
UNIVERSITAT DE BARCELONA

FUNDAMENTAL PRINCIPLES OF DATA SCIENCE MASTER’S
THESIS

Machine Learning Copies as a Means for
Black Box Model Evaluation

Author:
Dr. Muriel ROVIRA-ESTEVA

Supervisors:
Dr. David ZEBER
Dr. Oriol PUJOL

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc in Fundamental Principles of Data Science

in the

Facultat de Matemàtiques i Informàtica

September 2, 2021

http://www.ub.edu
http://www.johnsmith.com
http://www.jamessmith.com
http://mat.ub.edu

iii

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Machine Learning Copies as a Means for Black Box Model Evaluation

by Dr. Muriel ROVIRA-ESTEVA

The use of propietary black-box machine learning models and APIs in the form of
Machine Learning as a Service, makes it very difficult to control and mitigate their
potential harmful effects (such as lack of transparency, privacy safeguards, robust-
ness, reusability or fairness). The state-of-the-art technique of Machine Learning
Classifier Copying allows us to build a new model that replicates the decision be-
haviour of an existing one without the need of knowing its architecture nor having
access to the original training data.

PRESC (Performance and Robustness Evaluation for Statistical Classifiers) is an
existing free software tool for the evaluation of machine learning classifiers, which
is maintained by Mozilla’s Data Science team. It aims to provide a toolkit to analyze
model performance beyond the standard accuracy-based methods and into areas
which tend to be underexplored in data science practice.

Among the multiple applications of Machine Learning Classifier Copying, a sys-
tematic construction and examination of model copies has the potential to be an uni-
versally accessible and inexpensive approach to study and evaluate a rich variety of
original models, and to help understand its behavior. In this work, an implemen-
tation of Machine Learning Classifier Copying has been contributed to the PRESC
project, so that this tool becomes readily accessible to researchers and practitioners,
and its applicability and performance in a synthetic problem has been explored to
understand the copying process. The solution provides a model agnostic sampling
strategy and an automated copy process for a number of fundamentally different
hypothesis spaces, so that the set of achievable copy-model-fidelity measures can be
used as a diagnostic measure of the original model characteristics.

HTTP://WWW.UB.EDU
http://mat.ub.edu

v

Acknowledgements
Many thanks to my two supervisors for their kind help and friendly guidance.

Their experience and insight was key to provide me with the best of two worlds, the
non-profit free software development community and academia, that often have the
same goals but very different approaches.

Also very special thanks to those who have fed and encouraged me through the
developing and writing process. As always, your love is essential for any success.

1

Contents

Abstract iii

Acknowledgements v

Contents 1

1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 4
1.3 Contributions . 4
1.4 Layout . 5

2 Background 7
2.1 Machine Learning Classifier Copies . 7
2.2 Theoretical principles . 8
2.3 Evaluation . 9
2.4 Sampling . 9

3 Methods and Proposal 13
3.1 Implementation of Machine Learning Classifier Copies 13

3.1.1 The PRESC model evaluation package 13
3.1.2 Outline of the contribution . 13
3.1.3 Functions and classes in the ML Classifier Copies package . . . 16
3.1.4 Minimal example . 18
3.1.5 Coding standards . 18
3.1.6 Contribution mechanics . 20

3.2 Master Thesis Project Funding . 21
3.3 Analysis of the copying process with a tunable problem 21

4 Experimental Results and Discussion 27
4.1 Original Models . 27
4.2 Copies as a function of class overlap (distance between classes) 28
4.3 Copies as a function of dimensionality 28
4.4 Copies as a function of the number of samples 30
4.5 Copies as a function of model combinations 32
4.6 Copies as a function of the sampling strategy 34

4.6.1 Differences between the sampling strategies 34
4.6.2 Differences between the copies with different samplers 35

5 Conclusions 37

A Source Code 39

Bibliography 41

3

Chapter 1

Introduction

1.1 Motivation

Data science has experienced a boom in recent years which has made it widely pop-
ular and even fashionable. Companies, governments, media, and even the general
public... everyone wants to do data science now. Such popularity has been followed
by an explosion of available teaching materials, resources and tools which have de-
mocratized its practice by individuals or organisations with limited resources and
has facilitated a large pool of self-taught professionals.

However, it has been suggested theoretically that “the reliability of findings pub-
lished in the scientific literature decreases with the popularity of a research field”,
and a number of authors have provided with empirical evidence supporting this
claim [1–3]. Data science is not an exception to this problem, neither in the academic
nor the corporate environments, something which has been reflected by growing
concerns in the specialized literature [4].

Proper model evaluation is an essential step that is often skipped through, espe-
cially by more inexperienced practitioners or those lacking a solid base in the disci-
pline, but surprisingly also in other environments. As long as the model provides
an answer, that is enough. However, accountability is a very important aspect of
data science practice and, even assuming no wrongdoing, a lack of thorough un-
derstanding of the model’s behaviour can lead to extremely damaging social, eco-
nomical or personal consequences. Lack of transparency, privacy safeguards, ro-
bustness, reusability or fairness, just to name a few, are omnipresent problems in the
application of machine learning solutions, and there is still a limited availability of
resources that allow to mitigate such shortcomings. Hence, developing methodolo-
gies and tools which allow for advanced model evaluation and mitigation strategies
is clearly of great interest in the field.

One of such methodologies recently developed is Machine Learning Classifiers
Copying, which allows us to build a new model that replicates the decision be-
haviour of an existing one without the need of knowing its architecture nor having
access to the original training data [5–9]. Among the myriad of potential applications
of Machine Learning Classifier Copying, a systematic construction and examination
of model copies has the potential to be an universally accessible and inexpensive
approach to study and evaluate a rich variety of original models, and to help under-
stand their behavior. A suitable copy allows to audit the already deployed model,
mitigate its shortcomings, and even introduce improvements, without the need to
build a new model from scratch, which would require access to the original data,
often too expensive or simply impossible. However, Machine Learning Classifier
Copying is currently still under active research efforts and has not permeated yet
from the academic domain into the general public.

4 Chapter 1. Introduction

The Mozilla Foundation has focused its activism in the recent years on campaign-
ing for trustworthy AI, a broad term that also includes Machine Learning. Part of
these efforts are the publication of a white paper on how to build Trustworthy AI,
in order to encourage best practices in the industry [10], and another part has been
the development of free software tools based in AI technologies and that comply
with certain ethical standards. One of the toolkits being developed, PRESC or Per-
formance and Robustness Evaluation for Statistical Classifiers, aims to provide eval-
uation tools for machine learning classifiers beyond the standard accuracy-based
methods. Developing those tools as free software is not inconsequential. Apart from
the enhanced security and accountability, it facilitates a universal access to advanced
methodologies that would be otherwise reserved to a few.

1.2 Objectives

One of the main goals of this work is to contribute to the technology transfer of
Machine Learning Classifier Copying, which is still being researched and used only
in an academic environment, to the general public, and help make this technology
accessible and universally available not only to other researchers but also to all data
science practitioners.

Another important goal is to explore the application of the implementation of
this technique in order to better understand the copying process from an academic
point of view, and to determine how different characteristics both of the original
problem and of the copying procedure affect the fidelity and the performance of the
copy.

1.3 Contributions

In this work, an implementation of Machine Learning Classifier Copying has been
contributed to the PRESC project, covering the whole pipeline in a modular way
and with a number of possible options, so that this tool becomes readily accessible
to researchers and practitioners as is but can also be easily extended. The solution
provides a model agnostic sampling strategy and an automated copy process for a
number of fundamentally different hypothesis spaces, so that the set of achievable
copy-model-fidelity measures can be used as a diagnostic measure of the original
model characteristics. Among other basic samplers, a spherical sampler which en-
sures balanced datasets for the copies and not previously mentioned in the literature
was also implemented.

To ensure the long-term availability and sustainability of this work, it has been
carried out following the free software development methodology and coding prac-
tices, and complying with certain code quality standards. This includes an emphasis
on code readability and testing to facilitate reviewing and maintenance, in the form
of thorough documentation and a collection of unit tests that accompany the code.

Additionally, in order to better understand the copying process, a systematic ex-
ploration of the effect on the performance and fidelity of the copy for different prob-
lems and copy parameters has been carried out (class separation and dimensionality
of the problem, type of original model, choice of model for the copy, choice of sam-
pler, and number of synthetic samples generated). A complex synthetic problem
generator with tunable parameters has been implemented and used to prepare the
datasets for the analysis, so that different degrees and also flavours of complexity
could be easily adjusted before performing the copies.

1.4. Layout 5

1.4 Layout

The structure of this report is as follows: First, it begins with an introduction, where
the motivation of this work, the objectives, and the contributions are explained.
Then, a summary of the theoretical background to Machine Learning Classifiers
Copying is provided, in order to have a solid foundation to develop the rest of
the work. Afterwards, a proposal chapter to explain the methodologies that have
been followed is included, with special emphasis on the Machine Learning Clas-
sifier Copying implementation and the contribution methodology in free software.
This is followed by an experimental chapter detailing the exploration of all the intri-
cacies of a tunable synthetic problem carried out using this implementation, and the
results of that exploration. Then, there is a summary of the conclusions. And, finally,
an appendix explaining where to find the source code and supplementary materials,
and the bibliography.

7

Chapter 2

Background

2.1 Machine Learning Classifier Copies

Machine learning classifier copying allows us to build a new model that replicates
the decision behaviour of an existing one while including the possibility of adding
new features, such as interpretability, online learning or equity, under the assump-
tions that the original training data is unknown or lost, access to the model is limited
to a membership query interface (i.e., its internal architecture is not known), and that
the query interface only produces hard predictions. This corresponds to a black box
model scenario where distillation is conducted without the original data [5].

Simultaneous optimization of the synthetic data and the copy parameters re-
quires online updating of the hypothesis space, among other properties. Hence,
only the simplest optimization approach, the single-pass copy, is discussed by Un-
ceta, Nin, and Pujol [5]. In this simpler case, the steps to carry out the classifier
copying can be split in two main groups, generating the synthetic data and building
the copy:

1. Define the range of interest of the features (it is necessary to have a notion of
the dynamic range of all features).

2. Generate random data in the feature space. The distribution will depend on
the particular problem and the sampling approach.

3. Label this synthetic data using the prediction results from queries to the origi-
nal model.

4. Choose a hypothesis space for the copy model according to the goals of each
particular case and its desired capacity.

FIGURE 2.1: Example of a single-pass copy. The general assumption
is that we have no access to the original data nor model characteristics
(grey box), but we can generate new unlabelled data and use the orig-
inal model to label it through a query interface. The generated data
can then be used to train a copy model that reproduces the decision
boundary of the original, albeit with additional properties of interest

or incorporating some improvement. From Ref. [5].

8 Chapter 2. Background

FIGURE 2.2: Original model and projection in a new hypothesis
space. The projection closest to the original model is considered to

be the optimal. From Ref. [8].

5. Train the copy model with the generated data.

2.2 Theoretical principles

The process of copying can be interpreted as projecting the original decision function
fO from its hypothesis space HO into a chosen new hypothesis space HC that the
copy decision function fC belongs to (see Figure 2.2) [5].

We want to obtain a copy fC with the same predictive distribution for new data
P (y∗| fO, x∗) as the original decision function fO, where x∗ is the new data points
input, and y∗ their label.

To determine the predictive distribution of this decision function we marginalise
with respect to the model copy parameters θ, i.e., we add the individual probability
contributions of each possible value of the parameters:

P (y∗| fO, x∗) =
∫

θ∈HC

P (y∗|θ, fO, x∗) P (θ| fO, x∗) dθ (2.1)

Then we make two basic assumptions:

• P (θ| fO, x∗) = P (θ| fO), because data about the unseen point x∗ is not avail-
able.

• P (y∗|θ, fO, x∗) = P (y∗|θ, x∗), because interaction with the classifier fO is no
longer required once the copy is built and the θ values are fixed.

If we introduce these two assumptions in Equation 2.1 and force the posterior
to have the form P (θ| fO) = δ(θ − θ∗), i.e., that all probability mass is due to the
θ∗ contribution, corresponding to the optimal values of the model parameters, we
obtain:

P (y∗| fO, x∗) = P (y∗|θ∗, x∗) (2.2)

Hence, to make a classifier copy, the optimal model parameters that maximize
the posterior probability have to be found:

θ∗ = arg max
θ

P (θ| fO) (2.3)

2.3. Evaluation 9

Unfortunately, this maximization cannot be conditioned to fO, but we can intro-
duce a set of synthetic data z in a domain Z and then maximize:∫

z∈Z
P (θ|z) dz (2.4)

However, the usual trainig algorithms are not the most adequate to carry out
classifier copies, because they normally have built-in strategies to avoid overfitting
and, in the case of classifier copying, the problem will be separable by construction
so we may in fact be trying to induce certain type of overfitting, and these mecha-
nisms might prevent us from obtaining the identical boundary that we seek.

2.3 Evaluation

The fidelity error captures the loss of copying, and in its general form is the prob-
ability that the copy resembles the model. It evaluates the disagreement between
fO and fC through the percentage error of the copy over a given set of data points,
taking the predictions of the original model as ground truth [7]. In the case of the
0/1 loss over the generated dataset Z , the empirical fidelity error can be written as

RF ,Z
emp =

1
N

N

∑
j=1

I
[

fO(zj) 6= fC(zj)
]

(2.5)

where N is the number of samples and zj are the generated data points.
Since the synthetic dataset is always separable, it is always possible to achieve

zero empirical error, given we choose a copy model with enough capacity. And
since it is theoretically possible to generate an infinite amount of synthetic data, the
generalization error can asymptotically also be reduced to zero. Hence, copying can
be in theory carried out without any loss. In practice, however, the generated dataset
is invariably finite.

A low empirical fidelity error does not guarantee a good copy. In addition to
that, the generated dataset must ensure a good coverage of the input space, and any
volume imbalance effect needs to be accounted for as well.

The copy accuracy metric is introduced to evaluate the generalization perfor-
mance of the copy. In the ideal case, the fidelity error is zero and the accuracy of
the copy is the same as that of the original classifier. The copy will be of higher
quality when it mimics the orginal model exactly, including its misclassifications.
When performing a copy, we do not aim for an improvement of the original model
performace, but to obtain the exact same behavior.

The choice of copy hypothesis can have a major influence on the performance, if
there is a mismatch between the capacity of the original model and the capacity of
the copy, this may yield a large capacity error and poor performance results [5].

2.4 Sampling

Since the general assumption is that the original training data is not accessible, new
data must be generated in order to solve Equation 2.3 and find the parameters of the
copy that maximize the posterior probability [5].

10 Chapter 2. Background

In the general case, the distribution of this generated data does not have to match
the original training data, and the choice of an adequate distribution can be challeng-
ing.

In the particular case that we do have access to the distribution of the original
training data, it is desirable to generate the new data with the same distribution,
to ensure that the copy replicates the behavior of the original classifier, especially
where the training data lies.

Since our goal is to replicate the boundaries of the original classifier it is good to
have a good coverage of those regions. However, it is common that the boundary
between the classes lies far from the maximum peaks of their distributions, in min-
ima between them, which is an area that with the original distribution would have
little amount of samples.

Another challenge when generating the synthetic dataset is volume imbalance
between the regions occupied by each class, because the empirical fidelity error de-
pends on the fraction occupied by each volume. This problem can be mitigated
through an appropriate choice of the generated data distribution or imposing a bal-
anced result to the final dataset.

Unceta et al. [7] have tackled the sampling problem in the context of machine
learning classifier copies, where they explored and evaluated the strengths and weak-
nesses of several sampling strategies:

• General random distribution

• Boundary exploration: Uniform exploration until a point from a different class
is found, then exploration of the line between the last two samples to find the
boundary, which stops when points from the two classes are closer than a cer-
tain tolerance, then select a random direction to explore at constant steps, and
repeat the process. Half the samples were generated using random sampling.
Performs well for linear problems. It is also a good compromise between time
and accuracy for problems with many dimensions.

• Bayesian-based optimizer: The optimization function corresponds to a ran-
dom process with a term that tends to explore areas with a larger variance
(most unexplored areas), and another term that tends to explore areas with
class transitions (near boundaries). This method has a high computational cost
due to the estimation of the mean and the covariance matrix. Hence, to over-
come this problem, a faster approach was proposed which limits the number
of samples used in this calculation to b, although it is also less accurate. This
method yielded the best performance for fewer points. If the computational
cost is not a determining factor, then Bayesian sampling yields the most reli-
able exploration of the space.

• Modified version of the Jacobian-based Dataset Augmentation approach pro-
posed by Papernot et al. [11]: This method generates linear structures with a
large number of samples and, hence, it has a larger uncertainty.

• Random sampling: The main advantage is that it samples across the space
with equal probability but, for the same reason, it is indifferent to the structures
of interest (i.e., the shape of the decision boundaries). It is also quite fast due
to its low computational cost. This approach works well for decision trees.
It also works best for a majority of problems when a large number of points
are sampled. It does not work so well for problems with a large number of
dimensions where the space can not be sampled exhaustively.

2.4. Sampling 11

FIGURE 2.3: (a) Training dataset and (b) decision boundary learned
by an SVM with a radial basis function kernel. Synthetic datasets
of sizes 50, 250 and 1000 generated using (c) Random sampling,
(d) Boundary sampling, (e) Fast Bayesian sampling, (f) reoptimized
Bayesian sampling and (g) adapted Jacobian sampling. From Ref. [7].

13

Chapter 3

Methods and Proposal

3.1 Implementation of Machine Learning Classifier Copies

3.1.1 The PRESC model evaluation package

PRESC (Performance and Robustness Evaluation for Statistical Classifiers) is an al-
ready existing free and open-source software tool intended to be used by engineers
for the evaluation of machine learning classifiers when developing or updating the
models. It aims to provide additional performance insights beyond the standard
accuracy-based measures, in particular about its generalizability to previously un-
seen data, sensitivity to error and small changes in the methodology, performance
for subsets of the feature space, misclassification analysis and distribution [12, 13].

The package has been implemented in Python and is maintained by the Data Sci-
ence team at Mozilla, although it receives contributions from the free software com-
munity worldwide. It has a free software Mozilla Public License, which means that
the package can be distributed, modified, used commercially, and used for patenting
or private uses, as long as the source is disclosed, a license and copyright notice are
included, and the same license is used for any derivative material.

3.1.2 Outline of the contribution

Figure 3.1 shows a scheme of the Machine Learning Classifier Copying package that
was contributed to Mozilla’s free software project PRESC. Apart from implementing
the copying pipeline and a number of basic samplers and options, there are two im-
plemented features of the package that must be specially mentioned: the Spherical
Balancer Sampler and the Multidimensional Multiclass Gaussian Problem Generator
algorithm (see Figure 3.1).

Copying pipeline

To carry out the copy, the ClassifierCopy class needs two inputs: the original clas-
sifier to copy and, depending on the sampler, a dictionary with basic descriptors of
the features. Right now the package assumes that we have the classifier saved as a
sklearn-type model. The original data is not necessary to perform the copy but, if
available, the "dynamic_range" function can conveniently extract the basic descrip-
tors of its features into a dictionary. In this case, the data should be available as
a pandas DataFrame. Otherwise, the dictionary with the basic feature descriptors
can always be built manually. Even if we don’t have access to the original data or
detailed information of the features, we need at least to be able to make a guess or
some assumptions about them.

When instantiating the ClassifierCopy class, an instance of a sklearn-type model
to build the copy must also be specified, as well as the choice of sampling function

14 Chapter 3. Methods and Proposal

F
IG

U
R

E
3.1:Schem

e
ofthe

M
achine

Learning
C

lassifier
C

opying
Package.

3.1. Implementation of Machine Learning Classifier Copies 15

and its options. The necessary feature descriptors for the sampler can be the maxi-
mum and minimum values that the features can take, like in the case of the grid and
uniform samplers, the mean and standard deviation of each feature, such as in the
normal sampler, or an overall minimum and maximum single value common to all
features, as in the case of the spherical balancer sampler.

The "copy_classifier" method will generate synthetic data in the feature space us-
ing the sampling function and options specified on instantiation, will label it using
the original classifier, and then will use it to train the desired copy model. The gen-
erated synthetic training data can be saved in this step if needed but it can also be
recovered later using the "generate_synthetic_data" method simply using the same
random seed.

After the copy has been obtained, an evaluation of the copy can be carried out
using the "compute_fidelity_error" and the "replacement_capability" methods. The
evaluation methods need data with which to perform the evaluation, so an unla-
beled array-like parameter should be specified when calling them. If original test
data is available, it can be used as a test for the copy evaluation. Otherwise, syn-
thetic test data can be generated with the "generate_synthetic_data" method simply
using another random seed. However, interpretation of the results will of course
have a different meaning than with the original test data.

The package has been built in a modular manner so that it allows users or other
developers to expand it further with their own sampling or evaluation functions.
However, further analysis of the copy model can always be performed outside of
the package simply by querying the copy model.

Spherical Balancer Sampling

The Spherical Balancer Sampling generates synthetic random samples within a sphere
(or a spherical shell) centered at the origin of the feature space. It labels them using
the original classifier, and then checks whether the number of samples for each class
has achieved a certain predefined objective. If that objective hasn’t been met for all
the classes, it generates another batch of additional synthetic samples recursively
until it succeeds, or until it reaches the allowed number of maximum iterations.

Therefore, this sampler has the advantage that it yields balanced synthetic datasets,
which may be critical to train a successful copy for certain problems or combinations
of original and copy models. Another advantage of this sampling function is that al-
most no information about the features must be provided. Only two single values
for the inner and the outer radius to be sampled need to be specified. However this
sampling only makes sense for standardized datasets where all the features have
been rescaled and concentrate near the origin.

The Multidimensional Multiclass Gaussian Distribution Problem

In order to investigate the copying process and how it gets affected when different
classes overlap or when the number of features is increased, a synthetic problem
generator was implemented. In this problem each class is represented by a Gaussian
distribution in a multidimensional feature space. The randomized distance between
the centers of the Gaussian distributions of the classes, and the number of features
of the dataset can be increased or decreased at will.

16 Chapter 3. Methods and Proposal

How is the problem generated?

1. A multidimensional Gaussian distribution is generated for the first class cen-
tered at the origin and with the standard deviation between the two scaling
parameters.

2. For each additional class, a unit vector is generated in a random direction, and
then it is multiplied by a random value between the two center parameters.
This determines where the mean of the Gaussian distribution is located for
that class.

3. A Gaussian distribution is generated with the mean at that point for the second
class and then scaled to a random standard deviation between the two scaling
parameters.

4. The same procedure is repeated to generate all the additional classes in the
problem.

3.1.3 Functions and classes in the ML Classifier Copies package

presc.copies.examples.multiclass_gaussians

This function generates a multidimensional Gaussian dataset with multiple classes
that can be used as a standardized synthetic classification problem with a specific
chosen complexity. It first generates a multidimensional normal distribution cen-
tered at the origin with standard deviation one for class zero, and then adds an
additional Gaussian distribution per class, centered at a random distance within a
chosen interval, and with random standard deviation also within a chosen interval.
The number of features/dimensions, the number of classes, and the number of data
points per class are function parameters.

presc.copies.sampling.dynamical_range

This function returns the minimum, maximum, mean, and standard deviation of
each feature in the dataset in a specific dictionary format that can be used as param-
eters across the different sampling functions.

presc.copies.sampling.grid_sampling

This sampling function generates synthetic samples with a regular grid-like distri-
bution within the feature space described by the minimum and maximum values of
the dynamic ranges of the features. It computes the grid spacing so that all features
have the same number of different values.

presc.copies.sampling.uniform_sampling

This sampling function generates synthetic samples with a random uniform distri-
bution within the feature space described by the minimum and maximum values of
the dynamic ranges of the features.

presc.copies.sampling.normal_sampling

This sampling function generates synthetic samples with a normal distribution ac-
cording to the feature space described by the provided mean and sigma values of
the features. Features are assumed to be independent (that is, not correlated).

3.1. Implementation of Machine Learning Classifier Copies 17

presc.copies.sampling.spherical_balancer_sampling

This sampling function generates synthetic samples with a spherical (shell) distribu-
tion between a minimum and a maximum radius values and then labels them using
the original classifier. This function will attempt to obtain a balanced dataset by ran-
domly generating samples but keeping only the necessary ones until it has the same
number of samples specified for all classes, unless it stops earlier due to reaching the
maximum number of iterations.

presc.copies.sampling.labeling

This function labels the samples from an unlabeled dataset which only contains the
features, by querying an already trained classifier.

presc.copies.evaluations.empirical_fidelity_error

Computes the empirical fidelity error of a classifier copy, which quantifies the re-
semblance of the copy to the original classifier. The goal is that the copy mimics the
original as closely as possible, including misclassifications. When the copy makes
exactly the same predictions than the original classifier we have a perfect copy and
this value is zero.

presc.copies.copying.ClassifierCopy

This class represents a classifier copy and its associated sampling method of choice.
Each instance wraps the original ML classifier with a ML classifier copy and the spec-
ified sampling method to carry out the copy, including both the sampling function
and any number of parameters.

presc.copies.copying.ClassifierCopy.copy_classifier

This ClassifierCopy class method allow to carry out the copy the original classifier
by using data generated with the original model. It generates synthetic data using
only basic information of the features (dynamic range, or mean and sigma), labels
the data using the original model, and trains the copy model with this synthetic data.

presc.copies.copying.ClassifierCopy.generate_synthetic_data

This ClassifierCopy class method allows to generate additional synthetic data from
the original model using the specified sampling method on instantiation and basic
information of the features (dynamic range, or mean and sigma), including the train
or test data for subsequent classifier copies.

presc.copies.copying.ClassifierCopy.compute_fidelity_error

This ClassifierCopy class method computes the empirical fidelity error of the clas-
sifier copy to evaluate the quality of the copy, quantifying the resemblance of the
copy to the original classifier with respect to any dataset. This value is zero when
the copy makes exactly the same predictions than the original classifier (including
misclassifications).

18 Chapter 3. Methods and Proposal

3.1.4 Minimal example

Let’s assume we have a labeled dataset in the PRESC format describing a certain
classification problem, and that we use it at some point to train an original classifier
model from it. This is in principle an independent process that has been carried out
previously to the copying:

from sklearn.svm import SVC

Instantiate and fit SVC classifier
original_classifier = SVC(kernel=’linear’)
original_classifier.fit(dataset.features, dataset.labels)

CODE 3.1: Fit original model.

Depending on the sampling that we use for the copy we may need to make some
assumptions on the data distribution. We can introduce those assumptions manu-
ally in the "feature_parameters" options or, for convenience, if we have access to the
original dataset, we can extract them in the appropriate format with the function
"dynamical_range":

from presc.copies.sampling import dynamical_range

Extract maximum and minimum values of the features
feature_range = dynamical_range(dataset.features)

CODE 3.2: Extract feature parameters from the distribution.

Assuming we have a trained classifier, and know the options to introduce to the
sampling function, we can simply copy the model by instantiating the "Classifier-
Copy" class with all the necessary parameters, including the type of model to use as
a copy, and then running the "copy_classifier" method, such as in the code shown
below:

from sklearn.tree import DecisionTreeClassifier
from presc.copies.copying import ClassifierCopy
from presc.copies.sampling import grid_sampling

Instantiate and copy original model to a decision tree classifier
classifier_copy = DecisionTreeClassifier()
copy_grid = ClassifierCopy(original_classifier, classifier_copy,

grid_sampling, nsamples=200, random_state=42,
feature_parameters=feature_range)

copy_grid.copy_classifier()

CODE 3.3: Classifier copying

3.1.5 Coding standards

Coding standards are especially important to maintain and develop open-source
projects due to their highly collaborative nature. It is common to have random col-
laborators and users with whom the maintainers of the project may never commu-
nicate, so everything must be extremely clear and self explanatory. Additionally, it

3.1. Implementation of Machine Learning Classifier Copies 19

must be prevented that a meaningless difference in coding style between two ver-
sions of the code such a space or an empty line triggers an unnecessary review, so
formatting must be homogenized as much as possible.

Code submitted to the PRESC project must adhere to certain style and standards,
before it is considered for incorporation to the main branch of the code. Addition-
ally, code must also be globally optimized to minimize dependencies, and reuse of
already incorporated code must be prioritized before other solutions, as much as
possible.

Code style and formatting

Maintaining a unified code style and formatting is very important for collaborative
projects to ensure code clarity and readability, and facilitate its long term mainte-
nance. This is especially pertinent in open-source software projects, which may have
multiple contributors from different backgrounds.

Contributions to the PRESC code must adhere to the Python Black style [14] and
Flake8 [15], which is in fact a wrapper for three lint enforcers: PyFlakes, pycodestyle,
and Ned Batchelder’s McCabe script.

Adherence to Black and Flake8 is checked locally in each developer’s computer
in an automated way before every new commit, so that new contributions that do
not follow the code style cannot even be commited. Black reformats and changes the
code so that it complies with the style. Flake8 carries out a check and points out at
discrepancies, but the code needs to be modified manually.

Docstrings

In general all code should have proper documentation in the form of embedded
inline comments, as well as higher level general documentation. However, a struc-
tured and specifically formatted comment block has the advantage of being easily
parsed, so the text can be manipulated and combined together on a desired template
in a straight-forward manner. This functionality is built into the Python language in
the form of docstrings.

All code entities (functions, classes, etc) in the PRESC code must include their
own docstring, which is a documentation string associated to the entity. Incorporat-
ing the basic documentation embedded in the code allows to automate a large part
of the code documentation and generate it automatically after every version update,
which helps prevent mismatches that otherwise occur frequently in other projects
between the latest code version and outdated documentation that gets updated in a
separate step.

The docstrings must contain:

1. A short description or summary in a single line.

2. If necessary, one or more paragraphs with a longer description or other expla-
nations.

3. A list describing the parameters (in the case of functions) or attributes (in the
case of classes), with their type, usage, etc.

4. A list describing the return values.

These docstrings are automatically converted to formatted documentation pages
using Sphinx [16].

20 Chapter 3. Methods and Proposal

Testing

The development policy in PRESC also complies with unit testing by means of
Pytest [17], so all entities (functions, classes, etc) submitted in the code must also
have their associated unit test which checks its basic functionalities and expected
outcomes.

This collection of tests is kept together with the code and is run in full auto-
matically for every commit and pull request. Such testing is carried out using Con-
tinouous Integration (CI) linked to PRESC’s public repository, so that there are at
least some assurances that new code additions do not break previously established
functionality. That the code passes the unit test collection is verified before the code
is even considered for manual revision by other developers.

Usage examples

PRESC contribution guidelines also recommend to provide a Jupyter Notebook ex-
ample demonstrating the usage with a real world dataset of any new code.

3.1.6 Contribution mechanics

Like most free software developed collaboratively, PRESC has a public repository
with a distributed version control system (in this case, Git [18]) that allows to coor-
dinate work among programmers [13]. The project’s tasks and code discussions are
also handled there through Github’s issue tracker. As usual in free software projects,
in order to contribute developers must follow a specific methodology and protocol:

1. Fork the original repository to work in their own version (this was indeed the
case here, where the author forked the PRESC repository [19]).

2. Set up the local environment with the required dependencies.

3. Create a local branch to develop each specific feature or set of modifications,
and add the desired code there.

4. Make sure the contributed code complies with the coding standards, such as
style and formatting, and that it includes the required docstrings and that they
have been updated as necessary.

5. Add or update unit tests to check that basic features of the code work as ex-
pected.

6. Add or update usage examples of the code in the form of Jupyter notebooks.

7. When the modifications are ready, a pull request explaining all the changes
must be submitted against the desired branch of the main software repository.
Normally, new features are not added to the main development branch of the
original repository, but are incorporated into a separated specific branch in-
stead until the next version release of the software. This is the case here, where
each set of code modifications has been developed in a different branch of the
author’s fork of the PRESC repository, and then a pull request was submitted
against the model-copying branch of the original repository, where the Classi-
fier Copies Package is being developed.

3.2. Master Thesis Project Funding 21

8. Next, a number of automated processes are run in the main repository to en-
sure that the pull request complies with code style and that it passes all existing
unit tests.

9. One or more human reviewers examines the proposed code and suggests changes
if necessary.

10. Depending on the complexity of the code and the suggested changes, this can
be an iterative process of back and forth discussions between the developer
and the repository maintainers until the result is satisfactory.

11. The code is merged into the development branch of the feature and, eventually,
when this is finished, the feature branch is merged into the main branch of
the original repository and the code becomes part of the stable version of the
software.

3.2 Master Thesis Project Funding

Although free software is often built by volunteer developers donating their time,
it is sometimes necessary to obtain funding in order to ensure specific parts get de-
veloped. Public funds from the EU, individual countries, and local governments, or
from organisations and NGOs are allocated to free software development, due to its
contribution to the common good (see campaign "Public Money, Public Code" [20]).
But many big and small private companies are also interested in investing their re-
sources in free software development.

Academic research projects also require participation in competitive processes
with proposal submission in order to secure the necessary funding. Therefore, fund-
ing for the development of this work was also sought by this master student as
part of the Master Thesis efforts. A project proposal was submitted to the NLNet
Foundation, and funding was successfully secured within the context of the Next
Generation Internet Zero Discovery Fund [21].

3.3 Analysis of the copying process with a tunable problem

Once the copying pipeline has been implemented, it is interesting to explore the ap-
plication of the technique, and to delve into exploring the copying process to better
understand how the different parameters both of the original problem and of the
copying process affect the quality of the copy.

Some interesting questions that emerge and that we would like to answer are:
How is the quality of the copy affected as we increase the overlap between the classes
in the original problem? And if we increase the dimensionality of the problem?
What role does the size of the synthetic dataset play? What is the effect of different
samplings? In particular, samplings that yield balanced synthetic datasets to train
the copy model? And how does the choice of the original and copy model family
affect the quality of the copy?

For this exploration we want to use a synthetic problem generator with tunable
parameters so that we have a set of controlled experiments. As mentioned in section
3.1.2, an algorithm to generate multiclass multidimensional Gaussian distributions
has also been implemented as part of the package ("multiclass_gaussians"). We have
used this generator to prepare two collections of datasets for analysis so that the

22 Chapter 3. Methods and Proposal

different degrees and also flavours of complexity could be easily adjusted before
performing the copies.

In the collection of multiclass separation experiments generated to study the ef-
fect of the class overlap, we have 5 features and 20 classes, where each class is a
multidimensional Gaussian distribution with a standard deviation of 1 and with the
center located in a random direction and distance from the center. For all problems
the random distance to the center is taken from an interval that has a minimum value
of 2, but the maximum distance takes these 11 different values: 2.0, 2.8, 3.6, 4.4, 5.2,
6.0, 6.8, 7.6, 8.4, 9.2, and 10.0 (see Code 3.4. As we increase the maximum distance
the classes are more dispersed and become more easily separable (see Figure 3.2).

from presc.copies.examples import multiclass_gaussians

nproblems=11
original_datasets = [None]*nproblems
for problem in range(nproblems):

maximum_distance = 2+(8*problem/(nproblems-1))
original_datasets[problem] = multiclass_gaussians(nsamples=20000,

nfeatures=5, nclasses=20, center_low=2,
center_high=maximum_distance,
scale_low=1, scale_high=1)

CODE 3.4: Generate class overlap problem series.

Figure 3.2 shows data obtained with the Multidimensional Multiclass Gaussian
Distribution Problem Generator using as options 5 features, 20 classes with standard
deviation 1, and an interval for the centers of the additional distributions between 2
and 10, 2 and 6, and 2 and 2, respectively. As can be seen, classes are reasonably sep-
arated in the feature projections for the largest maximum distance but reducing this
interval progressively forces the centers of the Gaussian distributions to be closer to
the origin and, hence, they become more overlapped.

In the collection of multiclass separation experiments generated to study the ef-
fect of increasing the dimensionality of the problem, the number of features take
the 11 different values 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, and 105. For all problems
we have 20 classes and each class has a standard deviation of 1 and has the center
located in a random direction and distance from the center with a minimum of 2 and
a maximum of 10 (see Code 3.5). Since the maximum distance to the center of the
feature space is constant, as we increase the dimensions there are contributions from
more features and in average each feature contributes less. Hence, the classes are
more overlapped in the individual feature projections as dimensions increase (see
Figure 3.3).

3.3. Analysis of the copying process with a tunable problem 23

FI
G

U
R

E
3.

2:
D

at
a

ob
ta

in
ed

w
it

h
th

e
M

ul
ti

di
m

en
si

on
al

M
ul

ti
cl

as
s

G
au

ss
ia

n
D

is
tr

ib
ut

io
n

Pr
ob

le
m

G
en

er
at

or
us

in
g

as
op

ti
on

s
5

fe
at

ur
es

,
20

cl
as

se
s

w
it

h
st

an
da

rd
de

vi
at

io
n

1,
an

d
an

in
te

rv
al

fo
r

th
e

ce
nt

er
s

of
th

e
ad

di
ti

on
al

di
st

ri
bu

ti
on

s
be

tw
ee

n
2

an
d

10
,2

an
d

6,
an

d
2

an
d

2,
re

sp
ec

ti
ve

ly
.A

s
ca

n
be

se
en

,c
la

ss
es

ar
e

re
as

on
ab

ly
se

pa
ra

te
d

in
th

e
fe

at
ur

e
pr

oj
ec

ti
on

s
fo

r
th

e
la

rg
es

tm
ax

im
um

di
st

an
ce

bu
tg

et
pr

og
re

ss
iv

el
y

ov
er

la
pp

ed
fo

r
th

e
sm

al
le

st
on

e.

24 Chapter 3. Methods and Proposal

F
IG

U
R

E
3.3:D

ata
obtained

w
ith

the
M

ultidim
ensionalM

ulticlass
G

aussian
D

istribution
Problem

G
enerator

using
as

options
5,12

and
50

features,respectively,although
in

allcases
only

the
firstfive

have
been

represented.The
restofthe

problem
param

eters
are

20
classes

w
ith

standard
deviation

1,and
an

intervalfor
the

centers
ofthe

additionaldistributions
betw

een
2

and
10.

A
s

can
be

seen,classes
are

here
reasonably

separated
in

the
feature

projections
for

low
er

dim
ensions

but
get

progressively
clum

ped
together

as
the

dim
ensions

increase.

3.3. Analysis of the copying process with a tunable problem 25

from presc.copies.examples import multiclass_gaussians

nproblems=11
original_datasets = [None]*nproblems
for problem in range(nproblems):

nfeatures = 5+int(100*(problem/(nproblems-1)))
original_datasets[problem] = multiclass_gaussians(nsamples=20000,

nfeatures=nfeatures, nclasses=20,
center_low=2, center_high=10,
scale_low=1, scale_high=1)

CODE 3.5: Generate dimensional problem series.

With each one of these 22 problems of 20.000 samples we have performed a large
variety of classifier copies to explore the effect of different copy parameters:

Model combinations We have chosen three combinations of original/copy model
pairs: from linear SVC to linear SVC, to study the case when the destination
model is from the same family as the original model, and from a linear SVC to
a decision tree classifier and vice versa, to study the case when the two mod-
els are from very different families and also whether this process has a cer-
tain symmetry. We have used the scikit-learn models "sklearn.svm.SVC" and
"sklearn.tree.DecisionTreeClassifier" with one set of default parameters for all
the models from the Linear SVC family and another set of parameters for the
models from the Decision Tree Classifier family (see Code 3.6 and 3.7).

IN: original_SVC_classifiers[0].get_params()
OUT: {’C’: 1.0,
’break_ties’: False,
’cache_size’: 200,
’class_weight’: None,
’coef0’: 0.0,
’decision_function_shape’: ’ovo’,
’degree’: 3,
’gamma’: ’scale’,
’kernel’: ’linear’,
’max_iter’: -1,
’probability’: False,
’random_state’: None,
’shrinking’: True,
’tol’: 0.001,
’verbose’: False}

CODE 3.6: Parameters of the Linear SVC models.

26 Chapter 3. Methods and Proposal

IN: original_tree_classifiers[0].get_params()
OUT: {’ccp_alpha’: 0.0,
’class_weight’: None,
’criterion’: ’gini’,
’max_depth’: None,
’max_features’: None,
’max_leaf_nodes’: None,
’min_impurity_decrease’: 0.0,
’min_impurity_split’: None,
’min_samples_leaf’: 1,
’min_samples_split’: 2,
’min_weight_fraction_leaf’: 0.0,
’random_state’: None,
’splitter’: ’best’}

CODE 3.7: Parameters of the Decision Tree Classifier models.

Sampling function We have made the classifier copies using two different methods
to generate the training synthetic datasets: the normal sampler and the spher-
ical balancer sampler. The normal sampler assumes a Gaussian distribution
for each feature with the mean and standard deviation specified in the feature
descriptors, not correlated among them, and generates values from a multi-
dimensional Gaussian distribution. The spherical balancer sampler generates
random samples within a sphere centered at the origin of the feature space
(see 3.1.2 for more details). The main difference is that the latter generates a
balanced training synthetic dataset.

Number of samples For the copies carried out with the normal sampler we have
generated 1.000, 10.000 and 100.000 synthetic samples, and for the spherical
balancer sampler we have generated 1.000, 2.000, and 3.000 samples. Although
there is no theoretical hard limit on the number of samples that can be gener-
ated for the copy, there may be a practical limitation depending on the effi-
ciency of the sampler. The spherical balancer sampler was more computation-
ally expensive than the normal sampler and is the reason why we generated
a lower volume of samples for the latter. Therefore, it is interesting to analyse
the smallest synthetic dataset size that allows to obtain a good quality copy.
We expect this to also depend on the model pair.

Therefore, we have prepared the quantity of 11 · 2 · 2 = 44 original models and
carried out a total of (11 + 11) · 3 · 2 · 3 = 396 classifier copies.

We have analysed the accuracy of the original models as well as the accuracy of
all these copies, to check for the performance of both and see how it changes. We
also also analyze the Empirical Fidelity Error (see Equation 2.5), in order to quantify
the goodness of the copies. The copy will be of higher quality when it mimics the
original model exactly, including its misclassifications. When performing a copy, we
do not aim for an improvement of the original model performance, but to obtain the
exact same behavior.

Another very useful metric, that we can call Replacement Capability, is simply to
take the ratio between the copy model accuracy with respect to the original model
accuracy. This allows to evaluate the performance of the copy with respect to the
original model, which can have a high value even if the performance of the original
model is not very good. And it can even take values larger than one if the copy
model is better than the original.

27

Chapter 4

Experimental Results and
Discussion

All the code corresponding to the calculation of the results shown in this chapter can
be found in the two Jupyter notebooks in the author’s repository [19].

4.1 Original Models

Each of the 22 generated problems was fitted with two original models: one from
the Linear SVC family and another from the Decision Tree Classifier family. More
details of the model parametrization are shown in Codes 3.6 and 3.7. Looking at Fig-
ures 3.2 and 3.3 it is clear that for lower maximum distances and higher dimensions
the different classes get more overlapped in the feature projections. However, the
accuracy of the original Linear SVC models is quite high in all cases regardless of
the dimensionality.

Taking a look at the accuracy of the original models it is clear that this has a
larger effect in the maximum distance problems than in the dimensional ones (see
Figures 4.3 and 4.5). In the former, accuracy is reduced by a 53% for the Linear SVC
models and by a 68% for the Decision Tree Classifier models when reducing the
maximum distance from 10 to 2, due to the classes becoming more overlapped and
harder to separate, while in the latter this reduction is an almost unnoticeable 1,5%
for the Linear SVC models and a 41% for the Decision Tree Models when increasing
the dimensions from 5 to 105. Thus, it appears that, although the information is
scattered through more dimensions and there is a higher overlap within individual
feature projections, this may be compensated on the Linear SVC models, which are
much better suited to handle the increase of dimensions, by the increase of features.

Apart from the overall variations in accuracy of the models, we have also studied
the performance of the models in the 11 maximum distance problems with each class
by plotting their precision as a function of the distance to the origin (see Figure 4.1).
It can be clearly seen that the original classifier models for each problem yield a
poorer performance for classes that are closer to the origin, that is because the den-
sity and, hence, the class overlap, increases dramatically. Model performance with
respect to classes closer to the origin also improves (lighter colors) for the problems
where the distance interval is larger, due to the lower densities. It is also clear that
for classes farther than a certain minimum threshold around 7, they become com-
pletely separable reaching a precision of one, and the performance cannot improve
anymore.

28 Chapter 4. Experimental Results and Discussion

FIGURE 4.1: Precision of the prediction for each class as a function of
the distance to the origin of that particular class (only for the Linear
SVC models). Colors indicate the belonging of each class to one of
the particular 11 problems all with 5 features and 20 classes each, but

with different distance intervals.

4.2 Copies as a function of class overlap (distance between
classes)

As can be seen in Figure 4.2, the quality of the classifier copies does not change as a
function of the distance interval, except for the case of the Linear SVC copies from a
Decision Tree Classifier, which are better when the classes are less overlapped. This
is also the case for the copies from a Linear SVC to a Decision Tree Classifier but only
when using the spherical balancing sampler.

In the original problem, classes become easier or harder to separate by the clas-
sifier when changing the interval, but the classifier copy does not see the original
problem, it only sees the original classifier, which may have similar characteristics
(and complexity) in most cases. Hence, the copying problem does not become more
complex and shows a similar Empirical Fidelity Error.

On the other hand, the performance of the copies increases as the maximum
distance between the classes increase and they are less overlapped, until a certain
separation where there is a plateau and performance does not improve anymore
(see Figure 4.3).

4.3 Copies as a function of dimensionality

The behavior of the goodness of the copies with changing dimensionality is complex
and highly dependent on the original and copy models, as well as the sampler used
to generate the synthetic training data.

As can be seen in Figure 4.4, where the empirical fidelity error of the copies is de-
picted, the quality of the copies in the problems generated here generally decreases
with increasing the number of features. Especially when copying crossed model
families, where this phenomenon happens already at low dimensionality and, in the
particular case from Linear SVC to Decision Tree Classifier, quite abruptly.

However, when copying models within the same model family, a step-wise be-
haviour was observed when increasing the dimensionality: very good copies were

4.3. Copies as a function of dimensionality 29

FIGURE 4.2: Empirical Fidelity Error for the 198 copies of the max-
imum distance problems (5 features, 20 classes, and class distance
from a minimum fixed at 2 and a maximum ranging from 2 to 10)
performed with normal sampling (rows 1-3), and with spherical bal-

ancer sampling (rows 4-6).

30 Chapter 4. Experimental Results and Discussion

FIGURE 4.3: Accuracy for the 22 original models of the maximum
distance problems (5 features, 20 classes, and class distance from a
minimum fixed at 2 and a maximum ranging from 2 to 10) and also
their 99 copies performed with normal sampling (top row), and 99
copies performed with the spherical balancer sampling (bottom row).

obtained up to a certain point and then for higher dimensionalities the copies be-
came of bad quality. The threshold for this behavior seems to move to higher di-
mensions as the number of generated synthetic samples is increased, and the general
quality of the copies in higher dimensions also increases.

As shown in Figure 4.5, the performance of the copies follows the same behav-
ior as their quality: a general decrease for higher dimensions, more or less abrupt
depending on the original/copy model pair. And not as relevant when copying to
the same family as the original model. There, even for higher dimensions, the copy
becomes reasonably good if we increase the number of samples.

4.4 Copies as a function of the number of samples

As expected, the quality of the copies and their accuracy generally improve with
the number of samples. However, it is still interesting to explore what is the mini-
mum number of samples that allows to have a good copy. And the answer is highly
dependent on the problem and sampler that has been used.

For instance, in the maximum distance problem, the copies from Linear SVC to
a Linear SVC or a Decision Tree Classifier with normal sampler experience a signif-
icant increase when going from 1.000 to 10.000 samples, but from 10.000 to 100.000
the improvement is much smaller. And for the case of the Decision Tree Classifier
to a Linear SVC there is almost no change whatsoever in the quality of the copy
between any of those training dataset volumes.

The behavior of the copy with the number of samples also gives a sense of the
sampling efficiency, by seeing how many synthetic datapoints are needed to recover
the performance of the original classifier, compared to the original dataset size.

4.4. Copies as a function of the number of samples 31

FIGURE 4.4: Empirical Fidelity Error for the 198 copies of the dimen-
sional problems (5-105 features, 20 classes, and fixed class distance
interval from 2 to 10) performed with normal sampling (rows 1-3),

and with spherical balancer sampling (rows 4-6).

32 Chapter 4. Experimental Results and Discussion

FIGURE 4.5: Accuracy for the 22 original models of the dimensional
problems (5-105 features, 20 classes, and fixed class distance inter-
val from 2 to 10) and also their 99 copies performed with normal
sampling (top row), and 99 copies performed with spherical balancer

sampling (bottom row).

4.5 Copies as a function of model combinations

Different families of classifiers represent class boundaries in characteristic ways. On
one hand, Linear SVCs find the optimal hyperplanes of the feature space that sepa-
rate the samples and, on the other, Decision Tree Classifiers create step-wise bound-
aries that are parallel to the axes (see Figure 4.6).

The copying problem is defined by the boundaries of the original model, regard-
less of the "natural" boundaries of the original problem: our goal is to mimic the
model, not the original data. Hence, increasing the difficulty of the problem, not
always results in a more difficult copying problem if at the end we have to copy an
original model from the same family and with a similar complexity. When fewer
samples are tested, it is equivalent to having a low resolution of the boundaries and,
hence, a slanted and a step-wise boundary may not be distinguishable from one an-
other, and the copy may show to have a better empirical fidelity error than when
more samples are used and the boundary differences are inescapable.

Here, copies from original Linear SVC classifiers onto the same model family
were carried out, which serve as the copying problem reference. Additionally, crossed
model family copies from Linear SVC classifiers onto Decision Tree Classifiers and
vice versa were also carried out.

When copying from an original Linear SVC model onto a model of the same
family, the copies are always very good for the maximum distance problems and
they show a low empirical fidelity error. For the dimensional problems the copies
are good up to a certain threshold and then worsen. This threshold shifts to higher
dimensions when increasing the number of samples, and its value also depends on
the sampler. As expected, the accuracy of the copies is very similar to the original
models when the copy is good, so it increases with the maximum distance for the

4.5. Copies as a function of model combinations 33

FIGURE 4.6: Difficulties when copying between model families that
represent boundaries differently. Top row: If the original decision
boundary is linear, a linear copy boundary (left) will outperform a
decision tree copy that performs splits parallel to the axes (right).
Bottom Row: A linear copy model is unable to capture the original
non-linear decision boundary to make a good copy (left), whereas a

decision tree copy is successful (right). Figure from Reference [22].

class overlapping problems, and it decreases with the number of features for the
dimensional problems.

When the original Linear SVC models are copied into a Decision Tree Classifier
model, the quality of the copies is not very affected by the maximum distance be-
tween the classes, but shows a rather abrupt decay with the number of dimensions.
This may simply be an indication that the Decision Tree Classifier is not handling
very well having to deal with an increasingly large number of dimensions. In fact,
this seems to be confirmed by the fact that the accuracy of the original Decision Tree
Classifier models also shows a continuous decrease as a function of the dimension.

The Linear SVC copies of the Decision Tree Classifiers are increasingly bad with
the number of dimensions, but their accuracy are reasonably close to the accuracy of
the original models. A noteworthy phenomenon that can be observed in Figures 4.2,
4.3, 4.4, and 4.5 is the fact that both for the maximum distance and the dimensional
problems we obtain model copies with better accuracies than the original models.

One reason for this can be that the original problem is better behaved with linear
boundaries, but that they have been approximated by a step-wise original model (in
this case, a model from the Decision Tree Classifier family). When copying the orig-
inal model to a linear model (in this case, a model from the Linear SVC family), an
interpolation of the step-wise boundary is in effect taking place, which approximates
the boundaries of the original data much better. That is why we do not succeed in
obtaining an exact copy but we obtain a copy with a better performance than the
original model, even when we are generating more and more synthetic data from
the original model.

To be clear, this was not our goal here, however, it helps us understand and
diagnose the inadequacy of the original model to the problem at hand, which is
another application of the Machine Learning Classifier Copying technique.

34 Chapter 4. Experimental Results and Discussion

FIGURE 4.7: Synthetic training samples generated by the normal and
spherical balancer samplers (top and bottom rows, respectively) for
the maximum distance problem of 2 and 10 (left and right columns,

respectively) when copying from a Linear SVC original model.

4.6 Copies as a function of the sampling strategy

4.6.1 Differences between the sampling strategies

In order to understand the differences between the sampling strategies of the nor-
mal and spherical balancer samplers we examine the synthetic training datasets they
generated. Figures 4.7 and 4.8 show the the distribution of the synthetic training
samples generated by the normal and spherical balancing samplers for the edge
cases of the maximum distance and the dimensional problems, respectively.

For the maximum distance problem it can be seen that the normal sampling (top
row) probes a smaller volume for the maximum distance of 2 than 10, because it
uses the feature information (means and standard deviations) to sample the feature
space, so it takes into account that in the first case the original samples are nearer the
origin than in the second case. Conversely, the spherical balancing sampler (bottom
row) always samples the same volume of the feature space because it does not make
any assumptions for the individual features. However, it has a larger concentration
of samples near the center for the maximum distance of 2 and a more homogeneous
distribution for the maximum distance of 10. This is caused by the fact that the
classes themselves are more concentrated near the origin in the first case so the sam-
pler is forced to generate more samples near the origin in order to get a balanced
dataset.

For the dimensionality problem it can be seen that the normal sampling (top row)
probes a larger fraction of each feature for the smaller number of dimensions than
for the large ones, again because the distributions of the classes are themselves more
concentrated near the origin for higher dimensions, and the normal sampler uses
that information. The spherical balancing sampler (bottom row), however, probes in

4.6. Copies as a function of the sampling strategy 35

FIGURE 4.8: Synthetic training samples generated by the normal and
spherical balancer samplers (top and bottom rows, respectively) for
the dimensional problem with 5 and 105 features (left and right, re-
spectively) when copying from a Linear SVC original model. How-
ever, only the first 5 features have been represented in the latter case.

this case a larger fraction of the feature projections for small number of dimensions
than for large number of dimensions, because the region that this sampler probes is
defined as a fixed minimum and maximum radius from the origin and, as dimen-
sions increase, each feature contributes a smaller fraction of that distance, hence, the
samples are closer to the origin.

Another practical difference between the normal and the spherical balancing
samplers implemented here is that the latter is more computationally expensive than
the first. This is why we were able to generate training datasets with a much larger
volume of synthetic data for the normal sampler. It is not a determinant issue be-
cause the reason for that is that this implementation achieves balanced synthetic
datasets by brute force. It is an easy to understand algorithm but not a very smart
one, and there is clearly room for significant improvement in this aspect in future
work.

4.6.2 Differences between the copies with different samplers

The comparison between the two samplers can only be sensibly carried out by look-
ing at the copies carried out with the same number of samples (1.000) (which corre-
spond to the blue dots in all the Accuracy and Empirical Fidelity Error Figures).

For the maximum distance problem, the empirical fidelity error of the copies
performed with both samplers are almost the same, perhaps only slightly better for
the spherical balancing sampler. There is an exception to that for the copies from a
Linear SVC to a Decision Tree Classifier, where the spherical sampler yields sensibly

36 Chapter 4. Experimental Results and Discussion

better quality copies for larger maximum distances. In all cases the spherical bal-
ancing sampler yields copies with a better accuracy than the normal sampler, a few
of them significantly better, which means that the spherical balancing sampler can
achieve a better result more efficiently with less samples than the normal sampler.

For the dimensional problem, the differential behavior of the two samplers is
strongly linked to the choice of original/copy model pair. When copying to the
same model family (from Linear SVC to Linear SVC), the empirical fidelity error for
the normal sampler becomes steadily poor very fast as dimensions are increased,
but with the spherical balancing sampler the quality stays very good until a certain
dimension (45 features) which then drops abruptly to similar levels as the normal
balancer. When copying from Linear SVC to Decision Tree Classifier models, with
the normal sampler the quality of the copies sinks abruptly already at lower dimen-
sions as we increase them, while the copies with the spherical balancing sampler
show a more progressive decline instead. Lastly, the Decision Tree Classifier to Lin-
ear SVC copies do not show any difference at all between the two samplers. The
accuracy follows a very similar behavior as the empirical fidelity error: for copies
from Linear SVC to the same type of model, a much better performance can be ob-
served for the copies with spherical balancing sampler up to 45 dimensions, and
then an abrupt worsening of the performance to the same levels as the copies with
normal sampler, for copies from Linear SVC to Decision Tree Classifiers there is a
fast and much more abrupt worsening of the performance for the copies with the
normal sampler, and for the Decision Tree Classifier to Linear SVC copies there is no
difference.

In general, the copies obtained with the spherical balancing sampler have smaller
empirical fidelity errors than the ones obtained with the normal sampler. And they
quickly improve with the original classifier as the problem simplifies. The perfor-
mance of the copies carried out with the spherical balancing sampler also follows
the performance of their original classifiers much more closely than the copies car-
ried out with the normal sampler.

However, the difference between the quality and performance of the copies be-
comes smaller as more samples are generated. Therefore, it is a matter of sampling
efficiency and having a more representative synthetic dataset already with less sam-
ples, which helps obtain a better copy. The imbalance between the most populated
and the least populated classes of the synthetic training datasets can be very large
and the fact that the spherical sampler yields a balanced training dataset has shown
here to be key for achieving better results.

37

Chapter 5

Conclusions

Machine Learning Classifier Copying is a powerful technique that allows to repli-
cate the decision boundary of a classifier model without the need of knowing its
architecture or accessing its original data.

The implementation that has been provided here as a package of Mozilla’s free
software PRESC toolkit has proven to be practical for large-scale analyses, extend-
able with more advanced options as the discipline matures, and is now readily ac-
cessible to researchers and data science practitioners.

Experiments show that plenty of information can be extracted regarding the orig-
inal model with an approach of systematic series of model copies, and confirm the
potential of this technique for original model evaluation.

Results show that:

• More difficult problems with classes that are less separable does not necessar-
ily result in worse copies if the original model is from the same family and has
the same complexity.

• Copies with the spherical balancing sampler generally perform better, spe-
cially when generating smaller volumes of synthetic training samples.

• Generating a balanced synthetic training dataset can be key in order to obtain
a good copy with fewer data.

• Differences between model idiosyncrasies play a large role on the quality of
the copy. Different families of models represent boundaries in different ways
and that may give rise to unexpected behaviors.

• Although it is not our goal when doing the copies, sometimes they perform
better than the original model, and then it is an indication that the original
model is not the most adequate for the problem. This can be used as a diag-
nostic tool that can help evaluate the original model.

• Copies tend to improve when the synthetic training datasets have larger vol-
umes but only up to a point, then the improvement is negligible. This sweet
spot depends on the specifics of the problem, the original/copy model pair,
and the chosen sampler.

Similar systematic experiments as the ones performed here need to be carried out
in future work with real datasets. Although convenient for exploring the behaviour
of the copying process in a controlled manner, all data used in this work has been
simulated, which has clear limitations. More work is needed in order to see how
well these conclusions apply in general.

More work is needed to develop smarter balancing samplers that allow to gener-
ate balanced synthetic training data more efficiently. One approach is to use seeded

38 Chapter 5. Conclusions

sampling, which can sample the space surrounding known samples of the scarcer
classes. Developing samplers that focus on sampling the boundaries would also be
very useful.

Further systematic exploration is also quite necessary to determine the minimum
number of samples required to obtain a good copy, and the influence of the differ-
ences on the type of boundary of the original and copy models in the goodness of
the copy, in order to develop strategies to overcome this challenge.

It would also be quite interesting to research how the mismatch between the com-
plexity of the original and copy models affects the quality of the copy. This would
allow to quantify in a standardized manner the complexity of unknown original
classifiers, or perhaps to use this knowledge to obtain simpler versions of complex
models.

39

Appendix A

Source Code

Mozilla’s public official repository for the PRESC (Performance and Robustness Eval-
uation for Statistical Classifiers) project is available at Github and can be accessed
through the following link:

https://github.com/mozilla/PRESC/
In particular, the Machine Learning Classifier Copies package is currently being

developed in a feature branch of Mozilla’s repository ("model-copying"), where a
version of the PRESC toolkit which includes all the contributed code that has al-
ready been accepted and passed the code reviews can be found. This branch will be
merged with the main branch of the program once the package is finished and the
code has passed all requirements and tests to be production ready:

https://github.com/mozilla/PRESC/tree/model-copying
As is customary in free software development, the code regarding the implemen-

tation of this Master Thesis has been first developed in a PRESC public fork created
by the author, where the most updated version of the Machine Learning Classifier
Copies package, the Master Thesis report, and two extensive Jupyter notebooks with
the code for the calculations and figures shown in the exploratory chapter can cur-
rently be found:

https://github.com/alberginia/PRESC/tree/master_thesis
The PRESC package is built using the standard Python libraries for scientific

computing and machine learning, including Pandas, Numpy and Scikit-learn. All
of the computations described in this work have been executed using Scikit-learn
version 0.23.1.

https://github.com/mozilla/PRESC/
https://github.com/mozilla/PRESC/tree/model-copying
https://github.com/alberginia/PRESC/tree/master_thesis

41

Bibliography

[1] John P. A. Ioannidis. “Why Most Published Research Findings Are False”. In:
PLOS Medicine 2.8 (Aug. 2005), null. DOI: 10.1371/journal.pmed.0020124.
URL: https://doi.org/10.1371/journal.pmed.0020124.

[2] Thomas Pfeiffer and Robert Hoffmann. “Large-Scale Assessment of the Effect
of Popularity on the Reliability of Research”. In: PLOS ONE 4.6 (June 2009),
pp. 1–4. DOI: 10.1371/journal.pone.0005996. URL: https://doi.org/10.
1371/journal.pone.0005996.

[3] S N Goodman and R Royall. “Evidence and scientific research.” In: American
Journal of Public Health 78.12 (1988). PMID: 3189634, pp. 1568–1574. DOI: 10.
2105/AJPH.78.12.1568. eprint: https://doi.org/10.2105/AJPH.78.12.
1568. URL: https://doi.org/10.2105/AJPH.78.12.1568.

[4] Matt Crane. “Questionable Answers in Question Answering Research: Repro-
ducibility and Variability of Published Results”. In: Transactions of the Associa-
tion for Computational Linguistics 6 (2018), pp. 241–252. DOI: 10.1162/tacl_a_
00018. URL: https://aclanthology.org/Q18-1018.

[5] I. Unceta, J. Nin, and O. Pujol. “Copying Machine Learning Classifiers”. In:
IEEE Access 8 (2020), pp. 160268–160284. DOI: 10.1109/ACCESS.2020.3020638.
URL: https://ieeexplore.ieee.org/document/9181566.

[6] Irene Unceta, Jordi Nin, and Oriol Pujol. “From Batch to Online Learning Us-
ing Copies”. In: Artificial Intelligence Research and Development - Proceedings of
the 22nd International Conference of the Catalan Association for Artificial Intelli-
gence, CCIA 2019, Mallorca, Spain, 23-25 October 2019. Ed. by Jordi Sabater-Mir
et al. Vol. 319. Frontiers in Artificial Intelligence and Applications. IOS Press,
2019, pp. 125–134. DOI: 10.3233/FAIA190115. URL: https://doi.org/10.
3233/FAIA190115.

[7] Irene Unceta et al. “Sampling Unknown Decision Functions to Build Classifier
Copies”. In: Modeling Decisions for Artificial Intelligence. Ed. by Vicenç Torra et
al. Cham: Springer International Publishing, 2020, pp. 192–204. ISBN: 978-3-
030-57524-3. URL: https://link.springer.com/chapter/10.1007/978-3-
030-57524-3_16.

[8] Irene Unceta, Jordi Nin, and Oriol Pujol. “Risk mitigation in algorithmic ac-
countability: The role of machine learning copies”. In: PLOS ONE 15.11 (Nov.
2020), pp. 1–26. DOI: 10.1371/journal.pone.0241286. URL: https://doi.
org/10.1371/journal.pone.0241286.

[9] Irene Unceta, Jordi Nin, and Oriol Pujol. “Environmental Adaptation and Dif-
ferential Replication in Machine Learning”. In: Entropy 22.10 (Oct. 2020). ISSN:
1099-4300. DOI: 10.3390/e22101122. URL: https://www.mdpi.com/1099-
4300/22/10/1122.

[10] Becca Ricks et al. Creating Trustworthy AI: a Mozilla white paper on challenges and
opportunities in the AI era. 2020. URL: https://foundation.mozilla.org/en/
insights/trustworthy-ai-whitepaper/.

https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pone.0005996
https://doi.org/10.1371/journal.pone.0005996
https://doi.org/10.1371/journal.pone.0005996
https://doi.org/10.2105/AJPH.78.12.1568
https://doi.org/10.2105/AJPH.78.12.1568
https://doi.org/10.2105/AJPH.78.12.1568
https://doi.org/10.2105/AJPH.78.12.1568
https://doi.org/10.2105/AJPH.78.12.1568
https://doi.org/10.1162/tacl_a_00018
https://doi.org/10.1162/tacl_a_00018
https://aclanthology.org/Q18-1018
https://doi.org/10.1109/ACCESS.2020.3020638
https://ieeexplore.ieee.org/document/9181566
https://doi.org/10.3233/FAIA190115
https://doi.org/10.3233/FAIA190115
https://doi.org/10.3233/FAIA190115
https://link.springer.com/chapter/10.1007/978-3-030-57524-3_16
https://link.springer.com/chapter/10.1007/978-3-030-57524-3_16
https://doi.org/10.1371/journal.pone.0241286
https://doi.org/10.1371/journal.pone.0241286
https://doi.org/10.1371/journal.pone.0241286
https://doi.org/10.3390/e22101122
https://www.mdpi.com/1099-4300/22/10/1122
https://www.mdpi.com/1099-4300/22/10/1122
https://foundation.mozilla.org/en/insights/trustworthy-ai-whitepaper/
https://foundation.mozilla.org/en/insights/trustworthy-ai-whitepaper/

42 Bibliography

[11] Nicolas Papernot et al. “Practical Black-Box Attacks against Machine Learn-
ing”. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security. ASIA CCS ’17. Abu Dhabi, United Arab Emirates: As-
sociation for Computing Machinery, 2017, pp. 506–519. ISBN: 9781450349444.
DOI: 10.1145/3052973.3053009. URL: https://doi.org/10.1145/3052973.
3053009.

[12] Mozilla Foundation. PRESC’s Documentation. https://mozilla.github.io/
PRESC/index.html. Accessed: 2021-08-21.

[13] Mozilla Foundation. PRESC: Performance and Robustness Evaluation for Statisti-
cal Classifiers - Github Repository. https://github.com/mozilla/PRESC. Ac-
cessed: 2021-08-21.

[14] Łukasz Langa and others. Black - The uncompromising code formatter. Accessed:
2021-08-21. URL: https://black.readthedocs.io/en/stable/.

[15] Ian Cordasco and Tarek Ziade. Flake8: Your Tool For Style Guide Enforcement.
Accessed: 2021-08-21. URL: https://flake8.pycqa.org/en/latest/.

[16] Georg Brandl, Armin Ronacher, et al. Sphinx - Python Documentation Generator.
Accessed: 2021-08-21. URL: https://www.sphinx-doc.org/.

[17] Holger Krekel and others. pytest: helps you write better programs. Accessed: 2021-
08-21. URL: https://docs.pytest.org/.

[18] Linus Torvalds, Junio Hamano, et al. git - everything is local. Accessed: 2021-08-
21. URL: https://git-scm.com/.

[19] Muriel Rovira-Esteva. PRESC: Performance and Robustness Evaluation for Statis-
tical Classifiers - Github Repository. Accessed: 2021-09-02. URL: https://github.
com/alberginia/PRESC/tree/master_thesis.

[20] Free Software Foundation Europe. "Public Money, Public Code" Campaign. Ac-
cessed: 2021-08-21. URL: https://publiccode.eu/.

[21] NLNet Foundation. PRESC Classifier Copies Package - Implementing Machine
Learning Copies as a Means for Black Box Model Evaluation and Remediation. Ac-
cessed: 2021-08-21. URL: https://nlnet.nl/project/PRESC/.

[22] Gareth James et al. An Introduction to Statistical Learning with Applications in R.
Springer, 2021. URL: https://www.statlearning.com/.

https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://doi.org/10.1145/3052973.3053009
https://mozilla.github.io/PRESC/index.html
https://mozilla.github.io/PRESC/index.html
https://github.com/mozilla/PRESC
https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/en/latest/
https://www.sphinx-doc.org/
https://docs.pytest.org/
https://git-scm.com/
https://github.com/alberginia/PRESC/tree/master_thesis
https://github.com/alberginia/PRESC/tree/master_thesis
https://publiccode.eu/
https://nlnet.nl/project/PRESC/
https://www.statlearning.com/

	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Objectives
	Contributions
	Layout

	Background
	Machine Learning Classifier Copies
	Theoretical principles
	Evaluation
	Sampling

	Methods and Proposal
	Implementation of Machine Learning Classifier Copies
	The PRESC model evaluation package
	Outline of the contribution
	Functions and classes in the ML Classifier Copies package
	Minimal example
	Coding standards
	Contribution mechanics

	Master Thesis Project Funding
	Analysis of the copying process with a tunable problem

	Experimental Results and Discussion
	Original Models
	Copies as a function of class overlap (distance between classes)
	Copies as a function of dimensionality
	Copies as a function of the number of samples
	Copies as a function of model combinations
	Copies as a function of the sampling strategy
	Differences between the sampling strategies
	Differences between the copies with different samplers

	Conclusions
	Source Code
	Bibliography

