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s = 7 TeV. The cross-section in this kinematic range is determined to

be σacc
inel

= 55.0 ± 2.4 mb with an experimental uncertainty that is dominated by sys-

tematic contributions. Extrapolation to the full phase space, using Pythia 6, yields

σinel = 66.9 ± 2.9 ± 4.4 mb, where the first uncertainty is experimental and the second is

due to the extrapolation.
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1 Introduction

The inelastic cross-section is a fundamental observable in high-energy hadronic interactions.

It is also important in astroparticle physics for models of extensive air showers induced by

cosmic rays in the atmosphere [1]. Currently, it is not possible to calculate its value from

first principles because quantum chromodynamics cannot yet be solved for soft processes.

Phenomenological models assume a rise of the inelastic cross-section with energy according

to a power law [2, 3], while not exceeding the Froissart-Martin bound [4, 5], which is

asymptotically proportional to ln2 s. Although originally the Froissart-Martin bound was

derived for the total cross-section, later developments show that it is also valid for the

inelastic cross-section [6].

Measurements of the inelastic proton-proton (pp) cross-section at
√
s = 7 TeV have

been reported by the ALICE [7], ATLAS [8, 9], CMS [10] and TOTEM [11, 12] collabo-

rations, using experimental information from the central (ALICE, ATLAS, CMS) and the

extremely forward (ATLAS, TOTEM) regions. LHCb allows those results to be comple-

mented by a measurement in the mid- to forward rapidity range 2.0 < η < 4.5.

2 Detector description and data set

The LHCb detector [13] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detec-

tor includes a high-precision tracking system consisting of a silicon-strip vertex detector

surrounding the pp interaction region [14], a large-area silicon-strip detector located up-

stream of a dipole magnet with a bending power of about 4 Tm, the polarity of which can

be inverted, and three stations of silicon-strip detectors and straw drift tubes [15] placed

downstream of the magnet. The tracking system provides a measurement of momentum, p,

with a relative uncertainty that varies from 0.4% at low momentum to 0.6% at 100 GeV/c.
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The minimum distance of a track to a primary vertex, the impact parameter, is measured

with a resolution of (15 + 29/pT)µm, where pT is the component of the momentum trans-

verse to the beam, in GeV/c. Different types of charged hadrons are distinguished using

information from two ring-imaging Cherenkov detectors. Photon, electron and hadron can-

didates are identified by a calorimeter system consisting of scintillating-pad and preshower

detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified

by a system composed of alternating layers of iron and multiwire proportional chambers.

The trigger [16] consists of a hardware stage, based on information from the calorimeter

and muon systems, followed by a software stage, which applies a full event reconstruction.

In the simulation, pp collisions are generated using Pythia 6 [2] with a specific LHCb

configuration [17] using the CTEQ 6 leading-order parton density functions. Decays of

hadronic particles are described by EvtGen [18], in which final-state radiation is generated

using Photos [19]. The interaction of the generated particles with the detector, and its

response, are implemented using the Geant4 toolkit [20, 21] as described in ref. [22].

The data used in this analysis are a subset of the data recorded during low-luminosity

running in early 2010 with a minimum bias trigger where the hardware stage triggered

every beam-beam crossing and the event was accepted at the software stage if at least one

reconstructed track segment was found in the vertex detector. Using a sample of no-bias

triggered events, it has been checked that for the events selected in this analysis, the trigger

efficiency exceeds 99.99%. From the rate of empty events the average number of interactions

per bunch crossing, µ, with at least one track in the detector, was estimated to be 0.1.

This corresponds to P = µ/(1 − exp(−µ)) ≈ 1.05 visible interactions per triggered event.

The measurement is based on integrated luminosities of 0.62 (1.25) nb−1 recorded with the

magnetic field polarity in the upward (downward) direction. The integrated luminosity has

been determined with an overall precision of 3.5% [23].

3 Data analysis

This analysis measures the inelastic pp cross-section for the production of at least one

prompt long-lived charged particle with pT > 0.2 GeV/c and pseudorapidity in the range

2.0 < η < 4.5. A prompt particle is defined as one whose impact parameter relative to the

point of the primary interaction is smaller than 200 µm.

The LHCb coordinate system is a right-handed cartesian system with the z axis along

the average beam direction from the vertex detector towards the muon system, the y axis

pointing upward and x towards the outside of the LHC. Reconstructed tracks are required

to have a track segment in the vertex detector and in the tracking system downstream of

the magnet. Selection criteria (cuts) are applied on the track fit χ2/NDF, with NDF the

number of degrees of freedom of the fit, and on the distance of closest approach, DCA, to

the longitudinal axis of the luminous region. This axis is determined by the mean values of

Gaussian functions fitted in bins of z to the x and y distributions of reconstructed primary

vertices. To suppress background from beam-gas interactions, the z coordinate of the

midpoint between the points of closest approach on the reconstructed particle trajectory

and on the longitudinal axis of the luminous region is required to satisfy |z−zc| < 130 mm.
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Here zc is the longitudinal centre of the luminous region, determined by the mean value of

a Gaussian function fitted to the z distribution of the reconstructed primary vertices. The

width of the distribution is found to be σz = 38.2 mm. The determination of the central

axis of the luminous region and its longitudinal centre is done separately for each magnet

polarity. The analysis is restricted to tracks in a fiducial region away from areas where the

magnetic field or detector geometry cause sharp variations in the track finding efficiency.

The cross-section, σacc
inel

, for inelastic pp collisions yielding one or more prompt long-

lived charged particles in the kinematic range pT > 0.2 GeV/c and 2.0 < η < 4.5 is obtained

using the expression

σacc
inel =

Iacc

L
=

Nvis

ε · L . (3.1)

Here Iacc is the number of pp interactions in data with a least one prompt charged particle in

the kinematic acceptance pT > 0.2 GeV/c and 2.0 < η < 4.5 while L is the integrated lumi-

nosity of the data set under consideration. The number of interactions Iacc is proportional

to the experimentally observed number of events, Nvis, with at least one reconstructed

track in the fiducial region. The ratio ε = Nvis/Iacc is determined from the full simulation,

which includes the possibility of multiple interactions per event,

ε =
Nvis

MC

Iacc
MC

=
Nvis

MC

Ivis
MC

· I
vis
MC

Iacc
MC

. (3.2)

The first factor, the ratio Nvis
MC

/Ivis
MC

of events and interactions with at least one recon-

structed track in the fiducial region, corrects for the fraction of multiple interactions. The

second factor, the ratio Ivis
MC

/Iacc
MC

, is the efficiency to detect a single interaction with at

least one prompt electron, muon, pion, kaon, proton or the corresponding antiparticle, in

the kinematic acceptance.

To study the sensitivity of the analysis to the choice of the cuts on track quality and

DCA, the measurements are performed for two cases: “loose” settings accepting most

reconstructed tracks, and “tight” ones selecting mainly the cores of the χ2/NDF and DCA

distributions.

Figure 1 shows the normalized multiplicity distributions of tracks from the luminous

region that are recorded in the fiducial region of the analysis for the tight cut settings in

the field-down configuration. The distributions have an approximately exponential shape,

as can be seen from the superimposed curves. The small disagreement seen at low multi-

plicities is addressed when discussing systematic uncertainties.

Table 1 gives the interaction and event counts in simulation and data. The simulations

are based on a total of IMC inelastic pp interactions. The event counts in the simulation are

given for an average of P = 1.05 interactions per event and for both settings of the analysis

cuts. One finds a typical value for the correction factor ε of 0.87. For a given magnet

polarity, the inelastic cross-section is taken to be the central value of the measurements

with loose and tight cuts. The final cross-section result is determined by the arithmetic

average of the central values for the two magnet polarities. Here any biases that change sign

under inversion of the field cancel exactly and uncertainties that are not fully correlated

between the two configurations are reduced. Within the acceptance of LHCb, the inelastic
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Figure 1. Normalized track multiplicity distributions with n ≥ 1 tracks in the fiducial region

for the field-down configuration and tight cut settings in data and simulation. The superimposed

function is an exponential with the same average as the simulation. The right hand plot with a

linear scale shows a zoom of the low-multiplicity region. The vertical error bars are smaller than

the symbol sizes.

Simulation field-down field-up

IMC 31.784 4.948

Iacc
MC

26.121 4.067

Nvis
MC

(loose cuts) 22.907 3.584

Nvis
MC

(tight cuts) 22.693 3.551

Data

Nvis(loose cuts) 30.098 60.285

Nvis(tight cuts) 29.735 59.541

Cross-section [mb]

σacc
inel

(loose cuts) 55.36 54.73

σacc
inel

(tight cuts) 55.20 54.55

Table 1. Numbers of interactions and events, in multiples of 106, in simulation and data for

different magnetic field configurations and analysis cuts, and the resulting cross-sections in the

kinematic acceptance.

pp cross-section with at least one prompt long-lived charged particle having pT > 0.2 GeV/c

and 2.0 < η < 4.5 is found to be σacc
inel

= 54.96 ± 0.01 mb, where the uncertainty is purely

statistical.

4 Systematic uncertainties

The systematic uncertainties are determined separately for the two magnet settings and

are combined taking into account the correlations between the individual contributions.

The dominant uncertainty comes from the integrated luminosity, which is known with a

precision of 3.5%. The sensitivity to the knowledge of the fraction of multiple interactions

was tested by varying P in the simulation in the range 1.025 ≤ P ≤ 1.075, which leads to

a variation in the cross-section of 1.5%.
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Source field-down field-up combined

Luminosity 3.5 3.5 3.5

Multiple interactions 1.5 1.5 1.5

Selection cuts 0.3 0.3 0.3

Calibration 1.1 0.5 0.8

Track finding efficiency 0.8 0.8 0.8

Charged particle multiplicities 1.0 1.0 1.0

Data taking period 1.0 1.0 0.7

Azimuthal dependence 1.3 1.3 0.9

Magnet polarity 0.6 0.6 0.6

Table 2. Summary of the relative systematic uncertainties, expresses as a percentage, for the

measurement of the inelastic pp cross-section measurement, separately for the two magnet polarities

and the combined value.

Several systematic effects are related to a possible mismatch in the distributions of

the selection variables between data and simulation. The determination of the impact of

the selection cuts on the event selection efficiency requires a proper modelling of the tails

of the distributions of the selection variables. The corresponding systematic uncertain-

ties are found to be 0.3% by varying the selection cuts between loose and tight settings.

The influence of the detector calibration on the reconstruction of charged tracks is tested

by comparing the nominal event counts with those obtained when using an alternative

version of the reconstruction code. For the loose cuts the changes are small, but for the

tight cuts variations in the event counts of 1.1% for field-down and 0.5% for field-up are

observed, which are assigned as systematic uncertainties. The systematic uncertainty on

the reconstruction efficiency of a single track was found to be 3% [24]. After convolution

with the track multiplicity distribution of the events, this translates into an uncertainty of

0.8% in the event selection efficiency. The systematic uncertainty related to the modelling

of the charged particle multiplicity distribution in the kinematic acceptance is estimated

from cthe difference between the observed average multiplicities in data and simulation.

At generator level the difference is about twice as large, and a systematic uncertainty of

0.5 units is assigned, which translates to a 1% uncertainty in the event selection efficiency.

The cross-section measurement has been performed as a function of data taking period

and in different azimuthal regions. Small but statistically significant variations are observed

in both cases. From the maximum variations seen, uncertainties of 1.0% and 1.3% are

assigned for dependencies on data taking period and azimuthal region, respectively. Finally,

comparing the cross-section measurements for the field polarities one observes a difference

of about 1.2%. Half of that variation is assigned as a systematic uncertainty.

The analysis has been performed in the LHCb laboratory frame which, due to a small

crossing angle between the LHC beams, is slightly boosted with respect to the pp centre-of-

mass system. It has been checked using simulation that this small boost has an impact of

less than 0.1% on the cross-section measurement. The contamination from elastic scattering

events has been estimated to be negligible, and the statistical uncertainty due to the

– 5 –
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finite size of the Monte Carlo sample is less than 0.1% and is neglected. Table 2 gives a

summary of the systematic uncertainties. For the combination of the two magnet polarities,

the dependence on data taking period and the azimuthal dependence are assumed to be

uncorrelated, while the other uncertainties are assumed to be fully correlated. Adding the

combined contributions in quadrature, the total systematic uncertainty on the cross-section

is 4.3%.

5 Results

The cross-section for inelastic pp collisions at a centre-of-mass energy
√
s = 7 TeV, yielding

one or more prompt long-lived charged particles in the kinematic range pT > 0.2 GeV/c

and 2.0 < η < 4.5, is

σacc
inel(pT > 0.2 GeV/c, 2.0 < η < 4.5) = 55.0 ± 2.4 mb ,

with an uncertainty that is almost completely systematic in nature. The purely statistical

uncertainty is two orders of magnitude smaller.

The measurement within the limited kinematic range above is scaled to full phase space

with an extrapolation factor, sextr, which is given by the ratio of all inelastic interactions

to the number of inelastic interactions within the kinematic acceptance. The Pythia 6

simulation used in the efficiency determination [2, 17] gives sextr = IMC/I
acc
MC

= 1.2168 ±
0.0001, where the uncertainty is statistical.

The extrapolation to full phase space is necessarily model dependent. To estimate its

uncertainty, different soft QCD tunes provided by Pythia 8.201 (see ref. [25] and references

therein) have been considered: 4Cx, a tune derived from the 2C-tune to CDF data and

adapted to LHC; Monash 2013, a tune based on both e+e− and LHC data; A2-CTEQ6L1,

A2-MSTW2008LO, AU2-CTEQ6L1 and AU2-MSTW2008LO, minimum bias and underlying event

tunes by the ATLAS collaboration using the CTEQ 6L1 and the MSTW2008 LO parton

densities; and CUETP8S1-CTEQ6L1, an underlying event tune by the CMS collaboration.

Table 3 summarizes some average properties of those tunes for non-diffractive, single-

diffractive and double-diffractive interactions. Mean values and standard deviations are

given for n, the zero-suppressed average multiplicity of prompt long-lived charged particles

in the kinematic acceptance, for the visibility v, defined by the probability that at least

one charged particle is inside the kinematic acceptance, and for the fraction f of each

interaction type. For any mix of interaction types, extrapolation factor and visibility are

related by sextr = 1/v.

The extrapolation factor, converting the inelastic cross-section in the kinematic accep-

tance to the total inelastic cross-section, is a function of the visibilities and the fractions of

non-diffractive, single-diffractive and double-diffractive interactions. Since the interaction-

type fractions are only weakly constrained by experiment (see e.g. ref. [7]), the values of f

given in table 3 are not used in the following. To determine an estimate for the uncertainty

of the extrapolation factor, a Monte Carlo approach is used. Multiplicities and visibilities

are generated according to Gaussian densities with parameters as given in table 3. The

interaction type fractions that go into the extrapolation factor are then determined subject

– 6 –
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interaction type n v f

non-diffractive 12.22 ± 0.50 0.9925 ± 0.0003 0.713 ± 0.002

single-diffractive 5.94 ± 0.29 0.5059 ± 0.0049 0.173 ± 0.002

double-diffractive 4.78 ± 0.17 0.5819 ± 0.0062 0.114 ± 0.001

Table 3. Properties of soft QCD tunes in Pythia 8.201. For non-diffractive, single-diffractive

and double-diffractive interactions, mean value and standard deviation over the tunes considered

in this study are given for average multiplicities inside the kinematic acceptance, visibilities and

interaction type fractions.

to the constraints that each of them lies between zero and one, that they sum to unity,

and that the zero-suppressed average multiplicity of the mix is consistent with the gener-

ator level average multiplicity of the Pythia 6 simulation, 10.93, which provides a good

description of the data. The distribution of the average multiplicity is modelled according

to a Gaussian function with this mean value and standard deviation 0.5.

The method yields a distribution for sextr with an average of 1.17 and a standard

deviation of 0.08, which is assigned as the systematic uncertainty on the extrapolation

factor obtained from the fully simulated Monte Carlo. The event fractions found by the

above procedure, 0.70±0.12, 0.17±0.06 and 0.13±0.05 for non-diffractive, single-diffractive

and double-diffractive interactions, respectively, are consistent with the fractions given by

the various tunes. The total inelastic cross-section becomes

σinel = 66.9 ± 2.9 (exp) ± 4.4 (extr) mb ,

with an experimental uncertainty (exp) that is dominated by systematic contributions and

an extrapolation uncertainty (extr) of 7%.

The LHCb result is displayed together with other cross-section measurements at vari-

ous energies in figure 2. The data for the total cross-section are taken from ref. [26] and for

the inelastic cross-section from ref. [27]. The plot shows that the available measurements

at centre-of-mass energies
√
s > 100 GeV can be described by a power-law behaviour. A

ln2 s behaviour, as asymptotically expected if the Froissart-Martin bound is saturated, is

not observed within the current experimental uncertainties. For comparison, results by the

other LHC experiments are also shown. The TOTEM [11, 12] and the ATLAS [9] results

are based on a measurement of the elastic cross-section, neither of which requires an ex-

trapolation from a limited angular acceptance to full phase space. Within the extrapolation

uncertainties all results are in good agreement. Nevertheless, to avoid introducing ambi-

guities due to the model dependence of the extrapolation, any comparison between theory

and the measurement presented in this paper should be done for the restricted kinematic

range pT > 0.2 GeV/c and 2.0 < η < 4.5.
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[2] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual,

JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
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J. Moron27, A.-B. Morris50, R. Mountain59, F. Muheim50, K. Müller40, M. Mussini14,

B. Muster39, P. Naik46, T. Nakada39, R. Nandakumar49, I. Nasteva2, M. Needham50, N. Neri21,

S. Neubert38, N. Neufeld38, M. Neuner11, A.D. Nguyen39, T.D. Nguyen39, C. Nguyen-Mau39,q,

M. Nicol7, V. Niess5, R. Niet9, N. Nikitin32, T. Nikodem11, A. Novoselov35, D.P. O’Hanlon48,

A. Oblakowska-Mucha27,38, V. Obraztsov35, S. Oggero41, S. Ogilvy51, O. Okhrimenko44,

R. Oldeman15,e, C.J.G. Onderwater66, M. Orlandea29, J.M. Otalora Goicochea2, A. Otto38,

P. Owen53, A. Oyanguren65, B.K. Pal59, A. Palano13,c, F. Palombo21,u, M. Palutan18,

J. Panman38, A. Papanestis49,38, M. Pappagallo51, L.L. Pappalardo16,f , C. Parkes54,

C.J. Parkinson9,45, G. Passaleva17, G.D. Patel52, M. Patel53, C. Patrignani19,j , A. Pearce54,49,

A. Pellegrino41, G. Penso25,m, M. Pepe Altarelli38, S. Perazzini14,d, P. Perret5, M. Perrin-Terrin6,

L. Pescatore45, E. Pesen67, K. Petridis53, A. Petrolini19,j , E. Picatoste Olloqui36, B. Pietrzyk4,
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s Università di Pisa, Pisa, Italy
t Scuola Normale Superiore, Pisa, Italy
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