
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Accuracy comparison between Sparse
Autoregressive and XGBoost models for

high-dimensional product sales
forecasting

Author:
Blai RAS

Supervisor:
Dr. Jordi VITRIÀ

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

September 2, 2021

http://www.ub.edu
http://blaieet.github.io/
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract

Facultat de Matemàtiques i Informàtica

MSc

Accuracy comparison between Sparse Autoregressive and XGBoost models for
high-dimensional product sales forecasting

by Blai RAS

Predicting future sales is key for any business budgeting and resource allocation.
One major concern when trying to build accurate forecasts are the cross-category
relationships between some products and the effect that might have on each other’s
sales. Given today’s data abundance, this issue is even more worrying: traditional
statistic models can’t handle high-dimensional datasets with ten or more products.
With the use of popular machine learning and data science tools, we developed a
framework that enables the building, training and evaluation of two models and its
comparison through a detailed set of forecast metrics1. The first model is a modified
Vector Autoregressive model (VAR) which takes into account product relationships.
The second one is an XGBoost model, which is not specialized into cross-category as-
sociations but it’s known for its versatility and performance when working with tab-
ular data. After performing a one-month ahead sales forecasting on a huge dataset
of multiple product sets, we find that inter-product connections play a huge role in
prediction accuracy since the VAR model performed considerably much better than
the XGBoost.

1Code available on BitBucket

HTTP://WWW.UB.EDU
http://mat.ub.edu
https://bitbucket.org/blaiot/master_thesis_blai_ras/src/master/

v

Acknowledgements
In first place, express my deep sense of thanks towards Accenture and my project
advisors from there, Sergi Zamora and Riste Gjorgjiev.

Secondly, I would like to acknowledge Universitat de Barcelona for making possible
this collaboration, specially to my supervisor Jordi Vitrià, PhD.

Finally, I am extremely thankful to my dad, my family and my mate Aranzazu, who
always reached their hands when I needed them.

1

Contents

Abstract iii

Acknowledgements v

Contents 1

1 Introduction 3
1.1 Origin of the project . 3
1.2 Proposal . 3
1.3 Roadmap . 4
1.4 Goals . 4

2 Previous concepts and State of the art 7
2.1 Vector Autoregressive models . 7

2.1.1 Dimensionality problem . 8
The Bias-Variance trade-off . 9

2.2 High-dimensional VAR . 10
2.2.1 Lasso Regression . 10

Time series Cross-Validation . 11
2.2.2 Hierarchical sparsity pattern . 12
2.2.3 The lag selection problem . 12

2.3 XGBoost models . 13
2.3.1 Decision trees . 13
2.3.2 Ensemble learning . 15

2.4 State of the art . 16
2.5 Forecast Evaluation methods . 16

2.5.1 Forecast Error (FE) . 17
2.5.2 Mean Absolute Error . 17
2.5.3 Mean Squared Error & Root Mean Squared Error 17
2.5.4 Absolute Percentage Errors . 18
2.5.5 Mean Absolute Scaled Error . 18
2.5.6 Mean Arctangent Absolute Percentage Error 19
2.5.7 R Squared score . 20
2.5.8 Round or not to round . 20
2.5.9 Final remarks . 21

3 The Dataset 23
3.1 Dimensionality . 23
3.2 Data Cleaning . 24

3.2.1 Missing values in sales time-series 24
Linear Interpolation . 25

3.3 Data pre-processing . 26

2 Contents

3.3.1 Stationarity . 26
3.3.2 Standardization . 27

4 Implementation 31
4.1 Architecture . 31
4.2 Pipeline of the framework: VARX model 31

4.2.1 Data processing . 32
4.2.2 Model building . 32

4.3 Prediction . 34
4.4 Evaluation . 34
4.5 Pipeline of the framework: XGBoost model 35

4.5.1 Data input . 35
4.5.2 Model settings . 35
4.5.3 Prediction & Data output . 36
4.5.4 Evaluation . 36

5 Experiments, Results and Discussion 39
5.1 VAR model evaluation . 39
5.2 XGBoost model evaluation . 42
5.3 Rounding Evaluation . 44

5.3.1 Execution times . 46

6 Conclusions and future work 47

Bibliography 49

3

Chapter 1

Introduction

A sales forecast is a study that aims to predict future sales of one or multiple products
using historical data. An accurate sales forecasting enables companies to perform
informed decisions about resource allocation, future benefits and budgeting.

The term "cannibalization" in the marketing background is understood as a loss in
sales or revenue from a product of a company because of the launching or promotion
of another product from the same company. Cannibalization can be manifested in
one to one, one to many, many to one and many to many relationships.

Acknowledging and understanding cannibalization is necessary in every business,
despite its catalog size or revenue. For example, a company can deliver discounts
to the cannibalized product in order to increase sales. So, even though the term
cannibalization has negative connotations, often companies choose to cannibalize
their sales for concrete goals.

Also, when we talk about data points (in this case, sales) ordered in time we enter
the time series analysis background. The most common aspects that this field has
to deal with when predicting new data points are stationary, seasonality and trend
effects.

The aim of this project is to determine if also cannibalization relationships heavily
affect sales forecasting accuracy.

1.1 Origin of the project

This project is born between the collaboration of the Facultat de Matemàtiques i In-
formàtica of Universitat de Barcelona and Accenture, an Irish-domiciled consulting
firm. Inside their Applied Intelligence unit they’ve been working on cannibalization-
related projects, specially focusing on cannibalization discovering.

After a brief introduction of this works by my project manager and some domain
research, I decided to continue their line of investigations with a new approach of
the cannibalization problem.

1.2 Proposal

In this project we aim to build two algorithms of sales forecasting and check their ac-
curacies. The first one is an statistical model called Vector autoregression (VAR), and

4 Chapter 1. Introduction

the second one is the king of Kaggle competitions1 XGBoost, an ensemble Machine
Learning algorithm based on decision-tree decisions.

VARs are multivariate linear time series models designed to capture the joint dy-
namics of multiple time series. In other words, they are able to understand relation-
ships between multiple variables. They are used a lot in macroeconomics (Hilde,
2000) and finance, for example, when trying to understand the relationship between
the Gross Domestic Product and the unemployment of a country alongside other
factors.

In contrast, XGBoost (eXtreme Gradient Boosting) is an optimized gradient boosting
algorithm that meanwhile it outperforms any other algorithm when working with
structured or tabular data, is does not specifically try to understand connections or
associations between variables.

In short, we are going to built and tune both algorithms, we are going to train them
using a dataset of possible cannibalized sales and finally check their rightness when
predicting future sales. This project centres on the study and understanding of VAR
models. XGBoost will not be the primarily focus of the project, its role is more about
algorithm comparison where he represents the non-autoregressive, machine learn-
ing part.

1.3 Roadmap

This thesis is structured as follows:

• Goals: a synthesis of what do we want to accomplish with this work.

• Previous concepts and State of the art: description of the theoretical basis of
the thesis, state of the art and other definitions.

• Data: insights about our dataset and the explanation of the data cleaning and
pre-processing process.

• Implementation: exposition of the process of model creation, training and
evaluation.

• Experiments, Results and Discussion: the evaluation results alongside the
found insights and observations.

• Conclusions and future work: assessment of the performed work and how
can we improve it in the future.

1.4 Goals

In this master thesis we want to built a framework that (i) allows us to perform a
forecast on sales using both algorithms and (ii) allows us to evaluate their predic-
tions numerically and graphically.

In order to do so, the following aspects should be achieved:

• The clear understanding of the procedure of a sales forecast and different eval-
uating tools.

1Kaggle competitions are open Machine Learning challenges were users compete to find the best
solution and often win big monetary rewards.

1.4. Goals 5

• The clear understanding of the Vector Autoregression methodology.

• The built up of a framework that is able to reproduce our results and show
them in a graphical and easy-to-understand way.

During the development of this work, we aim for extending our knowledge in statis-
tics, specially applied to time series analysis; machine learning, specifically in model
building, interpretation and comparison; optimization and lineal algebra, in terms
of algorithm convergence and loss function configuration and big data, because we
will be dealing with high-dimensional datasets.

7

Chapter 2

Previous concepts and State of the
art

In this section it is explained the theory behind Vector Autoregressive models and
how is adapted for sales predictions. After that, we introduce a little bit of context
talking about other works that have used a similar scientific method. Finally, we will
discuss about forecasting evaluation methods. Before we begin, let me introduce a
short glossary:

• Autoregression or Autoregressive: an statistical model is Autoregressive if it
predicts future data points based on past values.

• Exogenous variable: an independent variable, with no formulaic relationship
at all. Values of exogenous variables are determined outside the model, they
are predetermined and they always keep the same value.

• Endogenous variable: a variable that can be explained by relationships with
other variables. A change in a endogenous variable can be understood as a
response to an exogenous or endogenous change.

2.1 Vector Autoregressive models

Let us imagine that we are responsible of a supermarket. In our store, we sell lots of
different products. Our goal is to predict how many of this products we are going to
sell in any given month. Why is it not recommended to use many AutoRegressive
(AR) models, like ARMA or ARIMA models? Because these ones are only able to
model one time series at a time, and we know some of our product sales are related.

This is the key factor of Vector Autoregressive (VAR) models: (i) they can model
multiple series at a time for longer horizons and without having to assume that
some variables are exogenous and (ii) these time series might be related to each
other’s past.

In our example, sales of soda cans and other soft drinks might not just depend on
past values of themselves, but also on past values of chips or other snacks. Bacon is
often bought with a basket of eggs (Niraj, Padmanabhan, and Seetharaman, 2008),
plastic cups are often bought with plastic dishes and a set of plastic cutlery and
liquor consumers often pair their buy with a bag of ice cubes. This kind of interde-
pendencies is what VAR models try to understand.

In a mathematical form, a Vector Autoregressive model with lag p, denoted by
VAR(p) is expressed as following:

8 Chapter 2. Previous concepts and State of the art

Yt = Φ1yt−1 + · · ·+ Φpyt−p + εt , t = 1, . . . , T , (2.1)

or, what is the same:

Yt =
p

∑
i=1

Φiyt−i + εt , t = 1, . . . , T ,

where {yt}T
t=1 is vector of size N × 1 of the endogenous variables of our problem,

Φi is a N × N matrix of coefficients, p is the period or "lag" and εt is often supposed
to be a Gaussian white noise, a series of uncorrelated errors from the time series
forecast that is normally distributed with mean zero and covariance matrix Σ, i.e.
εt

wn∼ (0, Σε).

When we add exogenous variables we have a VARXk,m(p, s) model with a k-dimensional
vector series of endogenous variables {yt}T

t=1 modeled by its own p periods of past
values and a exogenous vector series of dimension m {xt}T

t=1 modeled also with s
past periods:

Yt =
p

∑
i=1

Φiyt−i +
s

∑
j=1

Bjxt−j + εt , t = 1, . . . , T , (2.2)

where {Φi ∈ Rk×k}p
i=1 are the coefficient matrices of the endogenous variables, {Bj ∈

Rk×m}s
i=1 are the coefficient matrices of the exogenous variables.

A VAR model can be easily written in matrix form. Recalling the previous example
about chips and soda sales, if we know their sales for the last p = 3 periods, the
VAR(3) model can be written as:

[
SODAt
CHIPSt

]
= Φ1

[
SODAt−1
CHIPSt−1

]
+ Φ2

[
SODAt−2
CHIPSt−2

]
+ Φ3

[
SODAt−3
CHIPSt−3

]
+ εt

What we are saying here is that the sales of soda cans can be modeled as (i) depend-
ing on the sales of soda in the last 3 periods and (ii) depending on the sales of chips
of the last 3 periods. The Φt are the k × k matrices containing the coefficients that
our model will try to estimate.

2.1.1 Dimensionality problem

Often, when modeling real life problems, the number of variables that we handle,
denoted by k, and the lag order, denoted by p, are really high. The Φi matrix coeffi-
cients needed to estimate per equation (see equation 2.1), p× k, can get close to the
amount of observed data that we have. This creates a high-dimensionality problem.

Take for example that our supermarket has 50 products. We observed their daily
sales for a full year, so we have approximately 6 · 52 = 300 rows in our dataset. The

2.1. Vector Autoregressive models 9

VAR model will try to estimate k× p parameters for every variable, so the total num-
ber of parameters to be estimated is k2 × p (there are p matrices of size k× k). If we
decide a lag order of 6, the number of times our supermarket opens in a week, we
would have to estimate 502 × 6 = 15000 parameters, quite disproportionate com-
pared to our 300 observations.

The Bias-Variance trade-off

Another reason of why we can’t estimate a normal VAR when having more parame-
ters than observations is what is known as the bias-variance trade-off. In any forecast
we are interested in minimizing is the Mean Squared Error (MSE), which is defined
by:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (2.3)

where ŷ is our estimated value and y is the observed value. The MSE, however, can
be decomposed into two parts. The first one is the variance of our estimations, how
sensitive are to small variations, and the second part is the bias, which corresponds
to the expected error of these estimations. Sometimes we also find parts of noisiness
of the data itself, also called Irreducible error

In our VAR model we do not estimate a single parameter, so equation 2.3 is not repre-
sentative. Instead, we have the matrices Φj for j = 1, . . . , p. Overall, then, we could
say that we have a matrix Φ which contain all the parameters [Φ1, Φ2, . . . , Φ(p)]. If
we stack (vectorize) all the columns of Φ above each other and call it θ, our MSE can
be represented as following:

MSE = E[||θ̂ − θ||2]
= E[(θ̂ − θ)′(θ̂ − θ)]
= E[(θ̂ −Eθ̂)′(θ̂ −Eθ̂)]︸ ︷︷ ︸

Variance

+ [(Eθ̂ − θ)′(Eθ̂ − θ)]︸ ︷︷ ︸
Bias2

We always want the bias to be zero, meaning that, on average, one would obtain
the true estimate. As a trade-off, this comes with the cost of increasing the variance
of the estimations. If we have lots of parameters to be estimated, this cost is even
higher.

In 2.1 we have represented 4 time series with different number of variables lagged
from 2 to 16 periods. In standard cases, say 2 to 8 different variables, the MSE is
so low that is barely distinguishable. When dealing with a high dimensional case,
like 16 variables, things start to get messy: in the last lag, 162 × 16 parameters must
be estimated by the model. If, again, we have 250 observed values, we deal with
4096/250 ≈ 16 parameters per observation!

Why is MSE important for our model? High MSE indicates that its forecasting per-
formance will very likely be poor. We want a strong, stable model with high in-
terpretability. Luckily for us, modern techniques were developed which are able to
handle a huge amount of parameters with respect to the number of observations.

10 Chapter 2. Previous concepts and State of the art

FIGURE 2.1: MSE approximation for 4 time series with different
amount of variables

2.2 High-dimensional VAR

In the supermarket example, we saw how multiple products sales can be related. At
the same time, some other products might have absolutely zero relationship with
themselves. Therefore, we need some kind of regularization, a constrain able to
dismiss some parameters and reduce the dimensionality of our model.

The solution of our problem is called Least Absolute Shrinkage and Selection Operator
Regression or Lasso, a regularization technique that automatically performs feature
selection and outputs a sparse model, i.e., with few non-zero coefficients.

Sparsity reduces the freedom of our model structure and how it interprets the data.
In our context, we believe that many of the parameters are actually zero, meaning
that most variable included in the model have no effect at all on the outcome vari-
able, or in such little effect that they can be ignored.

Methods that enforce sparsity often have lower variance at the cost of a little bit of
bias increase (because the sparsity assumption is not exactly true). This is a posi-
tive trade-off because we are heavily lowering the MSE compared to a model that
tries to achieve an unbiased vision. Thus, sparser models provide better long term
predictions.

2.2.1 Lasso Regression

Lasso was firstly introduced by (Tibshirani, 1996a) for linear regression models.
Thanks to their work, structured and grouped variations appeared. The most im-
portant ones are (Yuan and Lin, 2006) and (simon2013sparse).

2.2. High-dimensional VAR 11

In these papers they propose a loss function that is a regularized version of least
squares but introducing what is called a ”L1” penalty on the coefficients. This penalty
allows some of the coefficients to be zero, therefore performing variable selection
and outputting a sparser solution.

In our context, the Lasso loss function would be:

0.5‖Y−Φy‖2
2 + λ‖Φ‖1 , (2.4)

where ‖ · ‖2 is the `2 norm, ‖ · ‖1 the `1 norm and λ is a scalar penalization parameter
that controls the "shrinkage" of the weights. To obtain the optimal penalization, i.e.,
the hyperparameter that decides how many coefficients will be set to zero, we use
cross-validation (CV).

Time series Cross-Validation

Cross-validation is a statistical procedure where we split our data in K-folds in order
to perform some sort of test/validation. For example, in Machine Learning we split
our testing dataset into several folds, then train our model on all folds except one and
finally test the model on this unseen one. We repeat the process for all the folds and
at the end we take the average of each metric obtained in every fold. This technique
prevents overfitting and it is a more robust way to evaluate a model’s performance.

Nonetheless, when dealing with temporal data one has to be careful at the time of
splitting into folds, due that we can’t train a subset of data with future information.

What we do is use a "rolling" cross-validation. We start with a small subset of data,
call it period T0 to T1, and we use it for estimating the optimal λ based on minimizing
the n-step ahead MSE, using the T1+n periods. The process is visualized in figure 2.2.

FIGURE 2.2: Rolling cross-validation process using 1-ahead period
for testing

12 Chapter 2. Previous concepts and State of the art

2.2.2 Hierarchical sparsity pattern

The idea behind Lasso is great for reducing our dimensionality problem and sacrifice
a little bit of bias in order to enhance our variance. Nonetheless, Lasso needs a little
bit of real-word context tuning on its implementation.

A conventional Lasso implementation can set the coefficient of the n and n + 2 lags
of my chips time series sales to zero and then set the n + 1 to non-zero. Does this
follow a natural, real-word structure? In other words, does it really make sense that
the sales of chips has an effect on, let’s say, soda can sales in the n and n + 2 periods
but not in the n + 1? Probably not, specially if our period is "short" (days or weeks).

To solve this issue, the hierarchical group-lasso ensures that if the coefficient of a
lagged variable in one equation is set to zero, then also all coefficients of that variable
when lagged n more times are also zero. This behavior helps the interpretation of
the inter relationships of our variables.

However, we still can obtain results where the twice lagged chips sales coefficient is
set to zero in the equation explaining soda can sales, but the once lagged chip sales
coefficient is not. Also, this hierarchical structure does not impose any restrictions
across variables or equations.

2.2.3 The lag selection problem

A "lag" is a fixed amount of passing time. In a time series, a lag is essentially a
number describing a delay, a shift. When we create a VAR model with lag p = 2 we
are telling our model to use the information of our time series from 1 and 2 periods
ago. If we have quarterly data and set p = 4, we allow the mode to use all the
information till a year ago.

Selecting the right lag value is crucial for a VAR or a big-dimensional VAR. If we set
a high value, i.e., p ≈ N, being N our number of samples, we won’t have enough
observations to fit the model. If we set a small value our model might not learn the
right relationships and will underfit.

There are several techniques to asses this problem. The most popular one is based
upon the Information Criteria:

IC(m) = − 2
T

log L(m)︸ ︷︷ ︸
Lack of Fit

+
cT

T
dim(m)︸ ︷︷ ︸

Complexity Penalty

(2.5)

where m is our VAR model, T the number of total time periods and dim(m) the
dimension of the model, that is, how many parameters has. cT is a value that gives
name to each Information Criteria. The most known ones are the following:

• cT = log(T), the Bayesian Information Criterion (BIC).

• cT = 2, the Akaike Information Criterion (AIC).

As we can see in 2.5, the IC is also a trade-off between efficiency (get the smallest
forecasting error) and consistency (selecting the right model). There is no IC method
that is able to provide the best lag value in terms of both.

2.3. XGBoost models 13

If we want to use this IC technique, one can perform the BIC, AIC, Hannan-Quin
IC or Schwarz Criterion test on our data and select the most common suggested
lag order. The VARselect function of the R package vars does precisely that, but it
has two important drawbacks when dealing with high-dimensional series. The first
one is huge execution times, represented in figure 2.3, and secondly, it will always
recommend a lag value of 1 when more than 100 variables are passed.

FIGURE 2.3: VARSelect execution time for both endogenous and ex-
ogenous variables with a max lag order of 52.

There isn’t much literature around what lag value to pick when we are dealing with
large amount of variables. Some packages, like BigVAR, suggest setting the maximal
lag order based on the frequency of the data (e.g. 4 for quarterly, 12 for monthly, etc).

In the R language, the package bigtime is the only one who performs lag selection
through cross-validation, described in section 2.2.1, as well as more hyperparame-
ters.

2.3 XGBoost models

As previously said, this project does not aim to deeply understand the XGBoost
logic. Instead, its role is more about for comparison purposes, since it does not
purely take into account relationships within variables. Hence, we will explain a
global overview of the algorithm in order to grasp the main ideas.

2.3.1 Decision trees

The decision trees paradigm is to split-up the space in various pieces and fit a model
for each one of them, similar to the "divide and conquer" philosophy. In each piece

14 Chapter 2. Previous concepts and State of the art

we set the value of a label and all the data falling in that slice of the space will be
predicted as such.

A tree is composed by nodes. At each node, we test a value of a feature. These
features are not user-defined, they are automatically developed by the algorithm.
In figure 2.4 we illustrate a basic classification problem (separating two classes, one
represented in blue points and the other one as red) solved by decision trees. The
top graphic shows the first feature testing that enables the space partitioning by two:
if a value is greater or lower than 3.

Then, we carry on with a second decision tree with another feature, in this case, if
a value is greater or lower than 6. Thus, the remaining purple zone shown in the
bottom figure contains values bigger than 3 and smaller or equal than 6. We can
continue repeating the process till a certain convergence criteria, avoiding overfit-
ting.

FIGURE 2.4: Graphic illustration of the changes of the classification
boundary using decision trees.

2.3. XGBoost models 15

2.3.2 Ensemble learning

Ensemble learning is the methodology of training a set of classifiers and then ag-
gregate their results. The combination of different outputs of different models re-
duces the risk of choosing a poor performing one and enables us to perform a better-
informed decision.

There are 3 main types of ensemble models: Bagging, Stacking and Boosting. Our
XGBoost model falls into the last category, characterized for horizontally-aggregate
each tree in a manner where each one of them "learns" from its predecessor, reducing
the errors of the previous tree and updating the residual errors.

At the beginning, the generated trees are weak and barely outperform a random
guesser. Nonetheless, some of them contribute with vital information, so we "boost"
these useful learners combining one with another. At the end, we get a strong learner
with hopefully low bias & variance.

Inside this category, XGBoost is a gradient boosting algorithm, meaning that this
combination is performed in an iterative fashion using the Gradient descent op-
timization algorithm. Below we briefly explain what happens inside an XGBoost
algorithm:

• Start with a random prediction. Compute the similarity score for this predic-
tion for the root node using 2.6, which gets the sum of all the residuals of each
node, squares the sum and then divides it by the number of residuals plus
lambda, a L2 regularization parameter used on leaf nodes.

similarity =
sum of residuals2

amount of residuals + λ
(2.6)

• Compute the relative contribution or "gain" of the corresponding feature, by
adding the similarities between the right and left branches and subtracting the
root one:

Gain = Left similarity− Right similarity− Root node similarity

• Prune the tree from the bottom to the top. In order to do that we introduce the
parameter gamma, which help us to determine what nodes must be pruned or
dropped. If the result from subtracting gamma from the gain is zero or less,
the node is eliminated. The higher the gamma, the more regularized our model
will be.

• Compute the value of the final tree by evaluating the leftover nodes. Proceed
again to compute another prediction using this new tree, and start all over the
process. We do not end till we reach a user-defined number of trees or when
the residuals of the Gradient Descent algorithm can’t no longer be calculated.

The excellence of XGBoost relies on the creative, efficient and robust way of its im-
plementation, specially due to its parallelization procedures. Apart, it offers lots of
hyperparameters, which make it easy to adapt and personalize to any context or
problem we are modeling.

16 Chapter 2. Previous concepts and State of the art

For a more deep understanding of the XGBoost algorithm we recommend the read-
ing of this introductory guide towards Gradient Boosting and the original paper
(Chen and Guestrin, 2016) of the XGBoost release.

2.4 State of the art

In this section we summarize the current knowledge about the studied matter through
the analysis of similar or related published work. The goal of the state of the art is
to get an overview of what has been done in the field, stating the main differences
with the present work.

The first ever concern for high-dimensional time series was (Tibshirani, 1996b), where
they propose the use of regularization methods (mainly, Lasso) for forecasting multi-
variate time series. Following their work, (Yuan and Lin, 2006) presented new struc-
tured, grouped variants of Lasso and, years later, (Simon et al., 2013) introduced the
sparse-group Lasso technique through `1 and `2 penalties.

Despite the high popularity of VAR models, there isn’t much work in the past years
for creating software able to model sparse, high-dimensional VARs with or without
exogenous variables. The R package glmnet was the first framework for fitting regu-
larization techniques into linear regression, but is not adapted for high-dimensional
cases. (Davis, Zang, and Zheng, 2012) modified part of its code for creating penal-
ized VAR models and added time-dependent constraints.

(Basu and Michailidis, 2015) studied `1 regularized estimates in two statistical prob-
lems in the context of time series, (i) stochastic regression with serially correlated
errors and (ii) transition matrix estimation in vector Autoregressive (VAR) models.

(Gelper, Wilms, and Croux, 2016) is the first work that uses sparse VAR models with
exogenous variables to perform sales forecast estimations taking in consideration
demand effects. They also use Lasso `1 penalization.

In 2017 (Nicholson, Matteson, and Bien, 2017) presented the package BigVAR for R.
BigVAR allows the estimation of high-dimensional time series with the possibility
of applying structured penalties (Lasso and multiple more) on VAR models with or
without exogenous variables.

All presented works base their penalties on standard Lasso procedures. Besides,
BigVAR does not handle the lag selection problem stated in 2.2.3. It was the work
of (Wilms et al., 2017) that presented for the first time hierarchical grouped Lasso
penalization with hyperparametrization of lag values and λ sparsity regulators. In
June 2021 they launched bigtime, an R package based on their work for sparse esti-
mation of large time series models.

To the best of our knowledge, this master thesis is the first proposal of sales forecast-
ing with exogenous variables comparison between an autoregressive approach and
a gradient boosting technique.

2.5 Forecast Evaluation methods

While training a model is a key and dense step in every machine learning project,
evaluating its performance and understanding its predictions is an equally impor-
tant process. With a solid evaluation methodology we can decide to trust or not our

https://www.chengli.io/tutorials/gradient_boosting.pdf

2.5. Forecast Evaluation methods 17

predictions.

In order to evaluate our models accuracy we will split our data into a training set
and a test set. The way this data is splitted will be explained in a further section.

• Training set: subset of the original dataset used to train our models

• Test set: subset of the original dataset that contains unseen data. It will assess
the performance of both models.

So, both XGBoost and VAR models are going to learn from the same training set
data. Then, they will output a certain number of predictions of sales values for
certain future weeks. The way we assess the accuracy of these predictions is through
evaluation metrics, which compare the ground truth (our test set values) and the
forecast.

2.5.1 Forecast Error (FE)

The simplest way to evaluate a model’s performance is looking and the difference
between the actual value (a) and the forecast value (f):

FEi = ai − fi

The forecast error values are in the same unit as the input data, so, a FE of zero would
mean a perfect prediction (no error). The FE is not typically used as an accuracy
metric itself, but it’s the base of all the following popular evaluation methods.

2.5.2 Mean Absolute Error

The Mean Absolute Error (MAE) is the arithmetic mean of the absolute forecast er-
rors |FE|i = |ai − fi|. This metric tells us the average degree of variation between
our forecast values and the actual ones:

MAE =
∑N

t=1 |ai − fi|
N

Ideally, the smallest the MAE the better. MAE makes sense when it can be compared
to something, because a MAE value of, say, 11.39, does not tell us much about how
good is the accuracy of our model. In this case, MAE will be used for segment
comparison, checking in which segments did we perform better.

2.5.3 Mean Squared Error & Root Mean Squared Error

The Mean Squared Error (MSE) tells us the average of the squared forecast error
values. Squaring not only enables all FE values to be positive, but also to heavily
punish larger errors rather than small ones.

MSE =
∑N

i=0 (ai − fi)
2

N
,

18 Chapter 2. Previous concepts and State of the art

where N is the number of samples. A really bad prediction means a big FE, which is
even more huge once it is squared. Hence, we are increasing the resulting mean, con-
sequently rising the MSE score. Often, the square root of the MSE is taken, obtaining
again the original scale of the data and smoothing the error values.

RMSE =

√
∑N

i=0 (ai − fi)2

N

MAE and RMSE are quite similar and both are ideal for comparison purposes. Nonethe-
less, the MAE absolute value function is not differentiable at its minimum, while the
RMSE one is. As a consequence, RMSE and MSE are more popular as loss function
for algorithm convergence when training models.

2.5.4 Absolute Percentage Errors

APE’s metrics are scale-independent. They give a solid idea of the relative error be-
cause they express the error as a percentage. The most popular one is the percentage
version of MAE, the Mean Absolute Percentage Error (MAPE):

MAPE =
100
N

N

∑
t=1
| ai − fi

a
|% (2.7)

Nonetheless, MAPE has some serious drawbacks:

• Due to the first-differentiation step that will be performed in the pre-processing
part, explained in a following chapter, in all of our time series we will have
negative values, and, sometimes, zero values as actual values. This operation
"changes" meaning of zero values since we are arbitrary shifting the zero point.
Now, divisions and ratios do not make sense. Also, MAPE assumes that the
unit of measurement of the variable has a meaningful zero value and that all
actual and forecast values are non-negative.

• Indeed, if our actual values are zero or close-to-zero, the division can’t be done,
results in "undefined". Adding a small value to the denominator is not recom-
mended: dividing by very tiny number results in a huge final error.

• MAPE’s value bigger than 100% can occur, losing interpretability.

• Finally, even if all of our ai and fi values were positive, another drawback of
MAPE is that it punishes negative errors (when ai < fi) heavier than positive
errors (when ai > fi), since the ratio of negative errors can be bigger than one
and positive errors can’t.

• As MAE, its absolute value function is not differentiable at its minimum.

In order to address some of this issues, we introduce two other types of APE’s met-
rics that are more suitable for our context: MASE and MAAPE.

2.5.5 Mean Absolute Scaled Error

The idea behind MASE is the comparison between our model forecast and a "naive"
forecast. Given a time-series x1, x2, . . . , xN , a naive forecast of step one (s = 1) is

2.5. Forecast Evaluation methods 19

∅, x1, x2, . . . , xN−1. In other words, we just shift s steps our original time series values
and use it as forecast values.

Therefore, MASE is computed as following:

MASE =
MAEmodel

MAEnaive

The MAE of a naive forecast with step size s is simply:

MAEnaive =
∑N

i=s+1 |xi − xi−s|
N − s

Therefore, a MASE of 0.1 can be interpreted in the sense that our model is 90% more
accurate than a naive forecast. A MASE bigger than one means that we are not as
accurate as the naive forecast. Being more accurate than a "dummy" method is key
for trusting our model and our predictions: it means we built something that really
grasps the underlying behaviors of our time series. Also, MASE is immune to the
zero-denominator problem of MAPE.

1 mase <- function(actual , predicted , step_size = 1) {
2

3 naive_start <- step_size + 1
4 n <- as.numeric(length(actual))
5 naive_end <- n - step_size
6

7 sum_errors <- sum(ae(actual , predicted))
8 naive_errors <- sum(ae(actual[naive_start:n], actual [1: naive_end]))
9 return(sum_errors / (n * naive_errors / naive_end))

10 }

LISTING 2.1: MASE implementation from the Metrics package in R.
The ae function corresponds to the absolute error.

2.5.6 Mean Arctangent Absolute Percentage Error

In 2016 (Kim and Kim, 2016) proposed a new measure called Mean Arctangent Ab-
solute Percentage Error (MAAPE), which sees the slope of the actual and forecast
difference as an angle and not as a ratio, like MAPE does.

As we can see in Figure 2.5, the slope can be measured as a ratio of |A− F|, which
can go from zero to infinity, or as an angle, ranging from 0 to 90º. This solves our
zero division problem, but we have to take in consideration the following aspects:

• MAAPE is heavily insensitive against outliers. In table 2.1, we see two wrong
observed actuals in Week 2: 100 and 10,000. Even though there’s a huge vari-
ance between this two wrong values, the MAAPE of the forecast against "Ac-
tual 1" and "Actual 2" is barely the same. Thus, MAAPE is not recommended
when there can be incorrect or mistaken measurements.

• When our actual value is exactly zero, MAAPE is always π
2 , no matter what

our forecast value is.

20 Chapter 2. Previous concepts and State of the art

FIGURE 2.5: Conceptual justification of AAPE: AAPE corresponds to
the angle θ, while APE corresponds to the slope as a ratio = tan(θ) =
| A−F

A |, where A and F are the actual and forecast values, respectively.
Extracted from (Kim and Kim, 2016).

TABLE 2.1: Illustrating the behavior of MAAPE against outliers with
two incorrect actuals.

Week 1 Week 2 Week 3 Week 4 MAAPE
Mistaken Actual 1 1 100 5 1 0.29
Mistaken Actual 2 1 10.000 5 1 0.31
Forecast 1 10 5 1

2.5.7 R Squared score

The R2 score or "Coefficient of determination" is also a popular metric that tells us
how well the regression predictions approximate the actual values. A R2 of 0.9
means that the 10% of the variability in the predicted data can be "explained" by
the model.

This score relies on the residuals adding up to zero. In a linear regression context,
this is guaranteed if we have a constant term (or drift in time series terminology) in
the regressor matrix. But, in a Autoregressive context, this "drift" is eliminated by
definition. Thus, R2 is not recommended for time series forecasting.

2.5.8 Round or not to round

When trying to model a real life problem we usually face the issue of rounding or
not our sales. In our context, we face this matter two times: when we interpolate our
missing data (decimal values appear) and when we predict new sales values (most
models output decimal values).

Since we are dealing with home-improvement and workshop "DIY" physical prod-
ucts, there is no such thing as "one hammer and a half" or "two point three drills".
Therefore, we must address this concern when performing our evaluation, since our
metrics values can change substantially if we previously round our values or not.

2.5. Forecast Evaluation methods 21

Ideally, if we want to check which model is the best, rounding to integer numbers is
not much big deal. Nonetheless, in the business world, we do care a lot if we need
to add to our stock one or two 8000€ rotating polisher machines, specially if we are
a small company. We will test both procedures and explain the results in a following
chapter.

2.5.9 Final remarks

As a conclusion, the big drawback of the MSE and RMSE metrics is the interpretabil-
ity. Finding out that the RMSE of a model is 0.45 is not the same as finding out that
the average forecast can be off by a, say, ±15%. Thus, RMSE and MSE should be
used for performance comparison and model selection, alongside MAE.

MAE and it’s percentage error variants can be useful for understanding the scale
of our prediction’s errors, but they have to be supervised when we have near zero
values or lots of outliers. Also, they can’t be used for algorithm training convergence
since their absolute value functions are not everywhere differentiable.

23

Chapter 3

The Dataset

In this section we describe the given dataset and explain some insights that should be
reviewed before we start training the algorithms. We also detail about the performed
data cleaning and the needed pre-processing for the algorithm input.

3.1 Dimensionality

Accenture gave me access to a private dataset of weekly sales of products for home
improvement, gardening, and workshop. The data was already given to me com-
pletely anonymized. Each product is identified with a six digit integer, called "SKU".
A set of SKU’s form what is called a "segment", which is identified by a 5 digit inte-
ger.

The data was initially structured in 3 files:

• "MD" (Master Data): should be considered as a dictionary to look up what
segment corresponds to each SKU. It also contains the unused fields of Coun-
try, Group, Supplier and Brand.

• Sales: contains the sales of each SKU for certain weeks. Each sale value is an
integer.

• Promo: contains the information about certain promotions that happened in a
given week. Specifically, we have the discount applied to a specific product,
the duration (in days) of the promotion, the channel of the promotion (for ex-
ample, through e-mail, web or a catalog) and the physical position on a stand
of the product during that week (front, inside, etc.).

The are a total of 7823 different SKU’s (products) shared all over 40 different seg-
ments. We have exactly 765.023 records of sales. We have information about promo-
tions applied to 6955 SKU’s, so there are some SKU’s without promotions. Specifi-
cally, we have a total of 245.979 rows of promotions applied.

Our data was given to us organized by segments. The criteria of the grouping is
unknown, but we were advised to train them separately. There are mainly 3 aspects
that must be taken in consideration in order to correctly train our algorithms:

• Amount of SKU’s per segment: as we can see in Figure 3.1, each segment does
not have the same number of SKU’s.

• Missing sales: does each product have the same date span? Does each product
have missing sales for a certain week?

24 Chapter 3. The Dataset

• Stationarity: stationarity is mandatory because many statistical tests and mod-
els rely on it. In our case, is a constrain for our VAR model.

We discuss this issues in the following sections.

FIGURE 3.1: Distribution of the amount of products per segment. The
red line corresponds to the mean of variables per segment: 110.47.

3.2 Data Cleaning

Each segment has a certain number of SKU’s with its sales and different segments
can have different number of SKU’s. We decided that our exogenous variables per
SKU will be two: the duration of the promotion, in days, and the discount applied to
the SKU price, a positive integer. Therefore, if for example a segment originally has
17 SKU’s, we will be adding 34 new exogenous variables. 2 segments were removed
because all of its product did not have promotions.

Due to algorithm constraints, for each product we must have a continuous time-
series without missing weeks. In other words, each SKU inside a segment will have
the same amount of "rows" of sales. In order to do that, we will take the oldest and
most recent date and we will build a date span with a weekly frequency, regardless
if there is or not a sale for each week in the span. We consider that weeks start on
Monday.

This organization opens up certain aspects that must be handled before the algo-
rithm input. The first one is pretty clear: a segment must have at least 2 SKU’s in
order to test our hypothesis. The second one is more complicated: how do we handle
the missing values.

3.2.1 Missing values in sales time-series

There are two reasons of why do we have a missing value on a sales time-series of a
certain product, by origin or by its temporal order.

By origin

The first type of missing value is a native one: the original dataset did not have a
value for that certain week (an outlier, a negative sale, etc.).

3.2. Data Cleaning 25

By its temporal order

The second type are those that appear when building the date span, because we are
creating "new" weeks inside this span that did not have a sales value.

Regardless of the origin of a missing value, we also classify two other type of missing
values given its topology. The first one is a missing value found when we already
had a previous registry of a valid sales value. This type of missing values can be
interpolated: we estimate the missing sales using a certain range of known past and
future data points.

The other type are missing values in the beginning of a time series, i.e., missing
values that appear before any kind of valid sales values. If this happens it could be
for two reasons: a human or system error —it could not be possible to registry the
amount of sales of a product— or simply the product did not exists in the beginning
of the time series.

Neither VAR models or XGBoost models support missing values on its data input.
Therefore, we are forced to apply a solution to eliminate missing values. Before we
apply any kind of cleaning, we decided to design a criteria of when a time series
should be cleansed of missing values.

This criteria is the following: if the 30% or more of the values of a time-series are
missing values, regardless of its type, this product will be removed from the seg-
ment. After applying this constrain, two segments were rejected because they had
zero valid products. After the date expansion, we encountered 442539 missing val-
ues, a 57.84% of the data points. This caused the elimination of the 43,29% of the
products.

After this first cleaning, we have 27 valid segments and 4370 valid SKU’s. The total
amount of sales rows changed to 675.174. Now we are able to handle the missing
values. As mentioned, the missing values "in the middle" of other valid series values
are linearly interpolated. Each segment has the same date span (from 31/08/2015 to
06/08/2018) so every segment has exactly 154 rows (weeks) of data.

Linear Interpolation

Interpolation is the process of estimation unknown data points using known sam-
ples near those missing values. The simplest method of interpolation is the linear
one, where we simply estimate our missing values by using the equation of the
straight line passing through our last and next known points:

y− y1 =
y2 − y1

x2 − x1
(x− x1)

Where (x1, y1) is the latest known point and (x2, y2) is the next one. x denotes the
index and y the sale value we are estimating.

Ideally, when working with sales prediction, each product should have the same
records of sales. We know that this doesn’t happen so those missing values that ap-
pear because the product did not exist or because of a human error will be replaced
by zeros. In the future, a better transformation should be developed in order to tell
the algorithm that a product is new.

26 Chapter 3. The Dataset

FIGURE 3.2: Linear interpolation of a time series with missing values.

3.3 Data pre-processing

When performing sales forecasting using a model, specially an statistical one, the
imputed time series must comply with a series of properties that ensure correct,
unbiased predictions. Those characteristics are stationarity, trend and seasonality.

3.3.1 Stationarity

The most important one is stationarity. A stationary time series is one whose data
points do not depend on the time at which they were captured. Consequently, a non-
stationary time series contains trends or seasonalities. If the process that recorded
our sales is non-stationary, we need to transform it.

The first thing we must do is performing an Augmented Dickey–Fuller (ADF) test
on each and every product sales in order to decide if we transform our sales values
or not. An ADF is a statistical test which can tell us if our process characteristic
equation has a root (monomial) equal to 1, also called unit root.

Having a unit root might be problematic because it shows a systematic pattern that
is unpredictable, and, for example, we might be dealing with a spurious regression.

3.3. Data pre-processing 27

The more negative the p-value of the ADF test, the stronger the rejection of the hy-
pothesis that there is a unit root (Kwiatkowski et al., 1992).

There are many ways to transform a time series in order to make it stationary. The
simplest of them is performing a first differentiation, i.e., subtracting a ti+1 sales
value to the ti sales value. It has been proved that this pre-processing help stabilize
the mean of a time series, reducing trend or seasonality patterns. Take in considera-
tion that we lose the first row of sales information using this procedure.

The initial conducted test showed that 27,23% of SKU’s sales records did not fol-
low a stationary process. First differentiate a time series that has passed the ADF
test does not affect the algorithms performance, so we made the decision of first-
differentiating all the time series even if they have passed or not the test. After
conducting the transformation, only 3 variables did not pass the test.

It’s easy to undo the first differentiation of a time series: we just need to recall the
first row of data and perform the cumulative sum of our differentiated points. The
diffinv function in R, for example, does that for us.

3.3.2 Standardization

The second pre-processing performed is the scale of our time series. The reason be-
hind this transformation is to achieve better performance in both VAR and XGBoost
models. It has been proven that standardized data (zero mean and unit standard
deviation) helps removing trend and facilitates most algebraic computations of ma-
chine learning algorithms.

In order to normalize our data we subtract to each data point by the mean (µ) and
divide by the standard deviation (σ) of our time series:

X̂ =
X− µ

σ
(3.1)

In order to recall the original value, we just have to inverse the process:

X = (X̂ · σ) + µ (3.2)

As recommended by the library bigtime, we normalize our endogenous variables
(product sales) as well as the exogenous ones (promotion). We can use, for example,
the scale function in R. As mentioned before, a product might have no applied
promotion, therefore it’s variables of duration and discount are all zeros. This kind
of exogenous variables have zero standard deviation, so we can’t apply equation 3.1.
In that case, we just don’t apply the standardization.

The data is now prepared to be ingested by the algorithm, but, as mentioned in
section 2.5, we need to split each segment into Train & Test sets. We decided that
both XGBoost and VAR models will forecast a window of 4 periods ahead, or, in
other words, we will predict the sales of each product for the 4 following weeks (a
month).

28 Chapter 3. The Dataset

FIGURE 3.3: Illustration of the overall pre-process transformation
pipeline.

Therefore, each train set has exactly 150 rows of weekly sales and each test set has

3.3. Data pre-processing 29

4. After the data cleaning, 23 segments remain. It seems like the bigtime can’t
build a VARX model with more than ≈ 2.197 endogenous + exogenous variables.
Thus, segment 10110 with 971 unique products and segment 11916 with 732 unique
products were dropped.

FIGURE 3.4: Distribution of the amount of products per segment after
the data cleaning & pre-processing.

The smallest segment has only 11 products, and the biggest one has 511. As we can
see in Figure 3.4, the average number of SKU’s per segment is 113.73. The median is
44. In Figure 3.1 we can see a piece of a segment with 3 first-differentiated example
sales of 3 products alongside its discount and duration variables.

TABLE 3.1: Tabular view of a possible data input after the first-
differentiation process on the SKU sales.

Date
Sales_
322471

Sales_
322472

...
Discount_
322471

Discount_
322472

...
Duration_
322472

Duration_
322472

31/8/2015 19 2 ... 30 30 ... 7 7
7/09/2015 -16 -1 ... 0 0 ... 0 0
14/09/2015 24 7 ... 15 15 ... 7 7
21/09/2015 -6 -24 ... 0 0 ... 0 0

31

Chapter 4

Implementation

In this section we describe our dataset of sales, the data cleaning and time series
pre-processing done, how did we built both algorithms and the overall architecture
of the framework.

4.1 Architecture

This project was coded using mainly the R programming language, as advised by
Accenture. Nevertheless, I decided to use Python for certain processes of data clean-
ing and time series pre-processing. Both Python and R deal flawlessly when man-
aging big data structures and both have strong and efficient open-source packages.

This framework uses mainly six libraries:

• bigtime: R package that enables the sparsely estimate of large time series Vec-
tor AutoRegressive with Exogenous Variables (VARX) models.

• xgboost: optimized and distributed gradient boosting library able to imple-
ment machine learning gradient boosting models.

• data.table: memory-efficient, fast and concise R package that enhances the R’s
data.frame function.

• Pandas: same as data.table: provides a high-performance, easy-to-use data
structures and analysis tools but for Python.

• ISOweek: a framework of useful date-related functions such as format con-
verter to week dates.

• Metrics: a collection of machine learning evaluation metrics for measuring
regression, classification and ranking performance.

The overall framework of both algorithms is done using Jupyter Notebooks and a R
project. A Jupyter Notebook is a useful, easy-to-use and visual web tool that allows
to create and share documents with live code, equations, narrative text, etc. The
VARX model is develop in one R Notebook whilst the XGBoost model is encapsu-
lated inside an R Project, designed to be opened using RStudio. The overall data
pre-processing is explained and coded inside a Python Jupyter Notebook.

4.2 Pipeline of the framework: VARX model

We can divide the algorithm implementation in 4 steps:

32 Chapter 4. Implementation

• Data processing: how is the data read and what operations are needed for the
correct algorithm imputation.

• Model building: how is the model created and its configuration.

• Prediction: how do we compute the predictions of our forecast.

• Evaluation: how do we measure the performance of our model and its predic-
tions.

As mentioned, all this procedures are coded in R. We designed a Jupyter Notebook
that encapsulates all this steps, called Training & Evaluation.ipynb.

4.2.1 Data processing

The algorithm assumes that the input data is cleaned and pre-processed as explained
in section 3.2. In order to be read, we saved each segment Train and Test sets in .csv
files called <segment_id>Train.csv and <segment_id>Test.csv. Nonetheless, we
also saved each original Train and Test sets (before making the data stationary and
standardized), needed for the model performance evaluation once the predictions
have been re-scaled.

The algorithm reads the file names from a specified directory and extracts the seg-
ment id using regex. Then, reads the processed Train and Test files alongside the
original Test set. The bigtime library needs the endogenous and exogenous vari-
ables apart, so we must create this two matrices from the Train file. In order to
perform this distinction, we extract the number of endogenous variables of a seg-
ment using regex, since we know that all the column’s with sales values are named
Sales_<SKU_id>.

Once we built these two matrices, we standardize the data (including the test set,
since we need it for the evaluation step) using the scale function in R. We did not
perform this step before because we need to know the mean and standard deviation
of each SKU, so we can re-scale later on using equation 3.2. There might be multiple
products without promotions, so their exogenous variables (columns of zeros) have
zero standard deviation and zero mean. Such variables do not need to be standard-
ized, as mentioned in section 3.3.2.

4.2.2 Model building

Even though in early stages of this project the library BigVAR was used to create
VARX models, we opt to use the library bigtime because it has better interpretability
and uses the hierarchical sparsity pattern mentioned in section 2.2.2. The function
call is the following:

4.2. Pipeline of the framework: VARX model 33

1 sparseVARX(
2 Y,
3 X,
4 p = NULL ,
5 s = NULL ,
6 VARXpen = "HLag",
7 VARXlPhiseq = NULL ,
8 VARXPhigran = NULL ,
9 VARXlBseq = NULL ,

10 VARXBgran = NULL ,
11 VARXalpha = 0,
12 h = 1,
13 cvcut = 0.9,
14 eps = 10e-3,
15 selection = c("none", "cv", "bic", "aic", "hq"),
16 check_std = TRUE
17)

LISTING 4.1: sparseVARX function documentation and its default
values

Where Y is the matrix of endogenous variables, X is the matrix of exogenous vari-
ables, p and s are the maximum lag orders for X and Y, VARXpen is the penalization
structure desired, arguments 7 to 10 are user-specified vectors that in this context
we do not use, VARXalpha enables us to specify a custom regularization value for the
equation 2.4, h is the forecast horizon, cvcut is the data proportion used for the model
estimation using Cross-Validation, eps is the tolerance convergence in the proximal
gradient algorithm, selection specifies the model selection desired and check_std is to
enable or disable the warning that checks if whether X or Y are standardized.

We adapt this function call as following:

• p and s are set to NULL, meaning that we let the Cross-Validation estimation
compute them.

• VARXpen, as mentioned in 2.2.2, is set to "HLag" instead of L1.

• h will change for each model, from 1 to 4.

• selection is set to cv, i.e., Cross-Validation.

• check_std is set to FALSE because we already ensure that the data is standard-
ized.

The rest of the parameters are set to default.

Our goal is to predict the sales of each product for the next 4 weeks, so our forecast
horizon, called h, is 4. In order to be as accurate as possible, we built 4 models, each
with a unique value of h from h = 1, . . . , 4. We built an array of dimension 4 that
contains on each position each model with its certain forecast horizon. A bigtime
fitted VARX model class returns multiple arguments, the most important of them
are the following:

• k and m: the estimated best lag order for Y and X.

• p and s: the estimated best maximum lag order for Y and X.

• Phihat and Bhat the section 2.2 matrices of estimated endogenous and exoge-
nous autoregressive coefficients.

34 Chapter 4. Implementation

• lambdaPhi and lambdaB: matrix representing the sparsity parameter grid for Y
and X.

• lambdaPhi_opt and lambdaB_opt: optimal sparsity parameter for Y and X.

• MSFEcv: Mean Squared Forecast Error (MSE) of the Cross-Validation scores in
a two-dimensional sparsity grid.

Given that training 4 models is a long-lasting process, the array is stored in a .rds
file1 after the fit of all the models. Thus, if we ever want to use a concrete segment
model we can read this file instead of training all over again.

4.3 Prediction

bigtime has the function directforecast(fit, h) which returns the predictions of
all the endogenous variables of the given model "fit" in a given forecast "h". Thus,
we iterate our array of models calling successively this function with each value of
h, storing the predictions in a 4 × N matrix (being N the number of endogenous
variables).

4.4 Evaluation

In this step we do not evaluate the performance of each model separately, we assess
the accuracy of the whole prediction matrix created in the last step. The evaluation is
done in two times: one without re-scaling and without reverting the stationary pro-
cess of the predictions, for model selection, and the other one reverting, for business
scale.

We decided to compute the following evaluation metrics: RMSE, MAPE, MAAPE,
and MedianAPE. Not all are going to be used for model selection criteria; some of
them are just for showing the behavior of the algorithms and to get a better under-
standing of our data.

Some of them are computed using the library Metrics, and, by default, when two
matrices are passed, the evaluation is done comparing product by product row by
row, i.e., its done "weekly". We are also interested in knowing the monthly error, i.e.,
computing the sum of each column for both train and test sets and then call these
metrics with both vectors of dimension 1× N, being N the number of variables.

In our data we have actual sales that are zero or near-zero. Therefore, MAPE and Me-
dianAPE are not computed using Metrics since we would get infinite or undefined
values. For showing purposes, we use the denominator trick presented in section
2.5.4 and therefore they had to be coded "by hand".

Once we computed the specified weekly and monthly metrics with the "transformed"
data, we revert the predictions (i) re-scaling using 3.2 and (ii) performing the cumu-
lative sum to remove the first-differentiation. Now we have the predictions in the
original scale, and therefore we call again the same evaluation metrics but using the
original test values.

Each value of the mentioned evaluation metric is saved inside a .csv file alongside
the corresponding segment and the time needed to train the model. At the end, we

1files that store a single R object using the base function saveRDS.

4.5. Pipeline of the framework: XGBoost model 35

have a table illustrating the error span of each metric for each segment. This table
format facilitates the discovery of hidden insights and conclusions.

Additionally, we developed two functions that enable the evaluation of each saved
model, so we do not have to train again a model if we want to try a new metric, for
example. Also, they allow the test for rounding or not of the sales predictions before
the evaluation part, thanks to the parameter rounding.

4.5 Pipeline of the framework: XGBoost model

XGBoost is a relatively young library, it was introduced in 2016 and nowadays we
can find it implemented for the most popular programming languages like C++,
Java, Python, R, Julia, Perl, Scala... Not only that, it can run on distributed environ-
ments like Hadoop and Spark.

We are going to use the R implementation of XGBoost. Specifically, Accenture pro-
posed of using it’s own XGBoost implementation, an R project used in multiple inter-
nal processes that was adapted by my project advisor. Hence, this code is property
of Accenture and we will limit ourselves to briefly explain the overall pipeline and
how is it been adapted by this project.

We can divide this explanation in 4 steps:

• Data input: how did we adapt our transformed data for the needed format of
the algorithm.

• Model settings: how did we customize the algorithm to adapt it to our context.

• Prediction & Data output: how did we manage the predictions and the post
processing of the data, what transformations are necessary in order to evaluate
the predictions.

• Evaluation: description of how is performed the forecast evaluation.

4.5.1 Data input

In order to correctly evaluate the performance of our VAR and XGBoost model, each
model must be trained using the same data. Consequently, the raw files that XG-
Boost read are the same as the VAR model, explained in section 4.2.1. Nonetheless,
the format of the imputed data for our XGBoost model varies a little bit from the
VAR model. We designed a preprocess function that transforms our data in XX
processes:

• Converts a full date into ISOWeek format, e.g., from "2015-08-24" to "2015-35".

• Converts the original dataset to "long" form, also known as "melting" the dataframe,
using the dcast function in R. Table 4.1 illustrates this transformation, whith
"ID" representing the SKU.

4.5.2 Model settings

In order to use the mentioned multiple custom parameters that the XGBoost offers
by nature, Accenture’s designed a configuration system through an Excel file. This
way, the user does not need to modify parts of the code in order to adapt it to a new
context.

36 Chapter 4. Implementation

TABLE 4.1: Long format example after the melting procedure in the
XGBoost pre-processing part. Look at the original table 3.1 for com-

parison purposes.

Date ID Sales Discount Duration
31/8/2015 322471 19 30 7
7/9/2015 322471 -16 0 0
14/9/2015 322471 24 15 7
...
31/8/2015 322472 2 30 7
7/9/2015 322472 -1 0 0
14/9/2015 322472 7 15 7
...

In this file we can find more than 40 parameters with multiple options. The most
important and the ones modified for our problem are the following:

• Data location: the folder path where the algorithm reads the input data.

• ID_cols: the name of the column containing the sales variable names. In our
case, "SKU" is already renamed to "ID".

• sales_column: the name of the column containing the sales values. In our case,
"SALES".

• freq_unit: the periodicity of our sales data. In our case, "week".

• h: forecast horizon. In our case, "4", meaning 4 periods (weeks) ahead.

• max_depth: the maximum depth2 of the generated decision trees.

4.5.3 Prediction & Data output

The modified Accenture’s version of XGBoost trains two models: a classification one
and a regression one. The potential of both are used in order to predict the sales of
each product in each of the 4 future dates. The forecasting is done in an iterative
fashion, SKU by SKU and period by period.

By default, the original code outputs a forecast_<SKU>.csv file in long format, con-
taining the original sales by SKU mixed with the predictions, alongside unused,
useless columns. This format doesn’t facilitate the evaluation of our forecast so we
decided to modify the original code with the function postprocess.

This function reads the default output file and simply extracts the computed predic-
tions into another column called "FORECAST", which is empty for all the other 150
periods. The reformed file is stored again as forecast_postprocess_<SKU>.csv and
is more suitable and ready for evaluation operations. Table 4.2 illustrates an example
of this file.

4.5.4 Evaluation

While the R project of Accenture’s XGBoost is a powerful, compact and flexible tool,
it does not include evaluation methods. Hence, we coded the evaluation part in a R

2the number of decisions or "splits" that the tree can make before computing a prediction.

4.5. Pipeline of the framework: XGBoost model 37

TABLE 4.2: Forecast post-process example file

ID DATE SALES FORECAST
118803 2015-35 87
118803 2015-36 83

...
118803 2018-28 67
118803 2018-29 70.67077
118803 2018-30 79.95464
118803 2018-31 83.71971
118803 2018-32 95.5824

Jupyter Notebook called Evaluate XGBoost.ipynb, more suitable for different tests
and it doesn’t require the re-training of the models.

This notebook is similar to the Training & Evaluation.ipynb notebook of the VARX
model. In fact, they share functions such as find.endogenous.index, used to count
the number of sales variables within a segment, scaler, used to scale a time series
and return its values alongside the computed standard deviation and mean and all
the set of custom evaluation metrics.

We begin creating the evaluation results files and specifying the path containing all
the results of each segment forecast. Then, we iterate each file (or segment) perform-
ing the following procedure:

• Read the test files of the corresponding segment. Store also the scaled version
of them.

• Find out the number of endogenous and exogenous variables of the segment.
Standardize accordingly each time serie and exogenous variable.

• Locate the predictions of the XGBoost model. Pass the actual & predicted val-
ues to the evaluation function and register the result in the previously created
files.

• Undo first the scaling of the predicted values and then the first differentiation.
Repeat again the evaluation step with the original actual and the transformed
predictions.

At the end we get the same result file as the previous VARX model. This file is again
ready and suitable for conclusion extraction and graphic representation of the fore-
casted time serie. For test purposes, we also coded a small function that performs
the evaluation of the model trained with original or "raw" values, i.e., with the series
without any kind of pre-processing.

39

Chapter 5

Experiments, Results and
Discussion

In this section we describe the evaluation of our different models. We performed
all the model comparison using only the dataset mentioned in Chapter 3. This eval-
uation is done in two ways: looking at the error in the pre-processed measure (for
model selection purposes) and looking at the error once the predictions are re-scaled.

5.1 VAR model evaluation

We will start by presenting the RMSE errors, sorted by smallest Weekly RMSE to
biggest.

TABLE 5.1: RMSE errors for the Vector Autoregressive model.

40 Chapter 5. Experiments, Results and Discussion

We can observe that there is no correlation between the number of exogenous vari-
ables of a segment and their RMSE. As expected, RMSE values are higher when the
predictions are re-escalated (specially with outliers of segments 11926 and 11936).
Nonetheless, remember that we are using this metric for model comparison.

Let us switch to the MAAPE:

TABLE 5.2: Summarized MAAPE values for the Vector Autoregres-
sive model.

Here, as opposite to the RMSE, the re-escalated predictions are more accurate than
the standardized ones. This behavior can be explained due that in the RMSE we are
computing the absolut error, while in MAAPE we are talking in terms of relative
error, where we are dividing the relative error by the actual value.

In "bussiness scale", the mean of all MAAPE monthly values for each segment are
32% deviated with respect to the actual sales. On the other side, 77.96% of the esca-
lated monthly values are deviated from the actual values. Even though predicting
weekly sales of more than 11 different products is nowadays as hard as predicting
the stock market, the goal of this project is algorithm comparison, so we will not
purely focus on forecast accuracy.

To demonstrate that our VAR model is not as bad as it looks like, below we can
present the resulting MASE values, which tell us how good are our model predic-
tions in comparison with a naive forecast (section 2.5.5):

TABLE 5.3: Summarized MASE values for the Vector Autoregressive
model.

Where we observe that, on average, our forecast is 37 to 43 times better than a naive
forecast for the standardized predictions. For the re-escalated ones we improve a

5.1. VAR model evaluation 41

little bit, achieving till 79 more accuracy than the naive forecast. Let’s move on now
to the segment comparison part with the MAE metric:

TABLE 5.4: Summarized MAE values for the Vector Autoregressive
model.

If we recall from section 2.5.2, MAE is the mean absolute error between our predic-
tions and the actual values. The closer to zero, the better. MAE helps us identifying
in which segments did we built the best model. As we can see in Table 5.4, MAE
values for the standardized predictions move around ≈2.0, but segments 11926 and
11902 considerably shift the mean due its high MAE values. In consequence, we
must be careful when trusting these two segments model predictions.

If we recall Figure 5.1, we can identify a direct correlation between the RMSE and
MAE values. As mentioned before, MAE and RMSE are metrics that do not mean
much by themselves: they are useful once they are compared with another model
results.

Lastly, in Table 5.5 we demonstrate some of the mentioned drawbacks of the MAPE
metric applied to the monthly re-escalated predictions. As explained, in MAPE we
divide by the actual sale value. Thus, if this number is close to zero, the resulting
MAPE value will be extremely big. This behavior is highlighted in red.

42 Chapter 5. Experiments, Results and Discussion

TABLE 5.5: Monthly re-escalated MAPE values for the Vector Autore-
gressive model. Highlighted values represent the zero-denominator
problem and they are ignored for the calculus of the total sum, aver-

age and median.

In addition, if we look at segment 11902 we can observe the interpretability problem.
MAPE is a percentage but it can take values higher than 100%. A Mean Absolute
Percentage Error of 149.15% is confusing and does not help with the comparison of
all the other "standard" MAPE results.

5.2 XGBoost model evaluation

In order to present the results of the XGBoost we will follow the same arrengment
as the VAR model, comparing both results and pointing the main differences. Let’s
start then with the RMSE:

5.2. XGBoost model evaluation 43

TABLE 5.6: RMSE errors for the XGBoost model.

If we look at the standardized results, the overall sum of errors and the RMSE mean
and median are higher with respect to the VAR model errors, illustrated in Table 5.1.
Of all these increases, highlight the weekly and monthly standardized mean, which
increased (in overall) a 284.12% and 466.11% more respectively.

If we switch to the re-escalated results, the XGBoost fails again when trying to over-
come the VAR model accuracy, specially in the re-escalated results.

TABLE 5.7: Summarized MAAPE values for the XGBoost model.

As we can see in Table 5.7, the XGBoost predictions are a lot worse when evaluated
with the MAAPE metric. In all 4 cases the errors are bigger than in the VAR model,
reaching values even bigger than one in the monthly standardized evaluation.

44 Chapter 5. Experiments, Results and Discussion

This behavior is also reflected with the MASE metric. As mentioned, a MASE value
bigger than 1 means that our forecast is worse than a naive version of a forecast
predictions. As we can see in Table 5.8, the overall MASE metrics are much bigger
than one.

TABLE 5.8: Summarized MASE values for the XGBoost model.

Finally, we present the results of the MAE metric of our XGBoost model in Table 5.9.

TABLE 5.9: Summarized MAE values for the XGBoost model.

As we can see, again the mean and median for all 4 possible combinations is worse
than in the VAR model. Given that our goal is algorithm comparison and not seg-
ment comparison, we won’t show the MAE error of each segment since they are all
worse than the VAR model. Specifically, the lowest increase is a 224.51% from the
weekly standardized median.

5.3 Rounding Evaluation

Before jumping to a conclusion we performed the same evaluation process rounding
our actual and forecast values to integers, as explained in section 2.5.8. Below we
report the following insights:

• In any metric the XGBoost model outperformed the VAR model when round-
ing the datasets, in both the standardized or re-escalated evaluations.

• All metrics, for both models and both standardized and re-escalated modes,
reported barely the same errors after the round evaluation. There’s one excep-
tion: the standardized MAAPE values of the VAR model, represented in Table

5.3. Rounding Evaluation 45

5.10. Again, due to the calculus of relative errors where we divide by the ac-
tual value, rounding made our MAAPE errors 40% to 23% lower. We did not
observe the same behavior with the XGBoost model.

TABLE 5.10: MAAPE differences on the standardized evaluation with
or without rounding

In Table 5.1 we can observe the differences between the XGBoost and VAR models
graphically, were we represented the sales of the last 3 months of the product 365955
from the segment 11924. In the last 4 weeks we can see the predictions from the
XGBoost and VAR models alongside the ground truth, represented in green.

FIGURE 5.1: Graphic demonstration of the poor XGBoost perfor-
mance in comparison with the VAR model for a concrete product

sales prediction.

46 Chapter 5. Experiments, Results and Discussion

5.3.1 Execution times

Leaving apart the evaluation results, here we present how much time did each
model need for training for each segment for each algorithm. As expected, the VAR
model is considerably slower than the XGBoost, because it falls inside the category
of a statistical model. In fact, we can see in Table 5.11, we needed 3.43 days or 82.43
hours to train all 23 segments. Here we can see the effectiveness of the parallelization
of the XGBoost library, who just needed 3.58 hours to train all the models.

TABLE 5.11: Summary of the execution time needed for training both
algorithms.

47

Chapter 6

Conclusions and future work

This project deals with the forecasting of a high-dimensional dataset of sales records
and promotion variables from a huge number of products from a home improve-
ment, gardening, and workshop retailer. The first goal of this project has a global
nature and was to prof that the relationships between products and the underlying
associations between sales that happen in a defined span of time affect the quality
of predictions. In order to do that, our objective was to built two different sales
forecasting algorithms and compare its accuracy and performance: a Vector Au-
toregressive model, specialized in detecting this kind of product connections, and
a XGBoost model, which is not. Still, XGBoost has proved to be best performing
algorithm when working with structured or tabular data.

In addition, another goal of this work, more specific, was to overcome the challenge
of predicting sales of a high number of products (endogenous variables) and taking
into account the hypothetical promotions made by the company (exogenous vari-
ables).

Accenture gave us a high-dimensional dataset with multiple segments (sets of prod-
ucts) with their weekly sales number and the presence, or not, of promotions (dis-
counts) and their value. We set the target of predicting one-month ahead sales, i.e.,
4 weeks of forecast. For this purpose, with the use of popular machine learning and
data science tools, we built a framework that allows to perform the overall cycle
of model comparison: data cleaning, data pre-processing, model building, model
training and model evaluation with the needed data post-processing.

The first step towards this goal was a deep research of time series analysis and its
forecast, focusing on evaluation tools suitable for our context (since we wanted a fair
comparison of two very different algorithms) and its pre-processing (since our data
was not cleaned).

The second step was the profound understanding of Vector Autoregressive models
and how can we adapt them to work with huge datasets, since the XGBoost imple-
mentation is already capable of handling big data.

Once we had accomplished these two key objectives, we evaluated our models fol-
lowing two different approaches: with the predictions standardized (zero mean and
unit standard deviation) and without, also known as in "business scale". For each
one of them, we assessed the error in two different ways: weekly error and monthly.

Using the "Root Mean Squared Error (RMSE)" metric, we found that in both ways
the Vector Autoregressive model is more accurate than the XGBoost model, showing
that relationships between products affect a forecast performance. In order to prove

48 Chapter 6. Conclusions and future work

that our results were valid, we tested more interpretative forecast metrics and we
still found that the VAR model got the lead. We also assessed accuracy between
segments, as well as performance fluctuations if we round or not the model’s sales
predictions.

Even though our main goal has been accomplished, some ideas that would lead to
clearer conclusions if we keep addressing the problem are:

• Testing more types of time series pre-processes, like logarithmic operations,
centering our values (subtracting the mean and not fully standardizing) or per-
forming spline or polynomial interpolations on missing values.

• Addressing differently the problem of a new product appearance in the middle
of our date span. That is, building a method that is able to tell the algorithm
that some products didn’t exist in certain weeks, instead of setting their sales
to zero.

• Find a better conversion between pre-processed predictions and "business scale".
One approach would be performing the logarithm of our sales alongside the
first-differentiation, so our estimators can be considered percentages of sales
variations.

49

Bibliography

Basu, Sumanta and George Michailidis (2015). “Regularized estimation in sparse
high-dimensional time series models”. In: The Annals of Statistics 43.4. ISSN: 0090-
5364. DOI: 10.1214/15-aos1315. URL: http://dx.doi.org/10.1214/15-AOS1315.

Chen, Tianqi and Carlos Guestrin (2016). “XGBoost”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. DOI: 10.
1145/2939672.2939785. URL: http://dx.doi.org/10.1145/2939672.2939785.

Davis, Richard A., Pengfei Zang, and Tian Zheng (2012). Sparse Vector Autoregressive
Modeling. arXiv: 1207.0520 [stat.AP].

Gelper, Sarah, Ines Wilms, and Christophe Croux (2016). “Identifying Demand Ef-
fects in a Large Network of Product Categories”. In: Journal of Retailing 92.1, pp. 25–
39. ISSN: 0022-4359. DOI: https://doi.org/10.1016/j.jretai.2015.05.005.
URL: https://www.sciencedirect.com/science/article/pii/S0022435915000536.

Hilde, CB (2000). “VAR Models in Macroeconomic Research”. In: Statistics Norway
Research Department.

Kim, Sungil and Heeyoung Kim (2016). “A new metric of absolute percentage er-
ror for intermittent demand forecasts”. In: International Journal of Forecasting 32.3,
pp. 669–679. ISSN: 0169-2070. DOI: https://doi.org/10.1016/j.ijforecast.
2015.12.003. URL: https://www.sciencedirect.com/science/article/pii/
S0169207016000121.

Kwiatkowski, Denis et al. (1992). “Testing the null hypothesis of stationarity against
the alternative of a unit root: How sure are we that economic time series have
a unit root?” In: Journal of Econometrics 54.1, pp. 159–178. ISSN: 0304-4076. DOI:
https : / / doi . org / 10 . 1016 / 0304 - 4076(92) 90104 - Y. URL: https : / / www .
sciencedirect.com/science/article/pii/030440769290104Y.

Nicholson, William, David Matteson, and Jacob Bien (2017). BigVAR: Tools for Model-
ing Sparse High-Dimensional Multivariate Time Series. arXiv: 1702.07094 [stat.CO].

Niraj, Rakesh, V. Padmanabhan, and P. Seetharaman (Mar. 2008). “Research Note—A
Cross-Category Model of Households’ Incidence and Quantity Decisions”. In: Mar-
keting Science 27, pp. 225–235. DOI: 10.1287/mksc.1070.0299.

Simon, Noah et al. (2013). “A Sparse-Group Lasso”. In: Journal of Computational and
Graphical Statistics 22.2, pp. 231–245. DOI: 10.1080/10618600.2012.681250. eprint:
https://doi.org/10.1080/10618600.2012.681250. URL: https://doi.org/10.
1080/10618600.2012.681250.

Tibshirani, Robert (1996a). “Regression Shrinkage and Selection via the Lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267–288.
ISSN: 00359246. URL: http://www.jstor.org/stable/2346178.

– (1996b). “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 58.1, pp. 267–288. ISSN: 00359246. URL:
http://www.jstor.org/stable/2346178.

Wilms, Ines et al. (2017). Interpretable Vector AutoRegressions with Exogenous Time Se-
ries. arXiv: 1711.03623 [stat.ML].

https://doi.org/10.1214/15-aos1315
http://dx.doi.org/10.1214/15-AOS1315
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://arxiv.org/abs/1207.0520
https://doi.org/https://doi.org/10.1016/j.jretai.2015.05.005
https://www.sciencedirect.com/science/article/pii/S0022435915000536
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://doi.org/https://doi.org/10.1016/0304-4076(92)90104-Y
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://www.sciencedirect.com/science/article/pii/030440769290104Y
https://arxiv.org/abs/1702.07094
https://doi.org/10.1287/mksc.1070.0299
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://arxiv.org/abs/1711.03623

50 Bibliography

Yuan, Ming and Yi Lin (Feb. 2006). “Model Selection and Estimation in Regres-
sion With Grouped Variables”. In: Journal of the Royal Statistical Society Series B
68, pp. 49–67. DOI: 10.1111/j.1467-9868.2005.00532.x.

https://doi.org/10.1111/j.1467-9868.2005.00532.x

	Abstract
	Acknowledgements
	Contents
	Introduction
	Origin of the project
	Proposal
	Roadmap
	Goals

	Previous concepts and State of the art
	Vector Autoregressive models
	Dimensionality problem
	The Bias-Variance trade-off

	High-dimensional VAR
	Lasso Regression
	Time series Cross-Validation

	Hierarchical sparsity pattern
	The lag selection problem

	XGBoost models
	Decision trees
	Ensemble learning

	State of the art
	Forecast Evaluation methods
	Forecast Error (FE)
	Mean Absolute Error
	Mean Squared Error & Root Mean Squared Error
	Absolute Percentage Errors
	Mean Absolute Scaled Error
	Mean Arctangent Absolute Percentage Error
	R Squared score
	Round or not to round
	Final remarks

	The Dataset
	Dimensionality
	Data Cleaning
	Missing values in sales time-series
	Linear Interpolation

	Data pre-processing
	Stationarity
	Standardization

	Implementation
	Architecture
	Pipeline of the framework: VARX model
	Data processing
	Model building

	Prediction
	Evaluation
	Pipeline of the framework: XGBoost model
	Data input
	Model settings
	Prediction & Data output
	Evaluation

	Experiments, Results and Discussion
	VAR model evaluation
	XGBoost model evaluation
	Rounding Evaluation
	Execution times

	Conclusions and future work
	Bibliography

