)E(Xs) Reorganizing the terms
gives us the family of equations:

α1γ(t, 1) + . . .+ αnγ(t, n) = cov(Y,Xt) t = 1, . . . , n. (3.4)

Note that if we simplify the expressions

Γα = cov(Y,X)

where Γ = {γ(i, j)}i,j=1,...n and cov(Y,X) is the covariance vector cov(Y,Xi) i = 1 . . . , n.
Assuming that Γ is invertible we get:

α̂ = Γ−1cov(Y,X). (3.5)

The best linear predictor is finally:

P (Y |X1, . . . Xn) = α̂0 + α̂1X1 + . . .+ α̂nXn = E(Y )− α̂TµX + αTX = E(Y ) + α̂T (X − µX).
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And the prediction error (PEY ) is:

PEY = E
[
(Y − P (Y |X1, . . . , Xn))2

]
= E

[
(Y − E(Y )− α̂T (X − µX))2

]
= E

[
(Y − E(Y ))2 − 2(Y − E(Y ))α̂T (X − µX) + (α̂T (X − µX))2

]
= Var(Y ) + α̂TΓα̂− 2α̂cov(Y,X)T

= Var(Y )− α̂T cov(Y,X)

where have applied Lemma 2.6 and the definition of Γα̂ = cov(Y,X). Recall that
cov(Y,X) = E

[
(Y −E(Y ))(X −µX)T

]
. We have also used the following property for the

vectors α̂T (X − µX) = (X − µX)T α̂.

Proposition 3.15. The following properties for P (Y |X1, . . . , Xn) hold:

(1) P (Xj |X1, . . . , Xn) = Xj

(2) P (α+ βY1 + γY2|X1, . . . , Xn) = α+ βP (Y1|X1, . . . , Xn) + γP (Y2|X1, . . . , Xn)

(3) If cov(Y,Xt) = 0 for t = 1, . . . n then P (Y |X1, . . . , Xn) = E(Y ).

(4) P (P (Y |X1, X2|X1) = P (Y |X1).

Proof. Since P (Y |X1, . . . , Xn) is the orthogonal projection onto span{1, X1, . . . , Xn} the
listed properties are immediate from Proposition 3.7 and the definition of expected value.

Now let us consider the Time Series case. First, we start by assuming that our time series
is second order stationary (i.e. first and second order moments are constant through
time). The expression for

P (Xn+1|X1, . . . , Xn) = µ+ α̂T (X − µ)

since {Xt} is stationary. The prediction error calculated before now is:

PEn+1 = E
[
(Xn+1 − P (Xn+1|X1, . . . , Xn))2

]
= E

[
(Xn+1 − µ− α̂T (X − µ))2

]
= Var(Xn+1)− cov(Xn+1, X)T α̂ = γ(0)− γTn α̂

where γn = (γ(1), . . . , γ(n))T . We will use this notation in other results.

Proposition 3.16. If {Xt} is stationary time series with mean zero, then:
Pspan{1,X1,...,Xn}Xn+1 = Pspan{X1,...,Xn}Xn+1.

Proof. Let us write X0 = 1. We know Pspan{X0,X1,...,Xn}Xn+1 = α0X0 +
∑n

i=1 αiXi. By
the prediction equations

〈α0X0 +
n∑
i=1

αiXi, Xj〉 = 〈Xn+1, Xj〉 j = 0, 1 . . . , n

α0E(X0Xj) +

n∑
i=1

αiE(X1Xj) = E(Xn+1Xj).
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But {Xt} is a stationary time series with mean zero, which means E(X0Xj) = E(Xj) = 0,
hence:

n∑
i=1

αiE(X1Xj) = E(Xn+1Xj).

And if we reverse the process we get Pspan{X1,...,Xn}Xn+1 =
∑n

i=1 αiXi.

This result allows to work with span{X1, . . . , Xn}Xn+1 as long as our time series is
stationary.

Definition 3.17. Given a stationary time series, the partial autocorrelation function
(PACF) α(·) is defined by

α(1) = corr(X2, X1) = ρ(1)

α(k) = corr(Xk+1 − Pspan{1,X2,...,Xk}Xk+1, X1 − Pspan{1,X2,...,Xk}X1), k ≥ 2.

This definition gives us more understanding of dependence structure of a stationary pro-
cess. We can think of it as the correlation between Xk+1 and X1 that has been adjusted
because of the presence of X2, . . . , Xk variables. In other words, we are ”removing” the
effect of X2, . . . , Xk, which is why the linear projection makes sense.
Note also that this is not a very operational definition, which is why we adequately con-
sider an alternative definition for the PACF:
Let {Xt} be a stationary time series with E(Xt) = 0 and ACF such that γ(h)→ 0 for h→

∞ (not a restrictive hypothesis). Let us suppose that Pspan{X1,...,Xk}Xk+1 =
k∑
t=1

btXk+1−t

By the prediction equations we know that:

〈Xk+1 − Pspan{X1,...,Xk}Xk+1, Xt〉 = 0, t = k, . . . , 1.

Dividing by γ(0) on both sides (we assume γ(0) > 0 wlog) we get:
ρ(0) ρ(1) ρ(2) . . . ρ(k − 1)
ρ(1) ρ(0) ρ(1) . . . ρ(k − 2)

...
...

ρ(k − 1) ρ(k − 2) ρ(k − 3) . . . ρ(0)



b1
b2
...
bk

 =


ρ(1)
ρ(2)

...
ρ(k)


Definition 3.18. (alternative) The PACF α(k) of {Xt} at lag k is

α(k) = bk k ≥ 1

where bk is uniquely determined by the system of equations above. Note that we can
defined the sample PACF analogously.

Definition 3.19. Let us consider observations {x1, . . . xn}. The sample PACF α̂(k) of

{Xt} at lag k is α̂(k) = b̂k. Note that b̂k is determined through the sample ACF γ̂(t) for
t = 1, . . . k. Also, we need at least xi 6= xj for some i and j.

Note that we made an important assumption in the last steps of our calculations. The
following proposition asserts that this is not a major issue.
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Lemma 3.20. Given A rank n real symmetric matrix, it decomposes into A = QDQT

with Q orthogonal (i.e. QT = Q−1 meaning QQT = Id) and D = diag(λ1, . . . , λn) with
strictly positive eigenvalues.

Proposition 3.21. Let {Xt} be a stationary time series with E(Xt) = 0. If γ(0) > 0
and γ(h)→ 0 for h→∞, the variance-covariance matrix Γn is non-singular for every n.

Proof. Let us suppose that Γn is singular for some n. By hypothesis E(Xt) = 0, so there
exists non-zero r ≥ 1 and constants a1, . . . , ar such that Γr is non-singular and:

Xr+1 =

r∑
t=1

atXt. (3.6)

This is due to Lemma 2.6: Given X = (X1, . . . , Xr+1), we have Var(aTX) = 0 (The
covariance matrix Γr+1 is singular). Now, we apply the fact that {Xt} is a stationary
time series. This means the variance of the linear combination remains constant, meaning
that Var(aTX) = V ar(aTXl) = 0 where l > 0 is the lag. This gives us:

Xr+h =
r∑
t=1

atXt+h−1 (3.7)

for a given lag h ≥ 1.

In consequence, for n ≥ r + 1 there exist a
(n)
1 , . . . , a

(n)
r ∈ R constants such that

Xn = a(n)TXr (3.8)

where Xr = (X1, . . . , Xr). Lemma 2.6 gives us V ar(a(n)TXr) = a(n)T Γra
(n). If we apply

Lemma 3.20

γ(0) = a(n)T Γra
(n) = a(n)TQDQTa(n)

where D has λ1 ≤ λ2 . . . ≤ λr strictly positive eigenvalues. We can write:

γ(0) ≥ λ1a
(n)TQQTa(n) = λ1

r∑
t=1

(a(n))2

which gives an upper bound for a
(n)
t for each fixed t. By definition of γ(0) = cov(Xn,

∑r
t=1 a

(n)
t Xt),

we have the bound:

γ(0) ≤
r∑
t=1

|a(n)
t ||γ(n− t)|.

A contradiction arises since it is not possible that γ(0) > 0 and γ(h)→ 0 as h→∞.

Corollary 3.22. Under the hypothesis of Proposition 3.21 the best linear predictor X̂n+1

of Xn+1 given X1, . . . , Xn is

X̂n+1 =
n∑
t=1

αtXn+1−t

where α = (α1, . . . , αn)T = Γ−1
n cov(Xn+1, X) where Γn is the autocovariance matrix and

X = (X1, . . . , Xn)T .
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Proof. Proposition 3.21 guarantees the existence of Γ−1
n . The rest has already been shown.

From numerical analysis we know that calculating the inverse of a matrix is costly. The
Durbin-Levinson Algorithm solves this problem. It is one of the most used methods in
Prediction, which is why we include it in our study. There are many more recipes ,such as
the Innovations Algorithm, but we will not consider them. A strong reason to include the
Durbin-Levinson algorithm is because it will allow us to prove the equivalency between
definitions 3.17 and 3.18.

Lemma 3.23. Let {Xt} be a stationary time series with zero mean.
Let H = span{X1, . . . , Xn}, we define H1 = span{X2, . . . , Xn} and H2 = span{X1 −
PH1X1}. Then H1 and H2 are orthogonal. Moreover, if Y ∈ L2(Ω,F ,P) then:

PHnX̂n+1 = PH1Xn+1 + PH2Xn+1 = PH1Xn+1 + a(X1 − PH1X1)

where

a =
〈Xn+1, X1 − PH1X1〉
‖X1 − PH1X1‖2

.

Proof. By the Prediction Equations in (3.1), we get 〈Xi, X1 − PH1X1〉 = 0 ∀i = 2, . . . n.
This shows that H1 and H2 are orthogonal. Note that H = H1 + H2. Since the sum of
closed orthogonal subspaces is a closed subspace, we conclude that H ⊂ L2 is a closed
subspace. A Linear Algebra results shows us that if H = H1 +H2, where H1 and H2 are
closed subspaces, PH1 + PH2 = PH is a projection if and only if H1 ⊥ H2. Now, given
X̂n+1 = PHX̂n+1 we have X̂n+1 = PH1Xn+1 + PH2Xn+1 = PH1Xn+1 + a(X1 − PH1X1)
Note that if we want the expression derived in the last equal sign, we must determine a.
We know that:

0 = 〈X̂n+1 −Xn+1, Xi〉 ∀i > 1

0 = 〈X̂n+1 −Xn+1, X1 − PH1X1〉 = 〈PH1Xn+1 −Xn+1, X1 − PH1X1〉+ a‖X1 − PH1X1‖2

If we observe that 〈PH1Xn+1, X1 − PH1X1〉 = 0 (which is a variation of what we saw in
the beginning of the proof), we isolate a and get:

a =
〈Xn+1, X1 − PH1X1〉
‖X1 − PH1X1‖2

.

Proposition 3.24. Let {Xt} be a stationary time series with zero mean. Then

X̂n+1 = PHXn+1 = bn1Xn + . . .+ bnnX1 n ≥ 1

We denote the prediction error PEn = E(Xn+1 − X̂n+1)2 for n ≥ 1 The ACF satisfies

γ(0) > 0 and γ(h)→ 0 as h→∞. Also b11 =
γ(1)

γ(0)
and PE0 = γ(0), we define recursively:

bnn =

[
γ(n)−

n−1∑
t=1

bn−1,tγ(n− t)
]
PE−1

n−1 PEn = PEn−1[1− b2nn]

bnt = bn−1,t − bnnbn−1,n−t t = 1 . . . n− 1.
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Proof. Since the time series is stationary, the covariance matrix for X1, . . . , Xn is the
same as Xn, . . . , X1 and X2, . . . , Xn+1. This gives us:

PH1X1 =

n−1∑
t=1

bn−1,tXt+1

PH1Xn+1 =
n−1∑
t=1

bn−1,tXn+1−t

(3.9)

and if we calculate the prediction error

‖X1 − PH1X1‖2 = ‖Xn+1 − PH1Xn+1‖2 = ‖Xn − X̂n‖2 = PEn−1.

Joining (3.6) equations and Lemma 3.23 we have:

X̂n+1 = aX1 +
n−1∑
t=1

[bn−1,t − abn−1,n−t]Xn+1−t.

Using the value a determined in Lemma 3.23 and (3.6) again we get:

a =
〈Xn+1, X1〉 −

∑n−1
t=1 bn−1,t〈Xn+1, Xt+1〉

‖X1 − PH1X1‖2
=

[
γ(n)−

n−1∑
t=1

bn−1,tγ(n− t)
]
PE−1

n−1

The results obtained in Proposition 3.21 gives us the certainty that the following repre-
sentation is unique:

X̂n+1 =
n∑
t=1

bn,tXn+1−t.

The two expressions we have for X̂n+1 give us bnn = a and bnt = bn−1,t − abn−1,n−t, t =
1 . . . n − 1. We are left with the last claim to prove, that is PEn = PEn−1[1 − b2nn]. By
definition of PEn:

PEn = ‖Xn+1 − X̂n+1‖2 = ‖Xn+1 − PH1Xn+1 − PH2Xn+1‖2

= ‖Xn+1 − PH1Xn+1‖2 + ‖PH2Xn+1‖2 − 2〈Xn+1 − PH1Xn+1, PH2Xn+1〉.

From Lemma 3.23, we have PH2Xn+1 = a(X1−PH1X1). Plus the definition of a gives us:

PEn = PEn−1 + a2PEn−1 − 2a〈Xn+1, X1 − PH1X1〉 = PEn−1 + a2PEn−1 − 2a2PEn−1.

We obtain PEn = PEn−1(1− a2) which completes the proof.

Corollary 3.25. Under the same conditions of Proposition 3.24 we have

bnn = corr(Xn+1 − Pspan{1,X2,...,Xn}Xn+1, X1 − Pspan{1,X2,...,Xn}X1). (3.10)

Proof. By definition PH1Xn+1 ⊥ (X1−PH1X1). We know by many results obtained from
Proposition 3.24:

bnn = a =
〈Xn+1, X1 − PH1X1〉
‖X1 − PH1X1‖2

=
〈Xn+1 − PH1Xn+1, X1 − PH1X1〉

‖X1 − PH1X1‖2

=
〈Xn+1 − PH1Xn+1, X1 − PH1X1〉
‖X1 − PH1X1‖‖Xn+1 − PH1Xn+1‖

= corr(Xn+1 − PH1Xn+1, X1 − PH1X1).

Observation 3.26. Recall that from definition 3.18 α(k) = bn. If we look at how we
defined the prediction there, we can quickly infer bn = bnn. This proves the equivalence
between definitions 3.17 and 3.18.
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3.3.2 Prediction in ARCH and GARCH models

Let Y1, . . . , Yn be realizations of an ARCH model defined in 2.26. We want to study how
to predict Y 2

n+l for l > 0. Recall that Proposition 2.30 shows us that squared returns
follow an AR(p) model, so we could apply the Durbin-Levinson Algorithm. Although
we will explore a different approach, which is by recursive prediction, inspired by results
in [8]. In section 3.2, we saw that the optimal prediction is defined as the conditional
expectation on the subspace M(Y1, . . . , Yn+p−1), in other words:

Ŷ 2
n+l = PM(Y1,...,Yn+l−1)Y

2
n+l = EM(Y1,...,Yn+l−1)Y

2
n+l l > 0.

Knowing that Ŷ 2
n+l = σ̂2

t+1ε̂
2
t+1. We write Ŷn+l as a function of previous observations:

Ŷn+1 = ε̂n+1

√
α0 + α1Y 2

n + . . .+ αpY 2
n−p+1 = f1(Yn, . . . , Yn−p+1, ε̂n+1)

Ŷn+2 = ε̂n+2

√
α0 + α1Ŷ 2

n+1 + . . .+ αpY 2
n−p+1

= ε̂n+2

√
α0 + α1

(
ε̂2
n+1

(
α0 + α1Y 2

n + . . .+ αpY 2
n−p+1

))
+ . . .+ αpY 2

n−p+2

= f2(Yn, . . . , Yn−p+1, ε̂n+1, ε̂n+2)

Ŷn+l = ...

Which gives us Ŷn+l = fl(Y1, . . . , Yn, ε1, . . . , εn). Note that since Y1, . . . , Yn are known

values, we have Ŷn+l = fl(ε1, . . . , εn). By definition of the optimal prediction (see section
3.2):

Ŷ 2
n+1 = EM(Y1,...,Yn+p−1)ε

2
n+1σ

2
n+1 = α0 + α1Y

2
n + . . .+ αpY

2
n−p+1.

Where we have used that EM(Y1,...,Yn+p−1)ε
2
n+1 = E(ε2

n+1) = 1. By reiteration:

Ŷ 2
n+2 = α0 + α1σ

2
n+1 + . . .+ αpY

2
n−p+2

. . .

Ŷ 2
n+l = α0 +

p∑
i=1

αiσ
2
n+l−i

with σ2
n+l−i = Y 2

n+l−i if l − i ≤ 0.

For the GARCH(p,q) model, we proceed in a similar manner. We will focus on finding
the prediction for a GARCH(1,1) model for two reasons: for a major simplicity in the
equations and because we restrict our study to these models. If we rewrite the definition
of a GARCH(1,1) model given in 2.35 we get:

σ2
n = α0 + α1Y

2
n−1 + β1σ

2
n−1

= α0 + α1σ
2
n−1ε

2
n−1 + α1σ

2
n−1 − α1σ

2
n−1

= α0 + (α1 + β1)σ2
n−1 + α1σ

2
n−1(ε2

n−1 − 1).

As we did with the ARCH model,

Ŷ 2
n+1 = EM(Y1,...,Yn+p−1)ε

2
n+1σ

2
n+1 = α0 + (α1 + β1)σ2

n−1.
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Where have applied EM(Y1,...,Yn+p−1)(ε
2
n+1 − 1) = E(ε2

n+1 − 1) = 0. By reiteration:

Ŷ 2
n+2 = α0 + (α1 + β1)σ2

n+1 = α0 + (α1 + β1)
[
α0 + (α1 + β1)σ2

n

]
= α0 + α0(α1 + β1) + (α1 + β1)2σ2

n

Ŷ 2
n+l = α0(1 + (α+ β)1 + . . .+ (α1 + β1)l−1) + (α1 + β1)lσ2

n.

By the sum of a geometric progression of l − 1 terms we get

Ŷ 2
n+l = α0

1− (α1 + β1)l

1− (α1 + β1)
+ (α1 + β1)lσ2

n

=
α0

1− α1 − β1
+ (α1 + β1)l

(
σ2
n −

α0

1− α1 − β1

)
.

Using the definition of σ2 obtained in Proposition 2.37

Ŷ 2
n+l = σ2 + (α1 + β1)l(σ2

n − σ2).

This expression shows us that if l→∞, we get Ŷ 2
n+l → σ2, provided that α1 + β1 < 1.

In section 4, we will delve into this, as well as deal extensively deal with the case
α1 + β1 ≈ 1. This will bring us to some newer developments in the GARCH family,
which were discovered in the 2000s.

3.4 Noteworthy Tests for Time Series Analysis

Recall basic statistics: Hypothesis tests allow us to confirm or deny an assumption or
theory, given a set of observed values. We call H0 the null hypothesis, which is the as-
sumption we want to confirm. This is usually a value or a parameter, i.e. Is the coin
fair? (50% chance of getting heads or tails). H1 refers to the alternative hypothesis i.e.
The coin is biased. A test with its correspondent distribution will give us a certain value,
which we must interpret.

The significance level or α level is the probability of rejecting the null hypothesis when
it is true. This error is called Type I error. The p-value is the probability of obtaining
test results as extreme as the results observed, assuming that the null hypothesis is cor-
rect. Recall that once we have calculated the p-value, if it is less than or equal to the
significance level, we discard the null hypothesis.

3.4.1 Testing for ARCH effects

Engle in [11] proposed the usage of the LM-Test (or Breusch-Godfrey test) to check
for ARCH effects. LM stands for Lagrange Multiplier. Recall from Proposition 2.30 the
AR(p) representation for an ARCH(p) model, meaning that the squared returns Y 2

t follow
and AR(p) model. We apply the OLS method to the following autoregression

Y 2
t = α0 + α1Y

2
t−1 + . . .+ αpY

2
t−p + vt

where vt = σ2
t (ε

2
t − 1) is a white noise. In section 3.2, we went into detail on how to

determine α0, . . . , αp. Now, for the LM test, we have define the null and alternative
hypothesis as:

H0 : α1 = 0, α2 = 0, . . . , αp = 0 H1 : α1 ≥ 0, α2 ≥ 0, . . . , αp ≥ 0.

30



with at least one strict inequality. The LM Test Statistic is (T − p)R2 where T is the
number of observations, p is the parameter of the model and R2 is the ”R-squared”
coefficient (R2 statistic). We have the following result:

(T − p)R2 ∼ χ2
p

if the null hypothesis holds. If (T − P )R2 ≥ χ2
p,1−α we reject the null hypothesis, which

means that there are ARCH effects.

3.4.2 More Tests

In order to reach a profound understanding once we model stock returns, we need the
tools given by hypothesis tests. We want to study normality, correlation, volatility. The
following survey displays the main hypothesis tests we will be working with and points
out the main aspects concerning their usage.

• Shapiro-Wilk Test: The null hypothesis H0 is that the observed values Y1, . . . Yn
are normally distributed.

• Q-Q Plot: This test is graphical, in the sense that we plot the quantiles of two
distributions we wish to compare. In general, we compare sorted data to a normal
distribution. Usually the y-axis coordinates refer to the observed values, and the
x-axis is the value correspondent to a normal distribution. If all points (x, y) are
close to the straight line y = x we can conclude that the our observed values are
normally distributed.

• Jarque Bera Test: (1981) We calculate the quantity

JB =
n

6

(
S2 +

1

4
(K − 3)2

)
where S and K are the sample skewness and kurtosis (refer to the definitions in
section 2.1). Note that JB ∼ χ2

2 Our goal is also to check if our sampled data
comes from a normal distribution. The null hypothesis here is that the sample
skewness and excess kurtosis (K − 3) are zero. It easy to see that the quantity JB
will increase the further away S and K are from zero. One of the limitations of
this test is that works poorly if the samples are not large. Another drawback is
that sample skewness and kurtosis must be calculated empirically, which may result
in an inexact measurement. Newer alternatives are available, but they exceed our
purpose.

• Portmanteau Tests: These tests is characterized by a clear null hypothesis,
whereas the alternative stays flexible. The main tests in this family are the Box-
Pierce test and Ljung-Box test. The latter one is an evolution of the first one
and is most widely used. Here the null hypothesis H0 asserts that the returns are
uncorrelated. The alternative hypothesis H1 would be that there is some sort of
serial correlation between returns. We calculate the Q-statistic:

Q = n(n+ 2)
H∑
l=1

ρ̂2(l)

n− l
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where n is the sample size and H is a value chosen arbitrarily smaller than n. Under
H0, we have Q ∼ χ2

H−p−q. We reject the null hypothesis at significance level α if

Q > χ2
H−p−q in the (1− α) quantile. p, q are included in case that we are under an

ARIMA model.

Akaike then introduced a magnitude which masures goodness of fit for a given model.

Definition 3.27. The Akaike Information Criterion (AIC) is:

AIC = 2k − 2 log(L̂)

where k is the number of estimated parameters of the model and L̂ is the maximum value
of the log-likelihood function. The smaller the obtained value, the beter the model. We
can see the term 2k as a “penalty” for over-fitting a model, since more parameters usually
means a better fit. There is not complete agreement on the penalty term, and there exists
specific literature devoted to this question.

Definition 3.28. The Bayesian Information Criterion(BIC) is:

BIC = k log(n)− 2 log(L̂)

Here, n is the number of observations.

3.5 Estimation

The results in this section are valid considering we are in L2(Ω,F ,P).

3.5.1 The causal ARMA(p,q) model

In section 2.1, we briefly introduced AR(p) models. Let us consider the simple example
of an AR(1) model, which is Yt = φYt−1 +ωt where ωt ∼WN(0, σ2). If we iterate k times
we get:

Yt = φ(φ(Yt−2 + ωt−1)) + ωt = φ2Yt−2 + φωt−1 + ωt

= . . .

= φkYt−k +
k−1∑
j=0

φjωt−j

Since {Yt} is stationary, we have that ‖Yt‖2 = E(Y 2
t ) (given Yt ∈ L2) is constant. If we

subtract Xt and the sum of white noises obtained above we get:∥∥∥∥Yt − k−1∑
j=0

φωt−j

∥∥∥∥2

= φ2k‖Xt‖2 → 0 as k →∞

which is true iff |φ| < 1. We then know that

Yt =
∞∑
j=0

φωt−j (3.11)

thanks to the Lemma below. Note that we have substituted k for ∞.
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Lemma 3.29. Given {Uk k ≥ 1} a sequence of centered, pairwise uncorrelated and
square-integrable random variables we have∑

k≥1

Uk is convergent in L2 if and only if
∑
k≥1

Var(Uk) <∞

(Recall the notion of convergence in L2 given in definition 3.10)

Proof. Found in [2]

Note that representation (3.11) is useful because it represents en AR(p) process as a linear
model. We quickly deduce the stationarity of the process since

E(Xt) =

∞∑
j=0

φE(ωt−j) = 0

In section 2.1 we also went over ARMA(p,q) models. The compact form is simple:

φ(B)Yt = θ(B)ωt t = 0, . . . , n

Definition 3.30. An ARMA(p,q) process is causal if we can write the time series {Yt}
as a one sided linear process. Hence, there exists a sequence of constants {ψj} such that

Yt =
∞∑
j=0

ψjwt−j t = 0, 1 . . . (3.12)

where
∑∞

j=0 |ψj | <∞.
The idea behind causality is the problem that future-dependent models present. In some
cases, which we do not intend to cover, some models have a future-dependent expression.
A very simple example is the AR(1) model Yt = −

∑∞
j=1 φ

−1Yt+j . Note that forecasting
is useless here, since Yt depends on future values. This is why the causal restriction on
a model is important. The following theorem characterizes the coefficients ψj , as well as
given necessary and sufficient conditions for the causality of an ARMA model.

Theorem 3.31. Given {Yt} and ARMA(p,q) process, we suppose the polynomials φ(·)
and θ(·) have no common zeros. Then {Yt} is causal if and only if φ(z) 6= 0 for all z ∈ C
such that |z| ≤ 1. The coefficients {ψj} in (3.11) are determined as follows:

ψ(z) =

∞∑
j=0

ψjz
j θ(z)

φ(z)
|z| ≤ 1

Proof. Can be found in [4], pp.83-86.

We begin tackling Estimation. Given a {Yt} causal AR(p) process with E(Xt) = 0, using
the representation given in 2.13

Xt = φ1Xt−1 + . . . φpXt−p + ωt ωt ∼WN(0, σ2) (3.13)

we wish to estimate φ1, . . . , φp. Using similar notation as in section 3.3, we define φ =
(φ1, . . . , φp)

T . Our goal is to find φ and the variance σ2. for the white noise. Since AR(p)
is causal:

Xt =
∞∑
j=0

ψjωt−j
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Note that since we are under an AR(p) model, by Theorem 3.31 we get ψ(z) =
∑∞

j=0 ψj
1

φ(z)

for |z| ≤ 1. This is because θ(z) ≡ 1. Now, if we multiply expression (3.12) by Xt−h for
h = 0, . . . , p we get

XtXt−h + φ1Xt−1Xt−h + . . .+ φpXt−pXt−h = ωtXt−h h = 0, 1 . . . p

Taking expectations on both sides we obtain

γ(h) + φ1γ(h− 1) + . . .+ φpγ(h− p) = 0 h = 0, 1 . . . p (3.14)

where we have noted that

E(ωtXt−h) = E

(
Zt

∞∑
j=0

ψjωt−h−j

)
= 0.

We can write (3.14) in an abbreviated form which is.

Γpφ = γp

where Γp is the variance-covariance matrix, and γp = (γ(1), . . . , γ(p))T .

Definition 3.32. Equations defined in (3.14) are called the Yule-Walker equations.

Now, since we are trying to estimate φ, we must take into consideration that in our model

we can only calculate sample covariances γ̂(h). So we call φ̂ and σ̂2 the Yule-Walker
estimators, which we find be solving:

Γ̂pφ̂ = γ̂p

Theorem 3.33. Under the conditions of the AR(p) process defined in (3.13), if we try
to estimate φ by the Yule-Walker equations, the estimator φ̂ then satisfies

√
n(φ̂− φ)→ N(0, σ2Γ−1

p ).

3.6 Estimation of ARCH(1) and GARCH(1,1) models

Consider the AR(1) model from Definition 2.26

Yt = σtεt

σ2
t = α0 + α1Y

2
t−1

Proposition 2.30 showed us that Y 2
t follow an AR(1) model. We estimate the parameters

α0 and α1 using MLE. The next steps are to be followed:

1. If Y = (Y1, . . . , Yn). we calculate the Likelihood function L(Y, α0, α1) = fα0,α1(Y ).
(Note the ambiguity between the random variable and the observed value, which
does not affect our reasoning). Trivially, we know that Y1, . . . Yn are not indepen-
dent, so we must consider the conditional likelihood functions, since the variables
are conditionally independent (c.f. Proposition 2.29 (the returns are uncorrelated)).
This yields:

L(Y1, α0, α1) =

n∏
t=2

fα0,α1(Yt | Yt−1)
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We saw before that Yt | Yt−1 ∼ N(0, α0 + α1Y
2
t−1). Which means that

fα0,α1(Yt | Yt−1) =
1√

2πσt
exp

(
− Y

2
t

2σ2
t

)
Consequently

L(Y1, α0, α1) =
n∏
t=2

1√
2πσt

exp

(
− Yt

2

2σ2
t

)
Taking logarithms and arranging terms :

−n
2

log(2π) +
1

2
log(2π)− 1

2

( n∑
t=2

log(σ2
t ) +

Y 2
t

σ2
t

)
It is easy to note that multiplication by a constant in the Likelihood function does
not affect the calculation of the extrema. Therefore, we can discard the first two
terms in the previous equation, yielding:

logL(Y1, α0, α1) = −1

2

n∑
t=2

(
log(σ2

t ) +
Y 2
t

σ2
t

)
= −1

2

n∑
t=2

(
log(α0 + α1Y

2
t−1) +

Y 2
t

α0 + α1Y 2
t−1

)
2. We derivate with respect to parameters α0 and α1 and get:

∂ logL(Y, α0, α1)

∂α0
= −1

2

n∑
t=2

[
1

σ2
t

∂

∂α0
(σt)− 2Y 2

t

∂

∂α0

(
1

σ2
t

)]
= −1

2

n∑
t=2

[
1

σ2
t

− Y 2
t

σ4
t

]
∂ logL(Y, α0, α1)

∂α1
= −1

2

n∑
t=2

Y 2
t−1

[
1

σ2
t

− Y 2
t

σ4
t

]
In theory, we should equate the derivatives to zero, but we see this is a complex
equation to solve.

3. We also calculate the second derivatives:

∂2 logL(Y, α0, α1)

∂α2
0

= −1

2

n∑
t=2

[
− 2

σ3
t

1

2σt
+−2Y 2

t

∂

∂α0

(
1

σ4
t

)]

= −1

2

n∑
t=2

[
− 1

σ4
t

+
2Y 2

t

σ6
t

]

∂2 logL(Y, α0, α1)

∂α2
1

= −1

2
Y 4
t−1

n∑
t=2

[
− 1

σ4
t

+
2Y 2

t

σ6
t

]

∂2 logL(Y, α0, α1)

∂α0α1
= −1

2

n∑
t=2

Y 2
t−1

[
− 1

σ4
t

+
2Y 2

t

σ6
t

]
Where we have used

∂σt
∂α0

=
1

2σt
∂σt
∂α1

=
1

2σt
Y 2
t−1
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Now that we have calculated the Jacobian and the Hessian Matrix, we go over a few
methods avaiable for finding the vector of parameters θ = (α0, α1)T . All methods we
consider are a variation of the Newthon-Raphson algorithm for finding zeros, studied in
any standard Numerical Analysis course.

Definition 3.34. Under regularity conditions I = −E
[(

∂2

∂θiθj
logL(x, θ)

)
i,j=1÷n

]
is the

Fisher information matrix, where θ is the vector of parameters.

Theorem 3.35. Under some technical assumptions, an MLE estimator θ̂ is asymptoti-
cally normal:

√
n(θ̂ − θ) L−−→ N(0, I−1)

As long as the process is strictly stationary. We avoid going into the technical assumptions
because it has little to do with our focus. Summarizing, we could say that we need a
regular statistical model as well as some other restrictions.

Proof. cf. Proposition 8.2.6 in [9].

The Fisher-Scoring Algorithm. Given an inital value θ0, which can be the Yule-
Walker Estimator, one can approximate using a Taylor expansion:

Jf (θ) ≈ Jf (θ0) +Hf (θ0)(θ − θ0).

Note that Jf and Hf denote that Jacobian and Hessian matrix for f = logL(Y, α0, α1)
respectively. Solving for θ we get

θ = θ0 −Hf (θ0)−1Jf (θ0).

Now we construct the following iterative method:

θ0 = θ̂0

θj+1 = θj −Hf (θj)
−1Jf (θj) j = 0, 1, 2, . . .

(3.15)

until convergence, i.e. ‖θj+1 − θj‖ ≤ ε. We note that (3.14) is the classical Newton-
Raphson iteration. Most of the time, we substitute the Hessian matrix for the Fisher
information matrix defined previously. This gives us:

θ0 = θ̂0

θj+1 = θj − I(θj)−1Jf (θj) j = 0, 1, 2, . . .
(3.16)

This means we evaluate the Fisher Information Matrix (FIM) at θj . It is important not
to be confused by the notation of θj . Recall that in the definition for the FIM it denotes
the parameter index, whereas in the algorithm it refers to the iteration number.

Engle in article [11] where he introduced ARCH models for the first time, used the
BHHH (Brendt-Hall-Hall-Hausman) algorithm to estimate parameters. Since we have
already covered Fisher Scoring extensively and also for restricted writing space, we opt
for leaving out BHHH, as well as many other possibilities.
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Now, we consider the case of a GARCH(1,1) model. The log likelihood function looks
like:

logL(Y, α0, α1, β1) = −1

2

n∑
t=2

(
log(α0 + α1Y

2
t−1 + β1σ

2
t−1) +

Y 2
t

α0 + α1Y 2
t−1 + β1σ2

t−1

)

= −1

2

n∑
t=2

(
log(σ2

t ) +
Y 2
t

σ2
t

)
.

The derivatives are identical to the ARCH(1) although now we incorporate the derivative
with respect to β1:

∂ logL(Y, α0, α1, β1)

∂β1
= −1

2

n∑
t=2

σ2
t−1

[
1

σ2
t

− Y 2
t

σ4
t

]
∂2 logL(Y, α0, α1, β1)

∂β2
1

= −1

2

n∑
t=2

σ4
t−1

[
− 1

σ4
t

+
2Y 2

t

σ6
t

]
where we have noted that

∂σt
∂β1

=
1

2σ2
t

σ2
t−1.

However, a general derivative with respect to θ = (α0, α1, β1)T is adequate for the
GARCH(1,1) case. Note that we can write all the first derivatives with respect to α0, α1, β1

in the summarized form:

∂ logL(θ)

∂θ
= −1

2

n∑
t=2

1

σ2
t

∂σ2
t

∂θ

(
Y 2
t

σ2
t

− 1

)
.

We note that

∂σ2
t

∂θ
= (1, Y 2

t−1, σ
2
t−1)T +

∂σ2
t−1

∂θ
.

The Hessian Matrix is harder to compute and we omit its calculation, but once we have
it we can adapt Theorem 3.35 to GARCH(1,1) which gives us asymptotic normality for
estimator θ̂:

√
n(θ̂ − θ) L−−→ N(0, I−1)

where I is the fisher information matrix. This theorem is valid as long as the GARCH(1,1)
process is strictly stationary.
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4 Statistical Analysis of Stock Returns

4.1 Plan Outline

As it was stated in the introduction, we wish to put the mathematical theory developed
in Chapters 2 and 3 into practice. Volatility is seen regularly in finance, and especially
in stock returns. The main focus of this section will be to give an in depth statistical
analysis of the returns observed in the S&P500 index. This is a stock market index that
lists the 500 largest companies in the United States. More information can be found
at https://en.wikipedia.org/wiki/S%26P_500 A robust analysis is possible thanks to
the usage of the we use the R statistical package. What follows is a detailed list of steps
that we will go over in our analysis in order to reach consistent conclusions. However,
ARCH and GARCH models do not adjust well to every sample. Our goal is to study if
they work better for shorter or longer samples of data. We will compare a sample of data
for 1 year and 11 years.

1. Calculating statistical parameters. Once we have defined the time frame of our
data, we proceed to calculate main statistical parameters. This is done to verify
the stylized facts. We will graph the auto-correlation function for the returns and
squared returns and use results obtained in Section 2 that help us identify volatility.

2. Fitting a model. We will start by showing why classical regression fails when mod-
eling time series of this nature, which might seem as an obvious claim at this point,
but nonetheless it i useful to explore the reason why alternative models were needed.
We will test for ARCH or GARCH effects, and adequately fit them. (estimation of
parameters).

3. Prediction. Using the results in section 3, we will try to predict the future values of
the conditional variance. We will discuss the certainty or not of the results.

4. Alternatives and shortfalls. Evidently, any prediction is far away from perfect. We
will analyze where and when ARCH and GARCH models fail and provide infor-
mation on some recent developments in the area of volatility models and the new
contributions they have brought upon.

4.2 Data Summary

Data is retrieved from Yahoo Finance at https://stooq.com/q/d/?s=%5Espx. For the
short sample, we consider the daily returns registered from May 26th 2020 to May 24th
2021 (1 year approximately). This consists of a total of 252 returns. For our long sample,
we use daily return data starting May 26th 2010 up to May 24th 2021, a total of 2770
returns.

38

https://en.wikipedia.org/wiki/S%26P_500
https://stooq.com/q/d/?s=%5Espx


Figure 4.1: Stock value from May 26th 2020 up to May 24th 2021

Figure 4.2: Stock value from May 26th 2010 up to May 24th 2021

If we plot the returns (see definition 2.16) we get the following:
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Figure 4.3: Returns from May 26th 2010 up to May 24th 2021

Figure 4.4: Returns from May 26th 2020 up to May 24th 2021

The following tables summarizes what can be seen in the plot, as well as outlays
significant statistical parameters

Long Sample Min Max Mean Median Std. Dev. Kurtosis Skewness

returns -0.06593 0.05487 0.00032 0.00054 0.00908 6.17622 -0.39274

squared returns 0 0.00435 8.261e-05 1.579e-05 0.000235 90.0769 7.97224

log-returns -0.12765 0.08968 0.00049 0.00066 0.01098 16.7477 -0.87358

Table 1: Magnitudes for S&P500 returns (large sample) , logarithmic returns and squared
returns

A histogram of the returns gives us an accurate distribution of the returns for both
samples
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Short Sample Min Max Mean Median Std. Dev. Kurtosis Skewness

returns -0.0545 0.0268 0.00146 0.00165 0.01061 2.95522 -0.8549

squared returns 0 0.00297 0.00011 4.427e-05 0.00024 77.8456 7.40841

log-returns -0.05674 0.02422 0.00135 0.00185 0.01079 3.28209 -1.08676

Table 2: Magnitudes for S&P500 returns (short sample), logarithmic returns and squared
returns

Figure 4.5: Histogram of the returns

The ACF for the returns and absolute returns are:

Figure 4.6: ACF functions up to l = 50 for returns and absolute returns (long sample)
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Figure 4.7: ACF functions up to l = 50 for returns and absolute returns (short sample)

If we plot the ACF for the squared returns, we get the following results. Note that for
the long case, a modeling with ARCH and GARCH Processes is suggested in virtue of
Proposition 2.30 and 2.36. In following table, which can be found in [1] summarizes the
behavior of the ACF and PACF for ARMA models, which will help us verify the results.

AR(p) MA(q) ARMA(p,q)

ACF Tails off Cuts after lag q Tails off

PACF Cuts after lag p Tails off Tails off

Table 3: ACF and PACF functions for ARMA(p,q) models

Figure 4.8: Squared ACF up to l = 50 for short and long sample
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Let us go over the stylized facts described in section 2.2.1. Through a qualitative
analysis based on the plots above, we will try to verify them.

• The functions skewness() and kurtosis() are included in the moments R package.
We start by noticing that the distribution is negatively skewed, which corresponds
to the “Asymmetry” stylized fact. It may not be evident by just graphing the
histograms, but if we take the following fact: In a negatively skewed distribution,
the mean is smaller than the median, which is at the same time is smaller than the
mode. The results both in Table 1 and 2 satisfy this claim (mean < median) We
note that it is almost a negligible difference.

• The blue dotted line in Figure 4.4 indicates where the ACF is significantly different
from 0. Note that it is for very few lags that the dotted line is exceeded. There is no
significant autocorrelation for either the short sample or the long one; however, for
the latter one correlation is significantly smaller. This is due to the bigger picture
that a longer sample gives. In conclusion, our returns behave similarly to a white
noise. However, in the absolute returns we see autocorrelation decreasing in a steady
manner as the lag l increases, but only for the large sample. This is another stylized
fact, and it is noteworthy to observe that the short sample does not in any way get
close to following it (except for the first 4 lags). This is will interfere once why try
to model.

• We perform R analysis on the long sample:

> which.max(ret); which.min(ret)

[1] 2467 [1] 304

> head(order(ret)); tail(order(ret))

[1] 304 2466 2472 2468 302 306

[1] 2474 2162 307 305 2476 2467

This gives us a good idea of volatility clustering. head(order(ret)) returns the
position of lowest values, the first one being the smallest. tail(order(ret)) returns
the position of the highest values, the last one being the biggest. Observe that except
value ”2162”, all the other ones belong to two periods. For instance, note how values
302, 304 and 306 belong to the lower returns end, and 307 and 305 belong the higher
returns end. This clearly verifies the volatility clustering claim.

4.3 Fitting and Prediction Results

The problems with Linear Regression. The lm() function allows us to fit a line
y = β0 + β1x + ε to our data. Recall that ε is assumed to be iid noise with mean 0 and
variance σ2. It is easy to notice that this kind of analysis does not capture absolutely any
specific characteristics of our time series.
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Figure 4.9: Linear regression applied to S&P500 returns

The results are very poor as the Ajusted R-squared statistic is -0.0001299, showing no
correlation between variables. We know that is true, since the ACF function showed us
that for any lag l > 1 significant correlation did not exist. So why linear regression will
not work ? Because it does not offer any significant information on conditional variance.
Once again, the model we are using for our data is:

Yt = β0 + β1t+ εt V ar(Yt|Ft−1) = σ2.

So we are assuming homoskedasticity. Another major assumption in the model that
does not work well for us is independence of the residuals. Evidently, returns are not
independent, as return Yt depends somehow from the previous one. In other words,
the dependent variable is influenced by the past independent variables. As we know,
independence implies uncorrelated, but not way around.

Before exploring ARCH and GARCH, we recall that ARMA(p,q) tend to be poor fits
for financial return, since they assume correlation between variables and homoskedasticity.

Testing for ARCH Effects. In section 3.4.1, we briefly went over on how to test for
ARCH effects via the LM- Test. A regression Yt = β0 + εt will allow us to obtain a
vector for the residuals. This technique is called regression on a constant. After this,
we calculate the squared residuals and perform a linear regression, which has as many
parameters as the ARCH(p) model we want to fit. Recall the null hypothesis is α0 =
α1 = α2 = . . . = αp = 0. For the S&P 500 time series, we consider fitting an ARCH
of order 1, 2 and 3. The ArchTest() function from the finTS() package performs this
test. The results for the long and short sample are respectively: The table clearly states

ARCH(1) ARCH(2) ARCH(3)

p-value <2.2e-16 <2.2e-16 <2.2e-16

Table 4: Long sample p-value test results for ArchTest() function

the difference we started to see with the short sample and the long sample. We reject
the null hypothesis in all cases of the long sample since the p-value is 0. However, with
the short sample and considering we ahave a significance level of α = 0.05, we reject the
null hypothesis for order 2 and 3. This means that ARCH(2) and ARCH(3) are still good
options to consider.
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ARCH(1) ARCH(2) ARCH(3)

p-value 0.5726 0.005208 0.01002

Table 5: Short sample p-value test results for ArchTest() function

Fitting an ARCH(2). The fGarch package includes the garchFit() function which
gives us the possibility to fit ARCH(p) and GARCH(p,q) models. The R console prints
the estimate parameters and the results from statistics tests:

Estimate Std. Error t value p-value
mu 5.766e-04 1.255e-04 4.594 4.35e-06

omega 3.204e-05 1.611e-06 19.885 <2e-16

alpha1 2.601e-01 3.378e-02 7.699 1.38e-14

alpga2 3.863e-01 3.640e-02 10.612 <2e-16

Table 6: Estimated parameter results for ARCH(2)

Estimate Std. Error t value p-value
mu 1.734e-03 5.970e-04 2.905 0.00367

omega 6.776e-05 1.230e-05 5.507 3.66e-08

alpha1 1.609e-01 1.270e-01 1.267 0.20505

alpha2 2.784e-01 1.234e-01 2.257 0.02402

Table 7: Estimated parameter results for ARCH(2) (short sample)

We start by noting that mu is the mean of the series. It has always been common in
our discussion to assume that the mean is zero. However, if this is not the case, we use the
transformation x - mean(x). Also, omega is what we defined as α0. The function itself
performs the t-test for hypothesis, which in general, consists in computing the following
quantity:

t =
β̂

s.e(β̂)

where β̂ is the estimator for β. s.e(β̂) is the standard error of the estimator. Statistical
packages such as R suppose H0 : β = 0, although this can be altered. In our case, the
standard error is the standard deviation of the estimate. It is clear from the definition
that the t-statistic measure the distance from 0 of the parameter. The larger the quantity
is, the further away from 0. A rule of thumb for the t-statistic is that if it is larger than
2 we conclude that the parameter is not 0. The p-value works in a similar matter. If the
level of significance is α = 0.05, we check if P (> |t|) < 0.05 which is the definition of
the p-value. If this holds, we conclude that the parameters are not zero. Note that the
garchFit() function gives us the p-value for each parameters, as it is shown on the table.
Note that in the long sample case, all the relevant p-values, except are way below 0.05.
The fitting for the short sample, however, is not as good. There is not enough returns for
the fitting to be good enough.

Fitting a GARCH(1,1) model. Using the same function as before, we get similar
results:
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Estimate Std. Error t value p-value
mu 5.094e-04 1.156e-04 4.407 1.05e-05

omega 2.707e-06 4.349e-07 6.224 4.85e-10

alpha1 1.849e-01 1.984e-02 9.321 <2e-16

beta1 7.881e-01 1.964e-02 40.124 <2e-16

Table 8: Estimated parameter results for GARCH(1,1) when modeling the long sample

Note that our results are α1 + β1 = 0.1849 + 0.7881 ≈ 0.973 < 1. This means that we
have fitted a stationary model to our data. However, it is close to 1. In the next section
we will study the case when the sum is equal to 1. An important consideration is how
the fGarch function works and models. It assumes the returns Yt follow:

Yt = µ+ Y ′t

Y ′t = σtεt

σ2
t = α0 + α1Y

2
t−1 + β1σ

2
t−1

where µ is a constant and Y ′t is a GARCH process exactly how we defined it in Chapter
2. This explains why in the summary of our fitting a mu value is given. This is because
although we can prove that the returns have mean zero (as we did for ARCH models),
this is not the case for sampled data. We call Y ′t the residuals. If we add the residuals to
µ we get the original return vector. The R output also gives us the Standardized Residuals
Tests Table and the Information Criterion.

Statistic p-value

Jarque-Bera Test R Chi^2 960.4235 0

Shapiro-Wilk Test R W 0.9675186 0

Ljung-Box Test R Q(10) 12.27823 0.266867

Ljung-Box Test R Q(15) 19.78009 0.1805318

Ljung-Box Test R Q(20) 30.72414 0.0589316

Ljung-Box Test R^2 Q(10) 10.16003 0.4265676

Ljung-Box Test R^2 Q(15) 13.37055 0.5737004

Ljung-Box Test R^2 Q(20) 15.47306 0.74873

LM Arch Test R TR^2 12.16496 0.4325245

Table 9: Standardized Residuals Tests

AIC BIC

-6.973774 -6.965215

Table 10: Information Criterion Statistics

Let us analyze the results given. We apply the explanation from section 3.4 of the tests.
These tests are applied to the standardized residuals, which are Y ′t /σt. The Shapiro-Wilk
test tests the residuals and gives us a p-value of zero (with a significance level of α = 0.05),
meaning that the residuals do not come from a normal distribution. The Jarque-Bera test
for residuals gives us a high number, and a p-value of zero. The null hypothesis in this
test is also that the kurtosis and skewness come from a normal distribution. However,
we already stressed how the distribution is quite different than a normal distribution
(excess kurtosis of 0, in our case 6), we also saw through that it is negatively skewed.
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We reject the null hypothesis. The Ljung-Box Test assesses correlation of returns. The
null hypothesis is that the returns are independently distributed. Some of the p-values
are high, which tells us that we can affirm that the residuals are independent from each
other.

Predicting for GARCH(1,1) We restrict our prediction to GARCH(1,1). We will
estimate volatility, using the results from Section 3.3.

σ2
t+l = σ2 + (α1 + β1)l(σ2

t − σ2)

Using R we get:

We plot the both estimated and real results on the same graph

Figure 4.10: Volatility prediction for the next 5 steps

Obviously, prediction is not perfect. However, by applying the formula we get higher
values than the real values end up being, but for the most part the trend is respected.

4.4 The shortfalls of ARCH and GARCH models. The IGARCH effect,
and EGARCH models

A question that is of major importance and we have yet to assess thoroughly is why did
Bollerslev go ahead in perfect the ARCH’s, giving way to GARCH. A practical reason is
what we have just observed: For some examples of financial returns, ARCH only works
with higher p, and as one might think, it becomes more costly to estimate the parameters.
GARCH, which innovates by including a dependence on past conditional variances, it
allows for a better and more stable fitting, while keeping the parameters low.

As we saw in Corollary 2.40, the condition for stationarity for a GARCH(1,1) model is
α1 + β1 < 1. When α1 + β1 ≈ 1, this is called the Integrated GARCH (IGARCH) effect.
This seems to happen with longer samples. With a small amount of observations, the
sum of α1 and β1 is significantly lower than 1.
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Contradicting stationarity means that some of the conditions inherent to the definition
are not being fulfilled. This means that either the expected value or the second moment
are not constant.

Definition 4.1. An IGARCH(1,1) process is a GARCH(1,1) process with the added
condition α1 + β1 = 1.

Proposition 4.2. Strictly stationary IGARCH(1,1) processes exist if P (ε2
t = 1) < 1.

Proof. We have γ = E log(α1ε
2
t + β1) ≤ log(E(α1ε

2
t + β1)) = 0. If the term α1ε

2
t + β1 is a

constant almost surely, the inequality is strict. But we know by definition E(α1ε
2
t+β1) = 1

if and only if α1ε
2
t + β1 = 1, which means ε2

t = 1 a.s. If we supposed the inequality is
strict, hence contradicting Theorem 2.40, we conclude the proof.

What about the shortcomings of GARCH? Even before 1980s it had been observed
that the assumption that positive and negative returns had the same effect on volatility
was often not true. In other words, volatility increased more when there were negative
returns. This was named the Leverage effect. Nelson & Cao developed an extension of
the GARCH model called the EGARCH model (Exponential GARCH), whose goal was
to include this asymmetry of the volatility.

Definition 4.3. We define the EGARCH(1,1) model as:

Yt = σtεt

log σ2
t = α0 + α1g(εt−1) + β1 log σ2

t−1

where g(εt−1) = θεt−1 + ς(|εt−1| − E(|εt−1|)) and α0, α1, β1, θ, ς are real constants.
First of all, we take notice of the multiplicative form of the volatility (in contrast to the
additive aspect of the volatility in a traditional GARCH model). We have:

σ2
t = eα0 + eα1g(εt−1)(σ2

t−1)β1 .

Let us examine the g function. We suppose w.l.o.g that α = 1. If εt−1 < 0 (meaning
Yt−1 < 0). Note that if εt−1 is decreasing, we have a change of rate ς − θ for log σ2

t

( ς + θ if εt−1 increases). So σ2
t increases iff ς − θ > 0 and ς + θ > 0). We get −ς < θ < ς.

Having said this, where is the asymmetry effect shown ? Note that a negative shock
ς − θ has a bigger effect than a positive shock ς + θ if and only if θ < 0. In conclusion the
coefficient θ reflects asymmetry, the term θεt determines sign effect and the latter term
the size of the effect. Finally, note that it is immediate to see that E(g(εt)) = 0.
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5 Conclusions

To put an end to this thesis after a long journey is not a trivial matter, we have seen
that our field of study acts as a sort of Pandora’s Box, in a good way! Since its early
developments in the 1980’s, its consolidation with the appearance of GARCH in 1986,
a never ending and increasing investigation has brought mathematical developments of
financial time series analysis to a new level. It was the main goal of this dissertation to
offer a vision of what were its beginnings.

Having said this, we must offer some concluding thoughts. Engle revolutionized Time
Series with the discovery of ARCH models. In Chapter 2, we proved most of the basic
properties associated with ARCH and studied its relationship with AR(p) models via
squared returns. Moving to Bollerslev’s discovery of the GARCH models, we proved some
of its attributions and studied in detail what are the conditions for strict stationarity in
GARCH, one of the central results of this thesis. As we have stressed in many occasions,
stationarity is key to most properties in Time Series and allows for more fruitful results,
since constant mean and variance are a huge gain for our analysis.

It was one of our main interests to provide a strong background for Predicting or
Forecasting Time Series. The extension of basic probability theory into the solid structure
provided by Functional Analysis and Hilbert spaces allowed for a thorough description of
prediction and how it is inextricably intertwined with Time Series. It is worth mentioning
that such a presentation was possible thanks to the teachings of the subject Anàlisi real
i funcional. The second part of this chapter was focused on Estimation of parameters,
where we presented the Maximum Likelihood Estimation for ARCH and GARCH models.

Finally, in Chapter 4, we aimed for a hands-on approach, meaning that the theoretical
results obtained in Time Series can be interesting and elegant, but there is a call for a
practical presentation of these results. The analysis of an example of stock returns allowed
us to see many of the lessons of the previous chapter put into practice. It is clear that the
study could have been a bit more thorough, however, limitations imposed by time and
scarce knowledge of advanced R have made it too much of a challenge. The intention of
the last section was to introduce some of the new challenges posed by the deficiencies of
GARCH models, a new realm of possibilities which has become the object of attention in
current investigations.

49



6 Appendix

R code

1. Code for ARCH(1,1) and GARCH(1,1)

#Simulated ARCH(1) model wi th n=300
alpha0 <−0 .25
alpha1 <−0 .5
y <−numeric (300)
y [ 1 ]<−rnorm(1 )
for ( i in 2 : 300 )
{

e p s i l o n <−rnorm(1 )
sigmasq <−alpha0 + alpha1∗ ( y [ i −1]∗y [ i −1])
y [ i ] <−e p s i l o n∗sqrt ( sigmasq )

}

#Simulated GARCH(1 ,1) model wi th n=300
alpha0 <−0 .5
alpha1 <−0 .2
beta1 <− 0 .7
y <−numeric (300)
sigma <−numeric (300)
y [ 1 ]<−rnorm(1 )
sigma [ 1 ]<−sqrt ( alpha0 / (1−alpha1−beta1 ) ) # we i n i t i a l i z e i t to the uncond . var iance
control <−numeric (300)
for ( i in 2 : 300 )
{

e p s i l o n <−rnorm(1 )
sigma [ i ] <−alpha0 + alpha1∗ ( y [ i −1]∗y [ i −1]) + beta1∗ ( sigma [ i −1])
y [ i ] <−e p s i l o n∗sqrt ( sigma [ i ] )

}

2. Code for Example?? We used libraries ggplot2, ggfortify for plotting and astsa

for the ARIMA modelling function

GNP <−read . csv ( ”GNP. csv ” )
GNPts <−ts (GNP[ , 2 ] , frequency=4,

start=c (1947 ,1 ) , end=c (2002 ,3 ) ) #transform data frame −> t ime s e r i e s
GNPret <−d i f f ( log (GNPts ) ) #d i f f c a l c u l a t e s d i f f e r e n c e Yt − Yt−1
plot (GNPret )
GNPretdt <−data . frame (GNPret ) #f o r f u n c t i o n g g p l o t we need a data frame
GNPretdt$GNPret
autop lo t (GNPret )
ggp lot (data=GNPretdt , aes ( x=time (GNPret ) , y=GNPret))+ geom point ( )

+ geom l i n e ( )
+ geom h l i n e ( y i n t e r c e p t=mean(GNPret ) , c o l o r=” red ” , s i z e =1)
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+ labs ( x=”Time” , y=”Log Return” )
par ( mfrow=c ( 1 , 2 ) )
a c f (GNPret , l ag .max=50, main=”” )
pac f (GNPret , l ag .max=50, main=”” , ylim=c ( −0.4 , 0 . 4 ) )
sarima (GNPret , 0 ,0 , 2 ) #F i t s an MA(2) model and p r i n t s d i a g n o s t i c s

3. Main code for Chapter 4

#SP500 r e t u r n s a n a l y s i s
SP500short<−read . csv ( ”SP500 . csv ” ) #data
SP500<−read . csv ( ”SP500long . csv ” ) #data from Yahoo Finance
na . omit ( as . numeric ( SP500 [ , 2 ] ) ) #we e l i m i n a t e b lank r e t u r n s
complete . c a s e s ( SP500 ) #shows i f a l l l i n e s are complete
#re turn = c l o s i n g − opening / opening
r e t <−( SP500 [ ,5 ] − SP500 [ , 2 ] ) / ( SP500 [ , 2 ] )
r e t s h o r t <−( SP500short [ ,5 ] − SP500short [ , 2 ] ) / ( SP500short [ , 2 ] )
which .max( r e t ) ; which .min( r e t )
max( r e t ) ; min( r e t ) ; mean( r e t ) ; median( r e t )
l ibrary (moments )
sd ( r e t ) ; k u r t o s i s ( r e t ) ; skewness ( r e t )
which .max( r e t s h o r t ) ; which .min( r e t s h o r t )
max( r e t s h o r t ) ; min( r e t s h o r t ) ; mean( r e t s h o r t ) ; median( r e t s h o r t )
l ibrary (moments )
sd ( r e t s h o r t ) ; k u r t o s i s ( r e t s h o r t ) ; skewness ( r e t s h o r t )
k u r t o s i s ( r e t s h o r t )

#time s e r i e s date format
dat e r e t <− as . Date ( as . character ( SP500 [ , 1 ] ) , format=”%Y−%m−%d” )
d a t e r e t s h o r t <− as . Date ( as . character ( SP500short [ , 1 ] ) , format=”%Y−%m−%d” )

Sys . s e t l o c a l e ( category = ”LC ALL” , l o c a l e = ” e n g l i s h ” )
#p l o t s SP500index e v o l u t i o n
png ( f i l ename=”SP500 0 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( dateret , SP500 [ , 5 ] , x lab=”Date” , ylab=” Clos ing p r i c e ”

, type=” l ” )
while ( ! i s . null (dev . l i s t ( ) ) ) dev . of f ( )

png ( f i l ename=” SP500short 0 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( da t e r e t sho r t , SP500short [ , 5 ] , x lab=”Date” , ylab=” Clos ing p r i c e ” ,

type=” l ” )
while ( ! i s . null (dev . l i s t ( ) ) ) dev . of f ( )

#p l o t s re turn
png ( f i l ename=”SP500 1 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( dateret , ret , x lab = ”Date” , ylab=”Return” , type=” l ” )
dev . of f ( )

png ( f i l ename=” SP500short 1 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( da t e r e t sho r t , r e t sho r t , x lab=”Date” , ylab=” Clos ing p r i c e ” , type=” l ” )
while ( ! i s . null (dev . l i s t ( ) ) ) dev . of f ( )
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#return his togram
png ( f i l ename=”SP500 2 . png” , r e s =300 , width = 2600 , he ight = 1500)
par ( mfrow=c ( 1 , 2 ) )
hist ( ret , breaks =20, xlim = c ( −0.04 , 0 . 0 3 ) , x lab = ”” , ylab=”” ,

main = ” D i s t r i b u t i o n o f S&P 500 re tu rn s 2010−2021” )
hist ( r e t sho r t , breaks =20, xlim = c ( −0.04 , 0 . 0 3 ) , x lab = ”” , ylab=”” ,

main = ” D i s t r i b u t i o n o f S&P 500 re tu rn s 2020−2021” )
dev . of f ( )

#ACF and PACF f o r r e t u r n s and a b s o l u t e r e t u r n s ( long sample )
r e tabs <− abs ( r e t )
png ( f i l ename=”SP500 3 . png” , r e s =300 , width = 2400 , he ight = 1500)
par ( mfrow=c ( 1 , 2 ) )
a c f ( ret , l ag .max=50, main=”ACF Yt” , ylim=c ( −0.4 , 0 . 4 ) )
a c f ( retabs , l ag .max=50, main=”ACF |Yt | ” , ylim=c ( −0.4 , 0 . 4 ) )
dev . of f ( )

#ACF and PACF f o r r e t u r n s and a b s o l u t e r e t u r n s ( s h o r t sample )
r e t s h o r t a b s <− abs ( r e t s h o r t )
png ( f i l ename=”SP500 3 shor t . png” , r e s =300 , width = 2400 , he ight = 1500)
par ( mfrow=c ( 1 , 2 ) )
a c f ( r e t sho r t , l ag .max=50, main=”ACF Yt” , ylim=c ( −0.4 , 0 . 4 ) )
a c f ( r e t shor tabs , l ag .max=50, main=”ACF |Yt | ” , ylim=c ( −0.4 , 0 . 4 ) )
dev . of f ( )

#ACFˆ2
r e t squared<−r e t∗ r e t
a c f ( retsquared , l ag .max=50, main=”ACF Ytˆ2” )
which .max( r e t squared ) ; which .min( r e t squared )
max( r e t squared ) ; min( r e t squared ) ; mean( r e t squared ) ; median( r e t squared )
sd ( r e t squared ) ; k u r t o s i s ( r e t squared ) ; skewness ( r e t squared )

l o g r e t<−d i f f ( log ( SP500 [ , 5 ] ) )
which .max( l o g r e t ) ; which .min( l o g r e t )
max( l o g r e t ) ; min( l o g r e t ) ; mean( l o g r e t ) ; median( l o g r e t )
sd ( l o g r e t ) ; k u r t o s i s ( l o g r e t ) ; skewness ( l o g r e t )

#ACFˆ2 p l o t t i n g
r e t squared<−r e t∗ r e t
r e t squa r ed sho r t<−r e t s h o r t∗ r e t s h o r t

png ( f i l ename=”SP500 6 . png” , r e s =300 , width = 2400 , he ight = 1500)
par ( mfrow=c ( 1 , 2 ) )
a c f ( retsquared , l ag .max=50, main=”ACF Ytˆ2” , ylab=”ACF Long Sample” )
a c f ( r e t squaredshor t , l ag .max=50, main=”ACF Ytˆ2” , ylab=”ACF Short Sample” )
dev . of f ( )

#Trying to f i t l i n e a r r e g r e s s i o n y = b0 + b1∗ t + erro r
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f i t r e g<−lm( r e t ˜dat e r e t )
f i tSP500<−lm( SP500 [ , 5 ] ˜date r e t )
summary( f i tSP500 )
plot ( f i tSP500 )
summary( f i t r e g )

png ( f i l ename=”SP500 4 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( dateret , ret , x lab = ”Date” , ylab=”Return” , type=” l ” )
abline (lm( r e t ˜ date r e t ) , col=” blue ” )
dev . of f ( )

plot ( dateret , SP500 [ , 5 ] , x lab = ”Date” , ylab=”Return” , type=” l ” )
abline (lm( SP500 [ , 5 ] ˜ dat e r e t ) )

#Test ing f o r ARCH e f f e c t s
l ibrary ( FinTS )
SP500 . archTest1 <− ArchTest ( ret , l a g s =1, demean=TRUE)
SP500 . archTest1
SP500 . archTest2 <− ArchTest ( ret , l a g s =2, demean=TRUE)
SP500 . archTest2
SP500 . archTest3 <− ArchTest ( ret , l a g s = 3 , demean = TRUE)
SP500 . archTest3

l ibrary ( FinTS )
SP500 . archTest1 <− ArchTest ( r e t sho r t , l a g s =1, demean=TRUE)
SP500 . archTest1
SP500 . archTest2 <− ArchTest ( r e t sho r t , l a g s =2, demean=TRUE)
SP500 . archTest2
SP500 . archTest3 <− ArchTest ( r e t sho r t , l a g s = 3 , demean = TRUE)
SP500 . archTest3

#F i t t i n g an ARCH(2)
l ibrary ( fGarch )
f i t a 2= garchFit (˜garch (2 , 0 ) , data=r e t )
summary( f i t a 2 )
f i t a 2 s h o r t = garchFit (˜garch (2 , 0 ) , data=r e t s h o r t )
summary( f i t a 2 s h o r t )

#F i t t i n g a GARCH(1 ,1)
l ibrary ( fGarch )
f i t g = garchFit (˜garch (1 , 1 ) , data=r e t )
summary( f i t g )

quest <−coef ( f i t g ) [ 1 ] + residuals ( f i t g ) #g i v e s us the o r i g i n a l r e t

#P r e d i c t i o n s v o l a t i l i t y GARCH(1 ,1)
# We c r e a t e two cond var v e c t o r s
condvarGARCH1<−numeric ( length ( r e t ) + 5)
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condvarGARCH1true<−numeric ( length ( r e t ) + 5)
sigma<−coef ( f i t g ) [ 2 ] /(1−coef ( f i t g ) [3 ] − coef ( f i t g ) [ 4 ] ) #uncond var .
condvarGARCH1 [ 1 ] <−sigma
condvarGARCH1true [ 1 ] <−sigma

for ( i in 2 : length ( r e t ) )
{

condvarGARCH1 [ i ] <−coef ( f i t g ) [ 2 ] + coef ( f i t g ) [ 3 ] ∗ r e t squared [ i −1]
+ coef ( f i t g ) [ 4 ] ∗condvarGARCH1 [ i ]

condvarGARCH1true [ i ]<−coef ( f i t g ) [ 2 ] + coef ( f i t g ) [ 3 ] ∗ r e t squared [ i −1]
+ coef ( f i t g ) [ 4 ] ∗condvarGARCH1true [ i ]

}

#P r e d i c t i o n f o r next 5 v a l u e s
d i f f s i g m a <− condvarGARCH1 [ length ( r e t ) ] − sigma
for ( i in 1 : 5 ){

sum1 <− ( coef ( f i t g ) [ 3 ] + coef ( f i t g ) [ 4 ] )
l<−1
while ( l<i ){

print ( l )
sum1<− sum1∗ ( coef ( f i t g ) [ 3 ] + coef ( f i t g ) [ 4 ] )
l<− ( l +1)

}
condvarGARCH1 [ length ( r e t )+ i ] <− sigma + sum1∗d i f f s i g m a

}

SP500ahead<−read . csv ( ”SP500ahead2 . csv ” ) #data from Yahoo Finance
retahead <− ( SP500ahead [ , 5]− SP500ahead [ , 2 ] ) / SP500ahead [ , 2 ]
dateretahead <− as . Date ( as . character ( SP500ahead [ , 1 ] ) , format=”%Y−%m−%d” )
retaheadsq <−retahead∗ retahead
l e n g t h r e t<−length ( r e t )
for ( i in ( l e n g t h r e t +1):( l e n g t h r e t +5)){

print ( i )
condvarGARCH1true [ i ] <− coef ( f i t g ) [ 2 ]

+ coef ( f i t g ) [ 3 ] ∗ retaheadsq [− l e n g t h r e t+i ]
+ coef ( f i t g ) [ 4 ] ∗condvarGARCH1true [ i −1]

}

v o l a t i l i t y d a t e s<−c ( da t e r e t [ 2 7 5 6 : 2 7 7 0 ] , dateretahead [ 1 : 5 ] )

Sys . s e t l o c a l e ( category = ”LC ALL” , l o c a l e = ” e n g l i s h ” )
png ( f i l ename=”SP500 5 . png” , r e s =300 , width = 2400 , he ight = 1500)
plot ( v o l a t i l i t y d a t e s , t a i l ( sqrt (condvarGARCH1 ) , 20) , type=” l ” ,

ylab=”sigma t ” , xlab=”Date” , col=” blue ” )
l ines ( v o l a t i l i t y d a t e s , t a i l ( sqrt ( condvarGARCH1true ) , 20) ,

type=” l ” , col=” black ” )
dev . of f ( )
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