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Abstract

The first observation of Z boson production in proton-lead collisions at a centre-
of-mass energy per proton-nucleon pair of \/syny = 5TeV is presented. The data
sample corresponds to an integrated luminosity of 1.6 nb™! collected with the LHCb
detector. The Z candidates are reconstructed from pairs of oppositely charged
muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above
20 GeV/c. The invariant dimuon mass is restricted to the range 60 — 120 GeV/c2.
The Z production cross-section is measured to be

0y syt - (fwd) = 13.5750(stat.)  1.2(syst.) nb
in the direction of the proton beam and
0yt (bwd) = 10.773(stat.) £ 1.0(syst.) nb

in the direction of the lead beam, where the first uncertainty is statistical and the
second systematic.
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1 Introduction

Measurements in proton-nucleus collisions can serve as references for nucleus-nucleus
collisions and be used as inputs for the determination of nuclear parton distribution
functions (nPDF) [1]. The nPDF, fi4 (x4, Q?), is defined as a function of the momentum
fraction, x 4, of a certain parton type a inside the nucleon i bound in a nucleus A for an
energy scale Q2. It is usually parametrised by the nuclear modification factor, R2 (x4, Q?),
which represents the ratio between the nPDF and the corresponding free nucleon baseline
PDF, fi(x,Q?%). For x4 less than 0.02, R/ is smaller than unity as the coherence length of
the interaction is larger than the nucleon-nucleon distance inside the nucleus (shadowing
effect) [2]. For z4-values between about 0.4 and 0.8, R4 is less than unity due to the
EMC effect [3]. For values of 24 close to 1.0, R4 is predicted to be greater than unity due
to Fermi motion [4]. In the intermediate region between the regimes of shadowing and
the EMC effect, R? is also predicted to be greater than unity because of the sum rule of
PDFs (anti-shadowing) [5-7].

The most recent available nPDF sets [8-11] are primarily based on data from fixed
target experiments (deep inelastic scattering (DIS) and Drell-Yan processes) and, in
particular cases, on additional data from d-Au collisions at RHIC and from neutrino DIS.
As a consequence of the kinematic range in these experiments, nPDFs for Q? larger than
10 GeV? have either no or only weak direct constraints for values of x4 smaller than 0.01
and x4 close to one [1}4].

Since measurements of electroweak boson production in the forward direction of proton-
lead collisions involve small z 4-values and in the backward direction x 4-values close to
one, they can serve as input to nPDF fits with a significant constraining power, especially
at small x4-values. ‘Forward’ refers to positive rapidity values defined relative to the
direction of the proton beam, ‘backward’ to negative rapidity values. No measurement of
electroweak boson production in proton-lead collisions has yet been performed, while their
production in lead-lead collisions has been measured for central rapidities [12,/13].

Due to its rapidity coverage, the LHCb experiment has the ability to probe x4 down
to very small, but also up to very large values. The sensitivity of x4 at a centre-of-mass
energy per proton-nucleon pair of \/syy =5 TeV varies from 2 x 107 to 3 x 1073 in the
forward case and from 0.2 to 1.0 in the backward case at an energy scale Q% = M3.

In this paper a first measurement of the Z production cross-section in proton-lead
collisions in the forward and backward region is presented. The measurement uses 72
bosons reconstructed in the ™y~ final state and is performed in a similar manner to the
Z production measurements in pp collisions described in Refs. [14] and [15]. The fiducial
region in the laboratory frame is defined by: the transverse momenta, pr, of the muons,
which must be larger than 20 GeV/c; their pseudorapidities, 7, required to be between
2.0 and 4.5; and the invariant dimuon mass, which is restricted to be between 60 and
120 GeV/c?. The cross-section is measured as

N, nd X P
OZ—sputp— — (ZTa <1>



where Ncanq is the number of selected Z candidates, p the purity of the sample, £ the
integrated luminosity and e the total efficiency.

The results are compared to predictions at next-to-next-to-leading order (NNLO [16])
in perturbative quantum chromodynamics with and without nuclear effects [8].

2 Detector and software

The LHCD detector [17] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < n < 5, designed for the study of particles containing b or ¢ quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
of silicon-strip detectors and straw drift tubes [18] placed downstream. The combined
tracking system provides a momentum measurement with relative uncertainty that varies
from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and an impact parameter resolution of 20 pm
for tracks with large transverse momentum. The energy of photons, electrons and hadrons
is measured by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL). Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers [19]. The trigger [20] consists of a hardware stage, based on information from
the calorimeter and muon systems, followed by a software stage, which applies a full event
reconstruction.

During data taking of proton-lead collisions, the hardware stage of the trigger accepted
all non-empty bunch crossings, and the software stage accepted events with at least one
well-reconstructed track matched to hits in the muon system with a momentum above
8 GeV/c and pr above 4.8 GeV/c. In order to avoid events with high hit multiplicity, which
dominate the processing time in the software trigger, global event cuts (GEC) are applied
on hit multiplicities in the tracking detectors.

Simulated pp collisions used in the estimation of the purity are generated using
PyTHIAG [21] with a specific LHCb configuration [22]. Decays of hadronic particles are
described by EVTGEN [23], in which final state radiation is generated using PHOTOS [24].
The interaction of the generated particles with the detector and its response are imple-
mented using the GEANT4 toolkit [25] as described in Ref. [26].

To study the kinematics in proton-lead collisions, dedicated samples of simulated events
at parton level are generated with PYTHIA8 [27] together with the MSTWO08 PDF set [2§].
These samples contain Z — p™p~ decays produced in proton-proton and proton-neutron
collisions at a centre-of-mass energy of /s = 5TeV with beam energies corresponding to
the energy of the proton beam and the energy per nucleon in the lead beam, respectively.



3 Data samples and candidate selection

The analysis is based on data samples of proton-lead collisions that correspond to integrated
luminosities of 1.099 4= 0.021 nb~! in the forward and 0.521 4= 0.011 nb~! in the backward
direction. The integrated luminosity has been calibrated by Van der Meer scans separately
for each beam configuration [29,30]. The energy of the proton beam is £, = 3988 £26 GeV
while the energy of the lead beam per nucleon is EFy = 1572+ 10 GeV. This gives a centre-
of-mass energy per proton-nucleon pair of \/syn = 5008 & 33 GeV, which is approximated
to 5TeV [31]. Due to the asymmetric beam energy there is a rapidity shift between the
rapidity yprap in the laboratory and y in the centre-of-mass frame of Ay = y., —y = +0.47.

The Z candidates are selected from reconstructed pairs of oppositely charged particles
that are identified as muons by matched hits in the muon system and that are inside the
considered fiducial region. Selection criteria are applied to reject background candidates
that fake Z — p*p~ decays: the impact parameter of each track with respect to the
closest primary vertex must be less than 100 um, and the sum of the energies measured
in the ECAL and HCAL associated to each track has to be less than 0.5 times the track
momentum measured in the tracking system. The y2-probability of the track fit is required
to be larger than 1% for both tracks.

Figure [1] shows the invariant mass distribution of the selected candidates for the two
beam configurations together with the predictions from simulation. There is a good
agreement between data and simulation. In total, eleven candidates are selected in the
forward sample and four in the backward sample. The rapidity distributions of the Z
candidates are shown in Fig. [

The efficiencies and the purity are studied with a sample of Z candidates from
pp collisions at /s = 8 TeV corresponding to 2 fb~! of integrated luminosity. These Z
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Figure 1: Invariant dimuon mass distribution of selected Z candidates in (a) the backward and
(b) the forward sample are shown by the black data points with error bars. The red line shows
the distribution obtained from simulation using PYTHIA8 with the MSTW08 PDF set normalised
to the number of observed candidates.
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Figure 2: Rapidity distribution of selected Z candidates in (a) the backward and in (b) the
forward sample are shown by the black data points. The red line shows the distribution obtained
from simulation using PYTHIAS with the MSTWO08 PDF set normalised to the number of observed
candidates. The top x-axis shows the rapidity, ypab, in the laboratory frame, the bottom one the
rapidity, y, in the centre-of-mass frame.

candidates have to fulfil the same selection criteria as those in proton-lead collisions. Since
the purity and efficiencies depend on the multiplicity, the difference in track multiplicity
is taken into account by reweighting the candidates from the pp sample to match the
multiplicity in proton-lead collisions. The reweighting is performed using the observed ratio
of the track multiplicity distributions of events containing J/i) candidates in proton-lead
and proton-proton collisions.

4 Purity and efficiency determination

The purity estimation considers two background sources. The first comprises candidates
where at least one of the muons is a misidentified hadron. This background source is
expected to have the same absolute abundance in oppositely charged as identically charged
dimuon combinations and the relative fraction is estimated from the number of candidates
observed in a sample of same-sign candidates and amounts to about 0.16 %.

The second source, referred to as heavy-quark background, originates from semileptonic
decays of bb and ¢€ pairs into oppositely charged muon pairs. Two background-enriched
samples are used. In the first sample, the vertex fit x? per degree of freedom of the
dimuon vertex is required to be larger than 70 to reject signal combinations. In the second
sample, an anti-isolation criterion on each muon rejects signal combinations: the pr of the
muon has to be less than 70 % of the summed pr of of the tracks that differ in 7 and the
azimuthal angle, ¢, with respect to the muon track by less than /An? + A¢? = 0.5. In
both cases, the efficiency of the cuts for the heavy-quark background is estimated from
simulation. The relative background contribution is estimated from the efficiency-corrected



background yield in the signal mass window. The two samples yield consistent results of
about 0.20 %.

The weighted average of the two estimates for heavy-quark background is added to the
contribution from misidentified hadrons, which gives a purity, p, of (99.74 £+ 0.06)% for
the forward and (99.63 + 0.05)% for the backward direction.

The total efficiency e factorises into two parts as ¢ = eFC x £, The first term,
e9FC s related to the GEC, based on the occupancy in the vertex and tracking detectors.
The second term, "4 accounts for the reconstruction, selection, trigger and muon-
identification efficiency of the Z — u*u~ decays.

The value of e“E¢ is estimated from the occupancy distributions in events with J/)
candidates from proton-lead collisions following the method described in Ref. [32]. While
the GEC do not remove events in the forward beam configuration, they retain (97.8+1.9)%
in the backward configuration.

The reconstruction, selection, trigger and muon-identification efficiencies are estimated
by tag-and-probe methods as described in Ref. [14]. The tag-and-probe methods use track-
multiplicity-reweighted Z candidates from pp collisions at /s = 8 TeV. These efficiencies
are determined as functions of the muon pseudorapidity. As the sample size of the Z
candidates in proton-lead collisions is very small, the overall value of £ is evaluated
by folding the efficiency as a function of the pseudorapidity with the n distribution of
muons. These distributions are obtained from simulated Z bosons produced in pp and
pn collisions to mimic proton-lead collisions. The value of £ is (74.1 & 6.2)% for the
forward and (72.8 4 6.3)% for the backward direction.

5 Systematic uncertainties

Five potential sources of systematic uncertainties are considered:

1. The uncertainty on the sample purity is due to the statistical uncertainty on the
data samples used in its determination. It also includes the statistical uncertainty
on the efficiency determination of the cuts to obtain the samples enriched by the
heavy-quark background using simulation. A further contribution is included for
potential differences in the centre-of-mass energy dependence of the signal and
background processes.

2. The uncertainty on the GEC efficiency is estimated by changing the functional form
used to describe the occupancy distributions. Possible differences in the occupancy
distributions between events containing J/i) and those containing Z candidates using
data from pp collisions at /s = 8 TeV are taken into account.

3. The uncertainty on the candidate efficiency includes the uncertainties on the re-
construction, selection, trigger and muon-identification efficiencies. It is based on
the statistical uncertainty of the measured efficiencies as well as on the uncertainty
of the muon pseudorapidity spectrum from simulation used to obtain the average
efficiency values.



Table 1: Systematic uncertainties in the cross-section calculation for o, ,+,-. The uncertainties
on p and £ are assumed to be fully correlated between the forward and the backward sample.

Source Forward Backward
Sample purity 0.5% 0.5%
GEC efficiency 0.0% 1.9%
Candidate efficiency 8.4% 8.7%
Multiplicity reweighting 1.5% 2.0%
Luminosity 1.9% 21%
Total 8.8% 9.4 %

4. The uncertainty on the track multiplicity reweighting is assigned as the relative
difference in the ratio p/e“®¢ with and without applying the reweighting in the
determination of the purity as well as the reconstruction, selection, trigger and
muon-identification efficiencies.

5. The uncertainty on the luminosity is based on the statistical and systematic uncer-
tainties of the calibration method mentioned in Sect. [3

All systematic uncertainties are listed in Table [If and are added in quadrature to give the
total systematic uncertainty as they are considered uncorrelated.

6 Results

The Z production cross-sections in proton-lead collisions measured in the fiducial region
of 60 < my+,- < 120 GeV/c?, pr(p®) > 20 GeV/e and 2.0 < n(p*) < 4.5 are

Ozt (fwd) = 13.575(stat.) & 1.2(syst.) nb
in the forward direction, and
0zt (bwd) = 10.7757(stat.) & 1.0(syst.) nb

in the backward direction. The first uncertainty is statistical, defined as the 68 % confidence
interval with symmetric coverage assuming that the number of candidates follows a Poisson
distribution, and the second uncertainty is systematic.

The cross-sections calculated at NNLO using FEWZ [16] and the MSTWO08 PDF set [28]
are listed in Table 2] The nuclear modifications to the cross-sections are parametrised
by the EPS09 nPDF set at next-to-leading order (NLO) [§]. The obtained values are in
agreement with the results of the measurements. The measurement is not precise enough



to make any conclusion about the presence of nuclear effects. Figure [3[shows a comparison
of the experimental results and the theoretical predictions.

The statistical significance of the Z signal is evaluated by the probability that a Poisson
distribution with the expected background yield Ny, = o _mm_eGECecandﬁ(l —p)/p as
expectation value fluctuates to the observed signal. The theoretical cross-section ach .
is defined as the value obtained from NNLO calculation using FEWZ and nuclear modifica-
tions based on the EPS09 nPDF set. This gives a significance of 10.40 for the Z signal in
the forward direction and 6.8¢ for the backward direction.

As shown by the calculations using nPDF sets, but also from theoretical calcula-
tions [33] using the leading-twist approach to model the effect of shadowing and anti-
shadowing [7], a suppression of the cross-section in the forward direction is expected while
for the backward direction only a small effect is predicted.

A particularly sensitive variable to detect nuclear modifications is the forward-backward
ratio, Rpp, defined as

Res(v/3nn: lyl) = ZE J_ijjjijz:; 2)

In LHCDb, Rpp can be measured in the overlap region 2.5 < |y| < 4.0 of the Z
rapidity in the centre-of-mass frame of the two beam configurations. The cross-section
ratio determined for this range including acceptance corrections should be one without
any nuclear effects. The predicted value from NNLO calculation using FEWZ with the
MSTWO08 PDF set and the nuclear modifications of the PDF from the EPS09 set at NLO
is Rpp(2.5 < |y| < 4.0) = 0.943%0532; the quoted uncertainty is due to the uncertainties
on the nPDF. The scale and PDF uncertainties cancel in the ratio.

The value of Rpp measured in the overlap region 2.5 < |y| < 4.0 is defined as

Nean € L 1
Ren(2.5 < |y| < 4.0) = == dfwd Prwd o Sbwd  Ebwd - (3)

Neandpwd ~ Powd  €twd Ltwa B
where [ is the correction factor for the difference in the detector acceptance of the muons
between the forward and backward directions. It is evaluated using NNLO FEwWz calcula-

Table 2: Z — p*pu~ cross-section predictions based on NNLO calculations using FEWZ with
the MSTWO08 PDF set. The nuclear modifications are parametrised by the EPS09 nPDF set.
The first uncertainty is the scale uncertainty evaluated by changing the renormalisation and
factorisation scales by a factor two up and down. The second one comes from the uncertainties
on the PDF and the third in case of the predictions with nuclear effects from the nPDF.

Theory setup Ozt~ (D]

Forward Backward
No nuclear effects 14.48F55210-50 2.8110-08+0-07
With nuclear effects (EPS09) 131250 0550515006 2.6110-03 007 +0.03
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Figure 3: Experimental results and the theoretical predictions for the Z — u™u~ production cross-
section. The inner error bars of the experimental results show the systematic uncertainties. The
uncertainties on the theoretical predictions are negligible compared to those on the experimental
results.

tions to be 8 = 2.41975:127 (theo.) + 0.008(num.) " 000 (PDF), where the first uncertainty is
from the variation of the renormalisation and factorisation scale, the second the numerical
and the last the uncertainty from the PDF uncertainties. The scale variation always leads
to an enhancement of .

The numbers of candidates in the common y range are 2 in the forward and 4 in the
backward samples. The measured value for Rpgp is

Rpp(2.5 < |y| < 4.0) = 0.09475 1% (stat.) T oo (syst.),

where the first uncertainty is statistical, defined as the 68 % confidence interval with
symmetric coverage. The 99.7% (i.e. 30) confidence interval with symmetric coverage is
[0.002, 1.626] whereas the asymmetry of the interval around the central value is due to
non-Gaussian statistical uncertainties. The second uncertainty is systematic and includes
also the uncertainty on the acceptance correction factor 5. The systematic uncertainties
between the forward and the backward directions on the purity and the reconstruction,
selection, trigger and muon-identification efficiency are assumed to be fully correlated. The
probability to observe a value of Rpp no larger than that measured, assuming no nuclear
modifications (i.e. the true value is Rpg = 1), is 1.2 %. This corresponds to a deviation
with a 2.20 significance. The probability is estimated with a toy Monte Carlo assuming



Poissonian distributions for the number of candidates.

7 Conclusions

Measurements of Z production in proton-lead collisions at LHCb at \/syny = 5TeV in
the forward and backward directions, with data corresponding to 1.1 and 0.5 nb™! of
integrated luminosity, respectively, have been performed.

The cross-section is measured to be

Ozt (fwd) = 13.555(stat.) & 1.2(syst.) nb,
in the forward direction, and
07 - (bwd) = 10.773(stat.) & 1.0(syst.) nb

in the backward direction. These values are in agreement with predictions, although the
production of Z bosons in the backward direction appears to be higher than predictions.
The fiducial region is defined by 2.0 < n(p*) < 4.5, pr(p*) > 20 GeV/c and 60 < m,+,- <
120 GeV/c?. The forward-backward ratio Rpp in the Z rapidity interval 2.5 < |y| < 4.0
in the centre-of-mass frame is found to be lower than expectations, and corresponds to a
2.20 deviation from Rpg = 1.

The statistical precision of the measured cross-sections prevents conclusions on the
presence of nuclear effects. The first observation of Z production in proton-nucleus collisions
demonstrates the excellent potential of the study of electroweak bosons in proton-lead
collisions at LHCb.
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