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Abstract

Associated production of bottomonia and open charm hadrons in pp collisions
at
√
s = 7 and 8 TeV is observed using data corresponding to an integrated luminosity

of 3 fb−1 accumulated with the LHCb detector. The observation of five combinations,
Υ(1S)D0, Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and Υ(1S)D+

s , is reported. Production
cross-sections are measured for Υ(1S)D0 and Υ(1S)D+ pairs in the forward region.
The measured cross-sections and the differential distributions indicate the dominance
of double parton scattering as the main production mechanism.
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1 Introduction

Production of multiple heavy quark pairs in high-energy hadron collisions was first observed
in 1982 by the NA3 collaboration in the channels π−(p) nucleon→ J/ψJ/ψ + X [1,2]. Soon
after, evidence for the associated production of four open charm particles in pion-nucleon re-
actions was obtained by the WA75 collaboration [3]. A measurement of J/ψ pair production
in proton-proton (pp) collisions at

√
s = 7 TeV [4] has been made by the LHCb collabora-

tion in 2011. This measurement appears to be in good agreement with two models within
the single parton scattering (SPS) mechanism, namely non-relativistic quantum chromody-
namics (NRQCD) calculations [5] and kT-factorization [6]. However the obtained result
also agrees with predictions [7] of the double parton scattering (DPS) mechanism [8–12].

The production of J/ψ pairs has also been observed by the D0 [13] and CMS [14]
collaborations. A large double charm production cross-section involving open charm in
pp collisions at

√
s = 7 TeV has been observed by the LHCb collaboration [15]. The meas-

ured cross-sections exceed the SPS expectations significantly [16–20] and agree with the DPS
estimates. A study of differential distributions supports a large role for the DPS mechanism
in multiple production of heavy quarks.

The study of (bb)(cc) production in hadronic collisions started with the observation of
B+

c mesons in pp collisions by the CDF collaboration [21]. A detailed study of B+
c production

spectra in pp collisions by the LHCb collaboration [22] showed good agreement with leading-
order NRQCD calculations [23–25] including the SPS contribution only.

The leading-order NRQCD calculations using the same matrix element as in Ref. [23],
applied to another class of (bb)(cc) production, namely associated production of bottomonia
and open charm hadrons in the forward region, defined in terms of the rapidity y as
2 < y < 4.5, predict [26]

RSPS =
σΥcc

σΥ
= (0.2− 0.6) % , (1)

where σΥcc denotes the production cross-section for associated production of Υcc-pair and
σΥ denotes the inclusive production cross-section of Υ mesons. A slightly smaller value of
RSPS is obtained through the kT-factorization approach [17,27–31] using the transverse
momentum dependent gluon density from Refs. [32–34],

RSPS =
σΥcc

σΥ
= (0.1− 0.3) % . (2)

Within the DPS mechanism, the Υ meson and cc-pair are produced independently in
different partonic interactions. Neglecting the parton correlations in the proton, the con-
tribution of this mechanism is estimated according to the formula [35–37]

σΥcc =
σΥ × σcc

σeff

, (3)

where σcc and σΥ are the inclusive charm and Υ cross-sections, and σeff is an effective
cross-section, which provides the proper normalization of the DPS cross-section estimate.
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The latter is related to the transverse overlap function between partons in the proton.
Equation (3) can be used to calculate the ratio RDPS as

RDPS =
σΥcc

σΥ
=
σcc

σeff

. (4)

Using the measured production cross-section for inclusive charm in pp collisions at
the centre-of-mass energy 7 TeV [38] in the forward region and σeff ∼ 14.5 mb [39,40], one
obtains RDPS ∼ 10%, which is significantly larger than RSPS from Eq. (1). The production
cross-sections for Υ(1S)D0 and Υ(1S)D+ at

√
s = 7 TeV are calculated using the meas-

ured prompt charm production cross-section from Ref. [38] and the Υ(1S) cross-section
from Ref. [41]. In the LHCb kinematic region, covering transverse momenta pT and
rapidity y of Υ(1S) and D0,+ mesons of pT(Υ(1S)) < 15 GeV/c, 1 < pT(D0,+) < 20 GeV/c,
2.0 < y(Υ(1S)) < 4.5 and 2.0 < y(D0,+) < 4.5, the expected production cross-sections are

Bµ+µ− × σΥ(1S)D0
√
s=7 TeV

∣∣∣
DPS

= 206± 17 pb, (5a)

Bµ+µ− × σΥ(1S)D+
√
s=7 TeV

∣∣∣
DPS

= 86± 10 pb, (5b)

where Bµ+µ− is the branching fraction of Υ(1S)→ µ+µ− [42], σeff = 14.5 mb is used with
no associated uncertainty included [39, 40]. The basic DPS formula, Eq. (3), leads to

the following predictions for the ratios of production cross-sections RD0/D+
and R

Υ(2S)/Υ(1S)
C

RD0/D+

=
σΥD0

σΥD+ =
σD0

σD+ = 2.41± 0.18 , (6a)

R
Υ(2S)/Υ(1S)
C = B2/1

σΥ(2S)D0

σΥ(1S)D0 = B2/1
σΥ(2S)D+

σΥ(1S)D+ = B2/1
σΥ(2S)

σΥ(1S)
= 0.249± 0.033 , (6b)

where σD0
, σD+

and σΥ stand for the measured production cross-sections of D0, D+ and
Υ mesons [38, 41], and B2/1 is the ratio of dimuon branching fractions of Υ(2S) and
Υ(1S) mesons.

Here we report the first observation of associated production of bottomonia and
open charm hadrons. The production cross-sections and the differential distributions
are measured. The latter provide crucial information for understanding the production
mechanism. The analysis is performed using the Run 1 data set recorded by the LHCb
detector, consisting of 1 fb−1 of integrated luminosity accumulated at

√
s = 7 TeV and

2 fb−1 accumulated at 8 TeV.

2 Detector and data sample

The LHCb detector [43,44] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The de-
tector includes a high-precision tracking system consisting of a silicon-strip vertex detector
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surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-
strip detectors and straw drift tubes placed downstream of the magnet. The tracking
system provides a measurement of the momentum, p, of charged particles with a relative
uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum
distance of a track to a primary vertex, the impact parameter, is measured with a resolution
of (15 + 29/pT)µm, where pT is the component of the momentum transverse to the beam,
in GeV/c. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified
by a calorimeter system consisting of scintillating-pad and preshower detectors, an elec-
tromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire proportional chambers. The online
event selection is performed by a trigger [45], which consists of a hardware stage, based
on information from the calorimeter and muon systems, followed by a software stage,
which applies a full event reconstruction. At the hardware stage, events for this analysis
are selected requiring dimuon candidates with a product of their transverse momenta pT

larger than 1.7 (2.6) GeV2/c2 for data collected at
√
s = 7 (8) TeV. In the subsequent soft-

ware trigger, two well reconstructed tracks are required to have hits in the muon system,
to have pT > 500 MeV/c and p > 6 GeV/c and to form a common vertex. Only events with
a dimuon candidate with a mass mµ+µ− larger than 4.7 GeV/c2 are retained for further
analysis.

The simulation is performed using the LHCb configuration [46] of the Pythia 6 event
generator [47]. Decays of hadronic particles are described by EvtGen [48] in which
final-state photons are generated using Photos [49]. The interaction of the generated
particles with the detector, and its response, are implemented using the Geant4 toolkit [50,
51] as described in Ref. [52].

3 Event selection

The event selection strategy is based on the independent selection of Υ(1S), Υ(2S) and
Υ(3S) mesons (jointly referred to by the symbol Υ throughout the paper) and charmed
hadrons, namely D0, D+ and D+

s mesons and Λ+
c baryons (jointly referred to by the symbol C

herafter) originating from the same pp collision vertex. The Υ candidates are reconstructed
via their dimuon decays, and the D0 → K−π+, D+ → K−π+π+, D+

s → K+K−π+ and
Λ+

c → pK−π+ decay modes are used for the reconstruction of charm hadrons. Charge
conjugate processes are implied throughout the paper. The fiducial region for this analysis
is defined in terms of the pT and the rapidity y of Υ and C hadrons to be pΥ

T < 15 GeV/c,
2.0 < yΥ < 4.5, 1 < pCT < 20 GeV/c and 2.0 < yC < 4.5.

The event selection for Υ → µ+µ− candidates follows previous LHCb studies [41],
and the selection of C hadrons follows Refs. [15, 53]. Only good quality tracks [54],
identified as muons [55], kaons, pions or protons [56] are used in the analysis. A good qual-
ity vertex is required for Υ→ µ+µ−, D0 → K−π+, D+ → K−π+π+, D+

s → K+K−π+ and
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Λ+
c → pK−π+ candidates. For D+

s → K+K−π+ candidates, the mass of the K+K− pair is re-
quired to be in the region mK+K− < 1.04 GeV/c2, which is dominated by the D+

s → φπ+ de-
cay. To suppress combinatorial background the decay time of C hadrons is required to
exceed 100µm/c. Full decay chain fits are applied separately for selected Υ and C can-
didates [57]. For Υ mesons it is required that the vertex is compatible with one of
the reconstructed pp collision vertices. In the case of long-lived charm hadrons, the mo-
mentum direction is required to be consistent with the flight direction calculated from
the locations of the primary and secondary vertices. The reduced χ2 of these fits, both
χ2

fit (Υ) /ndf and χ2
fit (C) /ndf, are required to be less than 5, where ndf is the number of

degrees of freedom in the fit. The requirements favour the selection of charm hadrons
produced promptly at the pp collision vertex and significantly suppress the feed down
from charm hadrons produced in decays of beauty hadrons. The contamination of such
C hadrons in the selected sample varies between (0.4±0.2)% for D+ mesons to (1.5±0.5)%
for Λ+

c baryons.
The selected Υ and C candidates are paired to form ΥC candidates. A global fit to

the ΥC candidates is performed [57], similar to that described above, which requires both
hadrons to be consistent with originating from a common vertex. The reduced χ2 of this fit,
χ2

fit (ΥC) /ndf, is required to be less than 5. This reduces the background from the pile-up
of two independent pp interactions producing separately a Υ meson and C hadron to
a negligible level, keeping 100% of the signal Υ mesons and C hadrons from the same
primary vertex. The two-dimensional mass distributions for ΥC pairs after the selection
are displayed in Fig. 1.

4 Signal extraction and cross-section determination

The event yields are determined using unbinned extended maximum likelihood fits to
the two-dimensional ΥC mass distributions of the selected candidates. The fit model is
a sum of several components, each of which is the product of a dimuon mass distribution,
corresponding to an individual Υ state or combinatorial background, and a C candidate
mass distribution, corresponding to a C signal or combinatorial background component.
The Υ(1S)→ µ+µ−, Υ(2S)→ µ+µ− and Υ(3S)→ µ+µ− signals are each modelled by
a double-sided Crystal Ball function [4, 58, 59] and referred to as SΥ in this section.
A modified Novosibirsk function [60] (referred to as SC) is used to describe the D0 → K−π+,
D+ → K−π+π+, D+

s → K+K−π+ and Λ+
c → pK−π+ signals. All shape parameters and

signal peak positions are fixed from fits to large inclusive Υ → µ+µ− and C hadron
data samples. Combinatorial background components Bµ+µ− and BC are modelled with
a product of exponential and polynomial functions

B(m) ∝ e−βm × Pn(m), (7)

with a slope parameter β and a polynomial function Pn, which is represented as a Bézier sum
of basic Bernstein polynomials of order n with non-negative coefficients [61]. For the large
yield ΥD0 and ΥD+ samples, the second-order polynomials (n = 2) are used in the fit,
while n = 1 is used for the ΥD+

s and ΥΛ+
c cases.
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Figure 1: Invariant mass distributions for selected combination of Υ mesons and C hadrons:
a) ΥD0, b) ΥD+, c) ΥD+

s and d) ΥΛ+
c .

These basic functions are used to build the components of the two dimensional mass
fit following Ref. [15]. For each C hadron the reconstructed signal sample consists of
the following components:

- Three ΥC signal components: each is modelled by a product of the individual signal
Υ components, SΥ(1S)(mµ+µ−), SΥ(2S)(mµ+µ−) or SΥ(3S)(mµ+µ−), and signal C hadron
component, SC(mC).

- Three components describing the production of single Υ mesons together with
combinatorial background for the C signal: each component is modelled by a product
of the signal Υ component, SΥ(mµ+µ−) and the background component BC(mC).

- Single production of C hadrons together with combinatorial background for the Υ com-
ponent: this is modelled by a product of the signal C component, SC(mC), and
the background component Bµ+µ−(mµ+µ−).
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Table 1: Signal yields NΥC for ΥC production, determined with two-dimensional extended
unbinned maximum likelihood fits to the candidate ΥC samples.

Υ(1S) Υ(2S) Υ(3S)

D0 980± 50 184± 27 60± 22
D+ 556± 35 116± 20 55± 17
D+

s 31± 7 9± 5 6± 4
Λ+

c 11± 6 1± 4 1± 3

- Combinatorial background: this is modelled by a product of the individual back-
ground components Bµ+µ−(mµ+µ−) and BC(mC).

For each C hadron the complete fit function F(mµ+µ− ,mC) is

F(mµ+µ− ,mC) = NΥ(1S)C × SΥ(1S)(mµ+µ−)× SC(mC)

+NΥ(2S)C × SΥ(2S)(mµ+µ−)× SC(mC)

+NΥ(3S)C × SΥ(3S)(mµ+µ−)× SC(mC)

+NΥ(1S)B × SΥ(1S)(mµ+µ−)×BC(mC)

+NΥ(2S)B × SΥ(2S)(mµ+µ−)×BC(mC)

+NΥ(3S)B × SΥ(3S)(mµ+µ−)×BC(mC)

+NBC ×Bµ+µ−(mµ+µ−)× SC(mC)

+NBB ×Bµ+µ−(mµ+µ−)×BC(mC),

(8)

where the different coefficients NΥC, NΥB, NBC and NBB are the yields of the eight
components described above.

The fit results are summarized in Table 1, and the fit projections are presented in
Figs. 2, 3, 4 and 5. The statistical significances of the signal components are determined
using a Monte-Carlo technique with a large number of pseudoexperiments. They are
presented in Table 2. For the five modes, Υ(1S)D0, Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and
Υ(1S)D+

s , the significances exceed five standard deviations. No significant signals are
found for the associated production of Υ mesons and Λ+

c baryons.
The possible contribution from pile-up events is estimated from data following

the method from Refs. [15, 53] by relaxing the requirement on χ2
fit (ΥC) /ndf. Due to

the requirements χ2
fit (Υ) /ndf < 5 and χ2

fit (C) /ndf < 5, the value of χ2
fit (ΥC) /ndf does

not exceed 5 units for signal events with Υ and C hadron from the same pp collision
vertex. The background is subtracted using the sPlot technique [63]. The χ2

fit (ΥC) /ndf
distributions are shown in Fig. 6. The distributions exhibit two components: the peak at
low χ2 is attributed to associated ΥC production, and the broad structure at large values
of χ2 corresponds to the contribution from pile-up events. The distributions are fitted
with a function that has two components, each described by a Γ-distribution. The shape is
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Table 2: Statistical significances of the observed ΥC signals in units of standard deviations de-
termined using pseudoexperiments. The values in parentheses indicate the statistical significance
calculated using Wilks’ theorem [62].

Υ(1S) Υ(2S) Υ(3S)

D0 > 5 (26) > 5 (7.7) 3.1
D+ > 5 (19) > 5 (6.4) 4.0
D+

s > 5 (6) 2.5 1.9
Λ+

c 2.5 0.9 0.9

motivated by the observation that χ2
fit/ndf should follow a scaled-χ2 distribution. The pos-

sible contribution from pile-up events is estimated by integrating the pile-up component in
the region χ2

fit (ΥC) /ndf < 5. It does not exceed 1.5% for all four cases and is neglected.
The production cross-section is determined for the four modes with the largest

yield: Υ(1S)D0, Υ(2S)D0, Υ(1S)D+ and Υ(2S)D+. The cross-section is calculated using
a subsample of events where the reconstructed Υ candidate is explicitly matched to
the dimuon candidate that triggers the event. This requirement reduces signal yields by ap-
proximately 20%, but allows a robust determination of trigger efficiencies. The cross-section
for the associated production of Υ mesons with C hadrons in the kinematic range of LHCb
is calculated as

Bµ+µ− × σΥC =
1

L ×BC
NΥC

corr, (9)

where L is the integrated luminosity [64], Bµ+µ− and BC are the world average branching
fractions of Υ → µ+µ− and the charm decay modes [42], and NΥC

corr is the efficiency-
corrected yield of the signal ΥC events in the kinematic range of this analysis. Production
cross-sections are determined separately for data sets accumulated at

√
s = 7 and 8 TeV.

The efficiency-corrected signal yields NΥC
corr are determined using an extended unbinned

maximum likelihood fit to the weighted two-dimensional invariant mass distributions of
the selected ΥC candidates. The weight ω for each event is calculated as ω = 1/εtot,
where εtot is the total efficiency for the given event.

The effective DPS cross-section and the ratios RΥC are calculated as

σeff =
σΥ × σC

σΥC
, (10a)

RΥC =
σΥC

σΥ
, (10b)

where σΥ is the production cross-section of Υ mesons taken from Ref. [41].
The double-differential production cross-sections of charm mesons has been measured at√
s = 7 TeV in the region 2.0 < yC < 4.5, pCT < 8 GeV/c [38]. According to FONLL calcu-

lations [65–67], the contribution from the region 8 < pCT < 20 GeV/c is significantly smaller
than the uncertainty for the measured cross-section in the region 1 < pCT < 8 GeV/c. It al-
lows to estimate the production cross-section of charm mesons in the region 2.0 < yC < 4.5,
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Figure 2: Projections from two-dimensional extended unbinned maximum likeli-
hood fits in bands a) 1.844 < mK−π+ < 1.887 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2,
c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit func-
tion is shown by a solid thick (red) curve; three individual ΥD0 signal components are shown by
solid thin (red) curves; three components describing Υ signals and combinatorial background
in K−π+ mass are shown with short-dashed (blue) curves; the component modelling the true
D0 signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve
and the component describing combinatorial background is shown with a thin dotted (black) line.

1 < pCT < 20 GeV/c, used in Eq. (10a). For the production cross-section of charm mesons
at
√
s = 8 TeV, the measured cross-section at

√
s = 7 TeV is rescaled by the ratio

RFONLL
8/7 (pT, y) of the double-differential cross-sections, as calculated with FONLL [65–67]

at
√
s = 8 and 7 TeV.
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Figure 3: Projections from two-dimensional extended unbinned maximum likelihood
fits in bands a) 1.848 < mK−π+π+ < 1.891 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,
c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit func-
tion is shown by a solid thick (red) curve; three individual ΥD+ signal components are shown by
solid thin (red) curves; three components describing Υ signals and combinatorial background in
K−π+π+ mass are shown with short-dashed (blue) curves; the component modelling the true
D+ signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve
and the component describing combinatorial background is shown with a thin dotted (black) line.

The ratios RD0/D+
and R

Υ(2S)/Υ(1S)
C , defined in Eq. (6), are calculated as

RD0/D+

=
σΥD0

σΥD+ =
NΥD0

corr

NΥD+

corr

, (11a)

R
Υ(2S)/Υ(1S)
C = B2/1

σΥ(2S)C

σΥ(1S)C
=
NΥ(2S)C

NΥ(1S)C
×
〈
εΥ(1S)C

〉〈
εΥ(2S)C

〉 , (11b)

where 〈εΥC〉 denotes the average efficiency. Within the DPS mechanism, the transverse
momenta and rapidity spectra of C mesons for the signal Υ(1S)C and Υ(2S)C events are
expected to be the same. This allows to express the ratio of the average 〈εΥC〉 efficiencies
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Figure 4: Projections from two-dimensional extended unbinned maximum likelihood
fits in bands a) 1.952 < m(K−K+)φπ

+ < 1.988 MeV/c2, b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,

c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2. The total fit func-
tion is shown by a solid thick (red) curve; three individual ΥD+

s signal components are shown by
solid thin (red) curves; three components describing Υ signals and combinatorial background in
(K−K+)φ π

+ mass are shown with short-dashed (blue) curves; the component modelling the true
D+

s signal and combinatorial background in µ+µ− mass is shown with a long-dashed (green) curve
and the component describing combinatorial background is shown with a thin dotted (black) line.

in terms of ratio of average efficiencies for inclusive Υ mesons〈
εΥ(1S)C

〉〈
εΥ(2S)C

〉 =

〈
εΥ(1S)

〉〈
εΥ(2S)

〉 , (12)

and the latter is taken from Ref. [41].
The total efficiency εtot, for each ΥC candidate is calculated following Ref. [15] as

εtot
ΥC = εtot

Υ × εtot
C , (13)

and applied individually an on event-by-event basis, where εtot
Υ and εtot

C are the total
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Figure 5: Projections from two-dimensional extended unbinned maximum likeli-
hood fits in bands a) 2.273 < mpK−π+ < 2.304 MeV/c2 , b) 9.332 < mµ+µ− < 9.575 GeV/c2 ,
c) 9.889 < mµ+µ− < 10.145 GeV/c2 and d) 10.216 < mµ+µ− < 10.481 GeV/c2 . The total fit func-
tion is shown by a solid thick (red) curve; three individual ΥΛ+

c signal components are shown by
solid thin (red) curves; three components describing Υ signals and combinatorial background
in pK−π+ mass are shown with short-dashed (blue) curves; the component modelling the true
Λ+

c signal and combinatorial background in µ+µ− mass is shown with a long-dashed green curve
and the component describing combinatorial background is shown with a thin dotted (black) line.

efficiencies for Υ and charm hadrons respectively. These efficiencies are calculated as

εtot
Υ = εrec

Υ × ε
trg
Υ × ε

µID
Υ , (14a)

εtot
C = εrec

C × εhID
C , (14b)

where εrec is the detector acceptance, reconstruction and event selection efficiency and
εtrg is the trigger efficiency for selected events. The particle identification efficiencies for
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Figure 6: Background-subtracted distributions of χ2
fit (C) /ndf for a) ΥD0, b) ΥD+, c) ΥD+

s and
d) ΥΛ+

c cases. A thin vertical (green) line indicates the requirement χ2
fit (ΥC) /ndf < 5 used in

the analysis. The solid (red) curves indicate a fit to a sum of two components, each described by
Γ-distribution shape. The pileup component is shown with a dashed (blue) line.

Υ and C candidates εµID
Υ and εhID

C are calculated as

εµID
Υ = εID

µ+ × εID
µ− , (15a)

εhID
C =

∏
K

εID
K ×

∏
π

εID
π (15b)

where εID
µ± , εID

K and εID
π are the efficiencies for the single muon, kaon and pion identification,

respectively.
The efficiencies εrec and εtrg are determined using simulated samples of Υ, D0 and

D+ events as a function of pT and y of the Υ and the C hadron. The differential treatment
results in a robust determination of the efficiency-corrected signal yields, with no depend-
ence on the particle spectra in the simulated samples. The derived values of the efficiencies
are corrected to account for small discrepancies in the detector response between data and
simulation. These corrections are obtained using data-driven techniques [54,55].
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The efficiencies for muon, kaon and pion identification are determined directly from data
using large samples of low-background J/ψ → µ+µ− and D∗+ → (D0 → K−π+)π+ decays.
The identification efficiencies are evaluated as a function of the kinematic parameters of
the final-state particles, and the track multiplicity in the event [56].

The efficiency is dependent on the polarisation of the Υ mesons [41, 59, 68, 69] The po-
larisation of the Υ mesons produced in pp collisions at

√
s = 7 TeV at high pΥ

T and central
rapidity has been studied by the CMS collaboration [70] in the centre-of-mass helicity,
Collins-Soper [71] and the perpendicular helicity frames. No evidence of significant trans-
verse or longitudinal polarisation has been observed for the region 10 < pΥ

T < 50 GeV/c,∣∣yΥ
∣∣ < 1.2. Therefore, the efficiencies are calculated under the assumption of unpolarised

production of Υ mesons and no corresponding systematic uncertainty is assigned on
the cross-section. Under the assumption of transversely polarised Υ mesons with λϑ = 0.2
in the LHCb kinematic region,1 the total efficiency would result in an decrease of 3% [41].

5 Kinematic distributions of ΥC events

The differential distributions are important for the determination of the production
mechanism. In this section, the shapes of differential distributions for Υ(1S)D0 and
Υ(1S)D+ events are studied. Assuming that the production mechanism of ΥC events is
essentially the same at

√
s = 7 and 8 TeV, both samples are treated together in this section.

The normalized differential distribution for each variable v is calculated as

1

σ

dσ

dv
=

1

NΥC
corr

NΥC
corr,i

∆v
, (16)

where NΥC
corr,i is the number of efficiency-corrected signal events in bin i of width ∆v, and

NΥC
corr is the total number of efficiency-corrected events. The differential distributions are

presented for the following variables

- p
Υ(1S)
T , the transverse momentum of the Υ(1S) meson;

- pCT, the transverse momentum of the D0(D+) meson;

- yΥ(1S), the rapidity of the Υ(1S) meson;

- yC, the rapidity of the D0(D+) meson;

- ∆φ = φΥ(1S) − φC, the difference in azimuthal angles between the Υ(1S) and
the C mesons;

- ∆y = yΥ(1S) − yC, the difference in rapidity between the Υ(1S) and the C mesons;

- p
Υ(1S)C
T , the transverse momentum of the Υ(1S)C system;

1The CMS measurements for Υ(1S) mesons are consistent with small transverse polarisation in
the helicity frame with the central values for the polarisation parameter 0 . λϑ . 0.2 [70].
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Figure 7: Background-subtracted and efficiency-corrected pΥ
T (top) and pCT (bottom) distribu-

tions for Υ(1S)D0 events (left) and Υ(1S)D+ event (right). The transverse momentum spectra,
derived within the DPS mechanism using the measurements from Refs. [38, 41], are shown
with the open (blue) squares. The SPS predictions [72] for the pΥ

T spectra are shown with
dashed (orange) and long-dashed (magenta) curves for calculations based on the kT-factorization
and the collinear approximation, respectively. All distributions are normalized to unity.

- yΥ(1S)C, the rapidity of the Υ(1S)C system;

- AT =
p

Υ(1S)
T − pCT
p

Υ(1S)
T + pCT

, the pT asymmetry for the Υ(1S) and the C mesons;

- mΥ(1S)C, the mass of the Υ(1S)C system.

The distributions are shown in Figs. 7, 8, 9, 10 and 11. Only statistical uncertainties are
displayed on these figures, as the systematic uncertainities discussed in Sect. 6 are small.
For all variables the width of the resolution function is much smaller than the bin width,
i.e. the results are not affected by bin-to-bin migration.
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Figure 8: Background-subtracted and efficiency-corrected yΥ (top) and yC (bottom) distri-
butions for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The rapidity spectra, derived within
the DPS mechanism using the measurements from Refs. [38, 41], are shown with the open (blue)
squares. The SPS predictions [72] for the yΥ spectra are shown with dashed (orange) and
long-dashed (magenta) curves for calculations based on the kT-factorization and the collinear
approximation, respectively. All distributions are normalized to unity.

The shapes of the measured differential distributions are compared with the SPS
and DPS predictions. The DPS predictions are deduced from the measurements given
in Refs. [38, 41], using a simplified simulation assuming uncorrelated production of
the Υ(1S) and charm hadron. The agreement between all measured distributions and
the DPS predictions is good. For the SPS mechanism, the predictions [72] based on
kT-factorization [17, 27–31] using the transverse momentum dependent gluon density from
Refs. [32–34] are used along with the collinear approximation [26] with the leading-order
gluon density taken from Ref. [73]. The transverse momentum and rapidity distributions
of Υ(1S) mesons also agree well with SPS predictions based on kT-factorization, while
the shape of the transverse momentum spectra of Υ mesons disfavours the SPS predictions
obtained using the collinear approximation. The shapes of the yΥ distribution have very
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Figure 9: Background-subtracted and efficiency-corrected distributions for |∆φ| /π (top) and
∆y (bottom) for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. Straight lines in the |∆φ| /π plots
show the result of the fit with a constant function. The SPS predictions [72] for the shapes of
∆φ distribution are shown with dashed (orange) and long-dashed (magenta) curves for calculations
based on the kT-factorization and the collinear approximation, respectively. The solid (blue)
curves in the ∆y plots show the spectra obtained using a simplified simulation based on data
from Refs. [38, 41]. The dashed (green) lines show the triangle function expected for totally
uncorrelated production of two particles, uniformly distributed in rapidity. All distributions are
normalized to unity.

limited sensitivity to the underlying production mechanism.
The distribution |∆φ| is presented in Fig. 9(a,b). The DPS mechanism predicts a flat

distribution in ∆φ, while for SPS a prominent enhancement at |∆φ| ∼ π is expected in
collinear approximation. The enhancement is partly reduced taking into account transverse
momenta of collinding partons [30, 74] and it is expected to be further smeared out at
next-to-leading order. The measured distributions for Υ(1S)D0 and Υ(1S)D+ events,
shown in Fig. 9(a,b) agree with a flat distribution. The fit result with a constant function
gives a p-value of 6% (12%) for the Υ(1S)D0 (Υ(1S)D+) case, indicating that the SPS
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Figure 10: Background-subtracted and efficiency-corrected p
Υ(1S)C
T (top) and yΥ(1S)C (bottom) dis-

tributions for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The blue curves show the spectra
obtained using a simplified simulation based on data from Refs. [38, 41]. All distributions are
normalized to unity.

contribution to the data is small. The shape of ∆y distribution is defined primarily by
the acceptance of LHCb experiment 2 < y < 4.5 and has no sensitivity to the underlying
production mechanism, in the limit of current statistics.

6 Systematic uncertainties

The systematic uncertainties related to the measurement of the production cross-section
for ΥC pairs are summarized in Table 3 and discussed in detail in the following.

The signal shapes and parameters are taken from fits to large low-background inclusive
Υ→ µ+µ− and charm samples. The parameters, signal peak positions and resolutions and
the tail parameters for the double-sided Crystal Ball and the modified Novosibirsk functions,
are varied within their uncertainties as determined from the calibration samples. The small
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Figure 11: Background-subtracted and efficiency-corrected AT (top) and mΥ(1S)C (bottom) dis-
tributions for Υ(1S)D0 (left) and Υ(1S)D+ (right) events. The blue curves show the spectra
obtained using a simplified simulation based on data from Refs. [38, 41]. All distributions are
normalized to unity.

difference in parameters between the data sets obtained at
√
s = 7 and 8 TeV is also used to

assign the systematic uncertainty. For D0 and D+ signal peaks alternative fit models have
been used, namely a double-sided asymmetric variant of an Apolonious function [75] without
power-law tail, a double-sided Crystal Ball function and an asymmetric Student-t shape.
The systematic uncertainty related to the parameterization of the combinatorial background
is determined by varying the order of the polynomial function in Eq. (7) between zeroth and
second order. For the purely combinatorial background component (last line in Eq. (8)),
a non-factorizable function is used

FBB(mµ+µ− ,mC) ∝ e−β1mµ+µ−−β2mC ×

(
n∑
i=0

k∑
j=0

κ2
ijP

i
n (mµ+µ−)P j

k (mC)

)
, (17)

where the parameters β1, β2 and κi,j are allowed to float in the fit, and P i
n and P j

k are basic
Bernstein polynomials, and the order of these polynomials, n and k, is varied between zero
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Table 3: Summary of relative systematic uncertainties for σΥC (in %). The total systematic
uncertainty does not include the systematic uncertainty related to the knowledge of integrated
luminosity [64]. The symbol ⊕ denotes the sum in quadrature.

Source σΥD0
σΥD+

Signal ΥC extraction
Υ and C signal shapes 0.1⊕ 0.3 0.1⊕ 0.5
2D fit model 0.4 0.7

Υ radiative tail 1.0 1.0
Efficiency corrections 0.1 1.3
Efficiency calculation

muon identification 0.2 0.2
hadron identification 0.5 0.8
simulated samples size 0.2 0.2
tracking 0.4⊕ 4× 0.4 0.5⊕ 5× 0.4
hadronic interactions 2× 1.4 3× 1.4
trigger 2.0 2.0
data-simulation agreement 1.0 1.0

BC 1.3 2.1

Total 4.3 5.9

and two. The corresponding variations of ΥC signal yields are taken as the systematic
uncertainty related to the description of the signal and background components.

Other systematic uncertainties are related to the imperfection of the Photos gener-
ator [49] to describe the radiative tails in Υ→ µ+µ− decays. This systematic is studied
in Ref. [76] and taken to be 1%.

The systematic uncertainty related to efficiency correction is estimated using an altern-
ative technique for the determination of NΥC

corr, where the efficiency-corrected yields are
obtained via

NΥC
corr =

∑
i

wi
εtot

, (18)

where wi is the signal event weight, obtained with the sPlot technique [63] using fits
to the efficiency-uncorrected data sets, and εtot is a total efficiency for the given event,
defined with Eq. (13). The difference in the efficiency-corrected yields with respect to
the baseline approach of 0.1 (1.3)% for ΥD0 (ΥD+), is assigned as the corresponding
systematic uncertainty.

The systematic uncertainty related to the particle identification is estimated to be 0.2%
for muons and 0.5 (0.8)% for hadrons for the Υ(1S)D0 (Υ(1S)D+) case and is obtained
from the uncertainties for the single particle identification efficiencies using an error
propagation technique with a large number of pseudoexperiments. The same approach is
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Table 4: Summary of relative systematic uncertainties for σeff (in %). The reduced uncertainty
for C hadron production cross-section, denoted as δ(σC), is recalculated from Ref. [38] taking
into account the cancellation of correlated systematic uncertainties.

Source σeff |ΥD0 σeff |ΥD+

Signal ΥC extraction
Υ and C signal shapes 0.1⊕ 0.3 0.1⊕ 0.5
2D fit model 0.4 0.7

Efficiency corrections 0.1 1.3
Efficiency calculation

hadron identification 0.5 0.8
simulated samples size 0.2 0.2

δ(σC) 6.7 9.7
FONLL extrapolation (

√
s = 8 TeV only) 2.1 2.1

Total

√
s = 7 TeV√
s = 8 TeV

6.7
7.0

9.9
10.1

Table 5: Summary of relative systematic uncertainties for the ratios RΥC and RD0/D+
(in %).

Source RΥD0
RΥD+

RD0/D+

Signal extraction
Υ and C signal shapes 0.1⊕ 0.3 0.1⊕ 0.5 0.3⊕ 0.5
2D fit model 0.4 0.7 0.4⊕ 0.7

Efficiency corrections 0.1 1.3 0.1⊕ 1.3
Efficiency calculation:

hadron identification 0.5 0.8 0.5⊕ 0.8
tracking 0.4⊕ 4× 0.4 0.5⊕ 5× 0.4 0.6⊕ 1× 0.4
hadronic interactions 2× 1.4 3× 1.4 1× 1.4
data-simulation agreement 1.0 1.0 1.0⊕ 1.0
simulated samples size 0.2 0.2 0.2⊕ 0.2

BC 1.3 2.1 1.3⊕ 2.1

Total 3.4 5.3 3.8

used to propagate the uncertainties in εacc, εrec and εtrg related to the limited simulation
sample size.

The efficiency is corrected using data-driven techniques to account for small differences
in the tracking efficiency between data and simulation [54,55]. The uncertainty in the cor-
rection factor is propagated to the cross-section measurement using pseudoexperiments
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resulting in a global 0.4 (0.5)% systematic uncertainty for the ΥD0 (ΥD+) cases plus
an additional uncertainty of 0.4% per track. The knowledge of the hadronic interaction
length of the detector results in an uncertainty of 1.4% per final-state hadron [54].

The systematic uncertainty associated with the trigger requirements is assessed by
studying the performance of the dimuon trigger for Υ(1S) events selected using the single
muon high-pT trigger [45] in data and simulation. The comparison is performed in bins of
the Υ(1S) meson transverse momentum and rapidity and the largest observed difference of
2.0% is assigned as the systematic uncertainty associated with the imperfection of trigger
simulation [41].

Using large samples of low-background inclusive Υ→ µ+µ−, D0 → K−π+ and
D+ → K−π+π+ events, good agreement between data and simulation is observed for
the selection variables used in this analysis, in particular for dimuon and charm vertex
quality and χ2

fit(Υ)/ndf. The small differences seen would affect the efficiencies by less
than 1.0%, which is conservatively taken as a systematic uncertainty accounting for
the disagreement between data and simulation.

The systematic uncertainty related to the uncertainties of the branching fractions of
D0 and D+ mesons is 1.3% and 2.1% [42]. The integrated luminosity is measured using
a beam-gas imaging method [77, 78]. The absolute luminosity scale is determined with
1.7 (1.2)% uncertainty for the sample collected at

√
s = 7 (8) TeV, dominated by the vertex

resolution for beam-gas interactions, the spread of the measurements and the detector
alignment [64,78,79].

The selection criteria favour the selection of charm hadrons produced promptly at
the pp collision vertex and significantly suppress the feed down from charm hadrons
produced in decays of beauty hadrons. The remaining feed down is estimated separately
for DPS and SPS processes with the simultaneous production of an Υ meson and a bb-
pair. The former is estimated using simulation, normalized to the measured bb and
cc production cross-sections [38, 80] and validated using a data-driven technique. It is
found to be smaller than 1.5% of the observed signal and is neglected. The contribution
from SPS processes with the associated production of Υ meson and bb pairs is estimated
using the prediction for the ratio of production cross-sections,

σΥbb

σΥcc
= (2− 5)% , (19)

obtained using the kT-factorization approach with the transverse momentum dependent
gluon density taken from Refs. [32–34]. The uncertainty reflects the variation of scale and
the difference with results obtained using the collinear approximation with the gluon density
from Ref. [73]. Combining the estimates from Eqs. (19), (1) and (2) with the probability
for a charm hadron from the decay of beauty hadron to pass the selection criteria, this
feed down is found to be totally negligible.

The effect of possible extreme polarization scenarios for Υ mesons from SPS processes is
proportional to the SPS contamination, αSPS, and could lead to +0.08 (−0.16)αSPS correc-
tion [68] to the cross-sections σΥC and the ratios RΥC for totally transverse (longitudinal)
polarizations of Υ mesons in centre-of-mass helicity frame. It is very small for small
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SPS contamination. The corresponding corrections to ratios RD0/D+
are non-zero only

if SPS has different contributions to ΥD0 and ΥD+ production processes and accouts
for +0.08 (−0.16)∆αSPS, where ∆αSPS is the difference in SPS contaminations to the
considered processes. The same estimate is valid also for the ratios RΥ(1S)/Υ(2S).

A large part of the systematic uncertainties cancels in the ratio RΥC and in the
variable σeff . The systematic uncertainties for σeff , RΥC and RD0/D+

are summarized
in Tables 4 and 5. For the production cross-section of charm mesons at

√
s = 8 TeV

the measured cross-section at
√
s = 7 TeV is extrapolated using FONLL calculations [65–

67]. The uncertainty related to the imperfection of the extrapolation is estimated from
the comparison of the measured ratio σC√

s=13 TeV
/σC√

s=7 TeV
[38, 81] and the corresponding

FONLL estimate. As a result of this comparison the C hadron production cross-section
is scaled up by 2.7% and a systematic uncertainty of 2.1% is assigned. The systematic
uncertainty for the ratios R

Υ(2S)/Υ(1S)
C is small compared to the statistical uncertainty and

is neglected.

7 Results and discussion

The associated production of Υ and charm mesons is studied. Pair production of Υ(1S)D0,
Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and Υ(1S)D+

s states is observed with significances exceeding
five standard deviations. The production cross-sections in the fiducial region 2.0 < yΥ < 4.5,
pΥ

T < 15 GeV/c, 2.0 < yC < 4.5 and 1 < pCT < 20 GeV/c are measured for Υ(1S)D0 and
Υ(1S)D+ final states at

√
s = 7 and 8 TeV as:

Bµ+µ− × σΥ(1S)D0
√
s=7 TeV

= 155± 21 (stat)± 7 (syst) pb ,

Bµ+µ− × σΥ(1S)D+
√
s=7 TeV

= 82± 19 (stat)± 5 (syst) pb ,

Bµ+µ− × σΥ(1S)D0
√
s=8 TeV

= 250± 28 (stat)± 11 (syst) pb ,

Bµ+µ− × σΥ(1S)D+
√
s=8 TeV

= 80± 16 (stat)± 5 (syst) pb ,

where the first uncertainty is statistical, and the second is the systematic uncertainty from
Table 3, combined with the uncertainty related to the knowledge of the luminosity. All these
measurements are statistically limited. The measured cross-sections are in agreement
with the DPS expectations from Eq. (5), and significantly exceed the expectations from
the SPS mechanism in Eqs. (1) and (2). Differential kinematic distributions are studied
for ΥD0 and ΥD+ final states. All of them are in good agreement with DPS expectations
as the main production mechanism.
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The ratios of the cross-sections for Υ(1S)D0 and Υ(1S)D+ are

R
D0/D+
√
s=7 TeV

=
σ

Υ(1S)D0
√
s=7 TeV

σ
Υ(1S)D+
√
s=7 TeV

= 1.9± 0.5 (stat)± 0.1 (syst) ,

R
D0/D+
√
s=8 TeV

=
σ

Υ(1S)D0
√
s=8 TeV

σ
Υ(1S)D+
√
s=8 TeV

= 3.1± 0.7 (stat)± 0.1 (syst) ,

where the systematic uncertainty is discussed in detail in Sect. 6. The results are compatible
with the DPS expectation of 2.41± 0.18 from Eq. (6a).

The cross-section ratios RΥC are measured to be

R
Υ(1S)D0
√
s=7 TeV

=
σΥ(1S)D0

σΥ(1S)

∣∣∣∣∣√
s=7 TeV

= (6.3± 0.8 (stat)± 0.2 (syst)) % ,

R
Υ(1S)D+
√
s=7 TeV

=
σΥ(1S)D+

σΥ(1S)

∣∣∣∣∣√
s=7 TeV

= (3.4± 0.8 (stat)± 0.2 (syst)) % ,

R
Υ(1S)D0
√
s=8 TeV

=
σΥ(1S)D0

σΥ(1S)

∣∣∣∣∣√
s=8 TeV

= (7.8± 0.9 (stat)± 0.3 (syst)) % ,

R
Υ(1S)D+
√
s=8 TeV

=
σΥ(1S)D+

σΥ(1S)

∣∣∣∣∣√
s=8 TeV

= (2.5± 0.5 (stat)± 0.1 (syst)) % .

Extrapolating the ratios RΥC down to pCT = 0 using the measured transverse momentum
spectra of D0 and D+ mesons from Ref. [38], and using the fragmentation fractions
f(c→ D0) = 0.565± 0.032 and f(c→ D+) = 0.246± 0.020, measured at e+e− colliders
operating at a centre-of-mass energy close to the Υ(4S) resonance [82], the ratios RΥcc are
calculated to be

R
Υ(1S)cc√
s=7 TeV

=
σΥ(1S)cc

σΥ(1S)

∣∣∣∣√
s=7 TeV

= (7.7± 1.0) % ,

R
Υ(1S)cc√
s=8 TeV

=
σΥ(1S)cc

σΥ(1S)

∣∣∣∣√
s=8 TeV

= (8.0± 0.9) % ,

which significantly exceed SPS expectations from Eqs. (1) and (2).
The large statistical uncertainty for the other ΥC modes does not allow to obtain a nu-

merical model-independent measurement, but, assuming similar kinematics for Υ(2S) and
charm mesons to the prompt production, the following ratios are measured

R
Υ(2S)/Υ(1S)

D0 = B2/1 ×
σ

Υ(2S)D0
√
s=7 TeV

σ
Υ(1S)D0
√
s=7 TeV

= (13± 5)% ,

R
Υ(2S)/Υ(1S)

D0 = B2/1 ×
σ

Υ(2S)D0
√
s=8 TeV

σ
Υ(1S)D0
√
s=8 TeV

= (20± 4)% ,
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where B2/1 is the ratio of dimuon branching fractions of Υ(2S) and Υ(1S) mesons and
where the systematic uncertainties are negligible compared to statistical uncertainties.
These values are smaller than, but compatible with the DPS expectations from Eq. (6b).
For the ΥD+ production one obtains

R
Υ(2S)/Υ(1S)

D+ = B2/1 ×
σ

Υ(2S)D+
√
s=7 TeV

σ
Υ(1S)D+
√
s=7 TeV

= (22± 7)% ,

R
Υ(2S)/Υ(1S)

D+ = B2/1 ×
σ

Υ(2S)D+
√
s=8 TeV

σ
Υ(1S)D+
√
s=8 TeV

= (22± 6)% ,

where again the systematic uncertainties are negligible with respect to the statistical ones
and are ignored. These values are compatible with the DPS expectation of 25% from
Eq. (6b).

Neglecting the contributions from SPS mechanism, the effective cross-section σeff is
determined using Eq. (10a) for the

√
s = 7 TeV data as

σeff |Υ(1S)D0 = 19.4± 2.6 (stat)± 1.3 (syst) mb ,

σeff |Υ(1S)D+ = 15.2± 3.6 (stat)± 1.5 (syst) mb .

The central values of σeff increase by up to 10% if SPS contribution exceeds by a factor of
two the central value from Eq. (1). Both values are consistent with previous measurements
of σeff [11, 15,40,83–88], and their average is

σeff |Υ(1S)D0,+,
√
s=7 TeV = 18.0± 2.1 (stat)± 1.2 (syst) = 18.0± 2.4 mb .

For the
√
s = 8 TeV data the effective cross-section σeff is estimated using the meas-

ured Υ(1S) cross-section at
√
s = 8 TeV [41] combined with σC, extrapolated from√

s = 7 TeV [38] to
√
s = 8 TeV using FONLL calculations [65–67]. The obtained effective

DPS cross-sections are:

σeff |Υ(1S)D0 = 17.2± 1.9 (stat)± 1.2 (syst) mb ,

σeff |Υ(1S)D+ = 22.3± 4.4 (stat)± 2.2 (syst) mb ,

The mean value of

σeff |Υ(1S)D0,+,
√
s=8 TeV = 17.9± 1.8 (stat)± 1.2 (syst) = 17.9± 2.1 mb , (20)

is in good agreement with those obtained for
√
s = 7 TeV data. Averaging these values,

σeff is found to be

σeff |Υ(1S)D0,+ = 18.0± 1.3 (stat)± 1.2 (syst) = 18.0± 1.8 mb .

The large value of the cross-section for the associated production of Υ and open charm
hadrons, compatible with the DPS estimate of Eq. (4), has important consequences for
the interpretation of heavy-flavor production measurements, especially inclusive meas-
urements and possibly for b-flavor tagging [89–92], where the production of uncorrelated
charm hadrons could affect the right assignment of the initial flavour of the studied beauty
hadron.
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8 Summary

The associated production of Υ mesons with open charm hadrons is observed in pp col-
lisions at centre-of-mass energies of 7 and 8 TeV using data samples corresponding to
integrated luminosities of 1 fb−1 and 2 fb−1 respectively, collected with the LHCb detector.
The production of Υ(1S)D0, Υ(2S)D0, Υ(1S)D+, Υ(2S)D+ and Υ(1S)D+

s pairs is observed
with significances larger than 5 standard deviations. The production cross-sections in
the fiducial region 2.0 < yΥ < 4.5, pΥ

T < 15 GeV/c, 2.0 < yC < 4.5 and 1 < pCT < 20 GeV/c
are measured for Υ(1S)D0 and Υ(1S)D+ final states at

√
s = 7 and 8 TeV. The measured

cross-sections are in agreement with DPS expectations and significantly exceed the ex-
pectations from the SPS mechanism. The differential kinematic distributions for ΥD0 and
ΥD+ are studied and all are found to be in good agreement with the DPS expectations as
the main production mechanism. The measured effective cross-section σeff is in agreement
with most previous measurements.
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T. Gershon48, Ph. Ghez4, S. Giaǹı39, V. Gibson47, O.G. Girard39, L. Giubega29, V.V. Gligorov38,
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