Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor

A. Serra-Toro, S. Vinardell, S. Astals, S. Madurga, J. Llorens, J. Mata-Álvarez, F. Mas, J. Dosta

PII:	S0960-8524(22)00602-2
DOI:	https://doi.org/10.1016/j.biortech.2022.127273
Reference:	BITE 127273
To appear in:	Bioresource Technology
Received Date:	14 March 2022
Revised Date:	30 April 2022
Accepted Date:	2 May 2022

Please cite this article as: Serra-Toro, A., Vinardell, S., Astals, S., Madurga, S., Llorens, J., Mata-Álvarez, J., Mas, F., Dosta, J., Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor, *Bioresource Technology* (2022), doi: https://doi.org/10.1016/j.biortech.2022.127273

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

- 1 Ammonia recovery from acidogenic fermentation effluents using a gas-
- 2 permeable membrane contactor
- 3 A. Serra-Toro¹, S. Vinardell¹, S. Astals¹, S. Madurga², J. Llorens¹, J. Mata-Álvarez^{1,3}, F.
- 4 Mas², J. Dosta^{1,3*}
- ⁵ ¹Chemical Engineering and Analytical Chemistry Department. University of Barcelona,
- 6 Barcelona, Catalonia, Spain
- 7 ² Materials Science and Physical Chemistry Department & Research Institute of
- 8 Theoretical and Computational Chemistry (IQTCUB), University of Barcelona,
- 9 Barcelona, Catalonia, Spain
- ³ Water Research Institute, University of Barcelona, Barcelona, Catalonia, Spain
- 11 * Corresponding author: jdosta@ub.edu
- 12 Abstract
- 13 A gas-permeable membrane (GPM) contactor was used to recover ammoniacal
- 14 nitrogen from a synthetic and a biowaste fermentation broth under different pH (from
- 15 **6 to 11) and temperatures (35 and 55 °C). Ammonia mass transfer constant (K_m)**
- 16 increased as pH and temperature increased. For synthetic broth, pH 10 provided the
- 17 best results, when considering the K_m (9.2·10⁻⁷ m·s⁻¹) and the reagents consumption
- 18 (1.0 mol NaOH mol⁻¹ TAN and 1.2 mol H₂SO₄·mol⁻¹ TAN). Biowaste fermentation
- 19 generated a broth with a high concentration of ammoniacal nitrogen (4.9 g N·L⁻¹) and
- 20 volatile fatty acids (VFA) (28.5 g·L⁻¹). Experiments using the biowaste broth showed a

- 21 lower K_m (5.0·10⁻⁷ m·s⁻¹ at pH 10) than the synthetic broth, related to the solution
- 22 matrix and other species interference. VFAs were not detected in the trapping
- 23 solution. Overall, these results show that GPM is a suitable technology to efficiently
- 24 separate ammoniacal nitrogen and VFA from fermentation broths.
- 25 **KEYWORDS:** membrane technology; nitrogen recovery; food waste fermentation;
- 26 volatile fatty acids; biorefinery

27 **1. Introduction**

- 28 Gas-permeable membrane (GPM) contactor is an emerging technology to recover
- ammoniacal nitrogen from wastewater as N-based fertiliser (e.g. (NH₄)₂SO₄, NH₄NO₃,
- 30 (NH₄)₂HPO₄), with a market value of 0.4-1.0 €·kg⁻¹ N for (NH₄)₂SO₄ (Darestani et al.,
- 31 2017; Menkveld and Broeders, 2018). In GPM, ammonia (NH₃) diffuses across the
- 32 membrane from the feed-membrane interface to an acidic trapping solution. NH₃ is a
- 33 non-charged species able to diffuse through a nano-perforated hydrophobic
- 34 membrane, and its diffusion is driven by the NH₃ concentration difference between the
- 35 feed and the trapping solution. Once at the acidic solution, NH₃ is protonated and
- 36 converted to ammonium (NH_4^+) , an ionised species unable to diffuse across the
- 37 membrane. Liquid penetration into the pores (membrane wetting) is prevented by (i)
- the hydrophobic nature of the membrane and (ii) the small size of the nanopores due
- 39 to the capillary effect (Boehler et al., 2015).
- 40 GPM contactors have been successfully used to recover total ammoniacal nitrogen
- 41 (TAN) from anaerobic digestion supernatants (Noriega-Hevia et al., 2020; Dube et al.,
- 42 2016), the effluent of a primary treatment in a municipal wastewater treatment plant

43	(Lee et al., 2021), concentrates from the regeneration of zeolites (Vecino et al., 2019),
44	human urine (Nagy et al., 2019), and pig slurry (García-González and Vanotti, 2015;
45	García-González et al., 2015; Riaño et al., 2019). However, the recovery of TAN from
46	fermentation broths has not been reported, despite the potential application of this
47	approach in biorefineries schemes that require to decouple easily biodegradable
48	organic matter from TAN. This would be the case of the proposed biorefinery scheme
49	that aims to produce polyhydroxyalkanoates (PHA) from biowaste (Figure 1).
50	PHA production using mixed-cultures is typically carried out by a 3-stage process (Reis
51	et al, 2011; Frison et al., 2015). In the anaerobic stage, the biowaste is fermented to
52	produce a volatile fatty acids (VFA) rich fermentation broth. In the selection stage, a
53	sequencing batch reactor fed with the fermentation liquid (liquid fraction from
54	fermentation broth solid-liquid separation) produces biomass with high PHA storage
55	capacity by alternating periods with high VFA availability (feast) and periods with
56	absence of VFA (famine). In the accumulation stage, the selected PHA-storing biomass
57	is fed with the VFA-rich fermentation liquid (batch mode and aerobic conditions) to
58	promote the maximum accumulation of PHA. Recovering TAN from the fermentation
59	liquid before using it as carbon source in the selection reactor could enhance the
60	efficiency of PHA production by decoupling the carbon and nitrogen availability in the
61	feast and famine phases. Oliveira et al. (2017), Silva et al. (2017) and Lorini et al. (2020)
62	improved PHA production when carbon and nitrogen were fed separately.
63	Recovering nitrogen from the fermentation liquid with GPM would also reduce the
64	TAN concentration in the anaerobic digester that treats the unfermented solid fraction
65	and other reject streams of the biorefinery (Figure 1). This feature could alleviate or

66	avoid NH_3 inhibition of the anaerobic digestion process (Capson-Tojo et al. 2020). In
67	this regard, Lauterböck et al. (2014) reported an improved methane production from
68	slaughterhouse wastewater when the TAN concentration was decreased from 6.5 to
69	2.5 g TAN·L ⁻¹ in the anaerobic digester. Shi et al. (2019) achieved a stable operation at
70	high organic loading rates in an anaerobic digester treating food waste after TAN
71	recovery. Bayrakdar et al. (2017) and González-García et al. (2021) also reported a
72	positive impact on the biogas production in an anaerobic digester treating chicken and
73	pig manure, respectively.
74	Several factors influence TAN recovery by GPM such as pH, temperature, salinity, initial
75	TAN concentration, the feed flowrate, the membrane material and contactor
76	configuration, and membrane fouling (Boehler et al., 2015; Rongwong and Goh, 2020).
77	Among them, pH and temperature are particularly important since they have a
78	noticeable impact on NH_4^+/NH_3 equilibrium. Many studies have evaluated the impact
79	of pH and temperature on the efficiency of GPM contactors (Fillingham et al., 2017;
80	Noriega-Hevia et al., 2020). <mark>However, to the best of the authors' knowledge, the</mark>
81	impact of pH and temperature on GPM performance has not yet been evaluated for a
82	hybrid process recovering TAN from fermentation broths. This is an important
83	application because fermentation and GPM could be important technologies in future
84	biorefineries. Accordingly, an experimental study evaluating the impact of pH and
85	temperature on the performance of GPM is important to understand how these two
86	operational factors influence the recovery of TAN from fermentation broths.
87	This work assesses the impact of pH and temperature on the performance of a GPM
88	contactor to separate TAN and VFAs from biowaste fermentation broths. The recovery

89	of TAN was evaluated for a synthetic and a biowaste fermentation liquid under
90	different pH and temperature conditions. The ultimate goal was to find the optimum
91	pH and temperature condition to integrate a hybrid GPM process that recovers TAN as
92	N-based fertiliser and produces a VFA-rich stream with limited N concentration from
93	fermentation broths.
94	2. Material and methods
95	2.1 Synthetic solution and OFMSW
96	Synthetic and organic fraction of municipal solid waste (OFMSW) fermentation broths
97	were used in this study. The synthetic broth consisted in deionised water containing
98	7.0 g NH ₄ Cl·L ⁻¹ (2.35 g TAN·L ⁻¹) and 3.0 g·L ⁻¹ of acetic acid (3.2 g COD·L ⁻¹). Acetic acid
99	was selected to determine the maximum diffusion of VFA through the membrane since
100	this is the VFA with the lowest molecular weight. The OFMSW fermentation broth was
101	obtained from OFMSW fermentation at 35 °C (see characterisation in <mark>e-supplementary</mark>
102	material). The OFMSW was collected from a mechanical-biological treatment (MBT)
103	plant of the Barcelona Metropolitan Area (Spain) that treats about 50,000 t per year of
104	source-sorted OFMSW. The OFMSW was collected after the pre-treatment and before
105	its feeding to the anaerobic digesters (see description of the MBT plant in Fernández-
106	Domínguez et al., 2020). The high soluble COD and VFA concentration of the collected
107	OFMSW could be attributed to the pre-fermentation of the OFMSW in the pulper and
108	hydrocyclones system of the MBT plant.
109	2.2 Experimental set-up

110 2.2.1 Acidogenic fermenter

111	A 40-L fermenter at mesophilic conditions (35 $^{\circ}$ C) was used to produce the OFMSW
112	fermentation broth. The fermenter was equipped with a mechanical stirrer (Triam,
113	75040), a pH probe system (Crison pH 28), a heating system (AS, Electric Heating
114	Jacket) and an alleviation valve located at the top of the fermenter to avoid
115	overpressure. 30 kg of OFMSW were fed to the reactor without adding external
116	inoculum nor external chemicals since it was considered that the anaerobic digestion
117	supernatant recirculation provided enough fermentative bacteria and alkalinity. The
118	fermentation batch lasted 8 days, when the VFA concentration reached its maximum
119	value. The fermentation broth used in the membrane contactor was obtained after
120	sieving (0.05 mm mesh size), centrifuging (16600 × g, 10 min) and filtering (1.2 μm
121	mesh light filter) the fermentation broth. The resulting fermentation liquid was stored
122	at 4 °C until use.
123	2.2.2. Membrane contactor

124 Figure 2 shows the membrane contactor experimental set-up used to recover TAN 125 from the feed solution. Two 2-L jacketed glass tanks were used as chambers for the 126 feed (fermentation broth) and the acidic trapping solution (initial solution of 0.1 M 127 H₂SO₄). The feed and trapping solutions were pumped using a peristaltic pump in a 128 closed loop to a microporous hollow-fibre polypropylene (PP) membrane contactor 129 with an active surface area of 0.50 m² (3M, 1.7 x 5.5 MiniModule). The relation 130 between feed solution and trapping solution flow rates was 3:1 according to manufacturer's recommendations. Specifically, the feed solution flow rate was 15 L·h⁻¹ 131 132 (shell side of the membrane) and the trapping solution flow rate was 5 L·h⁻¹ (lumen side of the contactor). The operational temperature was achieved by circulating water 133

134	from a heated water bath through a jacket surrounding the tanks. These tanks were
135	sealed to minimise NH_3 losses by volatilisation. Each tank was equipped with a
136	magnetic stirrer (180 rpm) and a pH control system consisting of a pH electrode
137	(Crison, code 53 35) and a pH controller (Crison, pH 28), connected to peristaltic
138	pumps (Ismatec, Type ISM827). The peristaltic pumps dosed an acid solution (H ₂ SO ₄
139	75%) to keep the trapping solution at pH 1.0 and an alkali <mark>solution</mark> (NaOH 10 M) to
140	keep the feed solution at the targeted set point. The trapping solution needs to be acid
141	enough to retain the NH_3 diffused from the feed solution as NH_4^+ , since charged
142	species are not able to diffuse through the membrane. The feed solution needs to be
143	alkaline to displace the TAN equilibrium towards NH ₃ , which is the non-charged species
144	able to diffuse across the membrane from the feed to the trapping solution. <mark>The</mark>
145	fermentation liquor was filtered through 1.2 μ m filters to prevent membrane clogging.
146	2.3 Membrane contactor operational conditions
147	Table 1 summarizes the operational conditions of the experiments carried out with the

membrane contactor. Firstly, the effect of pH (6.0, 7.0, 8.0, 9.0, 10.0 and 11.0) and

149 temperature (35 and 55 °C) was evaluated using the synthetic fermentation liquid as a

150 feed solution. These temperatures were selected since both mesophilic (35 °C) and

thermophilic (55 °C) conditions are used to ferment OFMSW (Bolzonella et al., 2012;

152 Micolucci et al., 2020; Valentino et al., 2021). Subsequently, considering the results

153 from the synthetic fermentation liquid, experiments at pH of 9.0 and 10.0 and at

temperature of 35 and 55 °C were carried out using the OFMSW fermentation liquid as

155 feed solution. The experiments carried out with the synthetic fermentation liquid had

156 2 L of feed and trapping solution, while the experiments using the OFMSW

- fermentation liquid were conducted with a lower volume (0.5 L of feed and trapping
 solutions) due to the difficulty to filter the OFMW fermentation broth through 1.2 μm
 filters. All conditions were tested by duplicate.
- 160 The process was monitored by withdrawing several samples from the feed and
- 161 trapping solution during the experiments (ca. 8 hours). The sampling frequency was
- 162 once per hour, except the first hour where two samples were withdrawn. In each
- sampling event, 4 mL were withdrawn from both solutions. For the feed solution
- sample, 0.1 mL of sulfuric acid (1 M) was immediately added to decrease the pH and
- 165 prevent TAN losses by volatilisation. All samples were stored at 4 °C prior analysis.
- 166 The TAN recovery efficiency was calculated using Equation 1, where TAN_f(0) is the
- 167 initial TAN mass in the feed solution (g), TAN_t(0) is the initial TAN mass in the trapping
- solution (g), and TAN_t(t) is the TAN mass at a specific time (g). The nitrogen mass
- 169 balance showed that nitrogen losses by volatilisation where minimal (< 1%).
- 170 Accordingly, it was assumed that there were no losses of NH_3 by volatilisation.

171 % TAN recovery (t) =
$$\frac{g \operatorname{TAN}_{t}(t) - g \operatorname{TAN}_{t}(0)}{g \operatorname{TAN}_{f}(0)} \cdot 100$$
 (1)

172 2.4 Analytical methods

All the analyses were performed according to the Standard Methods for the
Examination of Water and Wastewater (APHA, 2017). TAN concentration was
determined using a Thermo Fisher Scientific ion-selective electrode (Orion
9512HPBNWP) following the procedure 4500-NH3D. Total solids (TS) and volatile solids
(VS) were measured according to Standard Method 2540G (APHA, 2017). Alkalinity was
determined following the Standard Method 2320B, using an automated titrator (Crison

179	pH Burette 24) with a 0.1 M HCl solution and a pH endpoint of 4.30. The soluble
180	fraction was obtained by centrifuging the samples at 16600 $ imes$ g (Sigma 1-14
181	microcentrifuge) for 10 min and filtering the supernatant through a 1.2 μm mesh light
182	cellulose filter. Soluble COD was determined according to the Standard Method 5220C
183	(APHA, 2017). Cations (Li ⁺ , Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺) and anions (F ⁻ , Cl ⁻ , NO ₂ ⁻ , Br ⁻ , NO ₃ ⁻ , SO ₄ ²⁻ ,
184	P-PO ₄ ³⁻) were analysed using an 863 Advanced Compact IC Metrohm ionic
185	chromatographer and Metrosep columns (Metrosep C 4-150/4.0 and Metrosep A Supp
186	17-250/4.0, respectively). VFAs (i.e. acetic, propionic, i-butyric, n-butyric, ivaleric, n-
187	valeric, i-caproic, n-caproic and heptanoic acid) were analysed using a Shimadzu GC-
188	2010 plus gas chromatograph equipped with a Nukol™ capillary column and flame
189	ionisation detector. VFAs were converted to COD equivalents using the theoretical
190	value (mg COD·mg ⁻¹ compound): 1.07 for acetic acid, 1.51 for propionic acid, 1.82 for
191	butyric acid, 2.04 for valeric acid, 2.21 for caproic acid, and 2.34 for heptanoic acid.
192	2.5 Ammonia mass transfer constant assessment
193	NH_3 flux through the membrane contactor was evaluated by the NH_3 mass transfer
194	constant (K_m). K_m is also defined as the conditional permeability of the NH_3 through the
195	membrane and allows quantifying the nitrogen transfer under specific conditions
196	(Ashrafizadez and Khorasani, 2010; Ahn et al., 2011; Reig et al., 2021).
197	The physicochemical model used to determine K _m <mark>considers that:</mark> (i) the hydrophobic
198	membrane is only permeable to $\rm NH_3$, (ii) the pH of the feed and trapping solutions is

199 constant, (iii) the acid-base equilibrium is always fulfilled at both sides of the

200	membrane, (iv) NH $_3$ losses by volatilisation are negligible and (v) the volumes of the
201	feed solution (V_f) and the trapping solution (V_t) are constant.
202	$\rm NH_3$ transport is described by Fick's law (Equation 2) that considers (i) a behaviour of
203	ideal diluted solution for NH_3 and (ii) no interferences amongst solution components.
204	$J_{NH_{3},f}(t) = -K_m(c_{NH_{3},t}(t) - c_{NH_{3},f}(t)) $ (2)
205	Where $J_{NH_3,f}(t)$ is the flux of NH ₃ (mol·m ⁻² ·s ⁻¹) from the feed to the trapping solution
206	(at time <i>t</i>), $K_m \frac{(K_m = D_{NH_3} / \Delta x)}{(K_m = \Delta x)}$ is the NH ₃ mass transfer constant through the
207	membrane (m·s ⁻¹), D_{NH_3} is the diffusion coefficient of NH ₃ (m ² ·s ⁻¹), Δx is the thickness
208	<mark>of the membrane (m</mark>), $c_{NH_3,f}(t)$ is the concentration of NH ₃ in the feed solution (mol·m ⁻
209	³ , at time t) and $c_{NH_3,t}(t)$ is the concentration of NH ₃ in the trapping solution (mol·m ⁻³ ,
210	at time <i>t</i>).
211	The equilibrium reaction $NH_4^+ \leftrightarrow NH_3 + H^+$, is described by the following acid-base
212	approximate equilibrium constant $K_a(T)$, in each side of the membrane, <i>i</i> :
213	$K_{a}(T) \approx \frac{c_{NH_{3},i} \cdot 10^{-pH_{i}}}{\gamma_{NH_{4}^{+},i} \cdot c_{NH_{4}^{+},i}} $ (3)
214	Where $\gamma_{NH_4^+,i}$ is the activity coefficient for NH ₄ ⁺ , which could be described by the
215	Davies correction of Debye-Hückel law and depends on the ionic force (assumed to
216	remain constant in both sides of the membrane during the process). Equation 4
217	correlates the value of $K_a(T)$ for a given temperature (T, K) (Anthonisen et al., 1976).
218	$K_a(T) = e^{-6344/T} $ (4)

219 The TAN mass balance (TAN = NH₃ + NH₄⁺) expressed in terms of the TAN fraction at time
220 t is kept constant:
$$z_f(t) + z_t(t) = 1$$
, where $z_i(t) = x_i(t) + y_i(t)$, and $x_i(t) = \frac{mol_{MA_3}(t)}{mol_{TAN_3}}$,
221 $y_i(t) = \frac{mol_{MA_4}(t)}{mol_{TAN_3}}$. These are the non-dimensional fractions for both NH₃ and NH₄⁺ in
222 terms of the initial TAN.
223 Then, mass transport equation (Equation 2) can be written as Equation 5, which can be
224 arranged in terms of non-dimensional TAN fraction (Equation 6).
225 $I_{NH_3f}(t) = -\frac{1}{6} \left(\frac{dmol_{MA_3}}{dt} \right) = -K_m \left(\frac{mol_{MA_4}}{V_t} - \frac{mol_{MA_3}}{V_t} \right)$ (5)
226 $\frac{dz_i(t)}{dt} = a(\omega \beta - (1 + \omega \beta) z_f(t))$ (6)
227 Where $\alpha = \frac{K_m A}{V_T}, \omega = \frac{V_1}{V_i}, \beta = \frac{R_i}{\delta_i}, \beta_i = \frac{R_i}{1 + R_i}, \overline{K}_i = \gamma_{NH_4,i}, 10^{BH_i - pKa}$
228 With the initial solution $z_f(0) = 1$, the solution of this ordinary differential equation is:
229 $z_f(t) = \frac{(\omega \beta + \exp(-\alpha t) + \omega \beta)t)}{1 + \omega \beta}$ (7)
230 With limit solutions that depends on ω and $\beta_i : \lim_{t \to \infty} z_f(t) = \frac{\omega \beta}{1 + \omega \beta}$ and $\lim_{t \to \infty} z_t(t) = \frac{1}{1 + \omega \beta}$
231 As β depends on $pH_{i,p}PH_{i,p}Ka$, an approximate solution can be derived depending on
232 the trapping solution pH. When the pH of the trapping solution is 1: pH₁ << pKa, $\overline{K}_t \equiv$
233 $\gamma_{NH_4,i,k} 10^{BH_i - pKa} \approx \gamma_{NH_4,i,k} 10^{-8} \ll 1$, then $\overline{K}_t \rightarrow 0$, and $\beta \rightarrow 0$. Therefore, Equation 8
234 could be simplified to Equation 8.
235 $z_f(t) = \exp(-\alpha t)$ (8)

236	A complete recovery of TAN could be reached for operation times long enough (limz _f ((t)

- = 0). Then, Equation 8 in terms of TAN concentration can be written as Equation 9, a
- 238 well-known equation to describe TAN recovery in GPM studies.

239
$$\frac{C_{TAN,f}(t)}{C_{TAN,f}(0)} = \exp\left(-\frac{K_m A}{V_f} t\right)$$

- 240 This model was coded in Python using the curve fit function of the SciPy. Optimize
- 241 library, which uses the Levenberg-Marquardt algorithm to perform non-linear least
- 242 squares estimates. The algorithm estimates K_m by fitting the TAN concentration of the
- 243 feed and trapping solution in the tanks over time.

244 **3. Results and discussion**

245 **3.1 Ammonia recovery from the synthetic fermentation liquid**

246	Figure 3 illustrates the TAN concentration evolution of the experiments carried out
247	with synthetic fermentation liquid and Table 2 summarises their performance
248	parameters. Experimental results show that the performance (i.e., TAN recovery rate,
249	flux, K_m) of the membrane contactor improves as the pH of the feed solution increases
250	from 6.0 to 11.0. At pH 10.0 and 11.0, TAN was completely recovered after 4 hours of
251	experiment at both temperatures, while at pH 6.0 the percentage of TAN recovery was
252	lower than 10% after 8 hours. The greater performance of the membrane at higher pH
253	can be directly related to the higher amount of NH_3 in the solution due to the
254	displacement of the NH_4^+/NH_3 equilibrium (Equation 3). pH values higher than the pKa
255	(8.94 and 8.45 at 35 and 55 °C, respectively) implies that the percentage of $\rm NH_3$
256	represents more than the 50% of the TAN. The process performance was better at 55

(<mark>9</mark>)

257	°C than at 35 °C. However, at pH of 10.0 and 11.0, no statistical difference was
258	observed between tests carried out at 35 and 55 °C. <mark>These results can be explained by</mark>
259	the minimal difference on NH_3 concentration between pH 10.0 and 11.0 (far above the
260	pKa). The improved membrane performance at 55 °C can be attributed to the lower
261	pKa values at higher temperatures, which increases the NH_3 concentration and the
262	driving force through the GPM. Besides changes in the pKa value, temperature can also
263	affect the K_m since it can modify the membrane properties with a slight impact on NH_3
264	diffusivity.
265	TAN flux across the membrane was enhanced as the pH and temperature of the feed
266	solution increased (Table 2). At 35 °C, increasing the pH from 9.0 to 10.0 doubled the
267	TAN flux from 62 to 115 g N·m ⁻² ·day ⁻¹ , while a less noticeable improvement was
268	obtained when the pH was further increased to 11.0 (138 g $N \cdot m^{-2} \cdot day^{-1}$). The change in
269	TAN flux at higher pH was also evident in the fitted K_m values, which sharply increased
270	with pH. The fitted K_m values was slightly lower at pH 10.0 than at pH 11.0 with values
271	of 0.92·10 ⁻⁶ and 1.13·10 ⁻⁶ , respectively. However, there was no significant difference in
272	$ m K_m$ values when comparing 35 and 55 °C (Table 2). The superior performance of $ m NH_3$
273	membrane contactors at pH 10.0 and 11.0 is in accordance with the results reported
274	by Ashrafizadeh and Khorasani (2010) and Noriega-Hevia et al. (2020), who reported a
275	K_m of 10.9·10 ⁻⁶ and 2.4·10 ⁻⁶ m·s ⁻¹ at pH 10, respectively. Vecino et al. (2019) and Reig et
276	al. (2021) also reported similar K_m values when operating the same membrane module
277	under similar conditions (0.7·10 ⁻⁶ and 1·10 ⁻⁶ m·s ⁻¹ , respectively). NH ₃ diffusion through
278	the membrane was not affected by the presence of acetic acid since similar $K_{\rm m}$ were
279	observed for experiments carried out with and without acetic acid (data not shown).

280	This observation is in accordance with Daguerre-Martini et al. (2018), who assessed
281	the effect of humic acids concentration in the feed solution on the TAN transfer using
282	an e-PTFE membrane.
283	Acetic acid concentration in the feed solution remained constant during all the
284	experiments at 3.2 g COD·L ⁻¹ while its concentration in the trapping solution was below
285	the detection limit for all experiments (<10 mg·L ⁻¹). These results are in line with the
286	results of Molinuevo-Salces et al. (2018), who reported a minimal transfer of soluble
287	organic matter (5-20 mg COD·L ⁻¹ ·day ⁻¹) and cations (0-20 mg·L ⁻¹ ·day ⁻¹) through an e-
288	PTFE membrane when recovering TAN from pig manure. The retention of acetic acid
289	allows hypothesising that VFAs with higher molecular weight (e.g., propionic acid,
290	butyric acid) would not diffuse across the membrane and would not affect the nitrogen
291	recovery efficiency under the tested operating conditions.
292	The specific reagent consumption (mol reagent spent·mol ⁻¹ N recovered) after 8 hours
293	was lower when working with higher feed pH values for both NaOH and $\rm H_2SO_4$ (Table
294	2). These results show that the process is more reagent efficient at higher feed
295	solution pH values. Reagent consumption during the test did not consider the reagents
296	needed at the beginning of the process to reach the initial pH. Considering that only
297	NH_3 was able to diffuse the membrane, the theoretical maximum consumption during
298	the test would be 1 mol NaOH·mol ⁻¹ N recovered and 0.5 mol H_2SO_4 ·mol ⁻¹ N recovered.
299	Since these experiments were performed using a synthetic solution without extra
300	alkalinity, it is observed that the total reagents consumption approached to the
301	theoretical value in those tests where a complete nitrogen recovery was obtained
302	(e.g., Experiment 1F, 2E).

303	These experimental results allowed considering pH 10.0 as the preferable pH for this
304	GPM contactor. In comparison with other pH values, pH 10.0 provides (i) a high TAN
305	flux across the membrane and (ii) a lower consumption of reagents (alkali and acid) per
306	unit of nitrogen recovered. This conclusion agrees with Ashrafizadeh and Khorasani
307	(2010), who reported that pH above 10.7 did not improve NH_3 removal. However, a
308	recent study by Lee et al. (2021) suggested that the application of moderate alkaline
309	pH values (i.e., 9.0) could be beneficial to prevent inorganic fouling on the membrane.
310	3.2 OFMSW fermentation
311	Figure 4 shows the VFAs, sCOD, TAN and pH values during OFMSW fermentation. The
312	VFA concentration steadily increased from 21.7 g COD·L ⁻¹ up to a maximum
313	concentration of 41.1 g COD·L ⁻¹ (day 7), with a concomitant pH decrease (from 6.96 to
314	6.47). The VFA yield was 0.63 g COD $_{VFA}$ ·g ⁻¹ VS, slightly higher than the fermentation
315	yield reported by Fernandez-Domínguez et al. (2020), who fermented OFMSW from
316	the same MBT plant. During the fermentation batch, the proportion of acetic and
317	propionic acids remained nearly constant, while the proportion of valeric and caproic
318	acids increased to the detriment of butyric acid (Figure 4a). At the end of the batch
319	(day 8), the proportion of acetic, propionic, and butyric acids were 34%, 25% and 27%,
320	respectively (Figure 4b). The COD _{VFA} /sCOD ratio increased over time reaching a final
321	value of 0.92 ± 0.05 (Figure 4c). This COD _{VFA} /sCOD ratio is higher than the reported by
322	Fernandez-Domínguez et al. (2020) but aligns with Valentino et al. (2021) results. The
323	latter reported a COD $_{\rm VFA}/\rm sCOD$ ratio of 0.90 when treating screw pressed OFMSW. The
324	high acidification efficiency (percentage of sCOD as COD_{VFA}) reached in this study is a

325	positive feature for the proposed biorefinery (Figure 1). On one hand, a fermentation
326	broth with a low concentration of non-VFA soluble COD is preferable for PHA
327	production, since it provides a good selection of PHA-storing microorganisms
328	(Valentino et al., 2017). On the other hand, the low concentration of non-VFA sCOD
329	implies that the organic matter that has not been converted to VFA is diverted to the
330	anaerobic digester for biogas production. Finally, it is worth mentioning that the TAN
331	concentration increased from 3.8 to 4.9 g·L ⁻¹ due to ammonification of organic
332	nitrogen (Figure 4d). The resulting TAN/COD $_{VFA}$ ratio is 0.12 mg N·mg ⁻¹ COD, which is
333	unfavourable to produce PHA (Sriyapai et al., 2021; Lee et al., 2014). Therefore,
334	removing TAN from the fermentation broth is paramount to utilise this stream for PHA
335	production.
336	3.3 Ammonia recovery from the OFMSW fermentation liquid
336 337	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out with
336 337 338	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out with the OFMSW fermentation liquid and Table 3 summarises their performance
336 337 338 339	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out with the OFMSW fermentation liquid and Table 3 summarises their performance parameters. It can be observed that the operation time required to reach the same
336337338339340	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out withthe OFMSW fermentation liquid and Table 3 summarises their performanceparameters. It can be observed that the operation time required to reach the sameTAN recovery is much shorter than the time required for the synthetic fermentation
 336 337 338 339 340 341 	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out with the OFMSW fermentation liquid and Table 3 summarises their performance parameters. It can be observed that the operation time required to reach the same TAN recovery is much shorter than the time required for the synthetic fermentation liquid (Figure 3), which is attributed to the operation of the system at a higher area to
 336 337 338 339 340 341 342 	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out with the OFMSW fermentation liquid and Table 3 summarises their performance parameters. It can be observed that the operation time required to reach the same TAN recovery is much shorter than the time required for the synthetic fermentation liquid (Figure 3), which is attributed to the operation of the system at a higher area to volume ratio (membrane area to feed solution volume). The higher TAN fluxes
 336 337 338 339 340 341 342 343 	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out withthe OFMSW fermentation liquid and Table 3 summarises their performanceparameters. It can be observed that the operation time required to reach the sameTAN recovery is much shorter than the time required for the synthetic fermentationliquid (Figure 3), which is attributed to the operation of the system at a higher area tovolume ratio (membrane area to feed solution volume). The higher TAN fluxesobtained in these experiments compared to the ones obtained with the synthetic
 336 337 338 339 340 341 342 343 344 	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out withthe OFMSW fermentation liquid and Table 3 summarises their performanceparameters. It can be observed that the operation time required to reach the sameTAN recovery is much shorter than the time required for the synthetic fermentationliquid (Figure 3), which is attributed to the operation of the system at a higher area tovolume ratio (membrane area to feed solution volume). The higher TAN fluxesobtained in these experiments compared to the ones obtained with the syntheticsolution can be attributed to higher initial TAN concentration of the OFMSW
 336 337 338 339 340 341 342 343 344 345 	3.3 Ammonia recovery from the OFMSW fermentation liquid Figure 5 shows the TAN concentration evolution of the experiments carried out withthe OFMSW fermentation liquid and Table 3 summarises their performanceparameters. It can be observed that the operation time required to reach the sameTAN recovery is much shorter than the time required for the synthetic fermentationliquid (Figure 3), which is attributed to the operation of the system at a higher area tovolume ratio (membrane area to feed solution volume). The higher TAN fluxesobtained in these experiments compared to the ones obtained with the syntheticsolution can be attributed to higher initial TAN concentration of the OFMSWfermentation liquid (higher concentration gradient). K _m will be the parameter used to

347	not depend on the operation time, the initial TAN concentration, nor the volumes of
348	the feed and trapping solution as well as its ratio.
349	The K_m values obtained with the OFMSW fermentation liquid showed the same trend
350	than those obtained with the synthetic solution: (i) a higher NH_3 mass transfer at pH 10
351	than at pH 9, and (ii) a higher NH $_3$ mass transfer at 55 °C than at 35 °C. However, the
352	$K_{\rm m}$ values obtained using the OFMSW fermentation liquid were lower than those
353	obtained with the synthetic solution. At 55 °C, the K_m values at pH 9.0 and 10.0 were
354	3.3·10 ⁻⁷ and 5.4·10 ⁻⁷ m·s ⁻¹ , respectively, while the equivalent K_m for the synthetic
355	solution were 5.9·10 ⁻⁷ and 9.3·10 ⁻⁷ m·s ⁻¹ . The lower performance of the GPM contactor
356	using the OFMSW fermentation liquid cannot be attributed to membrane fouling since
357	the tests conducted with the synthetic solution before and after operating the GPM
358	with the OFMSW fermentation liquid reached the same K _m values (data not shown).
359	The low membrane fouling observed in these experiments could be attributed to: (i)
360	the low fouling propensity of PP membranes compared with other membranes such as
361	PTFE membranes (Zarebska et al., 2015) and (ii) the low duration of the experiments (<
362	8 h). Accordingly, the loss of performance could be related to the interference (e.g.,
363	ionic interaction) of other species and the complex matrix of the fermentation liquid.
364	As for the synthetic solution experiments, the specific reagent consumption per unit of
365	TAN recovered was higher at pH 9 than at pH 10. The total NaOH and $\rm H_2SO_4$
366	consumption in the OFMSW fermentation experiments was almost the same than the
367	consumption in the synthetic feed experiments (Table 2 and 3). The NaOH required to
368	
	adjust the pH at the beginning of the experiment was higher, but the amount of NaOH

370	explained by the alkalinity of the OFMSW fermentation liquid (9.1 g $CaCO_3 \cdot L^{-1}$) that
371	acted as a buffer making the pH of the feed solution harder to raise, but also harder to
372	decrease during the operation. The total consumption of H ₂ SO ₄ was similar to
373	synthetic feed solution experiments, but its addition during the experiment was lower.
374	It is worth noting that H_2SO_4 consumption was slightly higher than the stoichiometric
375	values of 0.5 mol H_2SO_4 ·mol ⁻¹ TAN recovered, probably caused by the excess of acid in
376	the trapping solution at the end of the test due to the limited accuracy of the dosing
377	pump controlling the trapping solution pH
378	Figure 6 shows the VFA concentration during each experiment treating OFMSW
379	fermentation liquid. The initial concentration was slightly lower (37.5-38.8 g COD_{VFA} ·L ⁻
380	¹) than the measured at the end of the fermentation batch (41.1 g COD _{VFA} ·L ⁻¹). This
381	implies that a VFA loss occurred during sample post-treatment (i.e., filtration and
382	centrifugation). During the experiments, none of the VFAs were detected in the
383	trapping solution (detection limit of 10 mg·L ⁻¹), which demonstrates that VFAs are
384	unable to diffuse across the membrane under the tested conditions. However, a small
385	VFA loss in the feed stream (8.7-10.7% on COD basis) was recorded during the
386	experiments. The authors attribute this phenomenon to the biological aerobic
387	degradation of these compounds. The feed tank was closed but it was not flushed and
388	sealed with an inert gas (e.g. N_2) to prevent the presence of oxygen. Strategies to
389	minimize VFA losses should be considered in future research.
390	Finally, it is worth mentioning that no increase in ions concentration (i.e., Ca ²⁺ , Mg ²⁺ ,
391	K ⁺ , Na ⁺ , Cl ⁻) was detected in the trapping solution (detection limit of 0.5 mg·L ⁻¹).
392	Similarly, the ions concentration in the feed solution at the beginning and at the end of

393	the experiments remained constant. Thus, it can be stated that ions did not diffuse
394	through the membrane from the feed to the trapping solution, at least, at short-term
395	conditions.
396	Overall, the results of these experiments show that the combination of acidogenic
397	fermentation with a membrane contactor unit could be a technological solution to
398	separate TAN and VFA.
399	Conclusions
400	A gas-permeable membrane contactor was used to recover ammoniacal nitrogen from
401	fermentation broths. Nitrogen recovery efficiency improved at higher pH and
402	temperatures. The optimum pH was 10 since high $K_{\rm m}$ were achieved at expenses of low
403	reagent consumption. For the OFMSW fermentation liquid, the K_m values were lower
404	than for the synthetic liquid, although the K_m followed the same trend with pH and
405	temperature. Ions and VFA present in the fermentation liquid were not detected in the
406	trapping solution. Overall, the results showed that membrane contactors can
407	efficiently separate ammoniacal nitrogen and VFAs from fermentation broths.
408	Supplementary material
409	E-supplementary data for this work can be found in e-version of this paper online.

410 Acknowledgements

- 411 This work is supported by the project Ministery of Science, Innovation and Universities
- 412 (PID2019-111284RB-I00) and the Water Research Institute of the University of
- 413 Barcelona. S.A. is grateful to the Spanish Ministry of Science, Innovation and

414	Universities for his Ramon y Cajal fellowship (RYC-2017-22372). S.V. is grateful to the
415	Generalitat de Catalunya for his predoctoral FI grant (2019 FI_B 00394). A.S-T. also
416	acknowledge the financial support of Indukern Company (Barcelona). F.M. and S.M.
417	acknowledge the financial support from Generalitat de Catalunya (2017 SGR 1033) and
418	Spanish Structures of Excellence María de Maeztu program through (MDM-2017-
419	0767). Finally, the authors would like to thank the Catalan Government for the quality
420	accreditation given to the Environmental Biotechnology research group of the
421	University of Barcelona (2017 SGR 1218).
422	References
423	1. Ahn, Y.T., Hwang, Y.H., Shin, H.S., 2011. Application of PTFE membrane for
424	ammonia removal in a membrane contactor. Water Sci. & Technol. 63.12. 2944-
425	2948
426	2. Anthonisen, A.C., Loehr, R.C., Praskasam, T.B.S., Srinath, E.G., 1976. Inhibition of
427	nitrification by ammonia and nitrous acid. J. WPCF. 48. 835-852.
428	3. APHA, Standard Methods for the Examination of Water and Wastewater, 23rd ed,
429	2017. Water Environment Federation, Washington, D.C.
430	4. Ashrafizadeh, S.N., Khorasani, Z., 2010. Ammonia removal from aqueous solutions
431	using hollow-fiber membrane contactors. Chem. Eng. J. 162. 1. 242-249.
432	5. Bayrakdar, A., Sürmeli, R.O., Çalli, B., 2017. Dry anaerobic digestion of chicken
433	manure coupled with membrane separation of ammonia. Biores. Technol. 244. 1.
434	816-823.
435	6. Boehler, M.A., Heisele, A., Seyfried, A., Grömping, M., Siegrist, H., 2015. (NH ₄) ₂ SO ₄
436	recovery from liquid side streams. Envir. Sci. and Pollution Res. 22. 7295–7305.

437	7.	Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., 2012. High rate
438		mesophilic, thermophilic, and temperature phased anaerobic digestion of waste
439		activated sludge: A pilot scale study. Waste Manage. 32. 1196–1201.
440	8.	Capson-Tojo, G., Moscoviz, R., Astals, S., Robles, A., Steyer, JP., 2020. Unraveling
441		the literature chaos around free ammonia inhibition in anaerobic digestion.
442		Renewable and Sustainable Energy Rev. 117. 109487.
443	9.	Daguerre-Martini, S., Vanotti, M.B., Rodriguez-Pastor, M., Rosal, A., Moral, R.,
444		2018. Nitrogen recovery from wastewater using gas-permeable membranes:
445		Impact of inorganic carbon content and natural organic matter. Water Res. 137.
446		201-210.
447	10.	Darestani, M., Haigh, V., Couperthwaite, S.J., Millar, G.J., Nghiem, L.D., 2017.
448		Hollow fibre membrane contactors for ammonia recovery: Current status and
449		future developments. J. of Envir. Chem. Eng. 5. 1349-1359.
450	11.	Dube, P.J. Vanotti, M.B., Szogi, A.A., García-González, M.C., 2016. Enhancing
451		recovery of ammonia from swine manure anaerobic digester effluent using gas-
452		permeable membrane technology. Waste Manage. 49. 372-377.
453	12.	Fernández-Domínguez, D., Astals, S., Peces, M., Frison, N., Bolzonella, D., Mata-
454		Alvarez, J., Dosta, J., 2020. Volatile fatty acids production from biowaste at
455		mechanical-biological treatment plants: Focusing on fermentation temperature.
456		Biores. Technol. 314. 123729.
457	13.	Fillingham, M., Van der Zaag, A., Singh, J., Burtt, S., Crolla, A., Kinsley, C.,
458		MacDonald, D., 2017. Characterizing the performance of gas-permeable

459	membranes as an ammonia recovery strategy from anaerobically digested dairy

460 manure. Membranes. 7. 4.

- 461 14. Frison, N., Katsou, E., Malamis, S., Oehmen, A., Fatone, F., 2015. Development of a
- 462 novel process integrating the treatment of sludge reject water and the production
- 463 of polyhydroxyalkanoates (PHAs). Environ. Sci. Technol. 49. 18. 10877–10885.
- 464 15. García-González, M., Vanotti, M., 2015. Recovery of ammonia from swine manure
- 465 using gas-permeable membranes: Effect of waste strength and pH. Waste Manag.
- 466 38. 455–461.
- 467 16. García-González, M., Vanotti, M., Szogi, A., 2015. Recovery of ammonia from swine
- 468 manure using gas-permeable membranes: Effect of aeration. J. of Envir. Manage.

469 152. 19-26.

- 470 17. González-García, I., Riaño, B., Molinuevo-Salces, B., Vanotti, M.B., García-González,
- 471 M.C., 2021. Improved anaerobic digestion of swine manure by simultaneous
- 472 ammonia recovery using gas-permeable membranes. Water Res. 190. 116789.
- 473 18. Lauterböck, B., Nikolausz, M., Lv, Z., Baumgartner, M., Liebhard, G., Fuchs, W.,
- 474 2014. Improvement of anaerobic digestion performance by continuous nitrogen
- 475 removal with a membrane contactor treating a substrate rich in ammonia and
- 476 sulfide. Biores. Technol. 158. 209-216.
- 477 19. Lee, W.S., Chua, A.S.M., Yeoh, H.K., Ngoh, G.C., 2014. A review of the production
- 478 and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235. 83-99.
- 479 20. Lee, W., An, S., Choi, Y., 2021. Ammonia harvesting via membrane gas extraction at
- 480 moderately alkaline pH: A step toward net-profitable nitrogen recovery from
- domestic wastewater. Chem. Eng. J. 405. 126662.

- 482 21. Lorini, L., di Re, F., Majone, M., Valentino, F., 2020. High-rate selection of PHA
- 483 accumulating mixed cultures in sequencing batch reactors with uncoupled carbon
- and nitrogen feeding. New Biotechnol. 56. 140–148.
- 485 22. Menkveld, H.W.H., Broeders, E., 2018. Recovery of ammonia from digestate as
- 486 fertilizer. Water Practice and Technol. 13. 382–387.
- 487 23. Micolucci, F., Gottardo, M., Bolzonella, D., Pavan, P., Majone, M., Valentino, F.,
- 488 2020. Pilot-scale multi-purposes approach for volatile fatty acid production,
- 489 hydrogen and methane from an automatic controlled anaerobic process. J. of
- 490 Cleaner Production. 277. 124297.
- 491 24. Molinuevo-Salces, B., Riaño, B., Vanotti, M.B., García-González, M.C., 2018. Gas-
- 492 permeable membrane technology coupled with anaerobic digestion for swine
- 493 manure. Frontiers in Sustainable Food Systems. 2. Article 25.
- 494 25. Nagy, J., Kaljunen, J., Toth, A.J., 2019. Nitrogen recovery from wastewater
- 495 and human urine with hydrophobic gas separation membrane: experiments
- and modelling. Chem. Papers. 73. 1903–1915.
- 497 26. Noriega-Hevia, G., Serralta, J., Borrás, L., Seco, A., Ferrer, J., 2020. Nitrogen
- recovery using a membrane contactor: Modelling nitrogen and pH evolution. Envir.Chem. Eng. J. 8. 103880.
- 500 27. Oliveira, C.S.S., Silva, C.E., Carvalho, G., Reis, M.A., 2017. Strategies for efficiently
- 501 selecting PHA producing mixed microbial cultures using complex feedstocks: Feast
- and famine regime and uncoupled carbon and nitrogen availabilities. New
- 503 Biotechnol. 37. 69-79.

504	28. Reig, M., Vecino, X., Gibert, O., Valderrama, C., Cortina, J.L., 2021. Study of the
505	operational parameters in the hollow fibre liquid-liquid membrane contactors
506	process for ammonia valorisation as liquid fertiliser. Separation and Purification
507	Technol. 255. 117768.
508	29. Reis, M.A., Albuquerque, M., Villano, M., Majone, M., 2011. Mixed culture
509	processes for Polyhydroxyalkanoate production from agro-industrial
510	surplus/wastes as feedstocks. Comprehensive Biotechnol. (2nd Edit.). 6. 669-683.
511	30. Riaño, B., Molinuevo-Salces, B., Vanotti, M.B., García-González, M.C., 2019.
512	Application of gas-permeable membranes for-semi-continuous ammonia recovery
513	from swine manure. Environments. 6.
514	31. Rongwong, W., Goh, K., 2020. Resource recovery from industrial wastewaters by
515	hydrophobic membrane contactors: A review. J. of Envir. Chem. Eng. 104242.
516	32. Shi, X., Zuo, J., Zhang, M., Wang, Y., Yu, H., Li, B., 2019. Enhanced biogas production
517	and in situ ammonia recovery from food waste using a gas-membrane absorption
518	anaerobic reactor. Biores. Technol. 292. 121864.
519	33. Silva, F., Campanari, S., Matteo, S., Valentino, F., Majone, M., Villano, M., 2017.
520	Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by
521	mixed microbial cultures. New Biotechnol. 37. Part A. 90-98.
522	34. Sriyapai, T., Chuarung, T., Kimbara, K., Samosorn, S., Sriyapai, P., 2021. Production
523	and optimization of polyhydroxyalkanoates (PHAs) from paraburkholderia sp. PFN

524 29 under submerged fermentation. Electronic J. of Biotechnol. Available online.

- 525 35. Valentino, F., Gianluca Munarin, G., Biasiolo, M., Cavinato, C., Bolzonella, D., Pavan,
- 526 P., 2021. Enhancing volatile fatty acids (VFA) production from food waste in a two-
- 527 phases pilot-scale anaerobic digestion process. J. of Envir. Chem. Eng. 9. 106062.
- 528 36. Valentino, F., Morgan-Sagastume, F., Campanaria, S., Villano, M., Werker, A.,
- 529 Majone, M., 2017. Carbon recovery from wastewater through bioconversion into
- 530 biodegradable polymers. New Biotechnol. 37. Part A. 9-23.
- 531 37. Vecino, X., Reig, M., Bhushan, B., Gibert, O., Valderrama, C., Cortina, J.L., 2019.
- 532 Liquid fertilizer production by ammonia recovery from treated ammonia rich
- regenerated streams using liquid-liquid membrane contactors. Chem. Eng. J. 360.
- 534 **890-899**.
- 535 38. Zarebska, A., Amor, A.C., Ciurkot, K., Karring, H., Thygesen, O., Andersen, T.P.,
- 536 Hägg, M-B., Christensen, K.V., Norddahl, B., 2015. Fouling mitigation in membrane
- 537 distillation processes during ammonia stripping from pig manure. J. of Mem. Sci.
- 538 **484**, **119-132**.
- 539 Authors contribution statement

Andreu Serra-Toro: Methodology, Investigation, Formal analysis, Writing - original draft, 540 541 Visualisation. Sergi Vinardell: Methodology, Writing - review & editing, Visualisation. 542 Sergi Astals: Conceptualization, Writing - Review & Editing, Supervision, Visualisation, 543 Funding adquisition. Sergio Madurga: Formal analysis, Writing - Review & Editing, 544 Visualisation, Joan Llorens: Methodology, Writing - Review & Editing. Joan Mata-Álvarez: Writing - Review & Editing, Funding adquisition. Francesc Mas: 545 Conceptualization, Methodology, Formal analysis, Writing - Review & Editing, 546 Supervision, Visualisation, Funding adquisition. Joan Dosta: Conceptualization, 547

548	Methodology, Investigation, Writing - Review & Editing, Supervision, Visualisation,										
549	Funding adquisition.										
550	39.										
551 552	Declaration of interests										
553 554 555	□ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.										
556 557 558	☑ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:										
	Andreu Serra-Toro reports financial support was provided by Indukern company (Barcelona).										
559											
560	40.										
561	Highlights										
562 563	- Membrane contactor efficiently recovered NH_3 from a biowaste fermentation broth										
564 565	- Membrane contactor allowed a complete separation of NH_3 from volatile fatty acids										
566 567	- Higher operating temperatures and pH enhanced NH_3 mass transfer rate										
568 569	- NH_3 was successfully recovered at alkaline pHs (9, 10 and 11) at 35 and 55 °C										
570 571	- lons present in the fermentation broth were not detected in the trapping solution										
572	41.										

Figure 1. Scheme of the proposed biorefinery scheme for PHA production from biowaste using
 a GPM contactor to separate TAN from the fermentation liquid.

576 42.

Figure 3. Experimental (dots) and modelled (solid lines) TAN concentration over time at
 different synthetic solution pH and temperature. (top) experiments at 35 °C (a) feed solution
 and (b) trapping solution, and (bottom) experiments at 55 °C (c) feed solution and (d) trapping
 solution. Error bars represent the standard deviation.

585 44.

586

Figure 4. OFMSW fermentation performance, (a) VFA concentration, (b) proportion of the VFA,
 (c) concentration of COD_{VFA}, sCOD and its ratio, (d) concentration of TAN and pH. Error bars
 represent the standard deviation.

591 45.

Figure 5. TAN concentration evolution of the (a) feed solution and (b) trapping solution for the
 experiments carried out with OFMSW fermentation liquid. Error bars represent standard
 deviation.

596 46.

592

Figure 6. Evolution of the VFA concentration in the feed solution for experiments (a) 3A at pH
9.0 and 35 °C, (b) 3B at pH 9.0 and 55 °C, (c) 3C at pH 10.0 and 35 °C and (d) 3D at pH 10.0 and
55 °C. Error bars represent the standard deviation.

601 47.

597

eed solution	Test	Feed solution pH (-)	Temperature (°C)
	1A	6.0	35
	1B	7.0	35
	1C	8.0	35
	1D	9.0	35
Synthetic	1E	10.0	35
ermentation	1F	11.0	35
liquid	2A	6.0	55
	2B	7.0	55
	2C	8.0	55
	2D	9.0	55
	2E	10.0	55
	2F	11.0	55
OFNES	3A	9.0	35
Urivisw	3B	10.0	35
liquid	3C	9.0	55
iiquiu	3D	10.0	55

 Table 1. Operational conditions of the experiments carried out in this study.

603

604 48.

605 606

Table 2. Operational conditions and performance parameters in experiments using synthetic fermentation liquid (average values ± standard deviation).

Exp.	т	рН	TAN recovery at 8h	Average flux at 8h	K _m	Alkali consumption		Acid consumption		
	°C	-	%	g N·day ⁻¹ ·m ⁻²	m·s⁻¹	mol NaOH·mol ⁻¹ TAN recovered		mol NaOH·mol ⁻¹ TAN mol H ₂ SO ₄ ·mol ⁻¹ TAN recovered recovered		∙mol ⁻¹ TAN vered
						Total*	Test**	Total*	Test**	
1A		6.0	8	2.5 ± 0.3	(2.2 ± 0.5)·10 ⁻⁸	4.5 ± 0.5	0.64 ± 0.06	2.32 ± 0.27	1.03 ± 0.10	
1B		7.0	16	4.3 ± 0.6	(2.8 ± 0.4)·10 ⁻⁸	2.5 ± 0.3	0.60 ± 0.06	2.14 ± 0.25	1.14 ± 0.11	
1C	25	8.0	65	17 ± 3	(9.5 ± 1.3)·10 ⁻⁸	1.4 ± 0.1	0.64 ± 0.06	0.87 ± 0.09	0.64 ± 0.07	
1D	55	9.0	91	62 ± 10	(3.2 ± 0.3)·10 ⁻⁷	1.0 ± 0.1	0.55 ± 0.06	0.63 ± 0.07	0.52 ± 0.06	
1E		10.0	100	115 ± 16	(9.2 ± 0.4)·10 ⁻⁷	1.0 ± 0.1	0.12 ± 0.03	0.61 ± 0.07	0.52 ± 0.06	
1F		11.0	100	138 ± 17	(1.13 ± 0.03)·10 ⁻⁶	1.1 ± 0.1	0.02 ± 0.01	0.61 ± 0.07	0.50 ± 0.05	
2A		6.0	10	2.8 ± 0.3	(1.3 ± 0.3)·10 ⁻⁸	4.1 ± 0.5	0.65 ± 0.06	2.41 ± 0.25	1.15 ± 0.12	
2B		7.0	36	10 ± 2	(5.8 ± 1.0)·10 ⁻⁸	1.8 ± 0.2	0.69 ± 0.06	0.95 ± 0.11	0.61 ± 0.07	
2C		8.0	73	32 ± 5	(1.9 ± 0.1)·10 ⁻⁷	1.2 ± 0.1	0.68 ± 0.06	0.67 ± 0.08	0.56 ± 0.07	
2D	22	9.0	99	84 ± 11	(5.9 ± 0.5)·10 ⁻⁷	1.2 ± 0.1	0.33 ± 0.04	0.65 ± 0.09	0.54 ± 0.06	
2E		10.0	100	121 ± 16	(9.3 ± 0.3)·10 ⁻⁷	1.2 ± 0.1	0.18 ± 0.02	0.50 ± 0.04	0.48 ± 0.05	
2F		11.0	100	133 ± 16	(1.15 ± 0.04)·10 ⁻⁶	1.1 ± 0.1	0.00 ± 0.00	0.63 ± 0.04	0.52 ± 0.05	

607 * NaOH and H₂SO₄ including the initial reagent consumption and the consumption during the experiment

 ** NaOH and H₂SO₄ consumption during the experiment to keep the pH at the set point.

609 49.

Table 3. Operational characteristics and results obtained in experiments using OFMSW

611	611 fermentation broth as feed solution (average values ± standard deviation).								
Exp.	т	рН	TAN recovery at 8h	Average flux at 8h	K _m	Alkali consumption		Acid consumption	
	°C	-	%	g N·day ⁻¹ ·m ⁻²	m·s⁻¹	mol NaOH·mol ⁻¹ TAN recovered		mol H₂SO₄∙mol⁻¹ TAN recovered	
						Total*	Test**	Total*	Test**
3A	35	9.0	100	78.4 ± 11.0	(2.8 ± 6.0)·10 ⁻⁷	1.02 ± 0.10	0.25 ± 0.04	0.63 ± 0.06	0.25 ± 0.03
3B		10.0	100	120.1 ± 14.4	(5.0 ± 9.2)·10 ⁻⁷	0.94 ± 0.10	0.10 ± 0.02	0.65 ± 0.06	0.14 ± 0.02
3C	55	9.0	100	91.0 ± 12.7	(3.3 ± 6.3)·10 ⁻⁷	0.97 ± 0.11	0.21 ± 0.03	0.67 ± 0.07	0.21 ± 0.03
3D		10.0	100	138.8 ± 16.7	(5.4 ± 5.7)·10 ⁻⁷	0.86 ± 0.08	0.05 ± 0.02	0.63 ± 0.06	0.17 ± 0.02

⁶¹² * NaOH and H₂SO₄ including the initial reagent consumption and the consumption during the experiment

613 ** NaOH and H₂SO₄ consumption during the experiment to keep the pH at the set point.

614 50.

610