The identification of learner profiles and the role of sound-symbol correspondence

M^a del Mar Suárez mmsuarez@ub.edu Universitat de Barcelona

Using cluster analysis

Multivariate exploratory technique used to "subdivide a set of objects into homogeneous subgroups or into a hierarchical arrangement of homogeneous subgroups" (Lorr, 1983)

1

Using cluster analysis

Multivariate exploratory technique used to "subdivide a set of objects into homogeneous subgroups or into a hierarchical arrangement of homogeneous subgroups" (Lorr, 1983)

2

Hierarchical

→ Dendrogram

Using cluster analysis

Multivariate exploratory technique used to "subdivide a set of objects into homogeneous subgroups or into a hierarchical arrangement of homogeneous subgroups" (Lorr, 1983)

2

K- means (non-hierarchical method):

- 1. Identify k clusters to assess how distinct our clusters are
- 2. Using the cluster centers identified before
- 3. F- values → how well the dimension discriminates

Aims of cluster analysis

- ldentify natural clusters within a mixture of entities → several distinguishable populations
- 2 Construct a useful conceptua
- Outliers
- Not normally distributed data BUT
- representativeness of the sample
- multicollinearity
- Generate hypotheses to be te unsuspected clusters

ldentify homogeneous subgroups → patterns useful for prediction

Protocol

Why use cluster analysis in aptitude research?

FL aptitude: one of the best predictors of language learning success (Abrahamsson & Hyltenstam, 2008; Dörnyei, 2005; Sawyer & Ranta, 2001; Skehan, 1998)

Correlational studies

- Total score as best predictor
- Norming studies
- Different aptitude tests, f.ex. MLAT & MLAT-E (Harper & Kieser, 1977; Hauptman, 1971; Kiss, 2009; Kiss & Nikolov, 2005; Suárez, 2010)

Multicomponential

Test batteries tapping different abilities

Learner profiles vs. aptitude profiles

Including or not proficiency measures

Why use cluster analysis in aptitude research?

Using cluster analysis

Research Methodology Results Discussion Further research

Literature review

1 Language aptitude components (Carroll, 1981)

Phonemic coding ability

the ability to identify and memorize new sounds or strings of sounds

Grammatical sensitivity

the ability to understand how words function grammatically in sentences

Inductive language learning ability

the ability to infer grammatical rules from language samples

Rote learning ability for FL materials

 the ability to learn a large number of semantic-symbol and/or soundsymbol associations in a short period of time

2 Aptitude components & proficiency

Language aptitude components (Carroll, 1967)

MLAT-E (grades 3 to 6)	MLAT (adults)	Construct
Hidden words	Spelling clues	English vocabularysound-symbol association
Matching words	Words in Sentences	- grammatical sensitivity
Finding rhymes	_	- hear and make distinctions between speech sounds
Number learning	Number learning	rote memoryaural comprehension

4a MLAT-E parts (Carroll, 1967)

MLAT-E Part 1 – Hidden words

1. wntr	A champion	B season	C liquid	D happy
4. snak	A hard wood	B tease	C reptile	D type of shoe

MLAT-E Part 2 – Matching sentences

- 1. Yesterday, Mary caught a <u>FISH</u> at the lake. Cindy cut a cake with a knife.
- 2. Amy <u>SANG</u> a pretty song to her class.

 James throws big rocks into the lake.

4b MLAT-E parts (Carroll, 1967)

MLAT-E Part 3 — Finding Rhymes

1. TIME tame tide dime shin

2. RAIN vine cane ... keen fine

4c MLAT-E parts (Carroll, 1967)

MLAT-E Part 4 – Number Learning

Units

- ba = one
- baba = two
- dee = three

Tens

- tu = twenty
- ti = thirty

ti 30 ba 1 thirty – one 31

5a SLA research using cluster analysis

Proficiency as criterion variable

- Motivation profiles (Dörnyei et al., 2006)
- Vocabulary learner strategies profiles (Kojic-Sabo & Lightbown, 1999)

Proficiency included in the cluster analysis

- LAA in learner profiles → Metalinguistic awareness in L1 & L2 and L2 proficiency over time (Ranta, 2002)
- Learner differences in strategy use, will to learn and achievement over time (Yamamori et al., 2003)
- Learner cognitive profiles including MLAT-4 Words in Sentences, age and criterion test score (Skehan, 1986)

5b Learner profiles as of cluster analysis

High achievers

- Strong on LAA (Ranta, 2002)
- Strong on both LAA and memory OR strong on either LAA (syntactically oriented students) or memory (lexically-oriented students) (Skehan,1986, 1998, 2002)
- Auditory abilities more relevant in younger students (Skehan, 1986)

Low achievers

- Average or weak on LAA (Ranta, 2002)
- Very poor memory except associative memory, average language ability (Skehan, 1986)
- Intelligent but with poor language ability (Skehan, 1986)
- High linguistic ability and memory but average IQ (Skehan, 1986)

How about young(er) learners (grades 3-4, and beyond?

- 1. Concrete operational thinking stage vs formal operational thinking (Piaget)
- 1. First stages of literacy development

Research questions

Do language learner profiles change over time in young learners in grades from 3 to 7?

What learner profiles do younger high achievers and low ers have?

What determines achievement in younger learners?

Selection of a representative and adequately large sample of subjects

- Context: 6 schools in Barcelona and Lleida
- Participants: bilingual Catalan-Spanish
- English as a FL at school

Participants' mean age and aptitude measures

	Grade	3	4	5	6	7	All
	Mean age	8.8	9.9	10.9	11.7	12.9	
Group 1	N MLAT- ES/EC	43	57	57	58	65	280
Group 2	N MLAT- EC/ES	55	62	30	60	62	269
	Total N	98	119	87	118	127	549

Methodology / Protocol

2 Selection of set of variables from a domain of similarity

- **MLAT-EC Part scores**
- Proficiency measures: cloze passage measure (different versions for different grades) → integrative measure

3

Description and measurement of each entity

MLAT- EC Parts and constructs

Parts	MLAT-EC (grades 3 to 7)	MLAT (adults)	Construct
1	Paraules ocultes	Spelling Clues	vocabularysound-symbol association
2	Paraules que es corresponen	Words in Sentences	- grammatical sensitivity
3	Paraules que rimen	-	hear and make distinctions between speech sounds
4	Aprenguem números	Number Learning	rote memoryauralcomprehension

MLAT-EC Part 1

15. bakka A és dolça B part de la cara **C fa llet** D amb arrugues

MLAT-EC Part 2

MLAT- EC Part 3

45. FLABIOL

A pèsol

B Oriol

C flascó

D avió

MLAT-EC Part 4

Units

- co = u(1)
- vein = dos (2)
- ras = tres (3)

Tens

- silca = deu (10)
- vinca = vint (20)
- rasca = trenta (30)

rasca 30

ras 3

trentatres

Research questions

Methodology

Results

Discussion

Further research

Items removed after item analysis

MLAT-EC

122

Using cluster analysis

Literature review analysis

Research questions

Methodology Results

Discussion Further research

Reliability

	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7
Part 1	.934	.900	.871	.878	.873
Part 2	.856	.897	.903	.910	.915
Part 3	.934	.939	.909	.919	.913
Part 4	.936	.909	.922	.893	.941
Total	.957	.960	.950	.944	.961

Using cluster analysis

Literature review questions

Research questions

Methodology Results

Discussion Further research

Mean p-values

	Grade 3	Grade 4	Grade 5	Grade 6	Grade 7	
Part 1	.75	.81	.83	.87	.89	
Hidden words	easy	v e r y	e a s y			
Part 2	.32	.50	.65	.67	.74	
Matching words	difficult	mid-difficult	e a	s y	easy	
Part 3	.55	.72	.78	.83	.83	
Rhyming words	e a	e a s y		very easy		
Part 4	.62	.82	.88	.85	.91	
Number learning	easy		v e r y	e a s y		

Results MLAT-EC

Mean raw part scores

Part 1

Part 2

Part 3

Part 4

Results MLAT-ES and MLAT-EC

Mean raw total scores

Proficiency measures

M=1.84 SD=1.89

M= 2.42 SD=2.13

M= 1.32 SD=1.48

Grade 7 M=6.47 SD=4.70

Reliability >.750 in all grades

Factor analysis if numerous variables

Intercorrelation of parts

	Part 1	Part 2	Part 3	Part 4
Part 2	.616**			
Part 3	.694**	.616**		
Part 4	.513**	.476**	.472**	

**Significant <.01 (two-tailed)

5 Standardization of measures

- 6 Selection of proximity measure and clustering algorithm
 - Hierarchic: Ward's method, squared Euclidean distance & detection of outliers
 - ▶ Non-hierarchical *k* means cluster

Grade 3

-High decoding skills and average/high sound recognition ability
-EITHER high grammatical sensitivity OR high memory + decoding skills for high achievement
- Sound recognition alone, no effect

- Decoding skills needed for average and high achievement
- Grammatical sensitivity relevant in high overall aptitude profile and in high achievement
- High and average memory for average/ high performance

- 2 high achiever profiles with high overall aptitude and with high grammar sensitivity
- <u>Grammar oriented</u> vs. <u>Memory oriented</u> learner
- Low achievers have poor decoding skills, poor sound recognition and average / poor memory

- -2 high achiever profiles: with high aptitude, or with high grammar sensitivity in spite of lower memory
- Memory oriented learners who are average in the rest are average achievers
- Low/average achievers have average or poor memory and are poor in the other abilities

Grade 7

Further research

- -2 high achiever profiles: with high aptitude or with both high grammar sensitivity and high memory but low sound recognition
- -Low memory, low achiever
- -Average sound recognition and spelling not crucial to have average achievement

ANOVAs F-values

Memory as the dimension to distinguish clusters overall, with literacy skills coming second at lower levels

Grade	3	4	5	6	7
Part 1	21.067 (2 nd)	43.031 (2 nd)	39.852 (3 rd)	21.468 (4 th)	46.721 (3 rd)
Part 2	17.641	27.589	45.896	25.613	39.749
Part 3	18.898	34.819	32.327	48.318	85.473
Part 4	21.361	54.467	43.925	52.375	99.537

Literature review

Research questions

Methodology

Results

Discussion

Further research

Discussion

Components & acquisition processes

(Skehan 1998, 2002; Dörnyei & Skehan 2003)

Se Input

Phonemic

Attention

 Related to phonological STM

analytic abilities anguage

Central processing

- Pattern identification
- Restructuration of the IL system
- Carroll's grammatical sensitivity + inductive language learning ability

Memory (WM,

Output

- Retrieval of info processed
- More important than LAA
- Salient in talented language learners

Discussion

RQ1 Changes in language learner profile over time

- ▶ Yes, regarding decoding skills
- ▶ Yes, no linear high-aptitude profiles in the lower grades
- **▶ BUT** memory-oriented vs grammar-oriented learners were high-achievers in the lower grades and memory-oriented were average or low-achievers from grade 4 on, not on grade 3, where decoding skills prevail.
- RQ2 Profiles in high-achievers vs low-achievers
 - high-aptitude even profiles
 - either high grammar sensitivity or memory-oriented for average and high achievement at higher levels, not in grade 3 & 4
 - low overall aptitude in low achievers

RQ3 Dimension to differentiate clusters

▶ decoding skills for younger learners → applicable to all alphabets?

Further research

- Similar profiles with different proficiency results
- The role of sound recognition at lower levels (over decoding skills?)
- ▶ Memory as differentiating dimension except in grade 5, followed by decoding skills at lower grades: LCDH in L1 and FL, but in all alphabets?
- Duse of different proficiency measures tapping different abilities
- Aptitude profiles using proficiency as a criterion variable

Thank you

