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Abstract

The CP -violating charge asymmetry in B± → φK± decays is measured in a sample
of pp collisions at 7 TeV centre-of-mass energy, corresponding to an integrated
luminosity of 1.0 fb−1 collected by the LHCb experiment. The result is ACP (B± →
φK±) = 0.022 ± 0.021 ± 0.009, where the first uncertainty is statistical and the
second systematic. In addition, a search for the B± → φπ± decay mode is performed,
using the B± → φK± decay rate for normalization. An upper limit on the branching
fraction B(B± → φπ±) < 1.5× 10−7 is set at 90% confidence level.
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J. Lefrançois7, S. Leo22, O. Leroy6, T. Lesiak25, B. Leverington11, Y. Li3, L. Li Gioi5, M. Liles51,
R. Lindner37, C. Linn11, B. Liu3, G. Liu37, S. Lohn37, I. Longstaff50, J.H. Lopes2,
N. Lopez-March38, H. Lu3, D. Lucchesi21,q, J. Luisier38, H. Luo49, O. Lupton54, F. Machefert7,
I.V. Machikhiliyan30, F. Maciuc28, O. Maev29,37, S. Malde54, G. Manca15,d, G. Mancinelli6,
J. Maratas5, U. Marconi14, P. Marino22,s, R. Märki38, J. Marks11, G. Martellotti24, A. Martens8,
A. Mart́ın Sánchez7, M. Martinelli40, D. Martinez Santos41,37, D. Martins Tostes2,
A. Martynov31, A. Massafferri1, R. Matev37, Z. Mathe37, C. Matteuzzi20, E. Maurice6,
A. Mazurov16,37,e, J. McCarthy44, A. McNab53, R. McNulty12, B. McSkelly51, B. Meadows56,54,
F. Meier9, M. Meissner11, M. Merk40, D.A. Milanes8, M.-N. Minard4, J. Molina Rodriguez59,
S. Monteil5, D. Moran53, P. Morawski25, A. Mordà6, M.J. Morello22,s, R. Mountain58, I. Mous40,
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rUniversità di Pisa, Pisa, Italy

vi



sScuola Normale Superiore, Pisa, Italy

vii



viii



1 Introduction

The weak-interaction B±→ φK± decay is governed by the b→ sss transition. In the
Standard Model (SM), it can only occur through loop diagrams (see Fig. 1), leading to a
branching fraction of order 10−5 [1]. Because the dominant amplitudes have similar weak
phases, the CP -violating charge asymmetry, defined as

ACP (B±→ φK±) ≡ B(B−→ φK−)− B(B+→ φK+)

B(B−→ φK−) + B(B+→ φK+)
, (1)

is predicted to be small in the SM, typically 1–2% with uncertainties of a few percent [2,3].
A significantly larger value would signal interference with an amplitude not described in
the SM. The current experimental world average is ACP (B±→ φK±) = 0.10 ± 0.04 [1],
dominated by a recent measurement from the BaBar collaboration [4]. Large CP violation
effects have been seen in some regions of the B±→ K+K−K± phase space, but not around
the φ resonance [5].

The B±→ φπ± decay is another flavour-changing neutral current process, driven by the
b→ dss quark-level transition (see Fig. 1). The high suppression, due to the tiny product
of the Cabibbo-Kobayashi-Maskawa matrix elements [6, 7] and to the Okubo-Zweig-Iizuka
(OZI) rule [8–10] associated with the creation of the colourless ss pair forming the φ meson,
makes this rare loop decay a sensitive probe of the SM. Indeed, even a small non-SM
amplitude, e.g. from R-parity violating supersymmetry [11], may dominate over the SM
contribution.

The current SM prediction for the B±→ φπ± branching fraction suffers from uncertain-
ties originating from the näıve factorization approach, radiative corrections, calculation

B+

�

K+

s̄

s̄

s

uu
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ū, c̄, t̄

W+

u u

b̄ s̄
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�

u u
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Figure 1: Lowest-order Feynman diagrams of the Standard Model for the decays B+→ φK+

(top) and B+→ φπ+ (bottom). The diagrams with an external φ meson are OZI suppressed.
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of the long-distance contribution (e.g. B→ KK∗ rescattering), and ω − φ mixing [12].
The latter is the main source of uncertainty. The physical ω and φ meson states do not
coincide exactly with the ideal (|uu〉+ |dd〉)/

√
2 and |ss〉 states, respectively. They appear

to be mixtures of these two states characterized by a small mixing angle δV [13,14], which
depends on the magnitude of SU(3) symmetry breaking and can be determined in the
framework of chiral perturbation theory. However, more sophisticated treatments based on
the full ρ0 − ω − φ mixing scheme suggest that δV is mass dependent, i.e. takes different
values at the ω and φ masses [15, 16]. In the QCD factorization approach, the B±→ φπ±

branching fraction is predicted to be in the range (5 − 10) × 10−9 [3] if ω − φ mixing
is neglected, but can be enhanced up to 0.6 × 10−7 [12, 17] depending on the value of
δV . However, the effect of ω − φ mixing has not been observed in a recent search for
B0→ J/ψφ [18]. Values of the B±→ φπ± branching fraction in excess of 10−7 would be
indicative of non-SM physics.

The B±→ φπ± decay mode has not been observed yet. Currently, the most stringent
experimental limit is B(B±→ φπ±) < 2.4× 10−7 at 90% confidence level (CL), obtained
by the BaBar collaboration [19].

This Letter presents a measurement of the B±→ φK± charge asymmetry and a search
for the B±→ φπ± decay mode with the LHCb detector. The results are based on a data
sample collected during the 2011 pp run of the Large Hadron Collider at a centre-of-mass
energy of 7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. The φ meson is
reconstructed in the K+K− final state. We define the φ signal as any peaking component
in the K+K− mass spectrum consistent with the known parameters of the φ resonance,
without attempting a full amplitude analysis of the three-body K+K−K± and K+K−π±

final states. In order to suppress several systematic effects, the primary observables
measured in this analysis are the difference of CP -violating charge asymmetries

∆ACP ≡ ACP (B±→ φK±)−ACP (B±→ J/ψK±) , (2)

and the branching fraction ratio B(B±→ φπ±)/B(B±→ φK±), which are then con-
verted to results on ACP (B±→ φK±) and B(B±→ φπ±) using the best known values of
ACP (B±→ J/ψK±) [1,20] and B(B±→ φK±) [1]. The choice of B±→ J/ψK± as reference
channel and other features of the analysis follow the approach adopted in inclusive studies
of B±→ K+K−K± decays with the same data set [5].

The two measurements are performed in a common analysis, i.e. they are based on
identical event selections and data descriptions whenever possible. The observables are
obtained from two-dimensional maximum likelihood fits to the unbinned B± and φ mass
distributions of the reconstructed candidates, using parametric shapes with minimal
dependence on simulation. The results of these fits were not examined until the entire
analysis procedure was finalized.

2 Detector and data set

The LHCb detector [21] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The
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detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes placed downstream. The combined tracking
system provides a momentum measurement with a relative uncertainty that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter (IP) resolution of 20µm
for tracks with high transverse momentum (pT). Charged hadrons are identified using
two ring-imaging Cherenkov detectors [22]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers. The
direction of the magnetic field of the spectrometer dipole magnet is reversed regularly.

The trigger [23] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.
The B± candidate decays considered in this analysis must belong to one of two exclusive
categories of events, called TOS (triggered on signal) or TIS (triggered independently
of signal). A TOS event is triggered at the hardware stage by one of the candidate’s
final-state particles being compatible with a transverse energy deposit greater than 3.5 GeV
in the hadron calorimeter. A TIS event does not satisfy the TOS definition and is triggered
at the hardware stage by activity in the rest of the event. All candidates must pass a
software trigger requiring a two-, three- or four-track secondary vertex with a large scalar
sum of the transverse momentum of the tracks and a significant displacement from the
primary pp interaction vertices (PVs). At least one track should have pT > 1.7 GeV/c
and χ2

IP with respect to any PV greater than 16, where χ2
IP is defined as the difference in

χ2 of a given PV reconstructed with and without the considered track. A multivariate
algorithm [24] is used for the identification of secondary vertices consistent with the decay
of a b hadron.

In the simulation, pp collisions are generated using Pythia 6.4 [25] with a specific
LHCb configuration [26]. Decays of hadronic particles are described by EvtGen [27],
in which final state radiation is generated using Photos [28]. The interaction of the
generated particles with the detector and its response are implemented using the Geant4
toolkit [29] as described in Ref. [30].

3 Event selection and efficiency

The selections of B±→ φK± and B±→ φπ± candidates are identical, except for the
particle identification (PID) requirement on the charged hadron combined with the φ
candidate, which is referred to as the bachelor hadron h± (h± = K± or π±). The other
requirements are chosen to minimize the relative statistical uncertainty on the B±→ φK±

signal yield.
Only good quality tracks with χ2

IP > 25 and pT > 0.25 GeV/c are used in the recon-
struction. The φ meson candidates are reconstructed from two oppositely-charged tracks
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identified as kaons with the PID requirement DLLKπ > 2, where DLLKπ is the difference in
log-likelihood between the kaon and pion hypotheses, as determined with the ring-imaging
Cherenkov detectors in control samples of known particle composition [22]. The φ candi-
dates are required to have pT > 2 GeV/c, a total momentum, p, larger than 10 GeV/c and
an invariant mass, mKK , in the range 1.00–1.05 GeV/c2. Bachelor hadrons, reconstructed
either as pions if DLLKπ < −1 or kaons otherwise, are required to have p > 10 GeV/c
and pT > 2.5 GeV/c, and are combined with φ candidates to form B±→ φh± candidates.
These B± candidates are required to have pT > 2 GeV/c, a three-track vertex χ2 per
degree of freedom less than 9, and an invariant mass mKKh in the range 5.0–5.5 GeV/c2.
Furthermore cos θp is required to be greater than 0.9999, where θp is the angle between the
B± momentum vector and the vector joining the B± production vertex to the B± decay
vertex. The production vertex is chosen as the PV for which the B± has the smallest χ2

IP.
Multiple candidates, occurring in 0.2% of the events, are removed by keeping the can-

didate with the smallest B± vertex χ2. The final data sample consists of 6251 B±→ φK±

candidates and 2169 B±→ φπ± candidates.
The PID performance is determined from a large and high-purity sample of pions from

prompt D∗+→ D0(K−π+)π+ and D∗−→ D0(K+π−)π− decays, as a function of p and
η. After reweighting this calibration sample to the same momentum and pseudorapidity
distributions as for the bachelor pion in simulated B±→ φπ± decays, the efficiency of the
PID requirement DLLKπ < −1 for the bachelor pion is measured to be 0.846±0.011 (stat)±
0.020 (syst), with a 5% kaon misidentification probability. All other efficiencies, which are
slightly different for B±→ φπ± and B±→ φK± decays due to their kinematic properties,
are determined from simulation. The efficiency ratio

ε(B±→ φπ±)

ε(B±→ φK±)
= 0.762± 0.031 (stat)± 0.036 (syst) (3)

is obtained, where the numerator is the total efficiency for a B±→ φπ± decay to be selected
as a B±→ φπ± candidate and the denominator is the total efficiency for a B±→ φK±

decay to be selected either as a B±→ φK± candidate or as a B±→ φπ± candidate. The
statistical uncertainty arises from the size of the calibration and simulation samples, while
the systematic uncertainty is the quadratic sum of contributions from the PID (±0.018),
the trigger (±0.008), and other offline kinematic selection requirements (±0.030).

4 Fit description

The observables of interest, namely the asymmetry between the B−→ φK− and B+→ φK+

yields and the ratio between the B±→ φπ± and B±→ φK± yields, are each determined
from a two-dimensional unbinned extended maximum likelihood fit based on probability
density functions (PDFs) of the mKKh and mKK masses. In each case, independent
subsamples of events, each with either B±→ φK± candidates or B±→ φπ± candidates,
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are fitted simultaneously. For each subsample, the likelihood is written as

L = exp(−
∑

j Nj)
N∏
i

(∑
j NjP

i
j

)
, (4)

where Nj is the yield of fit component j, P i
j is the probability of event i for component j,

and the index i runs over the N events in the subsample. Except for the misidentified
components described further below, the probabilities P i

j are given by the product of PDFs
for the two K+K−h± and K+K− invariant masses, evaluated at the values mi

KKh and
mi
KK of event i:

P i
j = PKKh

j (mi
KKh)P

KK
j (mi

KK) . (5)

This assumes that the two mass variables are independent, as supported by data and
simulation studies. The correlation between mKKh and mKK is found to be less than 4%.

The description of the mKKh distributions involves a combination of three contributions:
a signal peaking at the B± mass, a broad low-mass background with an end-point near
5150 MeV/c2 due to partially-reconstructed b-hadron decays such as B0→ φK∗0, and a
linear background from random combinations. The peaking signal is modelled with a
Crystal Ball function [31] modified such that both the upper and lower tails are power
laws. The mean and the width σB of the Crystal Ball function are free in the fit,
while the tail parameters are determined from simulation. The partially-reconstructed
background is described with an ARGUS function [32] convoluted with a Gaussian
resolution function of the same σB as the B± signal. The mKK distribution is described
with two contributions: a peaking term centred on the φ mass, described with a relativistic
Breit-Wigner function convoluted with a Gaussian resolution function of free width, and a
linear term originating from nonresonant, S-wave, or random combinations of two kaons.
The above three mKKh contributions and two mKK contributions lead to six components for
each subsample: the B±→ φh± signal, the nonresonant B±→ K+K−h± background, the
partially-reconstructed b-hadron backgrounds with or without a true φ meson (for example
B→ φh±π or B→ K+K−h±π), and the combinatorial backgrounds with or without a
true φ meson. The nonresonant B±→ K+K−h± components include b→ c decays, which
are found to be negligible from simulation studies.

In addition, we consider components for the misidentified B±→ φK± and
B±→ K+K−K± decays in the B±→ φπ± sample, while misidentified B±→ φπ± and
B±→ K+K−π± decays in the B±→ φK± sample are negligible, and therefore ignored.
For these two additional components, the mKKπ PDF is conditional to the observable
δm = mKKK −mKKπ, which is the mass difference under the two bachelor hadron mass
hypotheses. The probabilities are written as

P i
j = PKKπ

misID(mi
KKπ|δmi)PKK

j (mi
KK) , (6)

where PKK
j is the mKK PDF described above (representing either φ signal or background)

and
PKKπ
misID(mi

KKπ|δmi) = PKKK
φK (mi

KKπ + δmi)
∣∣
σB→ρσB

. (7)
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Here PKKK
φK is the mKKK PDF of the B±→ φK± signal, but with an increased B± mass

resolution to account for the effects of the typically higher momentum of misidentified
bachelor kaons. The parameter σB is multiplied here by the central value of a factor
ρ = 1.26±0.10, determined from data as the ratio of the measured mKKK resolutions of the
B±→ φK± signal in the regions −7 < DLLKπ < −1 and DLLKπ > −1. The expression in
Eq. 7 is equivalent to PKKK

φK (mi
KKK)

∣∣
σB→ρσB

, which means that the B±→ φK± misiden-

tified component in the B±→ φπ± sample would have a B±→ φK± signal distribution if
the correct mass was assigned to the bachelor kaon. The advantage of introducing the δm
observable is to connect the B±→ φK± shapes in the B±→ φπ± and B±→ φK± samples,
thereby constraining the misidentified B±→ φK± component in the B±→ φπ± sample
using the large signal in the B±→ φK± sample. This procedure allows to describe the
misidentified component with the same parametric shape as the B±→ φπ± signal, and
reduces the statistical uncertainty on the B±→ φπ± yield by a factor of two. However, this
introduces a bias because the δm distribution, which is not accounted for in the likelihood,
is not the same for all components [33]. To reduce this bias, the B±→ φπ± sample is
divided into four bins of δm, each with its own eight components. This procedure reduces
the bias on the B±→ φπ± signal yield to a negligible level.

Other fit parameters that are common to the different subsamples are the mKKh

end-point of the partially-reconstructed backgrounds, the peaking mKK PDF parame-
ters for all components containing a φ meson, and the mKK slope of the nonresonant
B±→ K+K−h± components. Finally, the ratio of the yield of the misidentified nonresonant
B±→ K+K−K± background to the yield of misidentified B±→ φK± background in the
B±→ φπ± sample is constrained to the yield ratio of the corresponding correctly-identified
components in the B±→ φK± sample.

The fit procedure is validated on simulated data containing the expected proportion of
signal and background events.

These studies, which take into account the different δm distributions and the possible
correlation between the fit observables, demonstrate the stability of the fit and show that
the fit results are unbiased.

5 Measurement of the B±→ φK± charge asymmetry

The charge asymmetry of the B±→ φK± signal is determined from a fit to the B−→ φK−

and B+→ φK+ candidates in the DLLKπ > −1 region. These two samples are each
divided into two subsamples according to whether the events were TOS or TIS at the
hardware trigger stage. In the fit, each of the six components has therefore four yields.
For the signal component, they are expressed as N±TOS = NTOS(1 ∓ Araw,TOS)/2 and
N±TIS = NTIS(1 ∓ Araw,TIS)/2, where Nk is the total yield and Araw,k is the raw yield
asymmetry in subsample k (k = TOS,TIS). The fit has a total of 34 free parameters: 10
mass shape parameters, 12 yields and 12 raw asymmetries.

Figure 2 shows the projections of the fitting function superimposed on the mKKK and
mKK distributions, shown separately for B− and B+ candidates, but where TOS and TIS
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Figure 2: Distributions of the (a) K+K−K− and (b) K+K− masses of the selected B−→ φK−

candidates, as well as of the (c) K+K−K+ and (d) K+K− masses of the selected B+→ φK+

candidates. The solid blue curves represent the result of the simultaneous fit described in the text,
with the following components: B±→ φK± signal (dotted red), nonresonant B±→ K+K−K±

background (dashed red), partially-reconstructed b-hadron background with (dotted blue) or
without (dashed blue) a true φ meson, and combinatorial background with (dotted green) or
without (dashed green) a true φ meson. Some of the components are barely visible because the
corresponding yields are small. Normalized residuals are displayed below each histogram.

events are summed. The mKKK resolution measured from the fit is σB = 20.4±0.3 MeV/c2.
The fitted raw asymmetries for the signal are shown in the first line of Table 1. They are
statistically uncorrelated.

Each raw charge asymmetry is related to the CP asymmetry through

Araw,k(B
±→ φK±) = ACP (B±→ φK±) +AD,k(B

±→ φK±) +AP , (8)

where AD,k(B
±→ φK±) is the detection charge asymmetry for the bachelor K± and AP

is the production asymmetry of B± mesons. Equation 8 and the corresponding equation
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Table 1: Raw charge asymmetries for the B±→ φK± and B±→ J/ψK± decays, their difference
∆ACP , and the fraction of B±→ φK± signal events in each trigger subsample for k = TOS,TIS.
All uncertainties are statistical only.

TOS subsample TIS subsample
Araw,k(B

±→ φK±) +0.027± 0.026 −0.053± 0.035
Araw,k(B

±→ J/ψK±) −0.024± 0.008 −0.008± 0.005
∆ACP +0.052± 0.027 −0.045± 0.035
Nk/(NTOS +NTIS) 66% 34%
Weighted ∆ACP average +0.019± 0.021

Table 2: Systematic uncertainties on the measurement of ∆ACP .

Source Uncertainty
Mass shape modelling 0.003
Possible S-wave contribution 0.002
Trigger 0.004
Bachelor kaon kinematic properties 0.005
Geometric acceptance 0.002
Quadratic sum 0.007

for the B±→ J/ψK± reference channel hold because all involved asymmetries are small.
Under the assumption that the detection asymmetry is the same for B±→ φK± and
B±→ J/ψK±, which is correct in the limit where the bachelor K± has the same kinematic
properties, the difference in charge asymmetries defined in Eq. 2 can be written as

∆ACP = Araw,k(B
±→ φK±)−Araw,k(B

±→ J/ψK±) (9)

and should not depend on the trigger category k. The raw charge asymmetries of
B±→ J/ψK± decays have been measured in a previous analysis [5]; they are subtracted
from the B±→ φK± raw asymmetries to obtain two independent measurements of ∆ACP .
Since the two results agree within about two statistical standard deviations, the results are
combined. The final ∆ACP result is computed as a weighted average, with weights equal
to the fractions Nk/(NTOS + NTIS) of signal events in the two trigger subsamples. All
inputs to the calculation are reported in Table 1. The separation between TIS and TOS
events is needed because the detection asymmetry AD,k depends on the trigger category k
and the fraction of events in the two categories differs between the signal and reference
channels.

Several systematic uncertainties are considered on the weighted ∆ACP average, as
summarized in Table 2. The contribution due to the mass shape modelling is obtained by
repeating the fit (and the calculation of Table 1) with the fixed parameter values of the
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Crystal Ball and ARGUS functions changed within their uncertainties, as determined from
simulation and B±→ φK± data, respectively, or with an exponential (rather than linear)
combinatorial background model. Possible residual effects from S-wave contributions not
fully accounted for by the linear component are investigated by comparing the observed
angular distribution of the B±→ φK± signal with the expectation for a peaking structure
in the K+K− mass due to a single P-wave state. Other P-wave components are neglected.
If these S-wave contributions corresponded to an additional component included in the
signal without charge asymmetry, a bias would appear on ∆ACP , which is taken as a
systematic uncertainty.

The charge asymmetry in the trigger efficiency for kaons of the TOS subsample does
not completely cancel in ∆ACP , because of the different number of kaons in the two decay
modes considered. The difference between the values of Araw,TOS(B±→ J/ψK±) computed
with and without a charge-dependent correction for the kaon efficiency determined from
calibration data is propagated as a systematic uncertainty on ∆ACP . Such an effect is
absent for the TIS subsample. Another small contribution, due to the TOS events that
would still be accepted by the hardware trigger level without considering the particles
from the B+ candidate decay, has been included in the trigger systematic uncertainty.
Due to differences in the kinematic selections of the B±→ φK± and B±→ J/ψK± decay
modes, the assumption of Eq. 9 cannot be exact, and a further systematic uncertainty
is assigned. The fit of the raw charge asymmetries of B±→ J/ψK± is repeated with the
same kinematic selection on the bachelor kaon as for B±→ φK±, i.e. p > 10 GeV/c and
pT > 2.5 GeV/c, and after reweighting its momentum distribution to that observed in the
B±→ φK± decays. The resulting effect on ∆ACP is taken as a systematic uncertainty.
Finally, we repeat the B±→ φK± analysis after requiring the bachelor kaon momentum
to point in a fiducial solid angle avoiding detector edge effects, and assign the observed
change in ∆ACP as a systematic uncertainty due to the geometrical acceptance.

The final measurement is

∆ACP = 0.019± 0.021(stat)± 0.007(syst) . (10)

A recent update of the B±→ J/ψK± charge asymmetry measurement by the D0 col-
laboration [20] has not been included yet in the average of the Particle Data Group
(PDG) [1]. Replacing the previous D0 result with the new one yields the world average
ACP (B±→ J/ψK±) = 0.003 ± 0.006, where the uncertainty is scaled by a factor 1.8
according to the PDG averaging rules. Using this average, we obtain

ACP (B±→ φK±) = 0.022± 0.021(stat)± 0.009(syst) , (11)

where the uncertainty on the B±→ J/ψK± charge asymmetry is incorporated in the
systematic uncertainty.

6 Search for B±→ φπ± decays

The search for B±→ φπ± decays is performed using a simultaneous fit to the B±→ φπ±

(DLLKπ < −1) and B±→ φK± (DLLKπ ≥ −1) candidates, dividing the B±→ φπ± can-
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Figure 3: Distributions of the (a, c) K+K−π± and (b, d) K+K− masses of the selected
B±→ φπ± candidates, shown both with linear and logarithmic scales. The solid blue curves
represent the result of the simultaneous fit described in the text, with the following components:
B±→ φπ± signal (dotted black), nonresonant B±→ K+K−π± background (dashed black),
B±→ φK± signal (dotted red), nonresonantB±→ K+K−K± background (dashed red), partially-
reconstructed b-hadron background with (dotted blue) or without (dashed blue) a true φ meson,
and combinatorial background with (dotted green) or without (dashed green) a true φ meson.
Normalized residuals are displayed below the histograms.

didates in four subsamples according to their δm values, each with its set of eight yields.
The fit has a total of 52 free parameters: 15 mass shape parameters, 36 yields, and the
ratio of the total B±→ φπ± yield to the total B±→ φK± yield.

Figure 3 shows the projections of the fitted function superimposed on the observed
mass distributions of the B±→ φπ± candidates. The total B±→ φπ± signal yield is found
to be 19± 19, while the total B±→ φK± yield is (3486± 76) + (280± 25) summing the
samples of B±→ φK± and B±→ φπ± candidates. The fitted yield ratio is

N(B±→ φπ±)

N(B±→ φK±)
= (5.1 +5.3

−5.0(stat)± 2.1(syst))× 10−3 , (12)

where the systematic uncertainty is the quadratic sum of contributions due to the modelling
of the mass shapes (±2.1× 10−3), the fit procedure (±0.2× 10−3), and interference effects
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between the φ resonance and a K+K− pair in an S-wave state (±0.4× 10−3). The first
contribution is obtained by repeating the fit with the parameter values of the Crystal
Ball and ARGUS functions changed within their uncertainties, or with an exponential
(rather than linear) combinatorial background model. The dominant effect is due to the 8%
uncertainty on the ratio ρ of the B±→ φK± mass resolutions in the two DLLKπ regions.
Simulation studies show that the fit procedure is unbiased, and the statistical precision of
this check is assigned as a systematic uncertainty.

The measurement of the branching fraction ratio is obtained as the ratio between
Eq. 12 and Eq. 3:

B(B±→ φπ±)

B(B±→ φK±)
= (6.6 +6.9

−6.6(stat)± 2.8(syst))× 10−3 . (13)

Since the result is not significantly different from zero, we also quote upper limits from the
integral of the likelihood function of this ratio, considering only the physical (non-negative)
region. Including systematic uncertainties we obtain B(B±→ φπ±)/B(B±→ φK±) <
0.018 (0.020) at 90% (95%) CL. Using the current world average B(B±→ φK±) =
(8.8 +0.7

−0.6)× 10−6 [1], we finally obtain

B(B±→ φπ±) = (5.8 +6.1
−5.8 ± 2.5)× 10−8 (14)

< 1.5 (1.8)× 10−7 at 90% (95%) CL . (15)

7 Conclusions

The difference in charge asymmetries between the B±→ φK± and B±→ J/ψK± decay
modes is measured in a sample of pp collisions at 7 TeV centre-of-mass energy, corresponding
to an integrated luminosity of 1.0 fb−1 collected with the LHCb detector. Using the known
value of the B±→ J/ψK± asymmetry, the CP -violating charge asymmetry of B±→ φK±

decays is determined to be ACP (B±→ φK±) = 0.022 ± 0.021(stat) ± 0.009(syst). This
result is almost a factor two more precise than the current world average [1]. It is consistent
with both the absence of CP violation and the Standard Model prediction.

A search for B±→ φπ± decays is also performed. No significant signal is found. Using
the known branching fraction of the B±→ φK± normalization channel, an upper limit of
B(B±→ φπ±) < 1.5 (1.8)× 10−7 is set at 90% (95%) confidence level. This improves on
the previous best upper limit [19], while reaching the upper end of the Standard Model
predictions.
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