
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Facing the Label-Switching problem when
using generic inference platforms for

crowd annotation models

Author:
Àlex PADRÓS ZAMORA

Supervisors:
Jerónimo

HERNÁNDEZ-GONZÁLEZ
Jesús CERQUIDES

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

June 30, 2021

http://www.ub.edu
https://www.linkedin.com/in/alexpadroszamora/
https://jhernandezgonzalez.github.io/
https://jhernandezgonzalez.github.io/
https://www.iiia.csic.es/en-us/people/person/?person_id=49
http://mat.ub.edu




iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Facing the Label-Switching problem when using generic inference platforms for
crowd annotation models

by Àlex PADRÓS ZAMORA

In this Master Thesis we study some classical approaches for crowd annotation mod-
els such as the pooled multinomial model or the Dawid-Skene models. These mod-
els try to learn from the crowd, which is not required to be composed of experts. In
particular, the problem of label aggregation that we deal with can be seen as a prob-
abilistic graphical model. We propose an algorithm that aims to solve the problem of
label-switching for generic inference platforms such as STAN without any previous
intervention to the optimization/sampling method. We also study its performance
by means of the Kullback-Leibler divergence, where we see that the results are better
after applying our proposed correction.

HTTP://WWW.UB.EDU
http://mat.ub.edu




v

Acknowledgements
This has been a complicated and strange year. I arrived to the first class of the

course without having written a single line in Python (almost 90% of the course
has been taught in Python). Moreover, I started working in a big company (for the
first time in my life) almost at the same time I started the course. Due to these two
reasons, first of all, I would like to thank my family and my classmates. To my mom
and sister for all the support they have given me during this year full of novelties for
me, where the battle against stress has been a constant and mental health has been
difficult to take care of, due to the mobility restrictions caused by Covid, among
others. They have made it look easy, when it is really not. I would like to thank my
classmates for repeatedly taking time out of their lives (which I am sure they were
also very busy) to help me clarify doubts. Without this little help, I am aware that
everything would have been much more complicated. I would like to give a special
mention to my university buddy and friend Aurelio, who has been an inspiration to
me over the years, showing me that with passion, dedication and sacrifice you can
achieve whatever you set your mind to, even when it seems impossible.

I would also like to thank my advisor Jerónimo for his recommendation to do
this thesis. At first, I had chosen to do a different one about Recommenders Systems,
since I am also very interested in them. However, he thought that I would enjoy this
project because of all the mathematics behind it, since it is my background. I would
also like to thank my other advisor Jesús for all the help and support with this thesis
week after week. I am sure they will both do great in their careers.

I would also like to take this opportunity to thank my girlfriend Cristina for all
the support she has given me over the years. As I mentioned before, mental health
is essential and it is difficult to take care of without adequate support. I find that in
this aspect, I have been very fortunate.

To finish this acknowledgments, I would like to thank my lifelong friends ”Mar-
shall Wheel”, Marc and Marina for their great friendship and support in difficult
times. I am sure that they are as excited as I am to see them appear in this text and
that they will love to read this work.





1

Contents

Abstract iii

Acknowledgements v

1 Introduction 3

2 Background 5
2.1 Bayesian approach and classical theorems . . . . . . . . . . . . . . . . . 5
2.2 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 State-of-the-Art 11
3.1 Introduction to Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Who forms the crowd . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 What the crowd has to do . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 What does the crowd get in return . . . . . . . . . . . . . . . . . 12

3.2 Conceptual and mathematical model . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Tasks, workers and annotations . . . . . . . . . . . . . . . . . . . 13
3.2.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Discrete annotation models . . . . . . . . . . . . . . . . . . . . . 14

The pooled multinomial model . . . . . . . . . . . . . . . . . . . 15
Unpooled models: the Dawid-Skene models . . . . . . . . . . . 15

3.3 Introduction to Stan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Default optimization method in STAN: L-BFGS . . . . . . . . . 17
3.3.2 Discrete parameters in STAN . . . . . . . . . . . . . . . . . . . . 18

4 Label-switching and a correction proposal 21
4.1 Label-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Proposal of a correction algorithm . . . . . . . . . . . . . . . . . . . . . 22

5 Empirical analysis 27
5.1 Pooled multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Dawid-Skene models and label-switching . . . . . . . . . . . . . . . . . 29

5.2.1 Addition of external classes . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Label - switching phenomenon . . . . . . . . . . . . . . . . . . . 30

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37





3

Chapter 1

Introduction

Information technologies have grown almost immeasurably in recent years. As an
advantage, they have allowed to begin another type of science: the citizen science,
which takes advantage of the power of masses and is used to efficiently complete
scientific tasks. Crowdsourcing approaches to machine learning aim to obtain data
from a community of collaborators who are not required to be experts or knowl-
edgeable in the project in which they participate. Commonly, the type of task as-
signed to the crowd is not difficult, and is usually based on the labeling of images,
audios. . . Different methods have been proposed for learning from this type of data
during the last years. These methods focus mainly on solving the problem of la-
bel aggregation (combining different opinions for the same data point) for machine
learning. With enough workers, several studies have shown that one can match (in
terms of reliability) the accuracy that would have been given by a smaller set of
experts of the task at hand.

In this work, we will study a few classical approaches for crowdsourcing prob-
lems. The first one is the pooled multinomial model (3.2.3). This model is quite
simple, since it assumes that all the annotators share the same ability for labeling. In
order to see a more general version, we will study the Dawid-Skene models (3.2.3).
These models distinguish between annotators, and try to model each of them. We
will see three versions: the general one, the conditional and the homogeneous. As
its name indicates, the first one is the most general: if the number of different labels
is k, then the number of free parameters to model is k(k− 1), which can easily lead
us to overfit on small datasets. The other two are simplifications of the general one
that give some restrictions to the modeled behavior of the annotators. The number
of free parameters to model for these models are k and 1, respectively.

Chapter 2 is devoted to see some background concepts that are necessary to fol-
low this thesis. We will give an introduction to Bayesian Statistics, comparing it to
the classical frequentist approach. Our probabilistic programs will follow a Bayesian
pipeline. We will also introduce what a probabilistic graphical model is, even though
we will only talk about Bayesian Networks, since they are the ones we are interested
in for our particular problem. To conclude the chapter, we will define the Kullback-
Leibler divergence, which is basically a measure of how different two probability
distributions are from each other.

Chapter 3 will present our problem. Firstly, we will give an historical introduc-
tion to crowdsourcing, defining in detail what each concept is. After that, we will
define our problem, both conceptual and mathematically. We will actually see that
the problem of label aggregation can be modeled as a Bayesian Network, which will
help us to clarify how to factorize our probability distributions. This will help us to
better understand the pooled multinomial and the Dawid-Skene models. To finish
the chapter, we will present the inference platform that we are using: STAN. We will
explain L-BFGS (3.3.1), the optimization method that STAN uses by default and the
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one we will use for our experiments. We will also see an important drawback of
STAN: the lack of support for discrete parameters. In Chapter 4, once the theory
is well studied, we will start focusing on the main point of this thesis, the label-
switching problem (4.1). In this chapter, we will see a theoretical point of view and
a proposal to correct it.

We will present the results of our experiments in Chapter 5. Before starting,
we will explain the (theoretical) discrete parameter marginalization process that we
have had to perform in order to write our pooled multinomial model in STAN. Other
processes that we use have been previously described in (3.2.3). After that, we will
present an algorithm that aims to solve the label-switching problem, under the hy-
pothesis that our annotators are mostly good (i.e. they label tasks correctly, in gen-
eral). Our goal is to correct the label-switching problem without previously modi-
fying (or minimally modifying) the input of the STAN optimization algorithms. In
order to test our proposal, we will work with many kinds of datasets. Some of them
will be created intentionally to make it difficult for our algorithm. For instance, we
will work with a set of annotators that do not fulfill our hypothesis, testing thus our
method in difficult experimental scenarios. Another example will be a dataset where
the vast majority of tasks will be of a particular class. In general, we will see that the
results (in terms of Kullback-Leibler divergence) after applying the label-switching
correction algorithm are much better.
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Chapter 2

Background

In this chapter, we will present some background concepts that need to be under-
stood in order to follow this work.

2.1 Bayesian approach and classical theorems

The aim of this section is to understand what is the difference between classical prob-
ability (i.e. frequentist approach) and the Bayesian approach (Eddy, 2004; Downey,
2015), as well as to explain the necessary background concepts.

The principal concept that we must define is the notion of conditional probabil-
ity:

Definition 2.1.1. (Conditional probability) Given two events A and B with P(B) > 0,
the conditional probability of A given B, which is denoted by P(A|B), is given by

P(A|B) :=
P(A, B)

P(B)
.

Given a discrete random variable1 X, we define its probability mass function (pmf)
as the function that maps each value xj of X to its associated probability ( i.e. P(X =
xj) = dj) and 0 to the rest of real numbers. More formally, if X takes values x1 <
· · · < xm:

pmfX : R→ [0, 1]

x 7→
{

dj if x = xj, 1 ≤ j ≤ m,
0 if x 6∈ {x1, . . . , xm}.

For this given random variable X, we also define the cumulative probability distribution
function (cdf) F(x) as the sum of probabilities associated to the xj which are equal or
smaller than x (i.e. P{X ≤ x}). More formally,

cdfX : R→ [0, 1]

x 7→



0 if x < x1,
d1 if x1 ≤ x < x2,
d1 + d2 if x2 ≤ x < x3,
...

...
1 if xm ≤ x.

1https://en.wikipedia.org/wiki/Random_variable

https://en.wikipedia.org/wiki/Random_variable
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Now, suppose that X is a discrete random variable with its probability mass function
depending on a parameter θ. Then, the function

L (θ|x) = pmfθ(x),

considered as a function of θ, is known as the Likelihood function.
Discrete random variables are exactly those with a step function cdf, namely F,

where its discontinuities are finite (or countable) jumps.
When F, the cdf of a random variable X, is the integral of another function f (i.e.
f = F′),

F(x) =
∫ x

−∞
f (t)dt, x ∈ R,

then we say that f is the probability density function (pdf) of the absolutely continuous
random variable X2. Similarly, if X is an absolutely continuous random variable, its
Likelihood function is defined as

L (θ|x) = fθ(x).

One way of understanding the difference between frequentists and bayesians is by
looking at the Bayes’ billiard problem (1763). The statement that Bayes wrote is the
following:

Alice and Bob are playing a game in which the first person to get 6 points
wins. The way each point is decided is a little strange. The Casino has
a pool table that Alice and Bob can’t see. Before the game begins, the
Casino rolls an initial ball onto the table, which comes to rest at a com-
pletely random position, which the Casino marks. Then, each point is
decided by the Casino rolling another ball onto the table randomly. If
it comes to rest to the left of the initial mark, Alice wins the point; to
the right of the mark, Bob wins the point. The Casino reveals nothing to
Alice and Bob except who won each point.

Clearly, the probability that Alice wins a point is the fraction of the table
to the left of the mark—call this probability p ∈ [0, 1]; and Bob’s prob-
ability of winning a point is 1− p. Because the Casino rolled the initial
ball to a random position, before any points were decided every value
of p was equally probable. The mark is only set once per game, so p is
the same for every point. Imagine Alice is already winning 5 points to 3,
and now she bets Bob that she’s going to win. What are fair betting odds
for Alice to offer Bob? That is, what is the expected probability that Alice
will win?

We are asked calculate P({Bob wins the game}), which is equivalent to calculate
the probability that he will win the next 3 points. We set

p = P({Alice gets a point}),

and we clearly see that P({Bob wins the game}) = (1− p)3. So, we need to know
p, and here’s where we’ll see the differences between Frequentist and Bayesian ap-
proaches.

2All the given definitions imply that, necessarily, f ≥ 0 and
∫ +∞
−∞ f = 1.
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The Frequentist approach is basically to estimate p from the data. Given p, we
can compute, by means of the binomial formula3:

P(A = 5, B = 3|p) =
(

8
5

)
p5(1− p)3. (2.1)

Observe that expression (2.1) (which can be seen as a function of p) is the Likelihood.
It attains its maximum at p̂ML = 5

8 , which is known as the Maximum Likelihood es-
timate of p. This value is the one that is used to estimate p, and with this one, we
get

PFREQ({Bob wins the game}) = (1− p̂)3 =
27
512
≈ 0.0527. (2.2)

From the point of view of the Bayesian approach, we want to write down exactly
the probability we want to infer, in terms only of the data we know, and directly
solve the resulting equation — which forces us to deal explicitly with all mathemat-
ical difficulties, additional assumptions and uncertainties that may arise. We accept
that p is unknown and we treat it as such, integrating over all possible values that a
parameter might assume.

In this particular problem, what we want to know is the expected probability
that Bob will win. By definition4, this is the weighted average of (1− p)3 over all
possible values of p.

PBAYES({Bob wins the game}) =
∫ 1

0
(1− p)3P(p|A = 5, B = 3)dp. (2.3)

The problem here is that we need to determine the expression of P(p|A = 5, B = 3).
It can be calculated by Bayes’ Theorem5 and by the Law of Total Probabilities:

Theorem 2.1.1. (Bayes’ Theorem) Let A and B be two events such that P(B) > 0, then:

P(A|B) = P(B|A)P(A)

P(B)
.

Theorem 2.1.2. (Law of total probability) Let Ω =
⊎N

n=1 An be a finite or countably
infinite partition of a sample space (i.e. N ≤ ∞) such that P(An) > 0 ∀n. Let A be an
event, then

P(A) =
N

∑
n=1

P(An)P(A|An).

Remark. In the case of a continuous random variable, the sum is substituted by a definite
integral on the domain where the parameter is in.

3Suppose that we repeat n times a certain experiment in which we only consider the possibilities of
success or failure, with respective probabilities p and q = 1− p. The probability of success or failure
in each trial is independent from the others. Letting k be the number of successes, then P(X = k) =
(n

k)pk(1− p)n−k.
4https://en.wikipedia.org/wiki/Expected_value
5The name of this theorem–which may be one of the most important theorems ever–is devoted

to Thomas Bayes (London, England, 1702 - Tunbridge Wells, 1761). Even though, Martyn Hooper
(Hooper, 2013) presents the case of Richard Price (1723–1791), an economist who was a friend of US
presidents. The essay where Bayes’ theorem was stated for the first time was read to the Royal Society
on December 23rd, 1763. It was Price, not Bayes, who communicated the essay to the Royal Society;
Thomas Bayes had died two years before.

https://en.wikipedia.org/wiki/Expected_value
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Retaking Bayes’ billiard problem, we have that

P(p|A = 5, B = 3) =
P(A = 5, B = 3|p)P(p)

P(A = 5, B = 3)
(2.4)

=
P(A = 5, B = 3|p)P(p)∫ 1

0 P(A = 5, B = 3|p)P(p)dp
. (2.5)

The term P(p) is called ”prior”, which is potentially problematic, because, by defi-
nition, it is a probability of p before any data have been observed. Bayesian methods
require specifying prior probability distributions, which are often themselves un-
known. For this problem, we assume P(p) is a constant (since p is uniform on [0, 1]),
which cancels out. Substituting (2.1) in (2.5) and then in (2.3), we end up obtaining

PBAYES({Bob wins the game}) =
∫ 1

0 p5(1− p)6dp∫ 1
0 p5(1− p)3dp

.

The result of both integrals can be determined analytically by the Beta function6 and
the Gamma function7, and the obtained value is PBAYES({Bob wins the game}) =
1

11 = 0.090909 . . . We can observe that both approaches get quite different results.

2.2 Probabilistic Graphical Models

The main objective of this section is to give an overview of the principal concepts of
probabilistic graphical models. It is mostly inspired on the great book (Koller and
Friedman, 2009), as well as the lecture notes provided by my supervisor (Hernández-
González, 2021).

A Probabilistic Graphical Model (PGM) is a probabilistic model which uses graphs
to express conditional dependencies between random variables. Suppose that we
want to represent a joint distribution P over some set of random variables X =
{X1, . . . , Xn}. In the simplest case, where all the variables were binary, in order to
specify a joint probability distribution, we would have to determine 2n− 1 numbers.
Computationally, it is very expensive to manipulate and generally too large to store
in memory. Probabilistic Graphical Model will allow us to be more efficient.

One type of PGM (and the one that we will work with) are Bayesian Networks.
The core of the Bayesian network representation is a directed acyclic graph (DAG)
G. A DAG G is a pair (V, E) where V = {1, . . . , n} represents the set of vertices and
E = {(u, v) : u, v ∈ V, u 6= v} represent the set of arcs. A DAG is characterized for
not having directed cycles. Figure 2.1 displays a toy example of a DAG.
Given a node Xj, we denote pa(Xj) as the set of parents of Xj (i.e. the nodes with
edges directed towards Xj). As an example, looking at Figure 2.1, we have that
pa(D) = {B, G}.

Bayesian Networks represent a joint probability distribution. Nodes are related
to random variables, while edges are related to the simplification of the chain rule:

Theorem 2.2.1. (Chain rule) Let A1, . . . , An events such that P (A1, . . . , An−1) > 0.
Then,

P (A1, . . . , An) = P (A1)P (A2|A1)P (A3|A1, A2) · · ·P (An|A1, . . . , An−1) .
6https://en.wikipedia.org/wiki/Beta_function
7https://en.wikipedia.org/wiki/Gamma_function

https://en.wikipedia.org/wiki/Beta_function
https://en.wikipedia.org/wiki/Gamma_function
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FIGURE 2.1: An example of a directed acyclic graph.

A Bayesian Network can be expressed as a product of conditional probability
distributions:

P (X1, . . . , Xn) =
n

∏
i=1

P (Xi|pa (Xi)) .

X1

X2 X4

X3

FIGURE 2.2: Toy example of a Bayesian Network.

In the Bayesian Network displayed at Figure 2.2, we can obtain two different
factorizations via the chain rule and via Bayesian network’s factorization:

• Chain rule:

P (X2, X3, X1, X4) = P (X4|X1, X2, X3)P (X1|X2, X3)P (X3|X2)P (X2) .

• Bayesian network’s factorization:

P (X1, X2, X3, X4) = P (X4|X1, X3)P (X1|X2)P (X3|X2)P (X2) .

Clearly, the second one is more efficient to compute. Here, what we have obtained
are two conditional independencies. We have seen, from the graph, that X4 is inde-
pendent from X2 given X1, X3 and that X1 is independent from X3 given X2.

Given a probability distribution P (X) = P (X1, . . . , Xn), a partition of X = Y ∪
H ∪ E in three disjoint subsets of variables and an assignment e to the variables in
E. The objective of a conditional probability query is to find the probability distribution
P (Y|E = e). In the general case, it can be rewritten as

P (Y|E = e) = ∑
h

P (Y, H = h|E = e) ,

but computationally is somehow impossible, since it has exponential complexity. If
P follows a probabilistic graphical model, it can help to reduce complexity, since
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many independencies are easier to identify and many wasteful calculations can be
avoided. Note that we can represent in this way most of the questions that we usu-
ally make to our models in data science.

2.3 Kullback-Leibler divergence

The Kullback-Leibler divergence (Kullback and Leibler, 1951) is a measure for prob-
ability distributions over the same random variable X. It is not exactly a distance,
since it is not symmetric and it does not verify the triangular inequality. It is denoted
as KL divergence. Let p and q be two probability distributions, that is, both p(x) and
q(x) sum up to 1, and p(x) > 0, q(x) > 0 for any x ∈ X. Then, the KL divergence is
defined as

DKL(p, q) = ∑
x∈X

p(x) log
(

p(x)
q(x)

)
. (2.6)

It measures the expected number of extra bits required to code samples from
p(x) when using a code based on q(x). Normally, the first distribution (in the case of
(2.6), p) is a precisely calculated theoretical distribution, while q represents a model
or an approximation of p.

For continuous random variables X, the definition of the KL divergence is ex-
tended as

DKL(p, q) =
∫

R
p(x) log

(
p(x)
q(x)

)
dx. (2.7)

In order to see a counterexample which proves that that this measure is not symmet-
ric, we can see Table 2.1, which gives a simplification of one example that is given in
(Solomon Kullback, 1959):

TABLE 2.1: Counterexample on the symmetry of the KL divergence

X p(x) q(x) p(x) log
(

p(x)
q(x)

)
q(x) log

(
q(x)
p(x)

)
0 1/6 0.36 −0.12835 0.27724
1 2/3 0.48 0.219 −0.15768
2 1/6 0.16 0.0068 −0.00653

+ 1 1 0.09745 0.11303

The KL divergence is always greater or equal than zero, a result known as Gibbs’
inequality8. It equals zero if and only if p(x) = q(x) almost everywhere.

8https://en.wikipedia.org/wiki/Gibbs%27_inequality

https://en.wikipedia.org/wiki/Gibbs%27_inequality
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Chapter 3

State-of-the-Art

3.1 Introduction to Crowdsourcing

In order to get a first contact with the term ”crowdsourcing”, we should see (Howe,
2006). This term was coined for the first time in 2005 by Jeff Howe and Mark Robin-
son in the Wired1 magazine. They described how companies were using the Internet
to ”outsource work from the work”. With the pass of time, this long concept has been
renamed to ”crowdsourcing”. In fact, crowds have a lot of power, many source soft-
ware movements (such as Stack Overflow2 community) have proved that a network
of passionate, geeky volunteers can write code just as well as the highly paid devel-
opers at Microsoft or Apple. Wikipedia has showed that a crowded model has been
able to deliver the most used and efficient encyclopedia of this world.

The first definition of crowdsourcing which Howe came up with was:

Simply defined, crowdsourcing represents the act of a company or insti-
tution taking a function once performed by employees and outsourcing
it to an undefined (and generally large) network of people in the form of
an open call. This can take the form of peer-production (when the job is
performed collaboratively), but is also often undertaken by sole individ-
uals. The crucial prerequisite is the use of the open call format and the
large network of potential laborers.

At that moment, the term ”crowdsourcing” was only used in the literature. It was
not until 2008 that the first research article about this topic was published (Brabham,
2008b). The adaptability of crowdsourcing allows it to be an effective and powerful
practice, but makes it difficult to define and categorize. Until that point, the theoret-
ical knowledge base was not solid. In 2012, Enrique Estellés-Arolas and Fernando
González Ladrón-de-Guevara provided a wide definition that covered the majority
(if not all) of existing crowdsourcing processes until the moment (Estellés-Arolas
and L. Guevara, 2012):

Crowdsourcing is a type of participative online activity in which an indi-
vidual, an institution, a non-profit organization, or company proposes to
a group of individuals of varying knowledge, heterogeneity, and num-
ber, via a flexible open call, the voluntary undertaking of a task. The
undertaking of the task, of variable complexity and modularity, and in
which the crowd should participate bringing their work, money, knowl-
edge and/or experience, always entails mutual benefit. The user will
receive the satisfaction of a given type of need, be it economic, social
recognition, self-esteem, or the development of individual skills, while

1https://www.wired.com/
2https://stackoverflow.com/

https://www.wired.com/
https://stackoverflow.com/
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the crowdsourcer will obtain and utilize to their advantage that what the
user has brought to the venture, whose form will depend on the type of
activity undertaken.

In this article, they give an explanation of the three main characteristics that a
crowdsourcing model has: (i) who forms the crowd, (ii) what the crowd has to do
and (iii) what does the crowd get in return.

3.1.1 Who forms the crowd

The crowd is profiled as a large group of individuals. The magnitude of ”large” is
not clear, it depends a lot on the problem. In relation to the knowledge of the par-
ticipants, it can vary too. In general, when a repetitive work is proposed, an expert
crowd with special skills is not required. For instance, if we take a look at (Bans,
2010), we can see an example of users that had to give an opinion about some spe-
cific products without being experts in those. However, there have been cases where
a more expert crowd has been needed. As an example, there exists companies such
as Innocentive3 that propose Research & Development problems whose resolution
implies the need of an economic recompense and an expert crowd. In conclusion,
the heterogeneity and magnitude of the crowd should depend on the considered
problem.

3.1.2 What the crowd has to do

The most important thing that we should take into account is that the task that the
crowd is asked to do must have a clear objective. Any non-trivial problem should
benefit from crowdsourcing (Doan, Ramakrishnan, and Halevy, 2011). Some au-
thors agree that generic crowdsourcing tasks have to be divisible into lower level
tasks, in such a manner that can be accomplished by individual members of the
crowd (Heer and Bostock, 2010; Vukovic, Lopez, and Laredo, 2010).

Basically, the crowd has to carry out the resolution of a problem undertaking
a task of variable complexity (depends on the problem) and modularity that will
imply the voluntary contribution of their work. It is considered that a problem is
comprised of any given situation of need held by the initiator of the crowdsourcing
activity, e.g., the translation of a fragment of text or opinions about products.

3.1.3 What does the crowd get in return

Some authors (La Vecchia and Cisternino, 2010) state that people in the crowd should
be compensated, because they are acting voluntarily. Others (Stewart, Huerta, and
Sader, 2009) think that the reward should not be material, but rather a feeling of ful-
fillment for participating. Many studies (Brabham, 2008a; Brabham, 2010; Lakhani
et al., 2007) have analyzed the motivation of the crowd for participating. They high-
light some individual needs: the financial reward, the opportunity to develop cre-
ative skills, to have fun, to share knowledge, the opportunity to take up freelance
work, the love of the community and an addiction to the tasks proposed.

In conclusion, the reward depends on the crowdsourcer, but this one always tries
to please the crowd in some way, it can be economic or social.

3https://www.innocentive.com/

https://www.innocentive.com/
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3.2 Conceptual and mathematical model

In this section we will present an abstract description of our model (conceptual and
mathematically), which can be modeled as a probabilistic graphical model. This one
is inspired on (Cerquides et al., 2021).

3.2.1 Tasks, workers and annotations

In order to give a real-world context for our model, suppose that a natural disaster
has occurred at this moment. It is important to determine which have been the zones
that have been more damaged, but due to the chaos that a natural disaster causes,
information is scarce. The most recent and instantaneous information we can get
comes from social networks, where people who are close to the natural disaster have
taken and uploaded images to platforms such as Twitter, Facebook... Collecting data
from these social networks is no big deal. Each of the images obtained from the
social network can be distributed to a set of citizen scientists that can help labeling
that image from a finite set of classes, either as relevant, no-damage, moderate. . . Based
on these annotations, we will be able to report to the disaster relief organization.

For our model, we will principally talk about three concepts which have to be
defined properly: task, worker, annotation:

Worker: Any of the participants in the annotation process. In our example,
each of the volunteer citizen scientists involved in labeling images is a worker.

Task: The minimal piece of work that can be assigned to a worker. In the
previous example, a task would be to label an image.

Annotation: The result of the processing of the task by the worker.

3.2.2 Mathematical model

Let w ∈ N be the number of workers and W = {1, . . . , w} be the set of workers.
Let t ∈ N be the number of tasks and T = {1, . . . , t} the set of tasks. Suppose we
have a total of a ∈N annotations and A = {1, . . . , a}. These are all finite sets, which
means that we can define injections to their respective feature space, namely,W , T
and A. In these spaces we have the characteristics and descriptions associated to
each worker, task or annotation. Set fW : W → W , fT : T → T and fA : A → A.
In order to obtain, for each annotation, its associated task and worker, we define
wA : A→W and tA : A→ T.

We assume that our feature spaces factorize as the cartesian product of some
other feature spaces. For the task feature space, we assume that T = TO × TC × TH,
where TO contains the observable characteristics, TC contains those unobservable
characteristics in which we are interested and TH contains those characteristics of
the tasks that are unobservable and in which we are not interested. For the workers
feature space, we assumeW =WO ×WH, whereWO contains the observable char-
acteristics and WH contains the unobservable characteristics. We also assume that
it exists a space which contains some general characteristics that are relevant for the
annotations. We refer to this space D as the domain space.

For our problem, we take as an input:

• w, t and a.

• For each worker w ∈ W and for each task t ∈ T, its observable characteristics,
namely ww

O, tt
O.
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FIGURE 3.1: PGM of the model ∀t ∈ T, ∀w ∈W and ∀a ∈ A.

• For each annotation a ∈ A, its corresponding task (i.e. tA(a)), worker (i.e.
wA(a)) and annotated characteristics, namely aa = fA(a).

• A probabilistic model of annotation, which consists on:

- An emission model P(a|ww, tt, d): the probability that, given a certain
worker, a certain task and a domain of characteristics d ∈ D, the worker
annotates the task with label a.

- A joint prior over every unobservable characteristic

P
(

w1
H, . . . , ww

H, d, t1
C, . . . , tt

C, t1
H, . . . , tt

H

)
.

The previous inputs give us the Bayesian Network representation that is dis-
played in Figure 3.1. This implies that the probability distribution factorizes as

P
(

w1
H, . . . , ww

H, d, t1
C, . . . , tt

C, t1
H, . . . , tt

H, a1, . . . , aa
)
=

P
(

w1
H, . . . , ww

H, d, t1
C, . . . , tt

C, t1
H, . . . , tt

H

) a

∏
a=1

P
(

a
∣∣∣wwA(a), ttA(a), d

)
.

The objective of this model is to be able to answer probabilistic queries such as
P(t1

C, . . . , tt
C) by marginalizing out the rest of the variables. Observe that our model

assumes that annotations are independent from each other provided that we are
given all the characteristics of the task, the domain and the worker.

3.2.3 Discrete annotation models

In order to particularize our abstract model described in Subsection 3.2.2, we will
assume that the feature space of annotations is finite. That is, A = {a1, . . . , ak} with
k < ∞, and now our model turns out to be a discrete annotation model. In this kind
of models, each task is considered to have an unobservable characteristic, its ”real”
label. In other words, TC = A. We will work with two different types of discrete
annotation models: The pooled multinomial model and the Dawid-Skene models.
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The pooled multinomial model

The pooled multinomial model (Passonneau and Carpenter, 2014; Paun et al., 2018)
assumes that all annotators share the same ability. Hence,W = ∅. Also, we assume
that we can only distinguish a task by its real class. This means that TO = TH = {∅}.
In short, T = TC = A.

Regarding the domain space, it is the set of probability distributions over A,
where |A| = k. This domain can be encoded as a stochastic vector, namely τ ∈ [0, 1]k,
where τi denotes the probability of task being of class ai. As stated before, all the
workers share the same behavior, and this ”behavior” can be encoded as a stochastic
matrix π ∈ [0, 1]k×k. Here, πi,j denotes the probability of a worker to label a task from
real class ai with label aj

4. In this case, the emission model is

P
(

aj

∣∣∣w, d, t
)
W=∅ and T =A

= P
(

aj

∣∣∣d = 〈τ, π〉, tl
C = ai

)
= πi,j.

We assume that the prior for τ and the rows of π is a Dirichlet of vector 1k (here, 1k

denotes a vector of k ones). Now, the joint posterior factorizes as

P(wH, d, tC)
W=∅
= P(d, tC) = P(d)

t

∏
l=1

P
(

tl
C

∣∣∣d) = P(τ)P(π)
t

∏
l=1

P
(

tl
C

∣∣∣τ) , (3.1)

where P(τ) = Dirichlet
(
τ; 1k), P(π) = ∏k

i=1 Dirichlet
(
πi; 1k) and P

(
tl
C = ai

∣∣∣τ) =
τi.

Remark. The notation ”πi” means ”all the i-th row from π”, and it is in fact a probability
distribution over the true class i.

The Dirichlet distribution (Lin, 2016) is a multivariate generalization of the Beta
distribution. Let yk be a vector with k components, where yi > 0 for all i and
∑k

i=1 yi = 1. Also, let αk = (α1, . . . , αk) be another vector of k components such
that αi > 0 for all i. Then, the Dirichlet probability density function is given by

pdf
(

yk
)
=

Γ (α0)

∏k
i=1 Γ (αi)

k

∏
i=1

yαi−1
i ,

where Γ denotes the Gamma function and α0 = ∑k
i=1 αi. Following this definition, it

is denoted as Dirichlet
(
αk). Intuitively, we can think α as the ”concentration param-

eter”. This one denotes how concentrated the probability mass of the samples are
likely to be.

Unpooled models: the Dawid-Skene models

For unpooled models, we distinguish between workers. That is, we assume that
different workers might have a different behavior. The three models that we will
cover are widely used to model the quality of the workers (Li, 2015). These are: Gen-
eral Dawid-Skene, Class-conditional Dawid-Skene and Homogeneous Dawid-Skene. The
first one was originally proposed in (Dawid and Skene, 1979). These are similar to
the multinomial model, but they are more general. We firstly provide an abstract
description of these models, and then we will adapt them to our framework.

4Observe that if π was the identity matrix, then it would mean that our workers are perfect re-
porters.
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• General Dawid-Skene model: In this model, each worker w has its own con-
fusion matrix πw ∈ [0, 1]k×k. Formally, we define Ā = A ∪ {0}, where 0 rep-
resents the label is missing. We introduce the matrix Z ∈ Āw×t, where Zi,j
is the label given by the i-th worker to the j-th item, and it will be 0 if the i-
th worker did not label the j-th item. We also introduce the indicator matrix
T ∈ {0, 1}w×t, where Ti,j = 1 indicates that entry (i, j) is observed, and Ti,j = 0
that (i, j) is unobserved. Each component of the matrix πw denotes, for the j-th
task:

πw
r,l = P

(
Zw,j = l

∣∣∣tj
C = r, Tw,j = 1

)
.

Observe that, for each worker, the number of free parameters to model are
k(k− 1). It is flexible, but often leads to overfitting on small datasets. The other
two models are special cases of the general one, and they consist on imposing
constraints on the worker confusion matrices.

• Class-Conditional Dawid-Skene model: In this model, the error probabilities
of labeling an item with true label i as label j mistakenly for each worker are
the same across all j 6= i. Formally, for the j-th task:πw

r,r = P
(

Zw,j = r
∣∣∣tj

C = r, Tw,j = 1
)

, ∀r ∈ Ā, ∀w ∈W

πw
r,l =

1−πw
r,r

k−1 , ∀r, l ∈ Ā s.t. l 6= r, ∀w ∈W.

Observe that the off-diagonal elements of each row of the confusion matrix
πw will be the same. Now, the number of free parameters to model for each
worker is k.

• Homogeneous Dawid-Skene model: Each worker is assumed to have the
same accuracy on each class of items, and have the same error probabilities
as well. Formally, if the w-th worker labels correctly with accuracy wi ∈ [0, 1]
then, for the j-th task:{

πw
r,r = wi, ∀r ∈ Ā, ∀w ∈W

πw
r,l =

1−wi
k−1 , ∀r, l ∈ Ā s.t. r 6= l, ∀w ∈W.

In this case, the worker labels an item with the same accuracy, independent of
which label this item actually is. Now, the number of free parameters to model
for each worker is 1.

Figure 3.2 displays an example of a confusion matrix π for each of the three
models. These particular matrices have been generated in the code from Section 5.2.
Vertical axis represent the true classes, while horizontal axis represent the predicted
classes.

Now that we have a general vision of the models, we can adapt them to our
framework. As before, we assume that we can only distinguish a task by its real
class (which means that TC = A). Now, the general domain characteristics store
only vector τ. As stated, each worker w has its own k× k confusion matrix πw. In
this case, the emission model is

P
(

aj

∣∣∣w, t, d
)
= P

(
aj

∣∣∣w, t
)
= P

(
aj

∣∣∣wH = πw, tl
C = ai

)
= πw

i,j.
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(a) General (b) Class-Conditional (c) Homogeneous

FIGURE 3.2: Example of a 3× 3 confusion matrix for some worker for
each of the three Dawid-Skene models.

Regarding the prior, as before, it is assumed to be a Dirichlet of vector 1k both for τ
and for all the rows of the matrices π:

P (wH, d, tC, tH) = P (wH)P (d)P
(

tC

∣∣∣d) = P (τ)
w

∏
w=1

P (πw)
t

∏
l=1

P
(

tl
C

∣∣∣τ) , (3.2)

where P (τ) = Dirichlet
(
τ; 1k) , P

(
tl
C = ai

∣∣∣τ) = τi and, analogously to the pooled

multinomial model, P (πw) = ∏k
i=1 Dirichlet

(
πw

i ; 1k).
3.3 Introduction to Stan

Stan (Carpenter et al., 2019) is a programming language that has many utilities: cod-
ing probability models, inference algorithms for fitting models and making predic-
tions, posterior analysis tools for evaluating the results. . . It is written in C++ (Bjarne,
2013). The Stan language is mostly used to specify a (Bayesian) statistical model with
an imperative program calculating the logarithm of the probability density function.

3.3.1 Default optimization method in STAN: L-BFGS

STAN provides optimization algorithms that find modes of the specified density.
Such modes can be used as parameters estimates or as the basis of approximations
to a Bayesian posterior. In fact, this is what we will use in Chapter 5.

The default optimization method in STAN is the Limited-Memory Broyden Fletcher
Goldfarb Shanno algorithm (L-BFGS) (Nocedal and Wright, 2006; Stan Reference Man-
ual). It is an iterative algorithm that requires to be specified a maximum number of
iterations; by default, this number is 2000. Convergence is controlled by tolerance
values ε. The parameters θi in iteration i are considered to have converged with
respect to tolerance ε if

‖θi − θi−1‖ ≤ ε.

The unnormalized log density log P (θi|y) given some data y is considered to have
converged with respect to tolerance δ if

|log P (θi|y)− log P (θi−1|y)| < δ,

and it is considered to have converged to within relative tolerance η if

|log P (θi|y)− log P (θi−1|y)|
max (|log P (θi|y)| , |log P (θi−1|y)| , 1)

< η · ε,
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where ε is the machine precision. The gradient is considered to have converged to 0
relatively to a specified tolerance γ if ‖gi‖ < γ, where gi = ∇θ log P

(
θ(i)|y

)
is the

gradient at iteration i evaluated at θ(i).
The algorithm’s target problem is to minimize f (θ) = log P (θ|y). Given an

initial point x0, the algorithm proceeds to determine x1, x2 . . . The derivatives of gi
are used as a key driver of the algorithm to identify the direction of steepest descent,
and also to find an estimate of the hessian matrix of f (θ). We take xk as the position
at the k-th iteration and gk = ∇θ fk = ∇θ log P (xk|y). We assume that we have
stored the last updates m of the form

sk = xk+1 − xk, yk = gk+1 − gk.

Normally, m is taken between 3 and 20. The name of this algorithm is devoted to

this storage of m updates. We define ρk =
1

yT
k sk

and choose H0
k an approximation of

the inverse Hessian at step k. Each step of the method has the form

xk+1 = xk − αk Hk∇ fk,

where αk is the step length and Hk is updated as:

Hk+1 = VT
k HkVk + ρksksT

k ,

where Vk = Id− ρkyksT
k . In practice, a good method for choosing H0

k is to set H0
k =

ωk Id, where

ωk =
sT

k−1yk−1

yT
k−1yk−1

. (3.3)

The limited-memory BFGS algorithm can be stated formally as in Algorithm 1. This
optimization algorithm, like most, has difficulties when our function f is not convex.

Algorithm 1 : L-BFGS

Require: x0, m .
k← 0.
repeat

Choose H0
k , for instance as in (3.3).

Compute pk ← −Hk∇ fk.
Compute xk+1 ← xk + αk pk.
if k > m

Discard the vector pair {sk−m, yk−m} from storage.
Compute and save sk ← xk+1 − xk, yk = ∇ fk+1 −∇ fk.
k← k + 1

until convergence

3.3.2 Discrete parameters in STAN

A fundamental limitation in STAN is the lack of support for discrete parameters.
The difficulty stems from the fact that the construction of Hamiltonian Monte Carlo
proposals (which is a Markov chain Monte Carlo sampling algorithm used in STAN)
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relies on a numerical solution of a differential equation: approximating a discrete pa-
rameter of a likelihood by a continuous differentiable target distribution is difficult
in general (Berger, Bernardo, and Sun, 2012). However, Hamiltonian samplers can
sample from such models, but it takes more work in thinking about the target dis-
tribution. As described in (McElreath, 2018), a general approach to face this issue is
the following:

1. Write the probability of an outcome yi conditional on known values of the
discrete parameters. We denote as L to this conditional likelihood.

2. List all possible states the discrete parameters can take.

Example. If we have two binary parameters A, B, there are 4 possible states: {0, 0},
{0, 1}, {1, 0}, {1, 1}. Let j ∈N be the index for each state. Then j ∈ {1, 2, 3, 4}.

3. For each state in (2), compute its probability, which might be provided by our
model. Call each state’s probability Pj.

4. For each state in (2), compute the probability of an outcome yi when the dis-
crete parameters take on those values. Use the obtained expression in step 1,
inserting the values of the parameters for each state. Denote as Lj each state’s
corresponding likelihood.

5. We can compute the unconditional probability of yi by multiplying each Pj by
Lj. Let M := ∑j PjLj be the sum of these products for all states. This M is in
fact, the marginal likelihood: the probability of yi averaging over the unknown
values of the discrete parameters.

Due to numerical stability reasons, we must compute all this steps in the log-probability
scale. In this scale, each product PjLj is computed as a sum of logarithms log(Pj) +
log
(
Lj
)
. Applying the essential mathematical property for positive numbers a =

elog(a) and log(ab) = log(a) + log(b), we can compute log(M) as

log

(
∑

j
elog(Pj)+log(Lj)

)
.
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Chapter 4

Label-switching and a correction
proposal

4.1 Label-Switching

When we have to computationally deal with a problem of label aggregation, some-
times, labels switch between them when they should not. In this section, we intro-
duce this challenging problem for inference platforms, and the one that we will face
in posterior sections: label-switching (Rodríguez and Walker, 2014; Papastamoulis,
2016).

Let k be a fixed integer which is greater than one, x = (x1, . . . , xn) a sample of
n observations and z = (z1, . . . , zn) a sequence of unobserved (latent) sequence of
state variables, with zi ∈ {1, . . . , k} for all i. Let Θ ⊆ Rd, we define the family

FΘ := { f (·|θ) : θ ∈ Θ},

where f ∈ FΘ are distributions. Conditionally to zi, our observations are distributed
according to xi|(zi = j, θj) ∼ f

(
·|θj
)

for j = 1, . . . , k and i = 1, . . . , n. Assume
that zi are independent random variables that follow a multinomial distribution1 of
probabilities w = (w1, . . . , wk), which satisfies w1, . . . , wk > 0 and ∑k

i=1 wi = 1. That
is, P

(
zi = j|wj

)
= wj for j = 1, . . . , k. The marginal distribution of xi is a finite

mixture of k distributions:

xi
∣∣θ, w ∼

k

∑
i=1

wk f
(

xi

∣∣∣θk

)
. (4.1)

If we denote by pt,j to the conditional probability for observation t ∈ {1, . . . , n} to
belong to component j ∈ {1, . . . , k}, applying Definition 2.1.1 and Theorem 2.1.2, we
obtain that

pt,j =
wj f

(
xt
∣∣θj
)

∑k
i=1 wi f

(
xt
∣∣θi
) . (4.2)

1The multinomial distribution is a generalization of the binomial distribution. It takes as parame-
ters the number of trials n and the probabilities of each of the k events p1, . . . , pk, which must satisfy
∑k

i=1 pi = 1. Its support is given by yi ∈ {0, . . . , n} for i = 1, . . . , k, with ∑k
i=1 yi = n. As a probability

mass function, it has

pmfmultinomial =
n!

y1! · · · yk!
py1

1 · · · p
yk
k .
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In this case, the likelihood function is

L
(

θ, w
∣∣∣x) =

n

∏
i=1

k

∑
j=1

wj f
(
xi
∣∣θj
)

.

If we introduce the latent parameters, it is written as

Lc

(
θ, w

∣∣∣x, z
)
=

n

∏
i=1

wzi f
(
xi
∣∣θzi

)
.

Let Sk be the set of all possible permutations between the elements of the finite set
{1, . . . , k}2. Observe that |Sk| = k!. For any σ = (σ(1), . . . , σ(k)) ∈ Sk, we de-
note σθ as the application of the permutation to vector θ. In particular, we write
σ (w, θ) :=

((
wσ(1), . . . , wσ(k)

)
,
(

θσ(1), . . . , θσ(k)

))
. The likelihood of the mixture

model is invariant for any permutation of the parameters. In fact, given ρ, σ ∈ Sk,

L
(

ρ(θ, w)
∣∣∣x) =

n

∏
i=1

(
k

∑
j=1

wρ(j) f
(

xi

∣∣∣θρ(j)

))
=

n

∏
i=1

(
k

∑
j=1

wσ(j) f
(

xi

∣∣∣θσ(j)

))
= L

(
σ(θ, w)

∣∣∣x) .

(4.3)

Considering the prior for the parameters P (θ, w), the same property is assumed.
This can be done by assuming that θ ∼ ∏k

i=1 f (θk) for a specific family of distri-
butions f (·) which is common to all states (Marin, Mengersen, and Robert, 2005;
Frühwirth-Schnatter, 2001). As we have done in Subsection 3.2.3, a common chosen
prior for w is a non-informative Dirichlet distribution.

Let P (θ, w|x) be the posterior distribution of the mixture model. We have that
P (θ, w|x) ∝ L (θ, w|x)P(θ, w), which means that P (θ, w|x) inherits (because of (4.3)
and the previous statement) the property of invariance under permutations. All the
marginal densities of component specific parameters θ and weights w will coincide.
Hence, in a Markov chain Monte Carlo algorithm (MCMC) (Walsh, 2004), the in-
dices of the parameters can permute multiple times between iterations. There exists
the high risk that the output from the MCMC sampler converges to a symmetric
posterior distribution, which will cause the generated values to switch between the
symmetric high posterior density areas.

When we have to deal with a label aggregation problem, label-switching is com-
monly an issue. It turns out that the optimization/sampling algorithm that we use
returns us an output with switched indices of θ. In other words, two or more of the
inferred labels are exchanged.

Example. Suppose that our generative distribution is given by τ = (0.2, 0.3, 0.5). We
say that we are facing a label-switching problem when the inferred parameters (by means
of an optimization/sampling algorithm) returns us values such as τ̂ = (0.5, 0.2, 0.3), τ̂ =
(0.3, 0.2, 0.5) . . .

4.2 Proposal of a correction algorithm

In order to propose a solution/correction to the label-switching problem, we must
assume some hypothesis on our workers:

2https://en.wikipedia.org/wiki/Symmetric_group

https://en.wikipedia.org/wiki/Symmetric_group
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• Workers are ”good” annotators. This assumption means that, if a worker sees
a task of class k, most of the times will label it as class k. In terms of matrices
π, this means that our squared matrices π will be mostly diagonal dominant3.

Given this assumptions, our proposal to correct the label-switching problem can
be understood with the following colloquial sentence: ”each row of π wants to have
its maximum at the diagonal”. We would like to correct label-switching without
any previous intervention to the optimization/sampling method. The pipeline is
the following:

1. Given some data, we apply General Dawid-Skene (3.2.3) and we get specific
values for τ and π, which might (or not) have been label-switched.

2. For each matrix πw, we search where is the maximum of each row and we store
the resulting array, which contains the index of every row’s maximum.

3. We select the most repeated resulting array, which we will call ”permutation”.
Sometimes, this resulting permutation is modified, we will later see more de-
tails about that.

4. Apply the transformation indicated by the permutation to all the matrices π
and also to vector τ.

Example. In order to understand the correction, let’s analyze the following toy example.
Suppose that we have three workers and that STAN infers the following confusion matrices
for them:

π1 =

 0.2 0.3 0.5
0.38 0.56 0.06
0.8 0.1 0.1

 , π2 =

 0.1 0.2 0.7
0.28 0.66 0.06
0.75 0.15 0.1

 , π3 =

0.15 0.25 0.6
0.2 0.6 0.2
0.7 0.2 0.1

 .

Our resulting permutation to apply for this case word be σ = (3, 2, 1). That is, first row
should be the third, second row is correct and third row should be the first one.

This example is an ideal case, since we can clearly see for each row which might
be its truly position. In other words, σ contains three different numbers. However, in
some cases, the resulting permutation may require a slight modification (i.e. step 3).
Unfortunately, this permutation will not always contain unique values. That is, if we
have k classes (i.e. our matrices are of size k× k), our permutation array (which will
be of size k) will not always contain all the numbers from 1 to k. See the following
example:

Example. Suppose that, unfortunately, the majority behavior is inferred to be associated to
the following confusion matrix (which has been label-switched): 0.8 0.1 0.1

0.2 0.3 0.5
0.48 0.46 0.06

 .

Our resulting permutation would be σ = (1, 3, 1). Two different rows want to be the first
one. Clearly, we need to slightly modify σ.

3Purely mathematically speaking, the term ”squared diagonal matrix” is not the most adequate
here. A squared matrix A = (ai,j)i,j is said to be diagonal dominant if |ai,i| ≥ ∑j 6=i |ai,j| for all i. That
is, for every row of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to
the sum of the magnitudes of all the other (non-diagonal) entries in that row. In our context, we will
understand a matrix to be ”diagonal dominant” if for each row, the maximum is at the diagonal.



24 Chapter 4. Label-switching and a correction proposal

Given a permutation σ ∈ {1, . . . , k}k, the modification consists on the following
steps:

1. Fix the components that only appear once. For instance, in the previous exam-
ple, we would fix the second position of σ. With this step, we ensure that rows
that clearly have a place to go are not modified.

2. For the rest of components (which are in fact, repeated), fix the ones that its
value coincides with its index. In fact, if the j-th row already has its maximum
at the diagonal, it should not be modified just because another row has its
maximum at the j-th position.

3. The remaining components are filled with the missing values in an ascending
way.

If we look at the previous example, permutation σ = (1, 3, 1) would be transformed
to σ̂ = (1, 3, 2). The assumption that our workers are mostly non-misleading anno-
tators will prevent us from applying this modification many times. The pseudo-code
for this proposal is given in Algorithm 2.
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Algorithm 2 : Label-switching correction

Require: τ, π1, . . . , πw.
Set τ̂ ← τ.
Initialize empty list permutations.
for i = 1 to w do

Set π̂i ← πi.
end for
for i = 1 to w do

maximums← argmax(πi, axis = 1)
Store maximums in permutations.

end for
most_repeated← Get most repeated array in permutations.
final_permutation← ApplyCorrection(most_repeated).
Apply final_permutation to τ̂, π̂1, . . . , π̂w.
Return τ̂, π̂1, . . . , π̂w.

Function ApplyCorrection(list):
uniques← Get values that appear exactly once in list.
if len(uniques) == len(list) then

Return list.
end if
existing←list(set(list)).
rank← list(range(len(list)))
missing← Get values in rank that are not in existing.
Initialize empty list corrected.
for k = 1 to len(list) do

if list[k] not in uniques then
if list[k] not in corrected then

if list[list[k]] == list[k] then
if k 6= list[k] then

list[k]← missing[0].
missing.pop(0).

else
Store list[k] in corrected.

end if
else

Store list[k] in corrected.
end if

else
list[k]← missing[0].
missing.pop(0).

end if
else

continue
end if

end for
return list.
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Chapter 5

Empirical analysis

The objective of this chapter is to present the results of the code, as well as to explain
the theoretical concepts that they require. All the necessary codes for this chapter
can be found in https://github.com/apadros01/TFM-CrowdLearning.

For testing our models, we will use the dataset that is contained in the file multinomial.
json. If we take a look at the file, we can see that it contains:

• A total of w = 20 workers.

• A total of t = 1000 tasks.

• A total of a = 10000 annotations.

• k = 3 different classes.

Each task has been labeled by 10 different workers. As we can seen in Figure 5.1, not
all the workers have annotated the same number of tasks, but there are no major dif-
ferences between the total number of tasks for each one. Regarding the distribution
of the classes, we can clearly see in Figure 5.2 that the majority of the annotations are
from class 2.

FIGURE 5.1: Number of tasks that each worker has annotated.

https://github.com/apadros01/TFM-CrowdLearning
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FIGURE 5.2: Number of annotations for each class.

5.1 Pooled multinomial

Our first objective is to determine the best parameters τ and π which have generated
our data by the pooled multinomial model. The name of this model is devoted to two
factors: (i) the word ”pooled”, as stated before, indicates that all annotators share the
same ability. (ii) The word ”multinomial” is due to the assumption that, if we denote
as xi ∈ Zk

≥0 to the vector of accumulated annotations for each of the k classes for the

i-th task1, ti
C as the real class of the i-th image, then xi ∼ multinomial

(
πti

C

)
.

In this section, we will present two ways to code the pooled multinomial model.
For both, observe that the real class tC is a discrete parameter, as explained in 3.3.2, it
takes some work in thinking about the target distribution, because discrete param-
eters are not supported in STAN, so we have to marginalize them out. For our first
method, let t be the number of tasks, k the number of classes and x ∈ Zt×k

≥0 the matrix
of accumulated annotations for each class (each row of x represents a task), then:

P
(

x
∣∣π, τ

) tasks are indep.
=

t

∏
i=1

P
(
xi
∣∣π, τ

) Theorem 2.1.2
=

t

∏
i=1

∑
ti
C

P
(

xi

∣∣∣ti
C, πti

C

)
P
(

ti
C

∣∣∣τ) .

(5.1)

Observe that P
(

xi

∣∣∣ti
C, πti

C

)
= multinomial

(
xi; πti

C

)
, and if we substitute in the sum

of (5.1), we obtain:

P(x|τ, π) =
t

∏
i=1

∑
ti
C

multinomial
(

xi; πti
C

)
P
(

ti
C

∣∣∣τ) .

As stated in 3.2.3, we assumed that P
(
ti
C|τ
)
= τi, which means that the obtained

expression can be treated computationally. Since tC is a latent discrete parameter,
we must take the logarithm of this expression and, using the essential mathematical
properties for positive numbers elog(a) = a and log(ab) = log(a) + log(b), we end
up obtaining

log (P(x|τ, π)) =
t

∑
i=1

log

∑
ti
C

exp log
[
multinomial

(
xi; πti

C

)
+ log

(
P
(

ti
C
∣∣τ))]

 .

(5.2)

1Example: suppose that we are looking at the 4-th task and that there is a total of k = 3 classes.
Imagine that we observed that 5 people labeled the image as class 1, 6 people as class 2 and 7 people
as class 3. In this case, the vector of accumulated annotations for the 4-th task would be x4 = (5, 6, 7).



5.2. Dawid-Skene models and label-switching 29

Expression (5.2) plays a big role in the following code that we will treat. For the
code that is included in the STAN file multinom_confusion_matrix.stan (whose
associated notebook is pooled_multinomial.ipynb), we have applied a little trick to
avoid the label-switching phenomenon (4.1) –which we will treat more properly in
posterior sections. The trick consists on selecting an appropriate initial point for the
optimization algorithm that STAN performs. In this case, we have chosen to start
from an initial matrix which is near to the identity. The obtained parameters are

τ̂ = (0.11447845, 0.29650916, 0.58901239) ,

π̂ =

0.68293363 0.10402475 0.21304162
0.21832192 0.59436654 0.18731154
0.09335238 0.10484805 0.80179957

 (5.3)

This code works well, but it has a big issue, and it is matrix x. If we would
like to go further away, this matrix would not give enough information to us. In
other words, it is limited, since it does not tell us anything about the behavior of
the workers. For the pooled multinomial model, we do not want to model each
worker’s confusion matrix, but it is somehow natural to think about doing it in the
future. An alternative way (i.e. our second method) to write the code for the pooled
multinomial model and also taking into account what each worker has annotated is
covered in the STAN file Multinomial.fit_and_consensus.stan, whose associated
notebook is pooled_multinomial_optimal.ipynb. As an input, it takes many of the
functions defined in Subsection 3.2.2:

• The number of workers w, the number of classes k, the number of tasks t and
the number of annotations a.

• Three arrays of a components: the first one comes from the function tA, which
returns, for each annotation, its associated task. The second one comes from
the function wA, and it contains, for each annotation, its associated worker.
Finally, an array with all the annotations for each task and worker.

The analogous marginalization of the discrete parameter for this new way of writing
the code would be given by taking the logarithm of Equation 3.1. With this code, we
obtain the same results as in (5.3), and it will be easier to generalize it to the Dawid-
Skene models.

5.2 Dawid-Skene models and label-switching

In order to have a first impression for the Dawid-Skene models (3.2.3), we should see
the notebook dawid-skene-models.ipynb, whose associated STAN files are: general_
dawid-skene.stan, conditional_dawid-skene, homogeni_dawid-skene.stan. As
the names of the STAN files indicate, this notebook contains the three types of the
Dawid-Skene models. The marginalization process of the discrete parameter for
these codes is given by Equation 3.2. The conditional and homogeneous models
are interesting to see, but they will not allow us to deeply study the label-switching
problem due to all the constraints that they require. For this reason, we will only
work with the general version.

5.2.1 Addition of external classes

Until now, we have considered that all annotations give specific information about
the task. For instance, we have been treating the problem as if all the annotators gave
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an answer such as blue, red, green, . . . In many real life situations, our annotators will
not always be able to give an answer, and they will response something like I’m not
sure, I don’t know . . . These kinds of answers give information about the true label of
the task too, and it is interesting to consider them as well. We call them ”external
classes” and, analogously, the ”valid” answers are called as ”internal classes”.

Notebook extern_classes.ipynb contains the code for this generalization. The
big difference with respect to the previous case lies in the size of matrices π. In
the previous cases, the matrices π were square, rows represented the true label and
columns the predictions by each particular worker. Let k ∈ N be the number of in-
ternal classes and m ∈N the number of external classes. Until now, matrices π have
had size k× k. The main idea for adding external classes is to generalize the codes
to work with matrices π of size k × (k + m). The STAN code with this generaliza-
tion is included in extern_classes.stan. As an example, we have slightly modified
the dataset, and we have switched 150 random annotations to an extern class. For
instance, the obtained confusion matrix for the third worker has been

π̂3 =

0.605 0.086 0.294 0.016
0.208 0.589 0.183 0.02
0.074 0.109 0.802 0.015

 .

The last column represents, given a true label, the probability that the annotator
classified the task with an external class.

5.2.2 Label - switching phenomenon

For this Subsection, we have only considered internal classes and we have worked
with General Dawid-Skene, since it is the one which gets more freedom to the out-
puts and it can be affected by the label-switching problem.

Motivation

When we have applied the STAN optimization method with General Dawid-Skene,
we have also applied the same trick than in the pooled multinomial case (5.1), which
consisted on starting the default STAN optimization algorithm (3.3.1) from an initial
matrix π that is near to the identity. For instance, let’s see what has happened to τ
and to the 6-th worker whether we apply this trick or not:

• Applying the trick:

τ̂ =
(
0.11254806 0.29708402 0.59036792

)
,

π̂6 =

0.64342157 0.15134315 0.20523528
0.16934618 0.6049475 0.22570632
0.09377215 0.08709695 0.8191309

 .

• Not applying it:

τ̂ =
(
0.5903699 0.11257069 0.29705941

)
,

π̂6 =

0.09377598 0.08709459 0.81912943
0.6434031 0.15136465 0.20523226
0.16929417 0.60498277 0.22572306

 .
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Clearly, we can observe that it looks like, when we do not apply the trick, the values
have been permuted. In particular, the second and third elements of τ̂ should move
one place to the left and the first one should be in the last place. The same permuta-
tion should be applied to matrix π̂ rows. We are facing a problem of label-switching.

Evaluation

In order to evaluate our method for label switching correction, we will follow the
following pipeline:

1. Given t tasks, w workers, a fixed number of annotations per task, a vector τ
and w matrices π. We generate a dataframe that contains, for each task and
some workers, an annotation. The STAN file that generates it is generate_
data.stan.

2. From this dataset, we apply General Dawid-Skene and we learn new values τ̂
and π̂w.

3. If necessary, we apply our label-switching algorithm to τ̂ and π̂w.

4. We apply the Kullback-Leibler divergence (2.3) to measure the distance from
the generative probability distributions given by τ and π to the learned distri-
butions τ̂ and π̂.

We have studied the Kullback-Leibler values when the number of annotations per
task increases. For each number of annotations per task, we have repeated n times
the previous pipeline. This value of n, by default, has been set to 500. Regarding the
priors, we use P(τ) = Dirichlet

(
τ; 1k) and P(π) = ∏k

i=1 Dirichlet
(
πi; 1k).

Our first evaluation has been done with the dataset that is contained in the file
multinomial.json. This particular experiment is special, since we do not know the
generative distributions of τ and π. In order to obtain them, we have applied Gen-
eral Dawid-Skene to the dataset, starting from an initial matrix which is close to the
identity. The results can be seen in Figure 5.3. This experiment (and the next one)
can be found in the generate_data.ipynb notebook. The obtained lines represent
the median of the n experiments, while the shadows represent the 25-th and 75-th
quantile. Before applying label-switching, the KL values for τ and π are quite large
and they stabilize, which means that the algorithm is not learning. Variances are
high too. After applying our label-switching correction, we can see that variances
decrease as we increase the number of annotations per task, as well as the median.
Table 5.1 shows the mean value for the medians. Clearly, the values are better after
applying label-switching.

TABLE 5.1: Mean value of the medians for the JSON file.

τ π

Before correcting label-switching 0.390957 1.1564773
After correcting label-switching 0.000912 0.013486

For the following cases, we have worked with synthetic data. It may be inter-
esting to see how the algorithm performs when it is outside the assumptions we
had made. For the following experiment, we have created a set of workers that are
not good annotators, in general. In terms of matrices, this means that the matri-
ces are not completely diagonal dominant. Due to the general idea of Algorithm 2,
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(a) Before correcting label-switching (b) After correcting label-switching

FIGURE 5.3: KL values for the data from multinomial.json file.

this experiment has been made expecting bad results. As a guide, our workers are
similar to the ones that have been predicted in Section 5.5 from (Cerquides et al.,
2021). For this particular experiment, we have k = 5 classes, 50 workers, 800 tasks
and a balanced distribution for the true labels, which has been randomly chosen by
τ ∼ Dirichlet

(
15k
)

. As expected, the results for this case are bad (see Figure 5.4):
medians are large and variances too.

(a) τ before correcting label-switching (b) τ after correcting label-switching

(c) π before correcting label-switching (d) π after correcting label-switching

FIGURE 5.4: KL values for the synthetic dataset of workers with an
associated non-diagonal dominant confusion matrix.
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In our next experiment, we change the number of classes to k = 4. We pro-
mote a balanced distribution of the true labels by imposing a prior such as τ ∼
Dirichlet

(
30k
)

. Our w = 100 workers have now been created to be great anno-
tators: that is, their associated confusion matrices πw are diagonal dominant. We
have set the number of tasks to t = 500. Working with artificial data is sometimes
problematic. For this reason, we have decided to give a little help to the optimiza-
tion methods in this experiment (and the following one too), but not enough help
to fix the label-switching problem. This experiment and the following one are in the
initial_points_help.ipynb notebook. This little help consists of, before applying
step 2 of the pipeline, we obtain a general π̂ matrix and a vector τ̂ from the pooled
multinomial. We use these two parameters as initial points for the General Dawid-
Skene. Additionally, we have given an initial point for τ to the pooled multinomial
too. This initial point is given by the annotations, applying majority voting. This is a
basic aggregation rule and consists of, for each task, we take as the actual label the
most voted class. Majority voting can be written formally as

t̂j
C = argmaxk∈[L]

w

∑
i=1

I
(
Zi,j = k

)
,

where [L] denotes the label set, I is the indicator function and, as we have defined
in (3.2.3), Zi,j is the label given by the i-th worker to the j-th item, and it is 0 if this
worker did not label the j-th item. Figure 5.5 displays the obtained results. These
new plots have a different configuration from the previous ones, now we compare
each estimated parameter with its label-switching corrected version in the same plot.

(a) τ before and after applying label-switching. (b) π before and after applying label-switching.

FIGURE 5.5: KL values for the experiment with artificial data, charac-
terized by good annotators, a balanced distribution of the true labels

and 4 classes.

For τ, we can see that the values are in general low, even though the variance
before label-switching is high. The reason of these low values for τ is not a surprise,
since we have generated a very balanced distribution of the true labels and, even
if we do not correct label-switching, all the components of τ are similar. For this
experiment, it is interesting to see how well have improved the KL values for π.
These specific numbers can be seen in Table 5.2.

Our last experiment consists of the case of an unbalanced τ. That is, a component
τi which is much larger than the rest. In terms of labels, this means that the distribu-
tion of true classes is biased towards a single one. We set k = 4 classes, 36 workers,
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TABLE 5.2: Mean value of the medians for the artificial data.

τ π

Before correcting label-switching 0.0219 2.978354
After correcting label-switching 0.003041 0.615390

1000 tasks and we randomly select τ ∼ Dirichlet(75, b2, b3, b4), where b2, b3, b4 have
been chosen to be random integers between 10 and 15. For computation time rea-
sons, we have reduced the number of repetitions for each experiment to n = 400.
Figure 5.6 displays the results.

(a) τ before and after correcting label-switching. (b) π before and after correcting label-switching

FIGURE 5.6: KL values for the experiment with a distribution of true
labels biased towards a single one.

The medians are in general good, we can clearly see that the KL values after
correcting label-switching are low. Table 5.3 for the specific values. The big issue
have been the variances. As stated in (3.3.1), L-BFGS has important drawbacks
when our optimization problem is not convex. It is part of the Quasi-Newton meth-
ods family, which are used to either find zeros or local maxima and minima of
functions. For this reason, this method is quite sensible to the initial point that it
starts with. In this particular experiment, our target function has many local opti-
mal points and our parameters are (sometimes) converging to a point that it is not
even correctable with label-switching. That is, suppose that our generative distribu-
tion is τ̄ = (0.1, 0.3, 0.6). When our given initial point is not good enough, L-BFGS
might converge to a point such as (0.47, 0.23, 0.3), which can not be corrected by only
switching labels. In our particular experiment, since τ is biased towards a single la-
bel, many of the ”wrong” points where the algorithm converges have a component
which is very close to zero, causing KL values to be large (see the formula (2.6)).
One way to reduce this variance is to increase the number of repetitions of the ex-
periment and the number of tasks, but this clearly has an expensive computational
cost. It could seem that to give an initial point to matrix π in the pooled multinomial
optimization may be a way to solve the problem of ending up in an incorrect opti-
mal point. Actually, we have tested this idea and it is clearly effective. However, we
have not considered it in this study because we were under the hypothesis that la-
bel switching could be corrected without any previous intervention, which has been
shown to be non-completely true. This idea is too effective, and it does not even
provoke label-switching.



5.3. Conclusions and future work 35

TABLE 5.3: Mean value of the medians for the unbalanced case.

τ π

Before correcting label-switching 0.857524 1.370039
After correcting label-switching 0.002148 0.120153

5.3 Conclusions and future work

In this work, we have proposed an algorithm that aims to correct the label-switching
problem without having to intervene in the optimization/sampling methods of our
inference platform. This algorithm (see Algorithm 2) has proven to be very effec-
tive when our workers are mostly non-misleading. That is, when our set of workers
tends to correctly label tasks. The experiments that are related to Figure 5.3 and 5.5
have shown that. Outside of the hypothesis we have assumed, the algorithm has
proven to have difficulties (see Figure 5.4). Unexpectedly, we have run into one of
the biggest problems (if not the biggest) in mathematical optimization: non-global
optima. When we have tested our algorithm with an unbalanced generative distri-
bution of the true labels, we have observed that STAN optimization methods (such
as L-BFGS (3.3.1)) infer points that are not correctable with our proposed algorithm.
This has led us to obtain unstable results, but still quite good (see Figure 5.6).

As future work, we have thought of proposing an improvement in the function
ApplyCorrection() from Algorithm 2, but it has not been possible to carry it out due to
lack of time. As it is explained in the literature, specifically, in Step 3, the remaining
components are filled in an ascending way. Clearly, this step introduces an error,
which ends up being minimal when we make lots of experiments. It might be a
good idea to modify this ”random filling” and do it by taking into account the form
of the confusion matrices. In this way, this introduction of error is reduced, although
computationally it may be more expensive.
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