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Abstract

The isospin asymmetries of B → Kµ+µ− and B → K∗µ+µ− decays and the partial
branching fractions of the B0 → K0µ+µ−, B+ → K+µ+µ− and B+ → K∗+µ+µ−

decays are measured as functions of the dimuon mass squared, q2. The data used
correspond to an integrated luminosity of 3 fb−1 from proton-proton collisions
collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in
2011 and 2012, respectively. The isospin asymmetries are both consistent with the
Standard Model expectations. The three measured branching fractions favour lower
values than their respective theoretical predictions, however they are all individually
consistent with the Standard Model.
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6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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60Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

61Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3

62Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11

63National Research Centre Kurchatov Institute, Moscow, Russia, associated to 31

64Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36

65KVI - University of Groningen, Groningen, The Netherlands, associated to 41

66Celal Bayar University, Manisa, Turkey, associated to 38
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1 Introduction

The rare decay of a B meson into a strange meson and a µ+µ− pair is a b → s quark-level
transition. In the Standard Model (SM), this can only proceed via loop diagrams. The
loop-order suppression of the SM amplitudes increases the sensitivity to new virtual
particles that can influence the decay amplitude at a similar level to the SM contribution.
The branching fractions of B→ K(∗)µ+µ− decays are highly sensitive to contributions from
vector or axial-vector like particles predicted in extensions of the SM. However, despite
recent progress in lattice calculations [1,2], theoretical predictions of the decay rates suffer
from relatively large uncertainties in the B → K(∗) form factor calculations.

To maximise sensitivity, observables can be constructed from ratios or asymmetries
where the leading form factor uncertainties cancel. The CP -averaged isospin asymmetry
(AI) is such an observable. It is defined as

AI =
Γ(B0→ K(∗)0µ+µ−)− Γ(B+→ K(∗)+µ+µ−)

Γ(B0→ K(∗)0µ+µ−) + Γ(B+→ K(∗)+µ+µ−)

=
B(B0→ K(∗)0µ+µ−)− (τ0/τ+) · B(B+→ K(∗)+µ+µ−)

B(B0→ K(∗)0µ+µ−) + (τ0/τ+) · B(B+→ K(∗)+µ+µ−)
,

(1)

where Γ(f) and B(f) are the partial width and branching fraction of the B → f decay
and τ0/τ+ is the ratio of the lifetimes of the B0 and B+ mesons1. The decays in the
isospin ratio differ only by the charge of the light (spectator) quark in the B meson. The
SM prediction for AI is O(1%) in the dimuon mass squared, q2, region below the J/ψ
resonance [3–5]. There is no precise prediction for AI for the q2 region above the J/ψ
resonance, but it is expected to be even smaller than at low q2 [5]. As q2 approaches zero,
the isospin asymmetry of B→ K∗µ+µ− is expected to approach the same asymmetry as
in B→ K∗γ decays, which is measured to be (5± 3)% [6].

Previously, AI has been measured by the BaBar [7], Belle [8] and LHCb [9] collaborations,
where measurements for the B→ Kµ+µ− decay have predominantly given negative values
of AI. In particular, theB→ Kµ+µ− isospin asymmetry measured by the LHCb experiment
deviates from zero by over 4 standard deviations. For B→ K∗µ+µ−, measurements of AI

are consistent with zero.
This paper describes a measurement of the isospin asymmetry in B→ Kµ+µ− and

B→ K∗µ+µ− decays based on data collected with the LHCb detector, corresponding to
an integrated luminosity of 1 fb−1 recorded in 2011 at a centre-of-mass energy

√
s = 7 TeV,

and 2 fb−1 recorded in 2012 at
√
s = 8 TeV. The previous analysis [9] was carried out on

the 1 fb−1 of data recorded in 2011. The analysis presented here includes, in addition to
the data from 2012, a re-analysis of the full 1 fb−1 data sample with improved detector
alignment parameters, reconstruction algorithms and event selection. Thus it supersedes
the measurements in Ref. [9]. Moreover, the assumption that there is no isospin asymmetry
in the B→ J/ψK(∗) decays is now used for all the measurements.

1The inclusion of charge conjugated processes is implied throughout this paper.
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The isospin asymmetries are determined by measuring the differential branching
fractions of B+→ K+µ+µ−, B0→ K0µ+µ−, B0→ K∗0µ+µ− and B+→ K∗+µ+µ− decays.
The K0 meson is reconstructed through the decay K0

S → π+π−; the K∗+ as K∗+ →
K0

S (→ π+π−)π+ and the K∗0 as K∗0 → K+π−. Modes involving a K0
L or π0 in the

final state are not considered. The individual branching fractions of B+→ K+µ+µ−,
B0→ K0µ+µ− and B+→ K∗+µ+µ− decays are also reported. The branching fraction of
the decay B0→ K∗0µ+µ− has been previously reported in Ref. [10] and is not updated
here.

The B0→ K∗0µ+µ− and B+→ K∗+µ+µ− branching fractions are influenced by the
presence of B0→ K+π−µ+µ− and B+→ K0

Sπ
+µ+µ− decays with the K+π− or K0

Sπ
+

system in a S-wave configuration. It is not possible to separate these candidates from
the dominant K∗0 and K∗+ resonant components without performing an analysis of the
K+π− or K0

Sπ
+ invariant mass and the angular distribution of the final state particles.

The S-wave component is expected to be at the level of a few percent [11] and to cancel
when evaluating the isospin asymmetry of the B→ K∗µ+µ− decays.

2 Detector and dataset

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes [13] placed downstream of the magnet. The combined
tracking system provides a momentum measurement with relative uncertainty that varies
from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of 20µm
for tracks with high transverse momentum. Charged hadrons are identified using two
ring-imaging Cherenkov (RICH) detectors [14]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers [15].
Decays of K0

S→ π+π− are reconstructed in two different categories: the first involving K0
S

mesons that decay early enough for the daughter pions to be reconstructed in the vertex
detector; and the second containing K0

S mesons that decay later such that track segments
of the pions cannot be formed in the vertex detector. These categories are referred to
as long and downstream, respectively. Candidates in the long category have better mass,
momentum and vertex resolution than those in the downstream category.

Simulated events are used to estimate the efficiencies of the trigger, reconstruction and
subsequent event selection of the different signal decays and to estimate the contribution
from specific background sources. These samples are produced using the software described
in Refs. [16–22].
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3 Selection

The B→ K(∗)µ+µ− candidate events are required to pass a two-stage trigger system [23].
In the initial hardware stage, these events are selected with at least one muon with
transverse momentum, pT > 1.48 (1.76) GeV/c in 2011 (2012). In the subsequent software
stage, at least one of the final-state particles is required to have pT > 1.0 GeV/c and
an impact parameter (IP) larger than 100µm with respect to all of the primary pp
interaction vertices (PVs) in the event. Finally, a multivariate algorithm [24] is used for
the identification of secondary vertices consistent with the decay of a b hadron with muons
in the final state.

For the B0→ K0
Sµ

+µ− and B+→ K∗+µ+µ− modes, K0
S candidates are required to

have a mass within 30 MeV/c2 of the known K0
S mass [25]. For the B0→ K∗0µ+µ− and

B+→ K∗+µ+µ− modes, K∗ candidates are formed by combining kaons and pions and are
required to have a mass within 100 MeV/c2 of the known K∗ masses [25]. For all decay
modes, B candidates are formed by subsequently combining the K(∗) meson with two
muons of opposite charge and requiring the mass to be between 5170 and 5700 MeV/c2.

The event selection is common to that described in Refs. [10,26,27]: the µ± and the
K+ candidates are required to have χ2

IP > 9, where χ2
IP is defined as the minimum change

in χ2 of the vertex fit to any of the PVs in the event when the particle is added to that
PV; the dimuon pair vertex fit has χ2 < 9; the B candidate is required to have a vertex fit
χ2 < 8 per degree of freedom; the B momentum vector is aligned with respect to one of
the PVs in the event within 14 mrad, the B candidate has χ2

IP < 9 with respect to that PV
and the vertex fit χ2 of that PV increases by more than 121 when including the B decay
products. In addition, the K0

S candidate is required to have a decay time larger than 2 ps.
Using particle identification information from the RICH detectors, calorimeters and

muon system, multivariate discriminants (PID variables) are employed to reject background
candidates, where pions are misidentified as kaons and vice-versa, and where a pion or
kaon is incorrectly identified as a muon.

The initial selection is followed by a tighter multivariate selection, based on a boosted
decision tree (BDT) [28] with the AdaBoost algorithm [29], which is designed to reject
background of combinatorial nature. Separate BDTs are employed for each signal decay.
For decays involving a K0

S meson, two independent BDTs are trained for the long and
downstream categories. This gives a total of six BDTs which all use data from the upper
mass sideband (m(K(∗)µ+µ−) > 5350 MeV/c2) of their corresponding decay to represent
the background sample in the training. Simulated B+→ K+µ+µ−, B0→ K0

Sµ
+µ− and

B+→ K∗+µ+µ− events are used as the signal sample in the training of the corresponding
BDTs. In contrast, to stay consistent with the selection in Ref. [26], the signal for the
training of the B0→ K∗0µ+µ− BDT is taken from reconstructed B0→ (J/ψ → µ+µ−)K∗0

candidates from data. Events used in the training of the BDTs are not used in the
subsequent classification of the data.

All six BDTs use predominantly geometric variables, including the variables used in the
pre-selection described above. The B0→ K∗0µ+µ− BDT also makes use of PID variables
to further suppress background where a K+ is misidentified as a π+ and vice-versa in the
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K∗0 decay.
The multivariate selections for B+→ K+µ+µ−, B+→ K∗+µ+µ− and B0→ K∗0µ+µ−

candidates have an efficiency of 90% for the signal channels and remove 95% of the
background that remains after the pre-selection. The long lifetime of the K0

S meson makes
it difficult to determine whether it originates from the same vertex as the dimuon system
in B0→ K0

Sµ
+µ− decays. As such, the multivariate selection for B0→ K0

Sµ
+µ− candidates

has a signal efficiency of 66% and 48% for the long and downstream categories, respectively,
while removing 99% of the background surviving the pre-selection.

Combinatorial background, where the final-state particles attributed to the B candidate
do not all come from the same b-hadron decay, are reduced to a small level by the
multivariate selection. In addition, there are several sources of background that peak in
the K(∗)µ+µ− invariant mass. The largest of these are B→ J/ψK(∗) and B→ ψ(2S)K(∗)

decays, which are rejected by removing the regions of dimuon invariant mass around
the charmonium resonances (2828 < m(µ+µ−) < 3317 MeV/c2 and 3536 < m(µ+µ−) <
3873 MeV/c2). A combination of mass and PID requirements remove additional peaking
backgrounds. These include Λ0

b→ Λ(∗)µ+µ− decays, where the proton from the Λ→ pπ−

decay is misidentified as a K+ or the proton misidentified as a π+ in the Λ∗→ pK−

decay, B0
s→ φµ+µ− decays where a kaon from φ→ K+K− is misidentified as a pion, and

B+→ K+µ+µ− decays that combine with a random pion to fake a B0→ K∗0µ+µ− decay.
After the application of all the selection criteria the exclusive backgrounds are reduced to
less than 1% of the level of the signal.

To improve the resolution on the reconstructed mass of the B meson, a kinematic
fit [30] is performed for candidates involving a K0

S meson. In the fit, the mass of the π+π−

system is constrained to the nominal K0
S mass and the B candidate is required to originate

from its associated PV.

4 Signal yield determination

Signal yields are determined using extended unbinned maximum likelihood fits to the
K(∗)µ+µ− mass in the range 5170–5700 MeV/c2. These fits are performed in nine bins
of q2 for B0→ K0

Sµ
+µ−, B+→ K∗+µ+µ− and B0→ K∗0µ+µ− decays, while for the

B+→ K+µ+µ− decay the larger number of signal events allows to define nineteen q2

bins. The binning scheme is shown in Tables 4 to 6 of the appendix. It removes the
region of q2 around the charmonium resonances. For the B+ → K+µ+µ− differential
branching fraction, where the statistical uncertainty is the smallest, a narrow range in
m(µ+µ−) is also removed around the mass of the φ meson. The signal component in the
fit is described by the sum of two Crystal Ball functions [31] with common peak values
and tail parameters, but different widths. The signal shape parameters are taken from a
fit to B→ J/ψK(∗) channels in the data, with a correction that accounts for a small q2

dependence on the peak value and width obtained from the simulation. The combinatorial
background is parameterised by an exponential function, which is allowed to vary for each
q2 bin and K0

S category independently. For decays involving K0
S mesons, separate fits are
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Table 1: Observed yields of the four signal channels summed over the q2 bins, excluding the
charmonium resonance regions. Only the statistical uncertainties are shown.

Decay mode Signal yield

B+→ K+µ+µ− 4746± 81

B0→ K0
Sµ

+µ− 176± 17

B+→ K∗+(→ K0
Sπ

+)µ+µ− 162± 16

B0→ K∗0(→ K+π−)µ+µ− 2361± 56
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Figure 1: Reconstructed B candidate mass for the four signal modes. The data are overlaid
with the result of the fit described in the text. The long and downstream K0

S categories are
combined. The results of the fits, performed in separate q2 bins, are merged for presentation
purposes. The blue (shaded) region is the combinatorial background.

made to the long and downstream categories. The mass fits for the four signal channels
are shown in Fig. 1, where the long and downstream K0

S categories are combined and the
results of the fits, performed in separate q2 bins, are merged for presentation purposes.
The corresponding number of signal candidates for each channel is given in Table 1.
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5 Branching fraction normalisation

Each signal mode is normalised with respect to its corresponding B→ J/ψK(∗) channel,
where the J/ψ resonance decays into two muons. These normalisation channels have
branching fractions that are approximately two orders of magnitude higher than those
of the signal channels. Each normalisation channel has similar kinematic properties and
the same final-state particles as the signal modes. This results in an almost complete
cancellation of systematic uncertainties when measuring the ratio of branching fractions of
the signal mode with the corresponding normalisation channel. Separate normalisations for
the long and downstream K0

S reconstruction categories are used to further cancel potential
sources of systematic uncertainty.

Corrections to the IP resolution, PID variables and B candidate kinematic properties
are applied to the simulated events, such that the distributions of simulated candidates from
the normalisation channels agree with the data. The simulation samples are subsequently
used to calculate the relative efficiencies as functions of q2. The q2 dependence arises
mainly from trigger effects, where the muons have increased (decreased) pT at high (low)
q2 and consequently have a higher (lower) trigger efficiency. Furthermore, at high q2, the
hadrons are almost at rest in the B meson rest frame and, like the B meson, points back
to the PV in the laboratory frame. The IP requirements applied on the hadron have a
lower efficiency for this region of q2. The K0

S channels have an additional effect due to the
different acceptance of the two reconstruction categories; K0

S mesons are more likely to be
reconstructed in the long category if they have low momentum, which favours the high q2

region. The momentum distributions of the K0
S mesons in B0→ J/ψK0

S and B+→ J/ψK∗+

decays in data and simulation for both K0
S categories are in good agreement, indicating

that the acceptance is well described in the simulation.
The measured differential branching fraction averaged over a q2 bin of width q2max−q2min

is given by

dB
dq2

=
N(B→ K(∗)µ+µ−)

N(B→ J/ψK(∗))
· ε(B→ J/ψK(∗))

ε(B→ K(∗)µ+µ−)
· B(B→ J/ψK(∗))B(J/ψ → µ+µ−)

(q2max − q2min)
, (2)

where N(B→ K(∗)µ+µ−) is the number of signal candidates in the bin, N(B→ J/ψK(∗))
is the number of normalisation candidates, the product of B(B→ J/ψK(∗)) and
B(J/ψ → µ+µ−) is the visible branching fraction of the normalisation channel, and
ε(B→ K(∗)µ+µ−)/ε(B→ J/ψK(∗)) is the relative efficiency between the signal and nor-
malisation channels in the bin.

6 Systematic uncertainties

The branching fraction measurements of the normalisation modes from the B-factory
experiments assume that the B+ and B0 mesons are produced with equal proportions at
the Υ(4S) resonance [32–34]. In contrast, in this paper isospin symmetry is assumed for the
B→ J/ψK(∗) decays, implying that the B+→ J/ψK+ (B+→ J/ψK∗+) and B0→ J/ψK0
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(B0→ J/ψK∗0) decays have the same partial width. The branching fractions used in the
normalisation are obtained by: taking the most precise branching fraction results from
Ref. [32] and translating them into partial widths; averaging the partial widths of the
K+, K0 and the K∗+, K∗0 modes, respectively; and finally translating the widths back
to branching fractions. The calculation only requires knowledge of the ratio of B0 and
B+ lifetimes for which we use 0.93 ± 0.01 [25]. Statistical uncertainties are treated as
uncorrelated while systematical uncertainties are conservatively treated as fully correlated.
The resulting branching fractions of the normalisation channels are

B(B+→ J/ψK+) = (0.998± 0.014± 0.040)× 10−3,

B(B0→ J/ψK0) = (0.928± 0.013± 0.037)× 10−3,

B(B+→ J/ψK∗+) = (1.431± 0.027± 0.090)× 10−3,

B(B0→ J/ψK∗0) = (1.331± 0.025± 0.084)× 10−3,

where the first uncertainty is statistical and the second systematic.
A systematic uncertainty is assigned to account for the imperfect knowledge of the q2

spectrum in the simulation within each q2 bin. For example, the recent observation of a
resonance in the high q2 region of B+→ K+µ+µ− decays [26] alters the q2 distribution and
hence the selection efficiencies in that region. By reweighting simulated events to account
for this resonance, and for variations of the B → K(∗) form factor model as described in
Ref. [35], a systematic uncertainty is determined at the level of (1− 2)% depending on
channel and q2 bin.

Data-driven corrections of the long and downstream tracking efficiencies in the sim-
ulation are determined using tag-and-probe techniques in J/ψ → µ+µ− and D0 → φK0

S

decays, respectively. For the J/ψ → µ+µ− decay, the tag is a fully reconstructed muon
track. It is combined with another muon, referred to as the probe, reconstructed using the
muon stations and the large-area silicon detector upstream of the magnet. The tracking
efficiency is determined by reconstructing the probe using the full tracking system. The
D0 → φK0

S decay is tagged via a partial reconstruction using only one of the K0
S daugh-

ters. The downstream tracking efficiency is then evaluated by fully reconstructing the
K0

S candidate. The resulting systematic uncertainty on the efficiency ratio, due to finite
precision of the measurement, is found to be negligible. The systematic uncertainty that
arises from the corrections to the IP resolution, PID variables and B candidate kinematic
properties in the simulation varies between 1% and 3% depending on channel and q2 bin.

A summary of the systematic uncertainties can be found in Table 2. The uncertainties
on the branching fractions of the normalisation modes constitute the dominant source of
systematic uncertainty on the branching fraction measurements while it cancels in the
isospin measurements.

7 Branching fraction results

The differential branching fraction results for B+→ K+µ+µ−, B0→ K0µ+µ− and B+→
K∗+µ+µ− decays are shown in Fig. 2 with theoretical predictions [36,37] superimposed.
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Table 2: Summary of systematic uncertainties associated with the branching fraction and
isospin asymmetry measurements.

Source Branching fraction Isospin asymmetry

B→ J/ψK(∗) branching fractions 4%− 6% −
Physics model 1%− 2% 1%− 2%
Simulation mis-modelling 1%− 3% 1%− 3%

The values are given in Tables 4 to 6 in the appendix. In the low q2 region, these predictions
rely on the QCD factorisation approaches from Refs. [38,39] for B→ K∗µ+µ− and Ref. [40]
for B→ Kµ+µ−, and lose accuracy when approaching the J/ψ resonance. In the high q2

region, an operator product expansion in the inverse b-quark mass, 1/mb, and in 1/
√
q2

is used based on Ref. [41]. This expansion is only valid above the open charm threshold.
A dimensional estimate of the uncertainty associated with this expansion is discussed
in Ref. [42]. For light cone sum rule (LCSR) predictions, the B → K(∗) form factor
calculations are taken from Refs. [43] and [44]. Predictions based on form factors from
lattice calculations are also overlaid [1, 2, 45, 46].

Although all three differential branching fraction measurements are consistent with
the SM, they all have values smaller than the theoretical prediction. The sample size for
B+→ K+µ+µ− is sufficient to show significant structures in the q2 distribution. As an
example, the peak at high q2 is due to the ψ(4160) resonance, which is discussed in more
detail in Ref. [26].

The presence of an S-wave contribution to the K+π− and K0
Sπ

+ systems of B0→
K∗0µ+µ− and B+→ K∗+µ+µ− candidates, respectively, complicates the analysis of these
channels. This effect is of the order of a few percent and can be neglected inB+→ K∗+µ+µ−

decays with the current statistical precision. The larger signal yield of B0→ K∗0µ+µ−,
however, merits a detailed analysis of the S-wave contribution and requires a dedicated
study. For this reason the branching fraction of B0→ K∗0µ+µ− decays is not reported.

By convention, branching fractions are extrapolated to the full q2 range ignoring the
presence of the narrow charmonium resonances. A q2 distribution based on Ref. [47] is
used for this. The correction factors to the branching fractions due to this extrapolation
are 1.39 and 1.50 for B→ Kµ+µ− and B0→ K∗0µ+µ−, respectively. No uncertainty is
assigned to these corrections. Summing the q2 bins and applying the extrapolation, the
integrated branching fractions become

B(B+→ K+µ+µ−) = (4.29± 0.07 (stat)± 0.21 (syst))× 10−7,

B(B0→ K0µ+µ−) = (3.27± 0.34 (stat)± 0.17 (syst))× 10−7,

B(B+→ K∗+µ+µ−) = (9.24± 0.93 (stat)± 0.67 (syst))× 10−7.

These measurements are more precise than the current world averages [25].
Table 3 compares the B+→ K+µ+µ− and B0→ K0µ+µ− branching fractions integrated

over the q2 region of 15−22 GeV2/c4, and the B+→ K∗+µ+µ− branching fraction integrated
over the 15 − 19 GeV2/c4 region to the lattice QCD predictions [1, 2, 45, 46]. While the
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Figure 2: Differential branching fraction results for the B+→ K+µ+µ−, B0→ K0µ+µ− and
B+→ K∗+µ+µ− decays. The uncertainties shown on the data points are the quadratic sum
of the statistical and systematic uncertainties. The shaded regions illustrate the theoretical
predictions and their uncertainties from light cone sum rule and lattice QCD calculations.

Table 3: Integrated branching fractions (10−8) in the high q2 region. For the B→ Kµ+µ−

modes the region is defined as 15− 22 GeV2/c4, while for B+→ K∗+µ+µ− it is 15− 19 GeV2/c4.
Predictions are obtained using the form factors calculated in lattice QCD over the same q2

regions. For the measurements, the first uncertainty is statistical and the second systematic.

Decay mode Measurement Prediction

B+→ K+µ+µ− 8.5± 0.3± 0.4 10.7± 1.2

B0→ K0µ+µ− 6.7± 1.1± 0.4 9.8± 1.0

B+→ K∗+µ+µ− 15.8 +3.2
−2.9 ± 1.1 26.8± 3.6

measurements are all individually consistent with their respective predictions, they all
have values below those.
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Figure 3: Isospin asymmetries for (left) B→ Kµ+µ− and (right) B→ K∗µ+µ− decays.

8 Isospin asymmetry results

The assumption of no isospin asymmetry in the B→ J/ψK(∗) modes makes the isospin
measurement equivalent to measuring the difference in isospin asymmetry between B→
K(∗)µ+µ− and B→ J/ψK(∗) decays. Compared to using the values in Ref. [25] for the
branching fractions of the B→ J/ψK(∗) modes, this approach shifts AI in each bin by
approximately 4%. The isospin asymmetries are shown in Fig. 3 for B→ Kµ+µ− and
B→ K∗µ+µ− and given in Tables 7 and 8 in the appendix. The asymmetric uncertainties
are obtained from the profile likelihood.

Since there is no knowledge on the shape of AI in models that extend the SM, apart
from large correlations expected between neighbouring bins, the AI = 0 hypothesis is
tested against the simplest alternative, that is a constant value different from zero. The
difference in χ2 between the two hypotheses is used as a test statistic and is compared
to the differences in an ensemble of pseudo-experiments which are generated with zero
isospin asymmetry. Given the current statistical precision, the hypothesis of AI = 0 is a
good approximation to the SM which predicts AI to be O(1%) [3–5]. The p-value for the
B→ Kµ+µ− isospin asymmetry under the AI = 0 hypothesis is 11%, corresponding to
a significance of 1.5σ. The B→ K∗µ+µ− isospin asymmetry has a p-value of 80% with
respect to zero. Alternatively, a simple χ2 test of the data with respect to a hypothesis of
zero isospin asymmetry has a p-value of 54% (4%) for the B→ Kµ+µ− (B→ K∗µ+µ−)
isospin asymmetry.

Although the isospin asymmetry for B→ Kµ+µ− decays is negative in all but one q2

bin, results are more consistent with the SM compared to the previous measurement in
Ref. [9], which quoted a 4.4σ significance to differ from zero, using a test statistic that
explicitly tested for AI to be negative in all bins. The lower significance quoted here is
due to four effects: the change of the test statistic in the calculation of the significance
itself, which reduces the previous discrepancy to 3.5σ; the assumption that the isospin
asymmetry of B → J/ψK(∗) is zero which reduces the significance further to 3.2σ; a
re-analysis of the 2011 data with the updated reconstruction and event selection that
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Figure 4: Isospin asymmetry of B→ Kµ+µ− obtained separately from the 2011 and 2012 data
sets.

reduces the significance to 2.5σ; and finally the inclusion of the 2012 data set reduces the
significance further to 1.5σ.

The measurements of AI in the individual q2 bins obtained from the re-analysis of the
2011 data set are compatible with those obtained in the previous analysis; a χ2 test on the
compatibility of the two results, taking the overlap of events into account, has a p-value of
93%. However results from the 2012 data are more compatible with an AI value of zero
than the re-analysed 2011 data, as shown in Fig 4.

9 Conclusion

The most precise measurements of the differential branching fractions of B+→ K+µ+µ−,
B0→ K0

Sµ
+µ− and B+→ K∗+µ+µ− decays as well as the isospin asymmetries of B→

Kµ+µ− and B→ K∗µ+µ− decays have been performed using a data set corresponding to
3 fb−1 of integrated luminosity collected by the LHCb detector.

The isospin asymmetries of the B → Kµ+µ− and B → K∗µ+µ− decays are both
consistent with SM expectations. However, the branching fraction measurements all
have lower values than the SM predictions. This is consistent with the B0→ K∗0µ+µ−

and B0
s → φµ+µ− branching fractions measured by LHCb, which also favour lower

values [10,46,48] than predicted by the SM.
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A Appendix

Table 4: Differential branching fraction results (10−9 × c4/GeV2) for the B+→ K+µ+µ−

decay, including statistical and systematic uncertainties.

q2 range (GeV2/c4) central value stat syst

0.1 < q2 < 0.98 33.2 1.8 1.7
1.1 < q2 < 2.0 23.3 1.5 1.2
2.0 < q2 < 3.0 28.2 1.6 1.4
3.0 < q2 < 4.0 25.4 1.5 1.3
4.0 < q2 < 5.0 22.1 1.4 1.1
5.0 < q2 < 6.0 23.1 1.4 1.2
6.0 < q2 < 7.0 24.5 1.4 1.2
7.0 < q2 < 8.0 23.1 1.4 1.2

11.0 < q2 < 11.8 17.7 1.3 0.9
11.8 < q2 < 12.5 19.3 1.2 1.0
15.0 < q2 < 16.0 16.1 1.0 0.8
16.0 < q2 < 17.0 16.4 1.0 0.8
17.0 < q2 < 18.0 20.6 1.1 1.0
18.0 < q2 < 19.0 13.7 1.0 0.7
19.0 < q2 < 20.0 7.4 0.8 0.4
20.0 < q2 < 21.0 5.9 0.7 0.3
21.0 < q2 < 22.0 4.3 0.7 0.2

1.1 < q2 < 6.0 24.2 0.7 1.2
15.0 < q2 < 22.0 12.1 0.4 0.6

16



Table 5: Differential branching fraction results (10−9 × c4/GeV2) for the B0→ K0µ+µ−

decay, including statistical and systematic uncertainties.

q2 range (GeV2/c4) central value stat syst

0.1 < q2 < 2.0 12.2 +5.9
−5.2 0.6

2.0 < q2 < 4.0 18.7 +5.5
−4.9 0.9

4.0 < q2 < 6.0 17.3 +5.3
−4.8 0.9

6.0 < q2 < 8.0 27.0 +5.8
−5.3 1.4

11.0 < q2 < 12.5 12.7 +4.5
−4.0 0.6

15.0 < q2 < 17.0 14.3 +3.5
−3.2 0.7

17.0 < q2 < 22.0 7.8 +1.7
−1.5 0.4

1.1 < q2 < 6.0 18.7 +3.5
−3.2 0.9

15.0 < q2 < 22.0 9.5 +1.6
−1.5 0.5

Table 6: Differential branching fraction results (10−9 × c4/GeV2) for the B+→ K∗+µ+µ−

decay, including statistical and systematic uncertainties.

q2 range (GeV2/c4) central value stat syst

0.1 < q2 < 2.0 59.2 +14.4
−13.0 4.0

2.0 < q2 < 4.0 55.9 +15.9
−14.4 3.8

4.0 < q2 < 6.0 24.9 +11.0
− 9.6 1.7

6.0 < q2 < 8.0 33.0 +11.3
− 10.0 2.3

11.0 < q2 < 12.5 82.8 +15.8
−14.1 5.6

15.0 < q2 < 17.0 64.4 +12.9
−11.5 4.4

17.0 < q2 < 19.0 11.6 + 9.1
− 7.6 0.8

1.1 < q2 < 6.0 36.6 + 8.3
− 7.6 2.6

15 < q2 < 19.0 39.5 + 8.0
− 7.3 2.8
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Table 7: Isospin asymmetry results for the B→ Kµ+µ− decay, including statistical and
systematic uncertainties.

q2 range (GeV2/c4) central value stat syst

0.1 < q2 < 2.0 -0.37 +0.18
−0.21 0.02

2.0 < q2 < 4.0 -0.15 +0.13
−0.15 0.02

4.0 < q2 < 6.0 -0.10 +0.13
−0.16 0.02

6.0 < q2 < 8.0 0.09 +0.10
−0.11 0.02

11.0 < q2 < 12.5 -0.16 +0.15
−0.18 0.03

15.0 < q2 < 17.0 -0.04 +0.11
−0.13 0.02

17.0 < q2 < 22.0 -0.12 +0.10
−0.11 0.02

1.1 < q2 < 6.0 -0.10 +0.08
−0.09 0.02

15.0 < q2 < 22.0 -0.09 +0.08
−0.08 0.02

Table 8: Isospin asymmetry results for the B→ K∗µ+µ− decay, including statistical and
systematic uncertainties.

q2 range (GeV2/c4) central value stat syst

0.1 < q2 < 2.0 0.11 +0.12
−0.11 0.02

2.0 < q2 < 4.0 -0.20 +0.15
−0.12 0.03

4.0 < q2 < 6.0 0.23 +0.21
−0.18 0.02

6.0 < q2 < 8.0 0.19 +0.17
−0.15 0.02

11.0 < q2 < 12.5 -0.25 +0.09
−0.08 0.03

15.0 < q2 < 17.0 -0.10 +0.10
−0.09 0.03

17.0 < q2 < 19.0 0.51 +0.29
−0.24 0.02

1.1 < q2 < 6.0 0.00 +0.12
−0.10 0.02

15.0 < q2 < 19.0 0.06 +0.10
−0.09 0.02
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