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In this work, we present a symmetric-key cryptographic protocol based on exponential distortion

in arithmetic groups. As an example, we also provide a functional platform for the protocol.
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Introduction

Non-commutative group-based cryptography has been a very active field of research for the past

decade. Different protocols based on algorithmic problems, such as the Word Choice problem,

the Conjugacy Search problem or the Membership problem, have been proposed. One of these

proposals has come, quite recently, from Delaram Kahrobaei and Keivan Mallahi-Karai. In

Some applications of arithmetic groups in cryptography they present a cryptographic protocol

based on the solvability of the Geodesic Length problem and exponential subgroup distortion in

arithmetic groups. The goal of the present work is to provide a detailed explanation of some of

their ideas.

To fully understand the proposal of Kahrobaei and Mallahi-Karai, we have had to answer

some collateral questions: What are arithmetic groups? How do we put metrics on a group?

What is exponential distortion? What are the properties of the Zariski topology? Furthermore,

concepts from all my previous Algebra and Analysis courses have come into play: eigenvectors,

group action, cosets, graphs, metrics, series convergence...

As to the structure of this work, it starts with the presentation of the protocol. We first

give a basic version of it, and then a more secure one. After this, in Chapter 2, we provide

some fundamental tools: we present arithmetic groups, we put a metric on groups by means

of the Cayley Graph and we define exponential distortion. Then, with all this in hand, we are

able to state what properties must the groups and subgroups involved have in order to make

the protocol effective. We dedicate Chapter 3 to a particular pair group-subgroup. We prove it

satisfies all the required properties to be a platform for the protocol. Finally, in Chapter 4, we

study the security of the protocol against a known-plaintext attack.
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Chapter 1

The protocol

In this chapter we present the cryptographic protocol. The goal is to send secretely a positive

integer through a public channel. As always, Alice will send the message, Bob will receive it and

Eve will be the eavesdropper. We will first provide a simple version of the protocol, and then a

more secure version of it. Then, in the next chapter, we will give the properties that the groups

and subgroups involved must have in order to make the protocol effective.

In order to present the protocol, we need to assume that there is a well defined length

function over any group. We will provide this definiton in the following chapter, by means of the

so called Cayley Graph. For now, for any element in a group, its length will be the minimum

number of elements we need from a fixed generating set to express it. We will see that the length

of an element strongly depends on the group/subgroup we choose to define it, as well as on the

fixed generating set. For G a group and g ∈ G, we note the length of g as lG(g).

1.1 Basic scheme

Set a finitely generated group G with a fixed set of generators {g1, . . . , gs} as the public channel.

That is, g1, . . . , gs are visible to Alice, Bob and Eve. And let Alice and Bob secretely share a

finitely generated subgroup H in terms of another fixed set of generators {h1, . . . , hr}. We will

keep this notation throughout this chapter. The generators of H are the private key of this

protocol, which is as follows:

I. Alice wants to send secretely a positive integer n to Bob. To do so, she picks an element

h ∈ H with lH(h) = n. Then she writes h in terms of m elements in {g1, . . . , gs}, and

1



Group distortion in Cryptography

sends h to Bob. Under some conditions we will have m� n.

II. Bob rewrites h in terms of h1, . . . , hr with a minimal expression and finds n.

Remarks.

• H is not known to anyone except Alice and Bob and the fact that m� n hides very well

the information: many possible lengths in H lead to very few possible lengths in G. Thus,

when the eavesdropper Eve intercepts an element of G, she gets an element that, to her

eyes, could mean many possible integers. However, Eve might intercept enough elements

in H to generate it. At this point Eve would only have to deal with the non-uniqueness

of the generating set of H.

• If G and H are sets of matrices with integer entries, Alice can send h as a single matrix

through the public channel and let Eve compute its length in G, because Bob is only

interested in the length of h in H. The same holds for any group G whose elements can

be easily represented as single factors.

1.2 Secure version

Again, we set G =< g1, . . . , gs > as the public channel, and H =< h1, . . . , hr > as the private

key that Alice and Bob secretly share. Now Alice will not only send the word she is interested

in, she will also send some random words in G\H in order to make H less visible:

I. Alice picks an element h ∈ H with lH(h) = n. Then she writes h in terms of m elements

in {g1, . . . , gs} and she randomly generates some a1, . . . , at ∈ G\H. Then she sends Bob

all these elements together.

II. Bob seeks the element in {a1, . . . , at, h} that belongs to H and gets h. Then he rewrites h

in terms of h1, . . . , hr with a minimal expression and finds n.

The reader might have noticed that in the protocol we present there are computational

problems involved: it could be hard to find an element in H that has the desired length and,

conversely, it could also be hard to find a minimal expression for h ∈ H in terms of the generator

set of H. Furthermore, Bob needs to be able to distinguish the element that belongs to H from

the others that are sent. We will not work on these computational aspects in general. However,

we will provide a particular operational platform for the protocol (see Chapter 3).
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Chapter 2

Fundamentals

2.1 Arithmetic groups.

Throughout this work, we will turn to the so called arithmetic groups since they provide a good

platform for the protocol. Roughly speaking, to build an arithmetic group, we consider a linear

algebraic group defined over Q and we take those elements with integer entries. In the following,

we provide a more precise construction, as well as some properties and examples.

Unless otherwise stated, V will denote an n-dimensional vector space over C endowed with

a Q-structure, ie, V contains an n-dimensional vector space defined over Q. We call it VQ.

Roughly speaking, given a vector space V over C, VQ are all linear combinations with rational

coeficients of some basis in it. For our purposes, we will normally set V = Cn and VQ = Qn.

Now let A be a subring of C. GLn(A) will denote the group of matrices with determinant

equal to a unit in A. SLn(A) will denote the special linear group, that is, the subgroup of

elements in GLn(A) with determinant equal to 1.

For A a subring of C and G a subgroup of GLn(C), we will refer to G ∩ GLn(A) as GA.

Notice that these are the matrices in G with all entries in A.

Definition 1. Let G be a subgroup of GLn(C), and K a subfield of C. We will say that G is

algebraic over K if there is a finite set of polynomial equations over K in the matrix coefficients

that define G. We also say that G is a K-subgroup of GLn(C).

Example 1. SLn(C) is algebraic, since it is defined in GLn(C) by the polinomial equation

det(M) = 1. The orthogonal group of matrices On(C) = {M ∈ GLn(C) : MMT = MTM = Id}

3
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is also algebraic.

Definition 2. We call lattice to any additive group isomorphic to Zn, n ∈ N.

Any lattice in Cn can be constructed as all linear combinations with integer coefficients of a

finite subset of Cn. In our case, we will be picking lattices in Qn ⊆ Cn.

Definition 3. Let L be a lattice in VQ and G an algebraic subgroup of GLn(C) over Q ⊆ C.

We define the group of L-units of G as GLu = {g ∈ G : g(L) = L}.

One can think of the L-units we have just described as the elements that both satisfy the

polynomial equations of the subgroup G and let the lattice L invariant. Notice that the condition

g(L) = L defines a subgroup, that is, L-units form a subgroup of G.

Definition 4. Two subgroups A and B of a group Γ, are said to be commensurable if A ∩ B

has finite index both in A and B.

Example 2.

◦ 2Z and 3Z are commensurable because their intersection is 6Z, which has index 3 in 2Z

and has index 2 in 3Z.

◦ GLn(C) and SLn(C) are commensurable because their intersection is SLn(C), with index

2 in GLn(C) and index 1 in itself. Recall that there are only two equivalence classes in

this case, that are defined by the sign of the determinant.

Lemma 1. For G a group, the intersection of two finite index subgroups has finite index. More

precisely, the quotient over the intersection of two finite index subgroups, H and K, is formed

by all possible intersections between left cosets in G/H and left cosets in G/K.

Proof. Given H and K, they both lead to a finite set of left-cosets:

G/H = {h̄1, . . . h̄n}; G/K = {k̄1, . . . , k̄m} where h1, . . . , hn ∈ H and k1, . . . , km ∈ K.

For x ∈ G and ȳ ∈ G/H ∩K we have that y ∈ h̄i and y ∈ k̄j for some i ∈ {1, . . . , n}, j ∈

{1, . . . ,m}. And x ∈ ȳ ⇔ yx−1 ∈ H ∩K ⇔ yx−1 ∈ H and yx−1 ∈ K ⇔ x ∈ h̄i and x ∈ k̄j .

This proves that the left-cosets in G/H ∩K are all possible intersections of left-cosets in G/H

and G/K. Therefore, G/H ∩K is indeed finite.
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Lemma 2. Let H1, H2 be two subgroups of G such that H1 ⊆ H2. If H1 has finite index, so

has H2.

Proof. For convenience of the proof, for g ∈ G, we will denote its left coset in G/H1 and G/H2 as

gH1 and gH2, respectively. We consider the following map:

f : G/H1 −→ G/H2

gH1 7−→ f(gH1) = gH2

Firstly, we see it is well defined. For g, s ∈ G, assume that gH1 = sH1, that is, g−1s ∈ H1. We

want to prove that gH2 = sH2. This holds if, and only if, g−1s ∈ H2, which is true because

g−1s ∈ H1 ⊆ H2. Hence, it is indeed well defined. Furthermore, any gH2 ∈ G/H2 has preimage

gH1, thus, f is surjective. Therefore, as G/H1 is finite, so is G/H2.

Proposition 1. Commensurability is an equivalence relation.

Proof. The relation is clearly reflexive and symmetric. We prove it is transitive. Assume A

commensurable to B and B commensurable to C. We know from Lemma 1 the intersection of

two finite index subgroups has finite index, hence,

as we know that


[B : A ∩B] is finite

[B : B ∩ C] is finite

⇒ [B : A ∩B ∩ C] is finite

⇒ From Lemma 2, we get


[A ∩B : A ∩B ∩ C] is finite (I)

[B ∩ C : A ∩B ∩ C] is finite (II)

And we know that [A : A ∩B] is finite, hence, from (I) we see that

[A : A ∩B][A ∩B : A ∩B ∩ C] = [A : A ∩B ∩ C] is finite. Thus, from Lemma 2, [A : A ∩ C] is

finite.

We also know that [C : B ∩ C] is finite, hence, from (II) we see that

[C : B ∩ C][B ∩ C : A ∩ B ∩ C] = [C : A ∩ B ∩ C] is finite. Finally, again from Lemma 2,

[C : A ∩ C] is finite.

Definition 5. Let G be a Q-subgroup of GLn(C). Now consider GQ = G∩GLn(Q). A subgroup

H of GQ is said to be arithmetic if there exists a lattice L in VQ such that H is commensurable

to GLu.

5



Group distortion in Cryptography

In other words, an arithmetic group can be built as follows:

◦ Pick a Q-subgroup of GLn(C), call it G. One can think of G as the “universe” where we

will be working.

◦ Now consider only those elements in G with rational entries, GQ.

◦ Pick a subgroup H in GQ.

◦ Pick a lattice in VQ whose L-units in G form a subgroup commensurable to H. Roughly

speaking, for H to be arithmetic, it needs to have many of the elements that let a certain

lattice invariant.

Remark. As commensurability is an equivalence relation, any subgroup B of an arithmetic

group A who has finite index in it, is arithmetic as well.

Example 3. Let’s see that GLn(Z) is an arithmetic group.

We first notice that all matrices have determinant equal to a unit in Z, ie, ±1. Hence,

all inverses will still be in GLn(Z). One can now easily see that GLn(Z) is indeed a group (a

subgroup of GLn(C)). Moreover, since GLn(C) is trivially algebraic1, it is also a subgroup of

an algebraic group. And we notice that GLn(Z) has rational entries. So we have GLn(Z) ⊆

GLn(C)Q, as desired.

Now consider the lattice L = Zn ⊆ Qn. It is clearly invariant under any matrix in GLn(Z).

That is, GLn(Z) ⊆ GLu. Furthermore, if a certain matrix in GLu had a non-integer entry at

row i, column j, then the image of the column vector (0, . . . , 0, 1j , 0, . . . , 0)T , which is exactly

the column j of the matrix, would not belong to Zn. Hence, GLn(Z) = GLu.

Finally, as GLn(Z) is commensurable to itself, it is indeed arithmetic. Furthermore, as

SLn(Z) has index 2 in GLn(Z), it is arithmetic as well.

Example 4. Let H be the subgroup of SLn(Z) consisting of all the matrices with ones on the

diagonal, an (n − 1)-dimensional column vector on the last column and zeros everywhere else.

1To see this, pick the empty set of polinomial relations.
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This is, those with the following form:

h =



1 0 0 . . . h1

0 1 0 . . . h2
...

. . .
. . .

. . .
...

0 . . . 0 1 hn−1

0 0 . . . 0 1


Later in this work, we will see that these particular matrices provide a good cryptographic

platform for our protocol. One can easily check that this is indeed a group. Furthermore, the

defining equations of H are linear equations:

xii − 1 = 0 for 1 ≤ i ≤ n

xij = 0 for i 6= j and j ≤ n− 1

Thus, H is algebraic in the sense that it is a subgroup of a Q-subgroup in GLn(C), which

is given by the same equations extended to C. We call it H̄. To sum up, we have the following

subgroup inclusions:

GLn(C) ⊇ SLn(C) ⊇ H̄ ⊇ H̄ ∩ SLn(Z) = H

Pick L = Zn. Now, for the elements in GLu (recall that GLu ⊆ H̄), we need the image of

(0, . . . , 0, 1)t to belong to Zn. That is, we need the last column of the matrices in GLu to have

integer entries. Thus, GLu ⊆ H. Since Zn is invariant under H, the reverse inclusion also holds.

So we get GLu = H. Hence, H is arithmetic.

Remark. Notice that the lattice < (1, 0, . . . , 0)t, (0, 1, . . . , 0)t, . . . , (0, . . . , 1, 0)t > is invariant

under any matrix in H̄, because it’s only afected by the first n − 1 columns of the matrices.

However, H̄ is not commensurable to H, since [H̄ : H] is not finite, which follows from the fact

that [Cn−1 : Zn−1] is not finite. So, as we have just seen, we need to somehow extend this lattice

in order to get a smaller group of L-units.

2.2 Metric in a group, the Cayley Graph

Definition 6. Let G be a group. By a G-set we mean a given set X with a function

G ×X → X, (g, x) 7→ gx, such that 1x = x ∀x ∈ X, and g(g′x) = (gg′)x ∀g, g′ ∈ G, x ∈ X.

We say also that G acts on X, and that there is a G-action on X.

7
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We say that X ′ is a G-subset of X if it is stable under the G-action, that is gX ′ ⊆ X ′ ∀g ∈ G.

We recall that giving a G-action is equivalent to specifying a group homomorphism from G

to Sym X, the group of permutations of X.

Definition 7. A function α : X1 → X2 between G-sets is said to be a G-map if α(gx) =

gα(x) ∀g ∈ G, x ∈ X1. We also say that X1, X2 are G-isomorphic, and denote it X1 ≈ X1, if

there exists a bijective G-map from one the other.

Definition 8. By a G-graph (X,V,E, µ, τ) we mean a nonempty G-set X with a specified

nonempty G-subset V , its complement E = X − V , and two G-maps µ, τ : E → V , which we

call the incidence functions. In this case we simply say that X is a G-graph.

We call the elements in V “vertices”, and the elements in E, “edges”.

Notice that the fact that V isG-stable implies that its complement E is alsoG-stable, because

if E had an element e such that, for some g ∈ G, ge ∈ V , then we would have g−1ge ∈ E, which

contradicts the fact that V is G-stable.

For us, functions µ, τ : E → V codify, for every edge of a graph, the two vertices it joins.

Furthermore, as they are G-maps, it turns out that ∀g ∈ G, e ∈ E, gµ(e) = µ(ge) and

gτ(e) = τ(ge). That is, when g ∈ G acts on two adjacent vertices2 the result is again two

adjacent vertices (see figure 2.1).

Definition 9. Let G be a group and let S be a set of generators of G. The Cayley graph of G

with respect to S, denoted X(G,S), is the graph with vertex set G, edge set G×S, and incidence

functions µ(g, s) = g, τ(g, s) = gs ∀(g, s) ∈ G× S.

Remark. For our particular interest, in this definition we have defined S as a generator set.

However, the definition could be done with S being any subset of G.

2That is, two vertices who are the images of the same edge for τ, µ.
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τ

i

E V

e

τ

i

i(e)

gi(e)

τ(e)

gτ(e)

g

g

g

ge

Figure 2.1: g ∈ G sends two adjacent vertices

to two other adjacent vertices.

One can construct the Cayley Graph of

a group in this way. We know that, given a

group G, we can present it in terms of a set

of generators and a set of relations, that is,

G =< S | R >. Now we pick the identity

element as the starting vertex. For every el-

ement α ∈ S±1 = S ∪ {s−1 : s ∈ S}, we put

one edge starting at 1 and ending at α1 = α.

Now from every new vertex we repeat the

process: at every new vertex g ∈ G, for ev-

ery α ∈ S±1, we put an edge starting at g

and ending at αg, without redrawing the edge we are coming from. When the set of generators

is finite -and not too large-, one can draw these graphs (see figure 2.2).

(II)(I) (III)

s

s

s s

s

s

�

�

�

�

�

�

τ

τ

τ

τ
τ

τ

1
s1

s
2

s
2

-�

s1
-�

Figure 2.2: (I) represents the Cayley Graph for < s1, s2 | ∅ >, (II) is the one for

< s | s6 > and (III) is the one for the dihedral group D2·3 = < σ, τ | σ2, τ3, τστσ > .

Definition 10. Given a group G =< S | R > and its Cayley Graph X(G,S), we assign to

every edge in X weight 1. We define the distance between every a, b ∈ G as the minimum length

for a path joining a and b in the Cayley’s graph, we will denote it d(a, b). We will also denote

d(g,Q) the distance between g ∈ G and a nonempty subset Q ⊆ G. We say that a path between

two elements a, b ∈ G is a geodesic when it’s length is equal to d(a, b). And we define the length

of an element g ∈ G as dG(1, g), which we will denote lG(g).

Notice that any element in g ∈ G =< S | R >, can be reached coming from 1 in X(G,S),
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because g can be written as a finite sequence of elements of S±1. And this sequence is a path

in X(G,S). Therefore, every two elements a, b ∈ G are connected by the path that goes from

a to 1 and then from 1 to b. The length of this path is an upper bound for d(a, b), hence there

always exists a geodesic from a to b.

Note also that the distances will depend, not only on the group or subgroup we work with, but

also on the particular generating set. Thus, when we write dG(a, b) or lG(c), where a, b, c ∈ G,

we need to have previously fixed a generator set. Through this work, we will often refer to

distances and lengths without mentioning it. In this case, we will assume it is already fixed.

However, when needed, we will refer to distances and lengths as dS(a, b) and lS(c) respectively,

where a, b, c ∈ G and S is the generating set.

Proposition 2. For any two finite generating sets S, S′ of G such that S ⊆ S′,

lS′(g) ≤ lS(g)

Proof. Let g ∈ G. When moving from 1 to g, the elements in S′\S add possible shortcuts to a

geodesic in X(G,S).

Proposition 3. For any two finite generating sets S, S′ of G, there is a constant C ≥ 1 such

that, for any g ∈ G one has

lS′(g) ≤ C lS(g)

Proof. Let g ∈ G and write it as a minimal word in S, with length lS(g). We put each letter

of this word as a word in S′, each one with length ≥ 1. And we set C as the maximum of all

these lengths, so we have C ≥ 1. This gives an expression for g in terms of S′ with no more

than C lS(g) letters. Thus, lS′(g) ≤ C lS(g).

Proposition 4. Let G =< S | R > be a group and let X(G,S) be its Cayley Graph. For every

g ∈ G, it holds that lG(g) = lG(g−1).

Proof. For g ∈ G, pick a minimal path g = a1a2 . . . an in the Cayley Graph, its inverse can be

written as g−1 = a−1n . . . a−12 a−11 , which is a path of the same length. Therefore lG(g) ≥ lG(g−1).

Repeating the argument exchanging g and g−1, we get that lG(g) ≤ lG(g−1).

10
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s s

s

s
s

s

Figure 2.3: In black,

< s | s6 > and, in green,

< s2 | s6 >.

Now consider a finitely generated group G and let H be a

finitely generated subgroup in it. We denote with SG and SH

a pair of fixed generators for G and H, respectively. We have

that every h ∈ H is a vertex in X(G,SG). Furthermore, every

generator in SH can be expressed as a sequence of generators in

SG. Hence, one can overdraw X(H,SH) on X(G,SG) by labelling

the vertices that belong to H and taking as single edges all paths

between two elements of H (see Figure 2.3).

Proposition 5. Let H̄ be as in Example 4. Then the follow-

ing group isomorphisms hold: (H̄, ·) ' (Cn−1,+) and (H, ·) '

(Zn−1,+). Hence, H̄ and H are abelian.

Proof. For h, s ∈ H̄ we compute its product:

hs =


1 0 . . . h1
...

. . .
. . .

...

0 . . . 1 hn−1

0 . . . 0 1




1 0 . . . s1
...

. . .
. . .

...

0 . . . 1 sn−1

0 . . . 0 1

 =


1 0 . . . h1 + s1
...

. . .
. . .

...

0 . . . 1 hn−1 + sn−1

0 . . . 0 1


The same computation holds when h, s ∈ H.

To ease the notation, for a matrix A ∈ SLn−1(Z) and a vector v ∈ Zn−1, we put:

M(A, v) =

A v

0 1


So we can write H = {M(Id, v) : v ∈ Zn−1}.

Corollary 1. Let {e1, . . . , en−1} be the canonical basis of Zn−1. The metric in the Cayley

graph of H with respect to the generator set {M(Id, ei) : 1 ≤ i ≤ n− 1} is the following:

∀v, w ∈ Zn−1 d(M(Id, v),M(Id, w)) =
n−1∑
i=1

|vi − wi| ,

where vi and wi denote the components of v and w in the canonical basis, respectively. It follows

that

∀v ∈ Zn−1 l( M(Id, v) ) =

n−1∑
i=1

|vi|

11
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Proof. From the proof of the preceding proposition, we see that ei 7→M(Id, ei) ∀i ∈ {1, . . . , n− 1}

defines an isomorphism from (Zn−1,+) to (H, ·). By picking e1, . . . , en−1 as the generators for

the Cayley graph of Zn−1 and its images as the generators for the Cayley graph of H, we get

the following metrics in the respective groups:

∀v, w ∈ Zn−1 d(v, w) = d(M(Id, v),M(Id, w)) =

n−1∑
i=1

|vi − wi|

2.3 Distortion

Definition 11. Let H be a subgroup of a finitely generated group G and let SH and SG be two

fixed generating sets for H and G, respectively. We say that H is exponentially distorted in G

if there is a positive constant C such that, for each element h ∈ H, we have

lG(h) ≤ C log(1 + lH(h))

1

h

Figure 2.4: Distortion for h ∈ H. In black,

we represent some of the edges of a group G.

In green, we overdraw a geodesic from 1 to h of

some subgroup H. In this case, h has length ≤ 3

in G, and it has length 8 in H.

The interest of this definition is that, if H

is an exponentially distorted subgroup of G,

the number of generators we need to express

an element in terms of the generators of H

is exponentially bigger than the number we

need in G. Figure (2.4) might help to un-

derstand graphically this fenomenon. From

Proposition 3 we also have that exponential

distortion does not depend on the generator

sets we choose for G and H. Indeed, let H

and G be exponentially distorted, with re-

spective generator sets SH and SG. And let

TH and TG be two other generator sets for H

and G. For h = 1 the claim is clear. Now suppose h 6= 1. We know that there are two constants

C1, C2 ≥ 1 such that

lTG(h) ≤ C1 lSG
(h) and lSH

(h) ≤ C1 lTH (h)

12
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So we have

lTG(h) ≤ C1 lSG
(h) ≤ C1C log(1 + lSH

(h)) ≤ C1C log(1 + C2lTH (h))

≤ C1C log (C2[1 + lTH (h)]) = C1C log(1 + lTH (h)) + C1C log(C2)

≤ C ′ log(1 + lTH (h)) for some C ′ > 0, as desired.

Definition 12. Let A be a ring. An element a ∈ A is said to be unipotent if there exists an

n ∈ N such that (a − 1)n = 0. And we say that a ∈ A is virtually unipotent if there exists an

m ∈ N such that am is unipotent, that is, (am − 1)n = 0 for some n ∈ N.

Remark. If a matrix M is unipotent, its only eigenvalue is 1, because (M − Id)n = 0 for some

n, so the minimal polynomial of M must divide (x− 1)n.

Definition 13. For G a group, an element g ∈ G is called a U -element if the cyclic group

H =< g > is infinite and exponentially distorted in G. In other words, g ∈ G is a U -element if

it has infinite order and

lG(gn) ≤ C log(1 + |n|)

holds for all n ∈ Z and some C > 0.

Example 5. Let B denote the Baumslag-Solitar group B(1, 2), that is, the group presented

as < t, a | tat−1 = a2 >. We will prove H =< a > is exponentially distorted in B.

We first need to see that a2
k

= tkat−k ∀k ≥ 1. When k = 1, it holds by definition. Now

assume the equality holds for k − 1, k > 1. We prove it for k:

a2
k−1

= tk−1at−(k−1) ⇒ a2
k−1

a2
k−1

= tk−1at−(k−1)tk−1at−(k−1)

⇒ a2
k

= tk−1a2t−(k−1) = tk−1tat−1t−(k−1) = tkat−k, as desired.

We also need to prove that lB(an) ≤ lB(a2
k
) when |n| ≤ 2k. We take n ≥ 0 and make the

proof for both an and a−n. We can write n as a sum of powers of 2, that is, n =
∑N

i=1 2mi ,

where we have ordered the powers in an increasing manner. And we will have that mN ≤ k and

13
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N ≤ k. We also know that lB(an) = lB(a−n), so we can write:

lB(a−n) = lB(an) = lB
(
a2

m1
a2

m2
. . . a2

mN
)

=

lB(tm1at−m1tm2at−m2 . . . tmNat−mN ) =

lB(tm1atm2−m1atm3−m2 . . . tmN−mN−1at−mN ) ≤

N +m1 + (m2 −m1) + · · ·+ (mN −mN−1) +mN =

N +mN ≤ k + k = 2k <

2k + 1 = lB(tkat−k) = lB(a2
k
), as desired.

Now consider h ∈ H, h 6= 1. That is, h = an for some n ∈ Z {0}. And let k be the minimum

positive integer such that |n| ≤ 2k. On one hand, we have that

lB(h) = lB(an) ≤ lB(a2
k
) = lB(t−katk) = 2k + 1 (I)

On the other hand, by definition of k, we have

2k−1 ≤ |n| = lH(an) = lH(h) (II)

From (I) and (II) we get that, for some constants M,C > 0,

lB(h) ≤ 2k + 1 ≤ Mk = M (k − 1 + 1)

= M (log2(2
k−1) + 1) ≤ M (log2|n|+ 1)

= M (log2[lH(h)] + 1) ≤ C log2(lH(h))

≤ C log2(lH(h) + 1), as desired.

Notice we have also proved that a is a U -element in B. This group can be realized as a linear

group since the following two matrices satisfy the relation tat−1 = a2.

t =

2 0

0 1

 , a =

1 1

0 1


Proposition 6. Let G =< g1, . . . , gr > be a finitely generated group and H =< h1, . . . , hm > a

finitely generated abelian subgroup in it. If every element of H is a U -element, H is exponentially

distorted.

Proof. Assume every element of H =< h1, . . . , hm > is a U -element. Pick h ∈ H and write it

in terms of the generators of H with minimum length:

h =

N∏
k=1

hpkik , pk ≥ 1 ∀k

14
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Because H is abelian, N ≤ m. By assumption, we can write every hpkik in terms of g1, . . . , gr

with a length bounded from above by Ck log(1 + |pk|) for some positive constant Ck. We define

C as the largest of these constants and we define p as de maximum in {|pk| : 1 ≤ k ≤ N}. Then,

lG(h) ≤
N∑
k=1

C log(1 + |pk|) ≤
N∑
k=1

C log(1 + |p|) = NC log(1 + |p|)

≤ mC log(1 + |p|) ≤ mC log

(
1 +

N∑
k=1

|pk|

)
= mC log (1 + lH(h))

2.4 Properties needed for G and H.

The construction of a cryptosystem based on our protocol relies on the existence of pairs (G,H),

consisting of a finitely generated group G and a finitely generated subgroup H of G with the

following properties:

(i) The geodesic length problem (GLP) and the membership problem (MP) for H are solvable

in polynomial time. These problems are defined as follows:

◦ GLP: given h ∈ H, find lH(h).

◦ MP: given g ∈ G find out if g ∈ H or g /∈ H.

(ii) There exists a constant C1 > 0 such that, for every h ∈ H, one can compute in polynomial

time a path from the identity to h whose length m(h) is bounded from above by C1lG(h).

This gives Eve the possibility to write and intercepted h ∈ H in terms of g1, . . . , gs in

polynomial time and also doing it with a length m(h) ∈ O(lG(h)). This last property will

fully take sense with the next requirement.

(iii) H is exponentially distorted in G. By definition, for some C2 > 0, we have

lG(h) ≤ C2 log(1 + lH(h))

Combining this condition with m(h) ≤ C1lG(h), we get m(h) ≤ C1C2 log(1+ lH(h)). That

is, Eve might be computing lengths exponentially shorter than the lengths Alice is sending.

This phenomenon hides very well the information, because a ‘short’ element, with length

m(h) in G, can be the translation of many ‘long’ elements.

15
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(iv) The index of the normalizer NG(H) in G is infinite3. We will prove that this property is

equivalent to having an infinite number of diferent conjugates of H. We will also prove that

the conjugation of the subgroup preserves all the properties above. Hence, the conjugation

of H will supply infinite possible private keys for the protocol. This makes more difficult

for Eve to find the private key, since she doesn’t have a finite set of possibilities.

We prove the results we have just mentioned:

Lemma 3 (Orbit-Stabilizer Theorem). For a G-action ∗ on a set X and for s ∈ X, we denote

Orb(s) = {g ∗ s : g ∈ G}, the orbit of s, and Stab(s) = {g ∈ G : g ∗ s = s}, the stabilizer of s.

Then it holds that |Orb(s)| = [G : Stab(s)].

Proof. Consider

ϕ : G −→ Orb(s)

g 7−→ g ∗ s

Because of the definitions of orbit and group action, it is surjective. Now pick g, q ∈ G.

ϕ(g) = ϕ(q) ⇒ g ∗ s = g ∗ q ⇒ s = (g−1q) ∗ s ⇒

g−1q ∈ Stab(s), which is a subgroup. ⇒ g ≡ q (mod Stab(s))

Thus, we have the following bijection:

φ̃ : G/Stab(s) −→ Orb(s)

[g] 7−→ g ∗ s

Proposition 7. For S a subset of G, the number of distinct subsets of G which are conjugates

of S is equal to [G : NG(S)], where NG(S) is the normalizer of S.

Proof. Denote P(G) the power set of G and consider the conjugation aplication:

g∗ : P(G) −→ P(G)

S 7−→ gSg−1

3We recall that the normalizer of H is the set of all elements in G that commute with H.
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This defines a G-action on P(G), because e ∗ S = S and g ∗ (q ∗ S) = (g ∗ q) ∗ S for all

g, q ∈ G. And notice that Stab(S) = NG(S). Then, by the Orbit-Stabilizer theorem, we have

that |Orb(S)| = [G : Stab(S)] = [G : NG(S)].

Proposition 8. If properties (i), (ii), (iii) hold for a subgroup H of G, they hold for any

conjugate gHg−1, g ∈ G.

Proof. For some g ∈ G\H, let W = gHg−1 be a conjugate of H in G. Assume all properties

hold for H. We notice that if H =< h1, . . . , hn > then W =< gh1g
−1, . . . , ghng

−1 >. Hence

with this two respective generator sets, any word in H has the same length as its conjugate in

W . Furthermore, because of cancelation of g−1 with g, any word in W will be the concatenation

of g, some generators of H and finally g−1. Now we give a proof for each property:

(i) Let w ∈ G. We have that w ∈W if, and only if, g−1wg ∈ H. Thus, the MP can be solved

by computing h = g−1hg -which can be done in polynomial time- and solving for h and H

-by assumption, again in polynomial time-.

Now let w ∈W and let S be a generator set of W . We can solve the GLP in polynomial by

solving the problem for g−1wg ∈ H with the conjugate generator set g−1Sg, because we

know that if we choose this generator set for H, the lengths of the elements are preserved

under the conjugation W 7→ g−1Wg = H.

(ii) Again, let w ∈W = gHg−1. We can first compute h = g−1wg ∈ H, which can be done in

polynomial time. Now, by assumption, we can put h in terms of the generators, g1, . . . , gs,

of G in polynomial time and also doing it with a resulting length m(h) ≤ C lG(h). Finally,

again in polynomial time, we can make its conjugate and get w in terms of g1, . . . , gs, g.

That is, we get w in terms of g1, . . . , gs, because g is expressed in terms of the generator

set. As these are finite steps that are all done in polynomial time, the whole process can

also be done in polynomial time. Moreover, the difference in letters between m(h) and

the length m(w) we get for w is, at most, two times lG(g), which is a constant. The same

holds for the difference between lG(h) and lG(w). So there is indeed a positive constant

C ′ such that the resulting length satisfies m(w) ≤ C ′lG(w).

(iii) By assumption, for any h ∈ H, lG(h) ≤ C log(1 + lH(h)) for some positive constant C.

17
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We also have that
lG(ghg−1) = lG(h) + k, where |k| ≤ 2 lG(g)

lW (ghg−1) = lH(h), with the appropriate pair of generator sets.

Hence, lG(ghg−1) = lG(h) + k ≤ C log(1 + lH(h)) + k = C log(1 + lW (ghg−1)) + k. So

there is indeed a positive constant C ′ such that lG(ghg−1) ≤ C ′ log(1 + lW (ghg−1)). And

we know exponential distortion doesn’t depend on the particular generator set.

18



Chapter 3

An example of interest

Let H be the subgroup of SLn(Z) introduced in Example 4, from Chapter 2. After giving some

results that are needed, we will see that properties (i), (ii), (iii) from Section 2.4 hold for H.

Hence, the pair (SLn(Z),H) will be a suitable platform for the protocol.

Once again, we will use the following notation. For a matrix A ∈ SLn−1(Z) and a vector

v ∈ Zn−1:

M(A, v) =

A v

0 1


With this notation, H = {M(Id, v) : v ∈ Zn−1}. And we recall from Proposition 5 and Corollary

1, that (H, ·) ' (Zn−1,+) and that by picking the canonical basis in (Zn−1,+) we get the

following metric in the Cayley graph of H, which we will be using throughout this chapter:

∀v, w ∈ Zn−1 dH(M(Id, v),M(Id, w)) =
n−1∑
i=1

|vi − wi|

Lemma 4. Let G be a finitely generated group and let H be a finitely generated subgroup of G.

Assume there is a nonempty subset S ⊆ H such that, for some positive constant C, it holds that

∀h ∈ H dH(h, S) ≤ C. Then there is a positive constant M such that ∀h ∈ H dG(h, S) ≤M .

Proof. Let h ∈ H. And let h1 . . . hm be a minimal path from h to the set S, where every hi

belongs to the generator set of H and there are possible repetitions. By assumption we have

that m ≤ C.

Every generator of H is a finite concatenation of generators of G and, as the generators of

H are finite, there is one with maximum length in G. We call this length L. It follows that the
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length in G of the path h1 . . . hm is upper bounded by mL. We have:

dG(h, S) ≤ mL ≤ CL , so we can set M = CL.

Lemma 5. Let β, λ ∈ R be such that β > 0 and 1 < λ < 2. There is an m ∈ N and a positive

constant C ∈ R such that m ≤ C log(1 + β) and

|β −
m∑
i=0

εiλ
i| ≤ 1, where εi ∈ {0, 1} ∀i.

That is, we can approach β at distance ≤ 1 by additioning no more than C log(1 + β)

powers of λ.

Proof. If β ≤ 1 we get |β − 1| ≤ 1 and m = 0, so the claim holds. Now we assume β > 1. And

we set n1 as the maximum natural such that λn1 ≤ β. If we get that β − λn1 ≤ 1, we end the

process. If not, we set n2 as the maximum natural such that λn1 + λn2 ≤ β. Again, if we get

that β − (λn1 + λn2) ≤ 1, we end the process. If not, we set n3 as the maximum natural such

that λn1 + λn2 + λn3 ≤ β, and so on.

Assume we have added k powers of λ and that we see that we still can’t end process. So we

add another power λnk+1 , with the maximum natural nk+1 such that

k∑
i=1

λni + λnk+1 ≤ β ⇔ λnk + λnk+1 ≤ β −
k−1∑
i=1

λni =: α

And by construction we also have that nk is the maximum natural such that

λnk ≤ β −
k−1∑
i=1

λni = α

We want to prove that nk > nk+1. To do so, we assume that nk ≤ nk+1. It follows that

λnk + λnk+1 ≥ λnk + λnk = 2λnk > λnk+1 > α, which leads to a contradiction.

With this in hand we see that the process ends with, at most, n1 + 1 additioned powers of λ.

And we know that

λn1 ≤ β ⇒ λn1 ≤ β + 1 ⇒ n1 ≤
1

log λ
log(1 + β)

Now we set m = n1 and C = 1
log λ and the claim holds.
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Lemma 6. Let || · || be standard norm and let

w1 =

1

0

 , w2 =

0

1

 and A =

1 1

1 0

 .

There are two positive constants C,M such that for every v ∈ Z2 there is an m ∈ N such that

1 ≤ m ≤ C log(1+ ||v||) and v is at a distance -the standard norm distance- bounded by M from

the set

Sm :=

{ −1∑
k=−m

βkA
kw2 +

m∑
k=0

βkA
kw1 : (β−m, . . . , βm) ∈ {−1, 0, 1}2m+1

}

Proof. The matrix A has eigenvalues

λ+ =
1 +
√

5

2
λ− =

1−
√

5

2

And by defining α := λ+ we also have − α−1 = λ−

It will be crucial the fact that |λ+| > 1 and |λ−| < 1. We have the following equalities:

(A− αId)

α
1

 =

1− α 1

1 −α

α
1

 =

α− α2 + 1

α− α

 =

0

0


(A+ α−1Id)

−α−1
1

 =

1 + α−1 1

1 α−1

−α−1
1

 =

−α−1 − α−2 + 1

−α−1 + α−1

 =

0

0


So the eigenvectors are

v+ =

α
1

 for λ+ and v− =

−α−1
1

 for λ−

Notice they are ortogonal and that we can express the canonical basis {w1, w2} as follows:

w1 =
1√
5

(
α−1v+ + αv−

)
w2 =

1√
5

(v+ − v−)

For every natural k, we have that

Akw1 =
1√
5

(
α−1λk+v+ + αλk−v−

)
=

1√
5

(
λk−1+ v+ − λk−1− v−

)
A−kw2 =

1√
5

(
λ−k+ v+ − λ−k− v−

)
Now let v ∈ Z2\{0}. There are a, b ∈ R such that

v =
a√
5
v+ +

b√
5
v− , and we have |a|+ |b| > 0.
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Since 1 < λ+,−λ−1− < 2, from Lemma 5 we have that there are sums of powers of λ+ and λ−1− ,

respectively, such that:∣∣∣∣∣
ma∑
k=0

εkλ
k
+ − a

∣∣∣∣∣ ≤ 1, where ma ≤ C1 log(1 + |a|), C1 > 0, and εk ∈ {0, 1} Y εk ∈ {0,−1}.∣∣∣∣∣
mb∑
k=0

δk(−λ−)−k − b

∣∣∣∣∣ ≤ 1, where mb ≤ C2 log(1 + |b|), C2 > 0, and δk ∈ {0, 1} Y δk ∈ {0,−1}.

If we define

t :=
1√
5

(
ma∑
k=0

εkλ
k
+

)
v+ +

1√
5

(
mb∑
k=0

δk(−λ−)−k

)
v−

It follows that

||t− v|| ≤ 1√
5

√
||v+||2 + ||v−||2 =

√
5√
5

= 1 (I)

Now we will prove that t is at bounded distance from Sm. To do so, we need to show the

following:

◦
+∞∑
k=1

||εk

(
Akw1 −

λk−1+√
5
v+

)
|| =

+∞∑
k=0

εk||
−1√

5
λk−1− v−|| =

||v−||√
5

+∞∑
k=0

εk|λ−|k−1

◦
+∞∑
k=0

||δk

(
A−kw2 +

λ−k−√
5
v−

)
|| =

+∞∑
k=0

δk||
1√
5
λ−k+ v+|| =

||v+||√
5

+∞∑
k=0

δk|λ−1+ |k

Since |λ−|, |λ−1+ | < 1, the series converge. So it follows that

+∞∑
k=1

εk

(
Akw1 −

λk−1+√
5
v+

)
and

+∞∑
k=0

δk

(
A−kw2 +

λ−k−√
5
v−

)
are convergent.

And, hence, there is an upper bound N such that for every l, r ∈ N∣∣∣∣∣
∣∣∣∣∣
l∑

k=1

εk

(
Akw1 −

λk−1+√
5
v+

)∣∣∣∣∣
∣∣∣∣∣ ≤ N and

∣∣∣∣∣
∣∣∣∣∣
r∑

k=0

δk

(
A−kw2 +

(−1)k(−λ)−k√
5

v−

)∣∣∣∣∣
∣∣∣∣∣ ≤ N

Where we have put λ−k− = (−1)k(−λ−)−k. This can also be written as∣∣∣∣∣
∣∣∣∣∣
l∑

k=1

εkA
kw1 −

1√
5

(
l−1∑
k=0

εkλ
k
+

)
v+

∣∣∣∣∣
∣∣∣∣∣ ≤ N and∣∣∣∣∣

∣∣∣∣∣
r∑

k=0

(−1)k+1δkA
−kw2 −

1√
5

(
r∑

k=0

δk(−λ−)−k

)
v−

∣∣∣∣∣
∣∣∣∣∣ ≤ N

With this in hand, we set l − 1 = ma and r = mb. And we define

s :=

ma∑
k=1

εkA
kw1 +

mb∑
k=0

(−1)k+1δkA
−kw2 .
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For m = max{ma,mb}, it is clear that s ∈ Sm. And we get that ||s − t|| ≤ 2N . From (I), it

follows that

||s− v|| ≤ ||s− t||+ ||t− v|| ≤ 2N + 1

To finish this proof we need to show that there is some C > 0 such that m ≤ C log(1 + ||v||). In

the following, all the Ci are positive constants and we use that ||v+||, ||v−|| > 1 and |a|+ |b| > 0.

m ≤ ma +mb ≤ C1 log(1 + |a|) + C2 log(1 + |b|) ≤ C3 [log(1 + |a|) + log(1 + |b|)]

≤ 2C3 log(1 + |a|+ |b|) = 2C3

[
log

(
1√
5

+
|a|+ |b|√

5

)
+ log(

√
5)

]
≤ C4

[
log

(
1 +
|a|+ |b|√

5

)
+ log(

√
5)

]
≤ C5 log

(
1 +
|a|+ |b|√

5

)
= C5 log

(
1

2
+

1

2

|a|+ |b|√
5

)
+ C5 log (2)

≤ C5 log

1

2
+

√(
|a|√

5

)2

+

(
|b|√

5

)2
+ C5 log (2)

≤ C log

1

2
+

√(
|a|√

5

)2

+

(
|b|√

5

)2


≤ C log

1 +

√(
|a|√

5

)2

+

(
|b|√

5

)2


≤ C log

1 +

√(
|a|√

5
||v+||

)2

+

(
|b|√

5
||v−||

)2


= C log(1 + ||v||),

Corollary 2. For n ≥ 3, we define Ai as a matrix equal to the identity except for a 2× 2 block

on the diagonal, which is A (see Lemma 6) and it is placed with its (1, 1) component on the (i, i)

component of Ai. That is,

Ai =



1 0 . . . . . . 0
...

. . .
. . .

...
...

0 . . . A . . . 0
... . . . 0

. . .
...

0 . . . . . . 0 1


We set e1, . . . , en−1 as the canonical basis of Zn−1. Then, there are two positive constants

C,M such that for every v ∈ Zn−1 there is an m ∈ N such that 1 ≤ m ≤ C log(1+ ||v||), and v is
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at a distance -the standard norm distance- bounded by M from the set Sm,n, defined as follows:

Sm,n =

{∑
i∈Io

( −1∑
k=−m

βi,kA
k
i ei+1 +

m∑
k=0

βi,kA
k
i ei

)
:

Io = {1, 3, . . . , n− 2}, (βi,−m, . . . , βi,m) ∈ {−1, 0, 1}2m+1

}
if n is odd

Sm,n =

{∑
i∈Ie

( −1∑
k=−m

βi,kA
k
i ei+1 +

m∑
k=0

βi,kA
k
i ei

)
:

Ie = {1, 3, . . . , n− 3} ∪ {n− 2}, (βi,−m, . . . , βi,m) ∈ {−1, 0, 1}2m+1

}
if n is even

Proof. Every matrix Ai acts on ei and ei+1 in the same way that A acts on w1 and w2 in Lemma

6. Hence, from this lemma we get that there are two positive constants C,P such that for every

vector vi ∈< ei, ei+1 > there is an m ∈ N such that 1 ≤ m ≤ C log(1 + ||vi||) and vi is at a

distance -the standard norm distance- bounded by P from the set

S(i)
m,n :=

{ −1∑
k=−m

βi,kA
k
i ei+1 +

m∑
k=0

βi,kA
k
i ei : (βi,−m, . . . , βi,m) ∈ {−1, 0, 1}2m+1

}

Now let v ∈ Zn−1. The first two components1 are at a distance bounded by P from some

s1 ∈ S(1)
m,n, the following two are at a distance bounded by P from some s3 ∈ S(3)

m,n, and so on.

When n is even (that is, when n − 1 is odd), we can approach the last remaining component

with some sn−2 ∈ S(n−2)
m,n , which is again at a distance bounded by P . Now we set s ∈ Zn−1 as

the sum of all the vectors si we have found. It follows that s ∈ Sm,n and also that ||v−s|| ≤ nP .

Finally, we set M = nP .

Lemma 7. For a matrix B ∈ SLn−1(Z) and a vector v ∈ Zn−1,

M(B, 0)M(Id, v)M(B, 0)−1 = M(Id,Bv)

This can easily be seen by direct computation.

Proposition 9. For every vector v ∈ Zn−1, the length of the element M(Id, v) in SLn(Z) is

for some positive constant C, which only depends on n, bounded by C log(1 + ||v||). Moreover

there exists a constant M , such that a path of length M log(1 + ||v||) from the identity element

to M(Id, v) can be constructed in polynomial time in ||v||.

1By two consecutive components, i and i+ 1, we mean the vector (0, . . . , vi, vi+1, . . . , 0)
T .
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Proof. Firstly, we will prove the bound lS(M(Id, v)) ≤ C log(1 + ||v||), where the subindex S

refers to SLn(Z) for the case n = 3. We define Sm as in Lemma 6.

Let v ∈ Z2. From Lemma 6 and the isomorphism Zn−1 ' H it follows that there are

constants M,Q > 0, that only depend on n, such that

dH(M(Id, v),M(Id, s)) ≤M for some s ∈ Sm

and with 1 ≤ m ≤ Qlog(1 + ||v||)

Now from Lemma 4 we see that we can take this distance in the Cayley graph of SL3(Z) just

by replacing M with some other bound P > 0. That is, there are P,Q > 0 such that for every

v ∈ Z2 there is a natural m such that 1 ≤ m ≤ Q log(1 + ||v||) and there exists s ∈ Sm with

dS (M(Id, v),M(Id, s)) ≤ P .

With this in hand, the claim will follow from setting the bound lS(M(Id, s)) ≤ R log(1+||v||)

for some R > 0. From the definition of Sm in Lemma 6, there are β−m . . . βm such that

M(Id, s) = M

(
Id,

−1∑
k=−m

βkA
kw2 +

m∑
k=0

βkA
kw1

)

=

−1∏
k=−m

M(Id, βkA
kw2)

m∏
k=0

M(Id, βkA
kw1) (I)

For every factor, and using Lemma 7, we have that for i ∈ {1, 2}

M(Id, βkA
kwi) = M(Id,Akwi)

βk =
(
M(A, 0)kM(Id, wi)M(A, 0)−k

)βk
= M(A, 0)kM(Id, wi)

βkM(A, 0)−k = M(A, 0)kM(Id, βkwi)M(A, 0)−k

Now we compute one factor by the following:

M(A, 0)kM(Id, βkwi)M(A, 0)−k M(A, 0)k+1M(Id, βk+1wi′)M(A, 0)−k−1

= M(A, 0)kM(Id, βkwi)M(A, 0)M(Id, βk+1wi′)M(A, 0)−k−1

This cancellation shows that the product above leads to

M(Id, s) = M(A, 0)−m

( −1∏
k=−m

[
M(Id, βkw1)M(A, 0)

] m∏
k=0

[
M(Id, βkw2)M(A, 0)

])
M(A, 0)m−1

We are looking for a path in SL3(Z), but we can’t assume that every matrix in this product has

determinant 1. However, taking the matrices between brackets as a single factor, we see that
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there are 4m factors. And one can check that, if m is even, they can be regrouped as 2m factors

of constant length in SL3(Z) with determinant 1 and that, if m is odd, the same can be done

with 2m+ 1 factors. Hence, in both cases there is a constant K > 0 such that

lS(M(Id, s)) ≤ Km ≤ KQ log(1 + ||v||)

Now we set R := KQ and we get the desired bound.

From this reasoning we will see the claim in the case n > 3. We pick v ∈ Zn−1. And we

follow the same arguments replacing Sm by Sm,n, defined in Corollary 2. Now expression (I)

will turn into the following:

M(Id, s) = M

(
Id,
∑
i∈I

( −1∑
k=−m

βi,kA
k
i ei+1 +

m∑
k=0

βi,kA
k
i ei

))

=
∏
i∈I

( −1∏
k=−m

M(Id, βi,kA
k
i ei+1)

m∏
k=0

M(Id, βi,kA
k
i ei)

)
, (II)

where


I = Ie = {1, 3, . . . , n− 3} ∪ {n− 2} if n is even,

I = Io = {1, 3, . . . , n− 2} if n is odd.

So we have #I = n
2 if n is even, and #I = n−1

2 if n is odd. And using Lemma 7, we will get

that, for some K > 0,

lS

( −1∏
k=−m

M(Id, βi,kA
k
i ei+1)

m∏
k=0

M(Id, βi,kA
k
i ei)

)
≤ Km ∀i ∈ I

And it follows that

lS(M(Id, s)) ≤ n

2
Km ≤ n

2
K log(1 + ||v||)

So we set R := n
2K.

Finally, we want to see that there exists a constantM , such that a path of lengthM log (1 + ||v||)

from the identity element to M(Id, v) can be constructed in polynomial time in ||v||. The fol-

lowing algorithm proves the claim:

◦ GivenM(Id, v), we reach an s ∈ Sm at bounded distance from v, wherem ≤ C log(1+||v||).

We know from Lemma 6 that this can be done by additioning powers of λ+ and −λ− on
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the respective x, y axes until we get to a vector which is at bounded distance from the

desired s ∈ Sm. And the number of these powers is, at most, m ≤ C log(1 + ||v||) . So the

process is done in time t1 ∈ O (log(1 + ||v||)). We assume that, at each step, the coefficient

βi,k ∈ {−1, 0, 1} of each power is stored.

We have seen through this prove that these coeficients provide an explicit factorization of

M(Id, s) in SLn(Z), which has a length upper bounded by R log(1 + ||v||).

◦ Now, as M(Id, s) is at bounded distance from M(Id, v) in the Cayley graph of H, we can

build a path from M(Id, s) to M(Id, v) in constant time t2 ∈ O(1).

To sum up, the desired path can be built in time t = t1 + t2 ∈ O (log(1 + ||v||)), which is

better than polynomial time.

Now we can finally start to prove that properties (i), (ii), (iii) hold for H:

(i) The membership problem is solvable in polynomial time.

We recall that the defining equations of H are:

xii − 1 = 0 for 1 ≤ i ≤ n

xij = 0 for i 6= j and j ≤ n− 1

Hence, n2 − n − 1, is the number of conditions to check and therefore the membership

problem is solvable in polynomial time. From Proposition 8 we know that this still holds

for conjugates. By following the same reasoning in its proof, one can easily check the

property for this particular case.

(ii) There exists a constant C > 0 such that, for every h ∈ H, one can compute in polynomial

time a path from the identity to h whose length m(h) is bounded from above by ClS(h).

This follows directly from Proposition 9.

(iii) H is exponentially distorted.

Again from Proposition 9, we get the following inequalities, proving exponential distortion:

lS (M(Id, v)) ≤ C log(1 + ||v||) = C log

(
1 +

∣∣∣∣∣
∣∣∣∣∣
n−1∑
i=1

miei

∣∣∣∣∣
∣∣∣∣∣
)
≤

C log

(
1 +

n−1∑
i=1

mi

)
= C log (1 + lH (M(Id, v)))
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This can also be seen through the following result, which is proved in a more general case

in [1].

Theorem 1 (Lubotzky, Mozes and Raghunathan). For n ≥ 3, an element g ∈ SLn(Z)

is a U -element if and only if g is virtually unipotent, that is, there exists k ≥ 1 such that

gk is unipotent.

With this in hand and the fact that (M(Id, v) − Id)n = 0, we already see that every

h ∈ H is a U -element. And because H is abelian, from Proposition 6 it follows that H is

exponentially distorted.

(iv) The normalizer of H has infinite index in SLn(Z).

To see this we give the following result:

Proposition 10. The normalizer of H, NS(H), consists of matrices of the formB n−1×n−1 x n−1×1

0 1×n−1 ε


where B ∈ GLn−1(Z), ε = ±1 and det B = ε, and it has infinite index in SLn(Z).

Proof. We pick an arbitrary matrix A ∈ SLn(Z) and we partition it in blocks as follows:

A =

B x

yt ε


where B ∈ GLn−1(Z), x, y ∈ Zn−1 and ε ∈ Z.

Now assume A belongs to the normalizer of H, which holds if, and only if, it commutes

with H. That is, for every v ∈ Zn−1, there is some v′ ∈ Zn−1 such that:B x

yt ε

Id v

0 1

 =

Id v′

0 1

B x

yt ε


Comparing the entries (n, n) of both sides of the equality, we get that ytv+ε = ε for every

v ∈ Zn−1, which implies y = 0. From here, as A ∈ SLn(Z), it follows that ε det B = 1.

Since det B ∈ Z, it must be that ε = det B = ±1. We have proved that if any matrix is

in the normalizer, it must satisfy the conditions above. We now need to check that any
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matrix of this form belongs to the normalizer. So we pick one if its kind, and for some

v, v′ ∈ Zn−1 we compute: B x

0 ε

Id v

0 1

 =

B Bv + x

0 ε


Id v′

0 1

B x

0 ε

 =

B x+ εv′

0 ε


And now it is clear that for any v ∈ Zn−1 there will be some v′ ∈ Zn−1 such that the

equality between the two expressions holds, which proves the claim.

Now we need to see that the index of this subgroup in SLn(Z) is infinite. We pick an

arbitrary matrix, again divided in blocks, and we apply to its left side a matrix of the

normalizer: B x

0 ε

 ∈ N(H),

P v

wt m

 ∈ SLn(Z)⇒

B x

0 ε

P v

wt m

 =

BP Bv +mx

εwt εm


This shows that given a matrix in SLn(Z), any other matrix in its left-coset must have

the same last row multiplied by ε = ±1. Hence, for every diferent last row of positive

integers there is, at least, one diferent left-coset in SLn(Z). It follows that there are

infinite left-cosets.

The protocol, implemented with the pair (SLn(Z),H), would operate as follows. Assume

that Alice and Bob have secretly shared a generator set for a conjugate subgroup gHg−1. Also

assume that this generator set is gSg−1, where S = {M(Idei) : 1 ≤ i ≤ n− 1}.

◦ Alice wants to send n to Bob. So she picks a matrix M(Id, v) such that lH(M(Id, v)) =∑n−1
i=1 |vi| = n, she computes w = gM(Id, v)g−1, she randomly generates some a1, . . . , at ∈

SLn(Z)\gHg−1 and she sends to Bob {w, a1, . . . , at}. Notice that the generation of the

elements a1, . . . , at can be done by generating elements in SLn(Z)\H an then computing

the conjugates.

◦ Bob computes g−1wg, g−1a1g, . . . , g
−1atg and finds which of these elements belongs to H,

that is, he finds g−1wg = M(Id, v) ∈ H. Finally, to recover n, he only needs to sum up

the absolute values of the components of v.
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Chapter 4

KPA security

In this chapter we take GLn(C) as the cryptographic platform and we give a result that shows

that in this case the protocol is secure against a known-plaintext attack. That is, we assume that

Eve has intercepted several messages, of which she knows both the ciphertext and the plaintext,

and we show how difficult it is for her to recover the encryption key. For us, the ciphertext is a

matrix in GLn(C), the plaintext is the length it has with a fixed generator set, and the key is

the generator set. Proposition 13 proves that Eve has an infinity of possible generator sets that

could match with the information she has. But, before we state it, we give some tools that will

be needed for the proof:

Definition 14. Let K be a field and P ⊆ K[x1, . . . , xm] a set of polynomials. The affine

variety defined by P is the set

V(P ) := {p ∈ Kn : f(p) = 0 ∀f ∈ P}

We call affine variety to any set of this form. When a variety is a subset of another, we also

say it is a subvariety.

It is known that affine varieties are closed under finite unions and infinite intersections1.

This allows to define the so called Zariski topology in Kn, for which the closed sets are all affine

varieties in Kn. Note that V({0}) = Kn and that V({1}) = ∅.

Definition 15. We say that an affine variety X is irreducible if for any pair of closed subva-

rieties Y,Z ⊆ X such that X = Y ∪ Z, either Y = X or Z = X.

1See reference [9] for more details.
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Definition 16. The dimension of an irreducible affine variety X is k if it admits a finite-to-one

dominant map to the projective space Pk. We will denote it as dim(X).

Proposition 11 ([9]). Any affine variety X may be uniquely expressed as a finite union of

irreducible subvarieties Xi with Xi * Xj if i 6= j.

Proposition 12 ([10]). Let X be an irreducible variety of dimension n and let Y be a subvariety

in X. Then dim(Y ) ≤ dim(X) and the equality holds if, and only if, X = Y .

Proposition 13. Let Γ be a finitely generated subgroup of GLn(C). Given τ1, . . . , τn ∈ Γ and

positive integers k1, . . . , kn, suppose that there exists a generating set S for Γ such that lS(τi) = ki

for all i ∈ {1, . . . , n}. Then there are infinitely many generating set sets Sj for Γ such that:

(i) lSj (τi) = ki for all i ∈ {1, . . . , n} and for all j ∈ N

(ii) The associated metrics to the generating sets Sj are pairwise different.

Proof. We first prove that there are infinitely many generating sets satisfying condition (i). For

every i ∈ {1, . . . , n} we define the sets

Ai :=
{
h ∈ GLn(C) : lS∪{h}(τi) < ki

}
A :=

n⋃
i=1

Ai

So for every h ∈ A, the generating set S ∪ {h} leads to lS∪{h}(τi) < ki for some i ∈ {1, . . . , n},

that is, it breaks condition (i). We take its complementary:

Ac =

n⋂
i=1

Aci =

n⋂
i=1

{
h ∈ GLn(C) : lS∪{h}(τi) ≥ ki

}
where lS∪{h}(τi) ≤ lS(τi) = ki,

so we get Ac =

n⋂
i=1

{
h ∈ GLn(C) : lS∪{h}(τi) = ki

}
That is, for every h ∈ Ac the generating set S ∪ {h} leads to the same lengths for the matrices

τ1, . . . , τn. So we are interested in proving that Γ has an infinity of elements in Ac, that is, Γ−A

is infinite.

Let S = {s1, . . . , sr} and let F (x1, . . . , xr, y) be the free group generated by the variables

x1, . . . , xr, y. We denote the length of a word w ∈ F (x1, . . . , xr, y) as |w|. We can express the

sets Ai as follows:

We define A(i, w) := {h ∈ GLn(C) : w(s1, . . . , sr, h) = τi}

and we have Ai =
⋃
|w|<ki

A(i, w).
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Note that this is a finite union and that the equations w(s1, . . . , sr, h) = τi are polynomial

equations in the entries hij of h, so every A(i, w) is the zero set of a finite set of polynomial

equations, that is A(i, w) is a Zariski-closed set. Thus, Ai is also Zariski-closed, and so is

A = ∪ni=1Ai. Also note that the identity matrix is not a solution of any of the defining equations

of A, because, if it was, the equality w(s1, . . . , sr, Id) = τi would give an expression for τi

in S shorter than ki. So we have that Id /∈ A(i, w) for every i ∈ {1, . . . , n} and for every

w ∈ F (x1, . . . , xr, y), |w| < ki. So Id /∈ A.

From Proposition 11, we can express the Zariski-closure of Γ as a finite union of irreducible

varieties such that any one is a subvariety of another:

Γ̄ = G1 ∪ · · · ∪Gr

Since Γ is infinite, some Gi is also infinite. We pick h ∈ Gi. It must be that h−1Gi = Gj for

some j, because h defines an automorphism of GLn(C). It follows that Gj is also infinite and

that Id ∈ Gj . WLOG, we assume that Gj = G1.

It suffices to prove that G1 − A is infinite, because it will follow that Γ̄ − A is infinite.

And this implies that Γ − A is infinite, as desired. To prove this last implication, assume that

Γ − A = Γ ∩ Ac is finite and consider the induced Zariski topology in Ac. It follows that the

Zariski closure of Γ ∩Ac in Ac is finite, that is, Γ̄ ∩Ac = Γ̄−A would be finite.

In order to prove that G1 −A is infinite, we write G1 as a disjoint union:

G1 = (G1 −A) ∪ (G1 ∩A)

And we have that G1 ∩ A is an affine subvariety in G1, with G1 irreducible and infinite. And

Id ∈ G1, but Id /∈ A. From Proposition 12, it follows that dim(G1 ∩A) < dim(G1). So G1 −A

is infinite, as desired.

Now we use this to build an infinite sequence of generating sets that both satisfy (i) and (ii).

We start with S. We pick h1 ∈ (Γ−A)\S and we define S1 := S∪{h1}. By definition S1 preserves

the lengths of τ1, . . . , τn. And it also leads to a diferent metric, because, by construction,

lS(h1) > 1 and lS1(h1) = 1.

Assume we have extended S until some Sj = S ∪ {h1, . . . , hj}, which preserves the desired

lengths, and that the generating sets S, S1, . . . , Sj lead to pairwise different metrics. Now we

build A in the same way, but using Sj instead of S. So we can pick hj+1 ∈ (Γ − A)\Sj and

set Sj+1 := Sj ∪ {hj+1}. Because hj+1 /∈ Sk, k ∈ {1, . . . , j}, we have that lSk
(hj+1) > 1 for

k ∈ {1, . . . , j} and lSj+1(hj+1) = 1, so the metric for Sj+1 is different from all the preceding.
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Conclusions

We have seen that distortion in arithmetic groups can indeed be useful to build a symetric-

key protocol. And we have shown that there exists a particular platform, namely H, where

the protocol would be operational. However, we still don’t know what other platforms could

work. In this direction we mention the work of Riley, Navigating in the Cayley Graphs of

SLN (Z) and SLN (Fp) ([7]), in which we find some results that may be useful to build other

exponentially distorted subgroups of SLn(Z) and for which the Geodesic Length problem is

solvable in polynomial time.

As for the key exchange, we still don’t know how Alice and Bob could safely share the key

of this protocol (the generating set of the subgroup) through a public channel, while it is well

known that there are other cryptosystems, such as elliptic curves cryptosystems or the RSA

algorithm, where this can be safely done.
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