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Abstract

The production of J/ψ mesons with rapidity 1.5 < y < 4.0 or −5.0 < y < −2.5
and transverse momentum pT < 14 GeV/c is studied with the LHCb detector in
proton-lead collisions at a nucleon-nucleon centre-of-mass energy

√
sNN = 5 TeV.

The J/ψ mesons are reconstructed using the dimuon decay mode. The analysis
is based on a data sample corresponding to an integrated luminosity of about
1.6 nb−1. For the first time the nuclear modification factor and forward-backward
production ratio are determined separately for prompt J/ψ mesons and J/ψ from
b-hadron decays. Clear suppression of prompt J/ψ production with respect to
proton-proton collisions at large rapidity is observed, while the production of J/ψ
from b-hadron decays is less suppressed. These results show good agreement with
available theoretical predictions. The measurement shows that cold nuclear matter
effects are important for interpretations of the related quark-gluon plasma signatures
in heavy-ion collisions.
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mUniversità della Basilicata, Potenza, Italy
nLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
oHanoi University of Science, Hanoi, Viet Nam
pInstitute of Physics and Technology, Moscow, Russia

vi
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1 Introduction

The suppression of heavy quarkonia production with respect to proton-proton (pp) colli-
sions [1] is one of the most distinctive signatures of the formation of quark-gluon plasma, a
hot nuclear medium created in ultrarelativistic heavy-ion collisions. However, the suppres-
sion of heavy quarkonia and light hadron production with respect to pp collisions can also
take place in proton-nucleus (pA) collisions, where a quark-gluon plasma is not expected
to be created and only cold nuclear matter effects, such as nuclear absorption, parton
shadowing and parton energy loss in initial and final states occur [2–8]. The study of pA
collisions is important to disentangle the effects of quark-gluon plasma from cold nuclear
matter, and to provide essential input to the understanding of nucleus-nucleus collisions.
Nuclear effects are usually characterised by the nuclear modification factor, defined as the
production cross-section of a given particle in pA collisions divided by that in pp collisions
and the number of colliding nucleons in the nucleus (given by the atomic number A),

RpA(y, pT,
√
sNN) ≡ 1

A

d2σpA(y, pT,
√
sNN)/dydpT

d2σpp(y, pT,
√
sNN)/dydpT

, (1)

where y is the rapidity of the particle in the nucleon-nucleon centre-of-mass frame, pT is
the transverse momentum of the particle, and

√
sNN is the nucleon-nucleon centre-of-mass

energy. The suppression of heavy quarkonia and light hadron production with respect to
pp collisions at large rapidity has been observed in pA collisions [9,10] and in deuteron-gold
collisions [11–13], but has not been studied in proton-lead (pPb) collisions at the TeV
scale. Previous experiments [9–13] have also shown evidence that the production cross-
section of J/ψ mesons or light hadrons in the forward region (positive rapidity) of pA or
deuteron-gold collisions differs from that in the backward region (negative rapidity), where
“forward” and “backward” are defined relative to the direction of the proton or deuteron
beam. Measurements of the nuclear modification factor RpPb and the forward-backward
production ratio

RFB(y, pT,
√
sNN) ≡

d2σpPb(+|y|, pT,
√
sNN)/dydpT

d2σpPb(−|y|, pT,
√
sNN)/dydpT

(2)

are sensitive to cold nuclear matter effects. The advantage of measuring the ratio RFB

is that it does not rely on the knowledge of the J/ψ production cross-section in pp
collisions. Another advantage is that part of experimental systematic uncertainties and of
the theoretical scale uncertainties cancel out in the ratio.

The asymmetric layout of the LHCb experiment [14], covering the pseudorapidity range
2 < η < 5, allows for a measurement of RpPb for both the forward and backward regions,
taking advantage of the inversion of the proton and lead beams during the pPb data-taking
period in 2013. The energy of the proton beam is 4 TeV, while that of the lead beam is
1.58 TeV per nucleon, resulting in a centre-of-mass energy of the nucleon-nucleon system
of 5.02 TeV, approximated as

√
sNN = 5 TeV due to the uncertainty of the beam energy.

Since the energy per nucleon in the proton beam is significantly larger than that in the

1



lead beam, the nucleon-nucleon centre-of-mass system has a rapidity in the laboratory
frame of +0.465 (−0.465) for pPb forward (backward) collisions. This results in a shift of
the rapidity coverage in the nucleon-nucleon centre-of-mass system, ranging from about
1.5 to 4.0 for forward pPb collisions and from −5.0 to −2.5 for backward pPb collisions.
The excellent vertexing capability of LHCb allows a separation of prompt J/ψ mesons and
J/ψ mesons from b-hadron decays (abbreviated as “J/ψ from b” in the following). The
sum of these two components is referred to as inclusive J/ψ mesons.

In this paper, the differential production cross-sections of prompt J/ψ mesons and
J/ψ from b, as functions of y and pT, are measured for the first time in pPb collisions at√
sNN = 5 TeV. Measurements of RpPb and RFB, for both prompt J/ψ mesons and J/ψ

from b, are presented. For the ease of the comparison with other experiments, results for
inclusive J/ψ mesons are also given.

2 Detector and data set

The LHCb detector [14] is a single-arm forward spectrometer designed for the study of
particles containing b or c quarks. The detector includes a high precision tracking system
consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region,
a large-area silicon-strip detector located upstream of a dipole magnet with a bending
power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes
placed downstream. The VELO has the unique feature of being located very close to
the beam line (about 8 mm). This allows excellent resolutions in reconstructing the
position of the collision point, i.e., the primary vertex, and the vertex of the hadron
decay, i.e., the secondary vertex. For primary (secondary) vertices, the resolution in
the plane transverse to the beam is σx,y ≈ 10 (20)µm, and that along the beam is
σz ≈ 50 (200)µm. The combined tracking system has a momentum resolution ∆p/p that
varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and an impact parameter resolution of
20µm for tracks with large transverse momentum. Charged hadrons are identified using
two ring-imaging Cherenkov detectors [15]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers [16].
The trigger [17] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage which applies a full event reconstruction.

This analysis is based on a data sample acquired during the pPb run in early 2013,
corresponding to an integrated luminosity of 1.1 nb−1 (0.5 nb−1) for forward (backward)
collisions. The instantaneous luminosity was around 5 × 1027 cm−2s−1, five orders of
magnitude below the typical LHCb luminosity for pp collisions.

The hardware trigger during this period was simply an interaction trigger, which rejects
empty events. The software trigger requires one well-reconstructed track with hits in the
muon system and a pT greater than 600 MeV/c.

Simulated samples based on pp collisions at 8 TeV are reweighted to reproduce the exper-
imental data at 5 TeV, and are used to determine acceptance and reconstruction efficiencies,
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where the effect of the asymmetric beam energies in pPb collisions has been properly taken
into account. In the simulation, pp collisions are generated using Pythia 6.4 [18] with a
specific LHCb configuration [19]. Hadron decays are described by EvtGen [20], where
final state radiation is generated using Photos [21]. The interactions of the generated
particles with the detector and its response are implemented using the Geant4 toolkit [22]
as described in Ref. [23].

3 Event selection and cross-section determination

The J/ψ production cross-section measurement follows the approach described in Refs. [24–
26]. The J/ψ candidates are reconstructed and selected using dimuon final states in
the events with at least one primary vertex, which consists of no less than five tracks.
Reconstructed J/ψ → µ+µ− candidates are selected from pairs of oppositely charged
particles with transverse momentum pT > 0.7 GeV/c, which are identified as muons by
the muon detector and have a track fit χ2 per number of degree of freedom less than
3. To suppress combinatorial background, the difference between the logarithms of the
likelihoods for the muon and the pion hypotheses DLLµπ [16, 27] is required to be greater
than 1.0 (3.5) for the forward (backward) sample. The two muons are required to originate
from a common vertex with a χ2-probability larger than 0.5%. Candidates are kept if the
reconstructed invariant mass is in the range 2990 < mµµ < 3210 MeV/c2, which is within
about ±110 MeV/c2 of the known J/ψ mass [28].

The double differential cross-section for J/ψ production in a given (pT, y) bin is defined
as

d2σ

dpTdy
=

N cor(J/ψ → µ+µ−)

L × B(J/ψ → µ+µ−)×∆pT ×∆y
, (3)

where N cor(J/ψ → µ+µ−) is the efficiency-corrected number of observed J/ψ → µ+µ−

signal candidates in the given bin, L is the integrated luminosity, B(J/ψ → µ+µ−) =
(5.93± 0.06)% [28] is the branching fraction of the J/ψ → µ+µ− decay, and ∆pT and ∆y
the widths of the (pT, y) bin.

The numbers of prompt J/ψ mesons and J/ψ from b in bins of the kinematic variables
y and pT are obtained by performing combined extended maximum likelihood fits to the
unbinned distributions of dimuon mass and pseudo proper time tz in each kinematic bin.
The pseudo proper time of the J/ψ meson is defined as

tz =
(zJ/ψ − zPV)×MJ/ψ

pz
, (4)

where zJ/ψ is the z position of the J/ψ decay vertex, zPV that of the primary vertex, pz is
the z component of the measured J/ψ momentum, and MJ/ψ is the known J/ψ mass [28].

The signal dimuon invariant mass distribution in each pT and y bin is modelled with
a Crystal Ball function [29], and the combinatorial background with an exponential
function. The tz signal distribution is described by the sum of a δ-function at tz = 0 for
prompt J/ψ production and an exponential decay function for J/ψ from b, both convolved
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with a double-Gaussian resolution function whose parameters are free in the fit. The
tz distribution of background in each kinematic bin is independently modelled with an
empirical function based on the tz distribution observed in background events obtained
using the sPlot technique [30]. All the parameters of the tz background distribution are
fixed in the final combined fits to the distributions of invariant mass and pseudo proper
time. The total fit function is the sum of the products of the mass and tz fit functions for
the signal and background components.

Figure 1 shows projections of the fit to the dimuon invariant mass and tz distributions,
for two representative bins of y in the forward and backward regions. Higher combinatorial
background in the backward region is seen due to its larger multiplicity. The dimuon
invariant mass resolution is about 15 MeV/c2 for both the forward and backward samples,
consistent with the mass resolution measured in pp collisions [24–26] and in simulation. The
total signal yield for prompt J/ψ mesons in the forward (backward) sample is 25 280± 240
(8 830± 160), and the total signal yield for J/ψ from b in the forward (backward) sample is
3 720±80 (890±40), where the uncertainty is statistical. Based on the fit results for prompt
J/ψ mesons and J/ψ from b, a signal weight factor wi for the ith candidate is obtained with
the sPlot technique, using the dimuon invariant mass and tz as discriminating variables.
The sum of wi/εi over all events in a given bin leads to the efficiency-corrected signal yield
N cor in that bin, where the efficiency εi depends on pT and y and includes the geometric
acceptance, reconstruction, muon identification, and trigger efficiencies.

The acceptance and reconstruction efficiencies are estimated from simulated samples,
assuming production of unpolarised J/ψ mesons. The efficiency of the DLLµπ selection is
obtained by a data-driven tag-and-probe approach [31]. The trigger efficiency is obtained
from data using a sample of J/ψ decays unbiased by the trigger decision [17].

Figure 2 shows the background-subtracted distributions of the track multiplicity per
event and the J/ψ pT, p, and the rapidity in the laboratory frame ylab in experimental
pPb and simulated pp data. The differences in the distributions of pT, p, and ylab between
data and simulated samples are small. Sizeable differences in the distributions of the track
multiplicity are observed, particularly between the simulation and the backward sample,
for which the particle production cross-section is larger [9, 11–13]. To take this effect into
account, the simulated pp samples are reweighted to match the data with weight factors
derived from the distributions in Fig. 2.

4 Systematic uncertainties

Acceptance and reconstruction efficiencies depend not only on the kinematic distributions
of the J/ψ meson but also on its polarisation. The LHCb measurement in pp collisions [32]
indicated a longitudinal polarisation consistent with zero in most of the kinematic region.
Based on the expectation that the nuclear environment does not enhance the polarisation,
it is assumed that the J/ψ mesons are produced with no polarisation. No systematic
uncertainty is assigned to the effect of polarisation in this analysis.

Several contributions to the systematic uncertainties affecting the cross-section mea-
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Figure 1: Projections of the combined fit on (a, b) dimuon invariant mass and (c, d) tz in two
representative bins in the (a, c) forward and (b, d) backward samples. For the mass projections
the (red solid curve) total fitted function is shown together with the (blue dotted curve) J/ψ
signal and (green dotted curve) background contributions. For the tz projections the total fitted
function is indicated by the solid red curve, the background by the green hatched area, the
prompt signal by the blue area and J/ψ from b by the solid black curve.

surement are discussed in the following and summarised in Table 1. The influence of
the model assumed to describe the shape of the dimuon invariant mass distribution is
estimated by adding a second Crystal Ball to the fit function. The relative difference of
2.3% (3.4%) in the signal yield for forward (backward) collisions is taken as a systematic
uncertainty. Due to the muon bremsstrahlung, a small fraction of signal candidates with
low reconstructed invariant mass are excluded from the signal mass region. This effect is
included in the reconstruction efficiency, and an uncertainty of 1.0% is assigned based on
the comparison between the observed radiative tail in data and simulation.

The systematic uncertainties due to the muon identification efficiency and the track
reconstruction efficiency are estimated using a data-driven tag-and-probe method [31]
based on partially reconstructed J/ψ decays. To estimate the uncertainty due to the muon
identification efficiency, J/ψ candidates are reconstructed with one muon identified by the
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Figure 2: Distributions (normalised to unitary integral) of (a) track multiplicity and the J/ψ
(b) transverse momentum pT, (c) momentum p, and (d) rapidity in laboratory frame ylab in
(black dots) forward and (red squares) backward regions of pPb collisions, and in (blue triangles)
simulated pp collisions. The distributions are background subtracted using the sPlot technique.

muon system (“tag”) and the other (“probe”) identified by selecting a track depositing
the energy of a minimum-ionising particle in the calorimeters. The resulting uncertainty
is 1.3%. Taking into account the effect of the track-multiplicity difference between pPb
and pp data, an uncertainty of 1.5% is assigned due to the track reconstruction efficiency.

From the counting rate of visible interactions in the VELO, the luminosity is determined
with an uncertainty of 1.9% (2.1%) for the pPb forward (backward) sample. For both
configurations the relation between visible interaction rate and instantaneous luminosity
was calibrated using the van der Meer method [33, 34]. Details of the procedure are
described in Ref. [35]. The statistical uncertainties are negligible, the beam intensities
are determined with a precision of better than 0.4%. The dominant contributions to the
systematic uncertainties are 0.6% (1.3%) for the pPb forward (backward) sample due to
the reproducibility of the van der Meer scans and uncontrolled beam drifts, 1.0% from
the absolute length scale calibration of the beam displacements, 0.4% due to longitudinal
movements of the luminous region, and between 0.6% and 1.0% from beam-beam induced
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Table 1: Relative systematic uncertainties on the differential production cross-sections. The
uncertainty due to the radiative tail and branching fraction cancels in both RpPb and RFB. The
uncertainty due to the tracking efficiency and the luminosity partially cancels for RFB.

Source Forward (%) Backward (%)
Correlated between bins
Mass fits 2.3 3.4
Radiative tail 1.0 1.0
Muon identification 1.3 1.3
Tracking efficiency 1.5 1.5
Luminosity 1.9 2.1
B(J/ψ → µ+µ−) 1.0 1.0
Uncorrelated between bins
Binning 0.1 – 8.7 0.1 – 6.1
Multiplicity weight 0.1 – 3.0 0.2 – 4.3
tz fit (only for J/ψ from b) 0.2 – 12 0.2 – 13

background. The uncertainty of the branching fraction of the J/ψ → µ+µ− decay is
1.0% [28].

Differences of the pT and y spectra between data and simulation within a given (pT, y)
bin due to the finite bin sizes can affect the result. This effect is estimated by doubling the
number of bins in pT and shifting each rapidity bin by half a unit. The relative difference
with respect to the default binning, which varies between 0.1% and 8.7% depending on
the bin, is taken as systematic uncertainty. The uncertainties in most bins are below 2.0%,
but increase in the lowest rapidity bins.

To estimate the effect of reweighting the track multiplicity in the simulation, the
efficiency without reweighting is calculated. The relative difference in each bin between
the two methods is taken as systematic uncertainty.

Uncertainties related to the tz fit procedure are measured by fitting directly the tz signal
component, which is determined using the sPlot technique. This gives results consistent
with those obtained from the combined fit; the relative difference between results in each
bin is taken as systematic uncertainty.

5 Results

Single differential production cross-sections as functions of pT and y, for both prompt J/ψ
mesons and J/ψ from b in the pPb forward and backward regions, are displayed in Fig. 3
and shown in Tables 2 and 3, respectively, assuming no J/ψ polarisation.

Due to the large samples of pPb forward collisions, the double differential production
cross-sections can also be measured. These results are shown in Fig. 4 and displayed in
Table 4.
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Figure 3: Single differential production cross-sections for (black dots) prompt J/ψ and (red
squares) J/ψ from b as functions of (a, b) pT and (c, d) y in the (a, c) forward and (b, d)
backward regions.

The integrated production cross-sections for prompt J/ψ mesons and J/ψ from b with
pT < 14 GeV/c in the forward and backward regions are measured to be

σF(prompt J/ψ , +1.5 < y < +4.0) = 1168± 15± 54 µb,

σB(prompt J/ψ , −2.5 < y < −5.0) = 1293± 42± 75 µb,

σF(J/ψ from b, +1.5 < y < +4.0) = 166.0± 4.1± 8.2 µb,

σB(J/ψ from b, −2.5 < y < −5.0) = 118.2± 6.8± 11.7 µb,

where the first uncertainty is statistical and the second is systematic.
The J/ψ production cross-section in pp collisions at 5 TeV, used as a reference to

determine the nuclear modification factor RpPb, is obtained by a power-law interpolation,
σ(
√
s) = (

√
s/p0)

p1 µb, of previous LHCb measurements performed at 2.76, 7, and
8 TeV [24–26]. For

√
s = 7 and 8 TeV, measurements in the kinematic region pT < 14 GeV/c

and 2.5 < |y| < 4.0, the common rapidity range of the forward and backward regions in the
nucleon-nucleon centre-of-mass frame, are available. The measurements at

√
s = 2.76 TeV

are rescaled to this range. The fits give p0 = 0.67 ± 0.10 TeV and p1 = 0.49 ± 0.18 for
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Figure 4: Double differential production cross-sections for (a) prompt J/ψ mesons and (b) J/ψ
from b in the forward samples.

prompt J/ψ mesons, and p0 = 1.1±0.2 TeV and p1 = 10.0±0.8 for J/ψ from b. Alternative
interpolations based on linear and exponential fits are also tried; the largest deviation
from the default value is taken as a systematic uncertainty due to the interpolation,
3.1% (2.8%) for prompt (from b) J/ψ mesons. The reference production cross-section
in pp collisions at 5 TeV for prompt J/ψ mesons is 4.79 ± 0.22 ± 0.15 µb, and that for
J/ψ from b is 0.47 ± 0.04 ± 0.01 µb [36]. The nuclear modification factor RpPb is then
determined in the rapidity ranges −4.0 < y < −2.5 and 2.5 < y < 4.0 for both prompt
J/ψ mesons and J/ψ from b. Figure 5(a) shows the nuclear modification factor for
prompt J/ψ production, together with several theoretical predictions [2–4]. Calculations
in Ref. [2] are based on the Leading Order Colour Singlet Model (LO CSM) [37, 38],
taking into account the modification effects of the gluon distribution function in nuclei
with the parameterisation EPS09 [39] or nDSg [40]. The Next-to-Leading Order Colour
Evaporation Model (NLO CEM) [41] is used in Ref. [3], considering the parton shadowing
with EPS09 parameterisation. Reference [4] provides theoretical predictions of a coherent
parton energy loss effect both in initial and final states, with or without additional parton
shadowing effects parameterised with EPS09. The single free parameter q0 in this model is
0.055 (0.075) GeV2/ fm when EPS09 is (not) taken into account. A suppression of about
40% at large rapidity is observed for prompt J/ψ production. The measurements agree
with most predictions. However, the calculation [3] based on NLO CEM with the EPS09
parameterisation provides a less good description of the measurement in the forward
region. Figure 5(b) shows the nuclear modification factor for J/ψ from b, together with the
theoretical predictions [42]. The data show a modest suppression of J/ψ from b production
in pPb forward region, with respect to that in pp collisions. This is the first indication of
the suppression of b hadron production in pPb collisions. The theoretical predictions agree
with the measurement in the forward region. In the backward region the agreement is not
as good. The observed production suppression of J/ψ from b with respect to pp collisions
is smaller than that of prompt J/ψ , which is consistent with theoretical predictions. The
measured values of the nuclear modification factor, together with the results for inclusive
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Figure 5: Nuclear modification factor RpPb as a function of y for (a) prompt J/ψ mesons and (b)
J/ψ from b, together with the theoretical predictions from (yellow dashed line and brown band)
Refs. [2,42], (blue band) Ref. [3], and (green solid and blue dash-dotted lines) Ref. [4]. The inner
error bars (delimited by the horizontal lines) show the statistical uncertainties; the outer ones
show the statistical and systematic uncertainties added in quadrature. The uncertainty due to
the interpolated J/ψ cross-section in pp collisions at

√
s = 5 TeV is 5.5% (8.4%) for prompt J/ψ

mesosns (J/ψ from b).

J/ψ mesons, are given in Table 5.
Figure 6 shows the forward-backward production ratio RFB as a function of |y|, compared

with theoretical calculations [2–4,42]. The value of RFB for J/ψ from b is closer to unity
than for prompt J/ψ mesons, indicating a smaller asymmetry in the forward-backward
production. The results agree with theoretical predictions. The calculation [3] with the
EPS09 NLO nPDF alone predicts a smaller forward-backward production asymmetry for
prompt J/ψ mesons than observed. Figure 7 shows the forward-backward production ratio
RFB as a function of pT for prompt J/ψ mesons and J/ψ from b in the range 2.5 < y < 4.0
of the nucleon-nucleon centre-of-mass frame. Theoretical predictions [3,5] are only available
for prompt J/ψ mesons. The calculation [5] based on parton energy loss with the EPS09
NLO nPDF agrees with the measurement of RFB for prompt J/ψ mesons. The measured
values of the forward-backward production ratio RFB are given in Tables 6 and 7, where
the results for inclusive J/ψ mesons are also listed.

6 Conclusion

The production of prompt J/ψ mesons and of J/ψ from b-hadron decays is studied in
pPb collisions with the LHCb detector at the nucleon-nucleon centre-of-mass energy√
sNN = 5 TeV. The measurement is performed as a function of the transverse momentum

and rapidity of the J/ψ meson in the region pT < 14 GeV/c and 1.5 < y < 4.0 (forward)
and −5.0 < y < −2.5 (backward). The nuclear modification factor RpPb and the forward-
backward production ratio RFB are determined for the first time separately for prompt
J/ψ mesons and those from b-hadron decays. The measurement indicates that cold nuclear
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Figure 6: Forward-backward production ratio RFB as a function of |y| for (a) prompt J/ψ mesons
and (b) J/ψ from b, together with the theoretical predictions from (yellow dashed line and brown
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The inner error bars (delimited by the horizontal lines) show the statistical uncertainties; the
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matter effects are less pronounced for J/ψ mesons from b-hadron decays, hence for b
hadrons, than for prompt J/ψ mesons. These results show good agreement with the
available theoretical predictions and provide useful constraints to the parameterisation
of theoretical models. The measured nuclear modification factor for prompt J/ψ mesons
shows that it is necessary to include cold nuclear matter effects in the interpretation of
quark-gluon plasma signatures in heavy-ion collisions. The results for inclusive J/ψ mesons
are in agreement with those presented by the ALICE collaboration [43].
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Appendices

A Results in tables

Table 2: Single differential production cross-sections (in µb/( GeV/c)) for prompt J/ψ mesons
and J/ψ from b as functions of transverse momentum. The first uncertainty is statistical, the
second is the component of the systematic uncertainty that is uncorrelated between bins, and
the third is the correlated component.

pT [ GeV/c ] dσ/dpT (prompt J/ψ ) dσ/dpT (J/ψ from b)

Forward (1.5 < y < 4.0)

0.0− 1.0 149.6± 5.7± 2.0± 5.8 18.5± 1.6± 0.9± 0.7
1.0− 2.0 319.0± 11.1± 5.3± 12.4 38.9± 2.3± 0.5± 1.5
2.0− 3.0 274.4± 7.1± 4.6± 10.7 38.8± 2.1± 0.9± 1.5
3.0− 4.0 183.7± 5.1± 3.4± 7.1 26.2± 1.6± 1.8± 1.0
4.0− 5.0 113.0± 3.2± 1.7± 4.4 17.0± 1.1± 0.2± 0.7
5.0− 6.0 59.6± 2.1± 0.7± 2.3 9.8± 0.8± 0.3± 0.4
6.0− 7.0 30.9± 1.4± 0.2± 1.2 5.8± 0.6± 0.2± 0.2
7.0− 8.5 12.9± 0.6± 0.2± 0.5 3.5± 0.3± 0.0± 0.1
8.5− 14 2.6± 0.1± 0.0± 0.1 0.9± 0.1± 0.0± 0.0

Backward (−5.0 < y < −2.5)

0.0− 1.0 187.7± 14.0± 5.6± 9.0 12.6± 2.1± 1.0± 0.6
1.0− 2.0 425.0± 23.6± 7.8± 20.5 31.1± 3.8± 4.1± 1.5
2.0− 3.0 323.9± 16.7± 9.1± 15.6 25.4± 3.0± 4.4± 1.2
3.0− 4.0 182.7± 9.6± 2.2± 8.8 17.5± 2.1± 1.1± 0.8
4.0− 5.0 89.6± 5.5± 1.3± 4.3 12.0± 1.7± 0.8± 0.6
5.0− 6.0 44.4± 3.1± 1.0± 2.1 6.8± 1.2± 0.2± 0.3
6.0− 7.0 24.1± 2.1± 0.4± 1.2 3.1± 0.7± 0.4± 0.2
7.0− 8.5 8.5± 0.9± 0.3± 0.4 1.8± 0.4± 0.1± 0.1
8.5− 14 1.9± 0.2± 0.0± 0.1 0.5± 0.1± 0.0± 0.0
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Table 3: Single differential production cross-sections (in µb) for prompt J/ψ mesons and J/ψ
from b as functions of rapidity. The first uncertainty is statistical, the second is the component
of the systematic uncertainty that is uncorrelated between bins, and the third is the correlated
component.

|y| dσ/dy (prompt J/ψ ) dσ/dy (J/ψ from b)

Forward (pT < 14 GeV/c)

1.5− 2.0 583.7± 21.0± 39.6± 22.7 88.8± 5.9± 6.1± 3.4
2.0− 2.5 535.0± 11.8± 5.6± 20.8 83.4± 3.4± 2.1± 3.2
2.5− 3.0 490.2± 9.7± 2.6± 19.0 71.0± 2.8± 0.4± 2.8
3.0− 3.5 401.9± 8.5± 5.2± 15.6 56.9± 2.6± 2.4± 2.2
3.5− 4.0 334.7± 8.6± 8.4± 13.0 33.4± 2.6± 2.5± 1.3

Backward (pT < 14 GeV/c)

2.5− 3.0 678.2± 41.8± 50.6± 32.6 77.2± 8.9± 6.4± 3.7
3.0− 3.5 645.7± 28.7± 9.6± 31.1 67.5± 5.8± 4.7± 3.3
3.5− 4.0 523.4± 25.9± 8.0± 25.2 46.5± 4.8± 1.1± 2.2
4.0− 4.5 393.7± 26.1± 8.7± 18.9 40.1± 5.2± 4.6± 1.9
4.5− 5.0 329.0± 31.3± 15.7± 15.8 13.8± 4.5± 1.3± 0.7
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Table 5: Nuclear modification factor RpPb as a function of y with pT < 14 GeV/c. The first
uncertainty is statistical, the second is the systematic, and the third is the uncertainty related to
the interpolation error.

RpPb −4.0 < y < −2.5 2.5 < y < 4.0

Prompt J/ψ 0.93± 0.03± 0.05± 0.05 0.62± 0.01± 0.02± 0.03
J/ψ from b 0.98± 0.06± 0.07± 0.08 0.83± 0.02± 0.04± 0.07
Inclusive J/ψ 0.93± 0.03± 0.05± 0.05 0.63± 0.01± 0.03± 0.03

Table 6: Forward-backward production ratio RFB as a function of |y| with pT < 14 GeV/c. The
first uncertainty is statistical, the second is the uncorrelated systematic component, and the
third is the systematic uncertainty correlated between bins.

RFB 2.5 < |y| < 3.0 3.0 < |y| < 3.5 3.5 < |y| < 4.0

Prompt J/ψ 0.72± 0.05± 0.05± 0.04 0.62± 0.03± 0.01± 0.03 0.64± 0.04± 0.02± 0.03
J/ψ from b 0.92± 0.11± 0.08± 0.05 0.84± 0.08± 0.07± 0.04 0.72± 0.09± 0.06± 0.04
Inclusive J/ψ 0.74± 0.05± 0.06± 0.04 0.64± 0.03± 0.01± 0.03 0.65± 0.04± 0.01± 0.03

Table 7: Forward-backward production ratio RFB as a function of pT with 2.5 < |y| < 4.0. The
first uncertainty is statistical, the second is the uncorrelated systematic component, and the
third is the systematic uncertainty correlated between bins.

pT [ GeV/c ] RFB (prompt J/ψ ) RFB (J/ψ from b) RFB (inclusive J/ψ )

0.0− 1.0 0.62± 0.06± 0.02± 0.03 0.84± 0.18± 0.05± 0.04 0.63± 0.06± 0.02± 0.03
1.0− 2.0 0.58± 0.04± 0.02± 0.03 0.97± 0.15± 0.15± 0.05 0.61± 0.04± 0.03± 0.03
2.0− 3.0 0.60± 0.04± 0.02± 0.03 0.85± 0.12± 0.14± 0.04 0.62± 0.04± 0.02± 0.03
3.0− 4.0 0.66± 0.04± 0.01± 0.03 0.96± 0.14± 0.11± 0.05 0.69± 0.04± 0.02± 0.03
4.0− 5.0 0.75± 0.06± 0.02± 0.04 0.89± 0.16± 0.12± 0.04 0.76± 0.05± 0.02± 0.04
5.0− 6.0 0.75± 0.07± 0.02± 0.04 0.77± 0.16± 0.04± 0.04 0.75± 0.07± 0.03± 0.04
6.0− 7.0 0.77± 0.08± 0.02± 0.04 0.91± 0.22± 0.14± 0.05 0.78± 0.09± 0.03± 0.04
7.0− 8.5 0.83± 0.11± 0.03± 0.04 1.08± 0.27± 0.09± 0.05 0.87± 0.11± 0.03± 0.04
8.5− 14 0.67± 0.10± 0.03± 0.03 0.74± 0.19± 0.04± 0.04 0.68± 0.09± 0.03± 0.03
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