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Abstract: At inflammatory loci, pro-inflammatory activation of macrophages produces large amounts
of reactive oxygen species (ROS) that induce DNA breaks and apoptosis. Given that M-CSF and
GM-CSF induce two different pathways in macrophages, one for proliferation and the other for
survival, in this study we wanted to determine if these growth factors are able to protect against the
DNA damage produced during macrophage activation. In macrophages treated with DNA-damaging
agents we found that GM-CSF protects better against DNA damage than M-CSF. Treatment with
GM-CSF resulted in faster recovery of DNA damage than treatment with M-CSF. The number of
apoptotic cells induced after DNA damage was higher in the presence of M-CSF. Protection against
DNA damage by GM-CSF is not related to its higher capacity to induce proliferation. GM-CSF
induces differentiation markers such as CD11c and MHCII, as well as the pro-survival Bcl-2A1
protein, which make macrophages more resistant to DNA damage.

Keywords: macrophage; growth factors; proliferation; differentiation; DNA damage

1. Introduction

Macrophages play a central role in immune response and tissue homeostasis. These
cells have two functions in inflammation, initially being pro-inflammatory by destroying
infectious agents and infected tissues and then being anti-inflammatory by repairing the
damaged tissues [1]. In the early stages of inflammation, after interaction with inflamma-
tory activators such as lipopolysaccharide (LPS) and interferon γ (IFN-γ), macrophages
produce reactive oxygen species (ROS) through adaptation of mitochondrial respiration by
mitofusin 2 [2]. ROS are a variety of molecules and free radicals derived from molecular
oxygen that are essential mediators of the macrophage with a variety of functions [3]. ROS
are a useful tool for eliminating infectious agents but they are also DNA-damaging agents,
putting the survival of monocytes and macrophages at risk [4,5] and therefore blocking the
tissue reconstruction phase, which can lead to chronic inflammation.

We showed that macrophages have systems to repair DNA breaks when they become
activated or injured [5]. Following DNA damage a number of molecules are specifically
induced in macrophages by pro- but not by anti-inflammatory activators, such as Trex1 [6],
NBS1 [5] and SAMHD1 [7]. In fact, the malfunction of genes responsible for clearing free nu-
cleic acid fragments inside cells leads to the accumulation of intracellular nucleic acids and
activation of sensors of the innate immune system. These free nucleic acids in turn induce
the production of type I interferons associated with pathological conditions included under
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the syndrome of interferonopathies [8] or the sterile chronic inflammation associated with
aging that has been termed the “senescence-associated secretory phenotype”, or SASP [9].

ROS can cause several types of DNA damage ranging from base modifications to
DNA backbone breaks in human biology and disease [10]. The cell responds to this
damage by activating the DNA damage response pathway, leading to cell cycle arrest and
thus providing enough time for efficient DNA repair [11]. Another important route of
cell inactivation following the induction of DNA damage is apoptosis. A large number
of specific DNA lesions that trigger apoptosis have been identified [12]. Moreover, the
mechanism of action of many anticancer drugs involves promoting DNA damage-induced
apoptosis [13]. Together, these mechanisms are crucial for preventing the replication and
propagation of potentially deleterious mutations.

Highly proliferative cells are the most sensitive to DNA-damaging agents. Since tumor
cells are rapidly dividing cells, many DNA-damaging agents have been used to treat cancer,
including methylating agents, cross-linking chemotherapeutics, topoisomerase inhibitors
and radiomimetic drugs [14]. In addition to tumor cells, normal cells can also be affected
by DNA damage. Among these, those of the immune system are highly sensitive when
exposed to DNA-damaging agents due to their high proliferative potential.

Macrophages proliferate in the presence of growth factors such as M-CSF and GM-
CSF, which are also involved in the differentiation and maturation of macrophages from
bone marrow progenitors [15] and are important survival factors for monocytes and
macrophages [16,17]. In fact, M-CSF and GM-CSF induce two different pathways in
macrophages, one for proliferation, mediated by ERK, and the other for survival, which
requires the PI-3K/Akt kinases and p21Waf1 [17]. M-CSF and GM-CSF are expressed under
different situations. While the production of M-CSF is ubiquitous and constitutive in many
different cells, GM-CSF is produced by activated leukocytes as part of the immune system’s
response during inflammation [18].

Although previous studies have compared the different phenotypes induced in
macrophages by M-CSF and GM-CSF [19,20], little is known about the effect of these growth
factors on the DNA damage response in macrophages in particular. In the present study,
we focused on how bone marrow-derived macrophages growing in the presence of M-CSF
or GM-CSF respond to different DNA-damaging agents. We found that macrophages
growing in the presence of GM-CSF were less susceptible to the effects of DNA-damaging
agents compared to those growing in the presence of M-CSF. This is due to the induction
of cellular differentiation produced by GM-CSF that is associated with the expression of
pro-survival Bcl-2A1 protein, which makes macrophages more resistant to DNA damage.
Our results unravel a key unexpected mechanism of GM-CSF that allows macrophages to
survive DNA damage at inflammatory loci.

2. Materials and Methods
2.1. Reagents

Recombinant growth factors (M-CSF and GM-CSF) were purchased from Pepro Tech
(Cranbury, NJ, USA). Unless specified otherwise, the concentrations of growth factors used
were 10 ng/mL. The antibodies used were as follows: mouse anti-γ-H2AX (Ser 139), mouse
anti-histone H1, rabbit anti-phospho-Akt (Ser 473), rabbit anti-α tubulin, mouse anti-p-
p53 (Ser 15), rabbit anti-RPA, rabbit anti-RPA32/RPA2 (phospho S4 + S8), mouse anti β-
actin, goat anti-mouse horseradish peroxidase (HRP)-conjugated and goat anti-rabbit HRP-
conjugated (Supplementary Materials Table S1). All other chemicals were of the highest
purity grade available and were purchased from Sigma. Deionized water was further
purified with a Millipore Milli-Q system Q-POD A10 (Merck KGaA, Darmstadt, Germany).

2.2. Mice

BALB-c mice were purchased from Charles River Laboratories, Barcelona Spain;
6–8-week-old females were used. Animal use was approved by the Animal Research
Committee of the University of Barcelona (number 2523).
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2.3. Cell Culture

Bone marrow-derived macrophages (BMDM) were isolated from 6-week-old mice
as described previously [21]. The cells were cultured in plastic bacterial culture dishes
(150 mm) in 40 mL Dulbecco’s modified Eagle’s medium (DMEM, Cultek, Madrid, Spain)
containing 20% heat-inactivated Fetal Bovine Serum (FBS, GIBCO, Thermo Fisher Scientific,
Waltham, MA USA) and 30% L-cell conditioned media obtained from supernatants of L-929
murine fibroblast cell line (ATCC identifier CCL-1) as a source of M-CSF and 100 U/mL
penicillin, as well as 100 mg/mL streptomycin (Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany). The cells were incubated at 37 ◦C in a humidified 5% CO2 atmosphere. After
7 days of culture, a homogeneous population of adherent macrophages was obtained (>99%
F4/80). The gating strategy for BMDM analysis is shown in Supplementary Materials
Figure S1. To render cells quiescent, at 80% confluence, macrophages were deprived of
M-CSF-conditioned medium for 16–18 h before treatment.

2.4. RNA Extraction and Real-Time RT-PCR

Total RNA was extracted, purified and treated with DNAse using the ReliaPrep
RNA system kit (Promega, Madison, WI, USA), as recommended by the manufacturer.
400 ng of RNA was retrotranscribed to cDNA using the Moloney murine leukemia virus
(MMLV) reverse transcriptase RNAse H Minus (Promega), following the manufacturer’s
specifications. Quantitative PCR (qPCR) was performed using SYBR Green Master Mix
(Applied Biosystems, Waltham, MA, USA), as recommended by the manufacturer. Non-
retrotranscribed RNA samples were used as negative controls for each gene. When signal
was detected in these negative controls (<32 Ct), the primer pairs used were discarded
and replaced with alternative primers for the same gene. Furthermore, the amplification
efficiency for each pair of primers was calculated by making a standard curve of serially
diluted cDNA samples. Only the pairs of primers with an amplification efficiency of
100 ± 10% were used. Real-time monitoring of PCR amplification was performed in the
ABI Prism 7900 Sequence Detection System (Applied Biosystems).

Data were analyzed by the ∆∆Ct method [22] using Biogazelle Qbase+ software
(Biogazelle, Gent, Belgium). Gene expression was normalized to three reference genes
(i.e., housekeeping genes): Hprt1, L14, and Sdha. The stability of these reference genes was
determined by checking that their geNorm M value was lower than 0.5 [23]. The primers
used are described in Supplementary Materials Table S2.

2.5. Proliferation Assay

Macrophage proliferation was measured by [3H]-thymidine incorporation as described
previously [24]. Cells were deprived of M-CSF for 16–18 h and then 105 cells were incubated
in 24-well plates (Costar, Washington, DC, USA) for 24 h in DMEM and 20% FBS in the
presence of the growth factor. After this period, the medium was replaced with medium
containing [3H]-thymidine. After 6 additional hours of incubation, the medium was
removed and the cells were fixed in ice-cold 70% methanol. After three washes, the cells
were solubilized and their radioactivity was measured. Each experiment was performed
in triplicate and the results were expressed as the mean ± SD. For cell counting we used
a hemocytometer.

2.6. Cytometry

The phenotypic analysis of macrophages was conducted by direct immunofluorescence
using flow cytometry. Cell recovery from culture plates was facilitated by treatment with
trypsin (Biological Industries, Cromwell, CO, USA). Cells were resuspended in PBS and
incubated for 15 min with rat anti-CD16/32 (BD Pharmigen, San Diego, CA, USA) at
4 ◦C for 30 min to block nonspecific binding. Then, antibodies against different markers
were used in conjunction with their respective isotype controls. The antibodies used for
cytometry are shown in detail in Supplemental Material Table S1.
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Samples were analyzed using a Gallios multi-color flow cytometrer instrument (Beck-
man Coulter, Brea, CA, USA) set up with the 3-lasers 10 colors standard configuration.
Excitation of DAPI was conducted using a violet (405 nm) laser. Forward scatter (FS), side
scatter (SS) and FL9 (450/40 nm) fluorescence emitted by DAPI were collected. Aggregates
were excluded by gating single cells according to their area vs. peak fluorescence signal.
DNA analysis (Ploidy analysis) on single fluorescence histograms was performed using
Multicycle software (Phoenix Flow Systems, San Diego, CA, USA).

2.7. Apoptosis

Apoptotis was determined by incubating BMDMs with the Annexin V-FITC Apopto-
sis Detection Kit, following the manufacturer’s instructions. Live or viable cells (double
negative), necrotic (DAPI positive), early (Annexin-V positive) and late apoptotic (double
positive) cell populations were detected by flow cytometry (Supplementary Materials
Figure S5). Dead cells included those in early and late apoptosis and necrotic cells. Vi-
ability was quantified by staining the cells with Crystal Violet staining solution (0.5%)
(Sigma-Aldrich) [25].

2.8. Cell Cycle Analysis

The cell cycle was analyzed as described previously [26]. BMDMs (106) were cultured
in DMEM + 10%FBS in 12-well plates for 16 h. They were then left unstimulated or
treated as specified for 24 h and then fixed with 95% ethanol. Next, cells were incubated
with propidium iodide (PI) (Sigma-Aldrich) and RNase A (Sigma-Aldrich). Cell cycle
distributions were analyzed on the basis of propidium iodide (IP) staining (G1, S and G2).
Gating strategy for cell cycle analysis is shown in Supplemental Figure S2.

2.9. Western Blot Protein Analysis

To obtain total protein lysates, BMDMs (at least 106 cells) were washed in cold PBS and
lysed with TGH-NaCl (1% Triton X-100, 10% glycerol, 50 mM HEPES and 250 mM NaCl)
plus protease inhibitors, as indicated previously [5,27]. Lysates were centrifuged to remove
cellular debris. The protein concentration was determined using the Bradford Protein Assay
(Bio-Rad laboratories, Hercules, CA, USA). Total protein lysates (50 mg) were separated
by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes using the
iBlot2 system (Thermo Fisher, Waltham, MA, USA) and following the manufacturer’s
instructions. Membranes were blocked for 1 h at room temperature in blocking buffer (5%
dry milk in TBS-0.1% Tween 20) and then incubated with primary antibody in blocking
buffer for 16 h at 4 ◦C. The concentration of antibodies is in Supplemental Material Table S1.
The membranes were then washed three times × 5 min with TBS-Tween and incubated
for 1 h at room temperature with the corresponding HRP-conjugated secondary antibody
diluted 1:1000 in blocking buffer. After washing as before, ECL detection was performed,
and the membranes were exposed to X-ray films. When necessary, band intensity was
quantified using the open source image analysis software Fiji [28].

For histone H2AX western blot, an acid extraction of proteins was performed as
described by the anti-phospho-H2AX antibody manufacturer. Briefly, cells were washed in
cold PBS and lysed with lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl,
0.5 mM DTT and 1.5 mM PMSF). Hydrochloric acid was added to a final concentration of
0.2 N and the cell lysate was incubated on ice for 30 min. After centrifugation at 11,000× g
for 10 min at 4 ◦C, supernatants were dialyzed twice against 200 mL 0.1 M acetic acid for
1–2 h and three times against 200 mL H2O for 1 h, 3 h and overnight, respectively.

For NBS1 western blot, a chromatin acid extraction was performed as described [5]
with some modifications. After cell lysed, nuclei were collected by centrifugation at 2000× g
for 5 min at 4 ◦C. The supernatant was discarded and the pellet resuspended in 2–5 volumes
of ice-cold HCl 0.2N and incubated on ice for 20 min. Centrifuged at 2000× g for 10 min at
4 ◦C and the supernatant was neutralized with the same volume of Tris-HCl pH8 1 M.
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2.10. DNA Damage Susceptibility Assay

To analyze the susceptibility of macrophages to DNA damage we treated the cells
with etoposide (Tocris, Ellisville, MO, USA) or hydrogen peroxide (Sigma-Aldrich). Un-
less specified otherwise, the concentrations of etoposide or hydrogen peroxide used
were 50 µM and 250 µM respectively. Cells were washed and left in complete medium
(DMEM + 10% FCS + M-CSF or GM-CSF at the indicated concentrations) for different pe-
riods of time as indicated.

2.11. Test Fraction of Activity Released (FAR) Assay

The number of double-strand breaks (DSBs) in cells treated with etoposide or hydrogen
peroxide was monitored using the FAR assay [29]. After exposure to drug, the cells (105)
were kept on ice at all times, and all solutions added to the cells were ice-cold. The cells
were centrifuged, resuspended in PBS supplemented with 0.2 mg/mL sheared herring
sperm DNA and 56 mM β-mercaptoethanol to inactivate excess calicheamicin γ1 and
incubated on ice for 5 min. The cells were then washed with PBS, and 150,000 cells were
mixed with melted agarose (1.25% type VII in PBS with 5 mM EDTA) and transferred to
a plug mold. The cells in the plug were then lysed at 4 ◦C for a minimum of 24 h in lysis
buffer (25 mM EDTA, pH 8.5, 0.5% SDS, 3 mg/mL proteinase K added just prior to lysis).
Longer incubation times did not alter the quality of the data. The cells were then resolved
using agarose gel electrophoresis (0.7%) in 1× TAE (0.04 M Tris acetate, 1 mM EDTA, pH 8)
at 4 ◦C for 17 h at 2 V/cm. The relative amount of cellular DNA migrating into the gel
(FAR) was quantified using laser scanning equipment to calculate the number of DSBs.

2.12. Senescence-Associated β-Galactosidase Staining

The cells (105) were washed in phosphate-buffered saline (pH 7.4) and fixed with
2% formaldehyde and 0.2% glutaraldehyde for 10 min at room temperature. After being
washed twice, the cells were incubated at 37 ◦C for 4 h in a humidified chamber with freshly
prepared staining solution (1 mg/mL X-Gal (Sigma-Aldrich) in dimethylformamide, 40 mM
citric acid and phosphate buffer, pH 6.0, 5 mM potassium ferrocyanide, 5 mM potassium
ferricyanide, 150 mM sodium chloride and 2 mM magnesium chloride). At the end of
the incubation, the senescence-associated β-galactosidase staining rate was calculated by
counting four random fields per dish and assessing the percentage of senescence-associated
β-galactosidase staining-positive cells from 100 cells per field [30].

2.13. Quantification and Statistical Analysis

Data were analyzed using the unpaired Student’s t test, as indicated in each figure
legend. When two or more variables were compared, a one-way ANOVA test followed by
a Bonferroni correction was used, as indicated in the figure legends. Center, dispersion
and n are defined in each figure legend. For all analyses, significance was set at p < 0.05.
Statistical analyses were performed using GraphPad Prism 9.0 software.

3. Results
3.1. GM-CSF Induced Increased Protection against DNA Damage in Relation to M-CSF

Bone marrow-derived macrophages are a homogenous population of non-transformed
cells that require growth factors for proliferation and survival [17]. M-CSF is the most
potent and specific growth factor for these cells [16]. However, GM-CSF also promotes
macrophage proliferation and survival [17]. To determine the effect of these growth factors
on the macrophage response to DNA-damaging agents, we first studied their susceptibility
to treatment with etoposide, a topoisomerase II inhibitor used as an anticancer drug that
causes DSBs [31]. Macrophages obtained from bone marrow cultures with M-CSF were
starved of growth factor for 18 h and grown for 24 h in the presence of M-CSF or GM-CSF
(Figure 1A). Then, macrophages were treated with the DNA-damaging agent etoposide for
1 h. After that, cells were washed and M-CSF or GM-CSF was added to the media, and 3 h
later we analyzed the DSBs using the FAR test (Figure 1A). When we treated macrophages
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growing in the presence of M-CSF, etoposide induced DSBs in the DNA that increased in
a dose-dependent manner when the amounts of the drug were increased (Figure 1A,B).
However, when we cultured macrophages in medium containing GM-CSF, there was a
significant reduction in susceptibility to this DNA-damaging agent (Figure 1A,B).
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Figure 1. Etoposide induced more DSBs in macrophages incubated with M-CSF in relation to those
incubated with GM-CSF. (A) The experimental design is shown at the top. Macrophages were
obtained after 7 d of culture in the presence of M-CSF. Cells were deprived of M-CSF for 18 h and then
incubated for 24 h with M-CSF or GM-CSF. Unless specified otherwise, the concentrations of growth
factors used were 10 ng/mL. After that, etoposide was added for 1 h at the indicated concentrations,
cells were washed and M-CSF or GM-CSF added again for 24 h before analysis. Representative results
for DSBs determined using the FAR assay. (B) Quantification by densitometry of (A) (independent
experiments, n = 3). (C) The experimental design is same as in A. Unless specified otherwise, the
concentrations of etoposide and hydrogen peroxide used were 50 µM and 250 µM, respectively. SSBs
were determined by immunoblotting of the phosphorylated RPA (RPA2, 32 kDa subunit), RPA (RPA1,
70 kDa subunit) and β-actin as controls. (D) P-RPA/RPA relation quantified by densitometry of C
(n = 3). Each experiment was performed in triplicate, and the results are shown as the mean ± SD.
** p < 0.01 and *** p < 0.001 in relation to the corresponding treatments with M-CSF or GM-CSF, when
all the independent experiments had been compared. Data were analyzed using Student’s t-test, with
the exception of (D), which was performed using ANOVA test.

We also used hydrogen peroxide to increase the oxidative stress in the cell, leading to
base damage and DNA breaks [32]. This reagent also produced DSBs in macrophages, but
in lower quantities than etoposide. Interestingly, again GM-CSF gave significantly better
protection than M-CSF (Supplementary Materials Figure S3A,B).

To explore the effect of etoposide on single strand breaks (SSBs), we determined the
expression of common markers such as phosphorylated replication protein A (RPA) [33].
While etoposide affected the macrophages incubated with M-CSF in a dose-dependent
manner, no effect was observed in those incubated with GM-CSF (Figure 1C,D). Similar re-
sults were obtained when we used hydrogen peroxide instead of etoposide (Supplementary
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Materials Figure S3C). Thus, the protective effect of GM-CSF seemed to be independent of
the type of DNA damage.

3.2. GM-CSF Induced More Rapid Recovery from DNA Damage Than M-CSF

Next, we wanted to determine the influence of GM-CSF and M-CSF on the capacity
to repair DSBs. The effect of etoposide on DNA breaks was assessed by detecting the
induction of γ-H2AX, the H2A histone family member X (abbreviated as H2AX) that is a
type of histone protein from the H2A family encoded by the H2AFX gene. An important
phosphorylated form is γ-H2AX (S139), which forms when DSBs appear [34,35]. After
treatment with etoposide for 1 h, cells were allowed to recover from DNA damage. After
3 h in the presence of GM-CSF, there was a significant decrease in γ-H2AX (Figure 2A,B).
When we used hydrogen peroxide instead of etoposide, similar results were observed
(Supplementary Materials Figure S3D).

Macrophages were first treated with M-CSF for 24 h, then, after that, treated with
etoposide for 1 h, washed and either incubated with M-CSF or GM-CSF (Figure 2C,D).
Under these conditions, the damage caused by etoposide is the same for all cells that will
later be incubated with M-CSF or GM-CSF. When we analyzed the recovery from DNA
damage after 24 h there was also a significant difference between GM-CSF and M-CSF
(Figure 2C,D). However, after 48 h in the presence of either GM-CSF or M-CSF, macrophages
showed no increase in γ-H2AX, suggesting that in both cases the DNA was repaired. This
experiment demonstrates that the ability to repair damaged DNA in cells incubated with
GM-CSF is greater than in those incubated with M-CSF.

After 24 h of treatment with M-CSF or GM-CSF, the percentage of CD11b and F4/80 cells,
as well as MHCII and CD11c was similar before and after treatment with etoposide or
hydrogen peroxide. This data was confirmed when we measured the induction of phospho-
rylated p53, another marker associated with DSBs, after etoposide treatment [36]. There
was a significant decrease in phosphorylated p53 in macrophages incubated with GM-
CSF 3, 6 or 24 h after etoposide treatment, in relation to those incubated with M-CSF
(Figure 2E,F). These results were confirmed when we used hydrogen peroxide instead of
etoposide (Supplementary Materials Figure S3E).

To confirm our results, we determined the expression of nuclear Nijmegen breakage
syndrome (NBS1) protein. Together with the meiotic recombination 11 homolog (MRE11)
and RAD50, NBS1 forms the complex MRE11, a DSB sensor that regulates the DNA
damage response (DDR) and repair of DSBs [37]. Break detection by the MRE11 complex
activates the ataxia telangiectasia mutated (ATM) kinase that promotes a robust DDR that
includes the activation of checkpoint kinase 2 (CHK2) and the tumor suppressor p53 [38].
In macrophages treated with etoposide or hydrogen peroxide, NBS1 was obtained from
the nucleus using chromatin acid extraction. The levels of phosphorylated NBS1 in cells
incubated with GM-CSF after treating the cells with etoposide or H2O2 were lower in
relation to the cells incubated with M-CSF (Figure 2G).

3.3. DNA Damage Induced Cell Cycle Impairment

Exposure of eukaryotic cells to different DNA-damaging agents, such as ionizing
radiation, UV light or reactive oxygen species (ROS), causes several types of DNA damage
ranging from base modifications to DNA backbone breaks [10]. The cell responds to this
damage by activating the DNA damage response pathway, leading to cell cycle arrest,
which provides enough time for efficient DNA repair [11].

Both M-CSF and GM-CSF induce macrophage proliferation, but M-CSF is more pow-
erful than GM-CSF. Thus, within 24 h under saturating concentrations M-CSF almost
duplicates the number of cells, whereas GM-CSF induces lower amounts of proliferation
(Figure 3A) [17]. However, when cells were treated with etoposide and subsequently
cultured with growth factors there were fewer cells. Interestingly, under these conditions
the number of cells treated with GM-CSF was higher than that of those treated with M-CSF
(Figure 3A). Similar results were found when hydrogen peroxide was used instead of
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etoposide (Supplementary Materials Figure S3F). These results are likely related to the
capacity to repair DNA after genotoxin treatment.
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at the top. Macrophages were incubated for 24 h with M-CSF or GM_CSF, then treated for 1 h with 
etoposide or H2O2. Then, cells were washed and incubated again for 3 h with GM-CSF or M-CSF. 
Nuclear extracts were obtained by chromatin acid extraction. Each experiment was performed in 
triplicate, and the results are shown as the mean ± SD. * p < 0.05 and ** p < 0.01 in relation to the 
corresponding treatments with M-CSF or GM-CSF, when all the independent experiments had been 
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3.3. DNA Damage Induced Cell Cycle Impairment  
Exposure of eukaryotic cells to different DNA-damaging agents, such as ionizing 

radiation, UV light or reactive oxygen species (ROS), causes several types of DNA damage 

Figure 2. GM-CSF improved DNA damage repair in macrophages in relation to M-CSF. (A) The
experimental design is shown at the top. After growth factor deprivation, macrophages were cultured
with M-CSF or GM-CSF for 24 h. After that, etoposide was added for 1 h at 50 µM, cells were
washed and M-CSF or GM-CSF was added for 3 h. DNA damage was determined by the induction
of γ-H2AX immunoblotting using histone H1 as the control. ‘Untreated’ represents the cells 18 h
after growth factor deprivation. (B) γ-H2AX/H1 relation quantified by densitometry of (A) (n = 3).
(C) Similar experiment as in (A) but after etoposide treatment cells were washed and M-CSF or
GM-CSF was added for 24 or 48 h. (D) γ-H2AX/H1 relation quantified by densitometry of (C) (n = 3).
(E) Similar experiment as in (A) but samples were measured after etoposide treatment at 1, 3, 6 and
24 h. (C) is the control, comprised of cells treated with growth factors before etoposide addition.
DNA damage was determined by phosphorylated p53 immunoblotting using β-actin as the control.
(F) Quantification by densitometry of (C) (n = 3). (G) The experimental design is shown at the top.
Macrophages were incubated for 24 h with M-CSF or GM_CSF, then treated for 1 h with etoposide
or H2O2. Then, cells were washed and incubated again for 3 h with GM-CSF or M-CSF. Nuclear
extracts were obtained by chromatin acid extraction. Each experiment was performed in triplicate,
and the results are shown as the mean ± SD. * p < 0.05 and ** p < 0.01 in relation to the corresponding
treatments with M-CSF or GM-CSF, when all the independent experiments had been compared. Data
were analyzed using ANOVA test.
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Figure 3. GM-CSF protected against the effects of etoposide on macrophage proliferation. (A) The
experimental design is shown at the top. Macrophages were grown in M-CSF or GM-CSF (10 ng/mL)
for 24 h, then treated for 1 h with the indicated amounts of etoposide, washed and incubated again
with M-CSF or GM-CSF for 24 h, after which cell counting was performed using a hemocytometer
(n = 3). (B) Macrophages were treated as in A in the presence of 50 µM of etoposide and their DNA
content was measured by flow cytometry to determine the cell cycle (n = 3). (C) The experimental
design is shown at the top. Macrophages were cultured in the presence of M-CSF or GM-CSF for
24 h, then incubated with etoposide for 1 h (50 µM), washed and incubated again for 6 or 24 h. Gene
expression was analyzed by real-time PCR (n = 3). Each experiment was performed in triplicate,
and the results are shown as the mean ± SD. * p < 0.05, ** p < 0.01 and *** p < 0.001 in relation to
the corresponding treatments with M-CSF or GM-CSF, when all the independent experiments had
been compared. Data were analyzed using Student’s t-test, with the exception of (C), which was
performed using ANOVA test.

When there is abnormal processing of DNA, the replication checkpoints act as a brake
and stop cycling, allowing DNA repair systems to correct replication errors [39]. In fact, if
there is significant DNA damage that cannot be repaired successfully, cells will undergo
apoptosis. However, if the DNA breaks are repaired, checkpoint signals will be attenuated
and the cell cycle will be restarted and cells re-enter the cell cycle. The percentage of
macrophages at the G2/M stage of the cell cycle increased after etoposide treatment, but
there was a significant difference after this treatment when cells were incubated with
M-CSF or with GM-CSF (Figure 3B). As shown herein, the damaging effect of etoposide
prompts the expression of phosphorylated p53, a key regulator of the G1/S checkpoint [40],
and induces the expression of stress sensors that modulate the response of mammalian
cells to genotoxic stress such as growth arrest and DNA damage (e.g., Gadd45), which
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interact with other proteins implicated in stress responses [41]. The incubation of cells with
etoposide induces the expression of the cyclin-dependent kinases (CDK) inhibitor p21waf−1

and reduces that of Gadd45 and cyclin B1, which explains the arrest of the cell cycle due to
DNA damage (Figure 3C) [42].

3.4. GM-CSF Induced the Expression of Anti-Apoptotic B-Cell Lymphoma 2 (Bcl-2) A1

Following the induction of DNA damage, an important route of cell inactivation is
apoptosis. A large number of specific DNA lesions that trigger apoptosis have been iden-
tified [39]. These mechanisms are crucial for preventing the replication and propagation
of potentially deleterious mutations. Because of DNA breaks after etoposide treatment,
the number of apoptotic macrophages increased [43], and after 24 h of growth factor
treatment, there was a significant difference between M-CSF and GM-CSF (Figure 4A). Sim-
ilar results were obtained when hydrogen peroxide was used as a DNA-damaging agent
(Supplementary Materials Figure S3G). To determine the mechanism of apoptosis protec-
tion, we analyzed the levels of phosphorylated Akt, which is induced by M-CSF and GM-
CSF for macrophage survival and is independent of the proliferation pathway [17]. With
both treatments, phosphorylated Akt was induced after etoposide treatment (Figure 4B)
or hydrogen peroxide (Supplementary Materials Figure S3H). These results prompted
us to measure the expression of genes whose products are involved in apoptosis after
treating the cells with etoposide or hydrogen peroxyde. No differences were obtained
between M-CSF or GM-CSF treatments when Bcl-2, Bcl-XL or Bax were measured; however,
Bcl-2A1 was notably induced by GM-CSF (Figure 4C). Bcl-2A1 is a highly regulated NF-κB
target gene that has important pro-survival functions [44]. In fact, Bcl-2A1 was induced in
macrophages that had been incubated with GM-CSF previously in response to etoposide
damage (Figure 4D) and hydroxide treatment (Supplementary Materials Figure S4).

3.5. DNA Damage Was Independent of Proliferation

Although M-CSF and GM-CSF are growth factors, macrophage proliferation was
higher in the presence of M-CSF (Figure 3A). Because highly proliferative cells are more
sensitive to DNA damage [45], we wanted to rule out the possibility that the protec-
tive effect of GM-CSF versus M-CSF was related to the decreased proliferative capacity
elicited by macrophages in response to this growth factor. In a first attempt, we compared
the macrophage proliferation dependent-induction of M-CSF and GM-CSF. We observed
similar proliferation when we incubated the cells with 2 ng/mL of M-CSF or GM-CSF
(Figure 5A). Then, we treated the cells with the same amount of growth factors and added
etoposide. Under these conditions, the viability of macrophages was impaired in the
presence of M-CSF in relation to GM-CSF independently of the amount of growth factor
used (Figure 5B). The doses of growth factors did not affect the viability of cells treated
with hydrogen peroxide (Figure 5B). Moreover, we treated macrophages growing in the
presence of M-CSF with etoposide or hydrogen peroxide, and after washing we added
either M-CSF or GM-CSF. Under these experimental conditions, we again observed a
greater protective effect of GM-CSF over M-CSF (Figure 5C). Together, these results indicate
that GM-CSF gives greater protection than M-CSF to bone marrow-derived macrophages
against DNA-damaging agents, independently of the proliferative status of the cell.

3.6. GM-CSF Induced CD11c+ MHC II+ Cells That Were Resistant to the Effect of Etoposide

In the presence of GM-CSF, macrophages not only become activated but also express
several molecules related to differentiation. GM-CSF activates the transcription factor
PU.1, and a series of target genes, such as CD11b, mannose receptor, TLR4 and TLR2, are
induced and their products expressed on the surface of macrophages [19,46]. After 72 h,
more than 22% of macrophages incubated with GM-CSF, but not with M-CSF, expressed
CD11c and MHC II, which are markers of dendritic cell differentiation (Figure 6A and
Supplementary Materials Figure S5) [47]. GM-CSF and M-CSF differentially induce the
expression of other markers. GM-CSF induces the expression of Il-1β, Mannose receptor and
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Bcl2-A1, while M-CSF induces Tnf-α and Macrophage scavenger receptor 1 (Figure 6B). These
opposing effects of M-CSF and GM-CSF on macrophages have been linked to “M2 and
M1 macrophages” [48].
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Figure 4. GM-CSF reduced the effect of etoposide on macrophage death. (A) The experimental
design is shown at the top. Macrophages were incubated in M-CSF or GM-CSF for 24 h, then treated
for 1 h with etoposide, washed and incubated again with M-CSF or GM-CSF for 24 h, after which
dead cells (necrotic and apoptotic) were quantified by FACS analysis (n = 3). (B) The experimental
design is shown at the top. The expression of phosphorylated Akt (PAkt) was measured by western
immunoblotting using tubulin as the control (right panel). Left panel, quantification by densitometry
of the western immunoblotting (n = 3). (C) The experimental design is shown at the top. Macrophages
were cultured in the presence of M-CSF or GM-CSF for 24 h, then incubated with etoposide or H2O2

for 1 h, after which gene expression was analyzed by real-time PCR (n = 3). (D) The experimental
design is shown at the top. Macrophages were incubated in M-CSF or GM-CSF for 24 h, then treated
for 1 h with etoposide, washed and incubated again with M-CSF or GM-CSF for 6 or 24 h, after which
gene expression was analyzed (n = 3). Each experiment was performed in triplicate, and the results
are shown as the mean ± SD. * p < 0.05, ** p < 0.01 and *** p < 0.001 in relation to the corresponding
treatments with M-CSF or GM-CSF, when all the independent experiments had been compared.
Data were analyzed using Student’s t-test, with the exception of (A,D), which was performed using
ANOVA test.
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Figure 5. The different proliferation activity induced by GM-CSF or M-CSF was unrelated to the
effect of etoposide. (A) Macrophages were incubated with M-CSF or GM-CSF at the indicated
concentrations for 24 h and proliferation was measured as [3H]-thymidine incorporation (n = 3).
(B) The experimental design is shown at the top. Macrophages were incubated in M-CSF or GM-
CSF at the indicated concentrations for 24 h then treated for 1 h with etoposide or H2O2, washed
and incubated again with M-CSF or GM-CSF for 24 h at the indicated concentrations, after which
viability was quantified using Crystal Violet (n = 3). (C) The experimental design is shown at the
top. Macrophages were incubated in M-CSF (10 ng/mL) for 24 h, then treated for 1 h with etoposide
or H2O2, washed and incubated again with M-CSF (10 ng/mL) or GM-CSF (2 ng/mL) for 24 h,
after which viability was quantified using Crystal Violet (n = 3). Each experiment was performed
in triplicate, and the results are shown as the mean ± SD. ** p < 0.01 and *** p < 0.001 in relation to
the corresponding treatments with M-CSF or GM-CSF, when all the independent experiments had
been compared. Data were analyzed using Student’s t-test, with the exception of (B,C), which was
performed using ANOVA test.

Finally, other macrophage surface markers, such as CD11b and F4/80, were expressed
on almost 100% of macrophages, regardless of whether they were cultured with M-CSF
or GM-CSF (Supplementary Materials Figure S6A,B). The initial reduced percentage of
F4/80 macrophages before the addition of M-CSF or GM-CSF is due to the 18 h deprived
of M-CSF to render cells quiescent.

By staining with DAPI and annexin V we were able to differentiate necrotic, apoptotic
and live cells (Supplementary Materials Figure S7). After 24 h of treatment with GM-CSF,
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the population that expressed CD11c and MHC II included significantly fewer necrotic and
apoptotic cells in relation to the CD11c- and MHC II-negative population, before and after
etoposide treatment (Figure 7A). Obviously, the more differentiated population contained
more living cells.
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expressed on almost 100% of macrophages, regardless of whether they were cultured with 
M-CSF or GM-CSF (Supplementary Materials Figure S6A,B). The initial reduced 

Figure 6. GM-CSF induced a different phenotype of macrophages in relation to M-CSF. (A) Char-
acterization of CD11c and MHC II expression. The experimental design is shown at the top. After
growth factor deprivation, macrophages were cultivated in the presence of the indicated growth
factors for the indicated times and the surface expression was determined by FACS analysis and
the corresponding antibodies. The graphics show the cells expressing single (CD11c or MHC II) or
double markers (n = 3). (B) Macrophages were cultured in the presence of M-CSF or GM-CSF for
24 h and the indicated gene expression was analyzed by real-time PCR (n = 3). Each experiment
was performed in triplicate, and the results are shown as the mean ± SD. * p < 0.05, ** p < 0.01
and *** p < 0.001 in relation to the corresponding treatments with M-CSF or GM-CSF, when all the
independent experiments had been compared. Data were analyzed using Student’s t-test.

To confirm the GM-CSF-induced differentiation in macrophages we stained the
senescence-associated beta-galactosidase, a marker of aging and differentiation (Figure 7B) [49].
There was a significant increase in cells treated with GM-CSF in relation to those treated
with M-CSF, which express the lysosomal enzyme (Figure 7B). Finally, macrophages treated
with GM-CSF expressed significantly higher levels of the cyclin-dependent kinases inhibitor
p21waf1, which is associated with cellular aging [50] (Figure 7C).
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Figure 7. Differentiation markers of macrophages incubated with M-CSF or GM-CSF. (A) Necrotic,
apoptotic or living cells in the population of macrophages treated with GM-CSF, comparing the
phenotype MHC II− and CD11c− with MHC II+ and CD11c+. The experimental design is shown
at the top. Macrophages were cultivated in the presence of GM-CSF (10 ng/mL) for 72 h, then
treated or not with etoposide for 1 h and, after washing, GM-CSF (10 ng/mL) was added for
24 h. An example of quantification is shown in Supplementary Materials Figure S5. Gating was
conducted using antibodies to CD11c and MHC II with the corresponding controls. Then, the double
positive and negative cells were gated and DAPI and Annexin V staining was determined (n = 3).
(B) Macrophages were incubated with M-CSF or GM-CSF for 24 h and then stained for senescence-
associated β-galactosidase staining. On the left is an example of staining. The control was unstained
cells. The right panel shows the quantification of four independent experiments. (C) Macrophages
were cultured in the presence of M-CSF or GM-CSF for 72 h. Gene expression was analyzed by
real-time PCR (n = 3). Each experiment was performed in triplicate, and the results are shown as the
mean ± SD. ** p < 0.01 and *** p < 0.001 in relation to the corresponding phenotypes or treatments
with M-CSF or GM-CSF, when all the independent experiments had been compared. Data were
analyzed using Student’s t-test.
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4. Discussion

Bone marrow-derived macrophages are the equivalent of human macrophages in
terms of origin, function, activation or proliferation [51–53], and they constitute the best
available model for macrophage studies.

The results presented show that GM-CSF is a better protector of macrophages against
DNA damage than M-CSF. The capacity of GM-CSF to induce proliferation is less potent
than that of M-CSF. However, the different strength of these two growth factors to protect
against DNA damage is unrelated to their capacity to induce cell proliferation.

In our experiments, we have treated macrophages with etoposide or with hydrogen
peroxide. Etoposide, although it is not a physiological agent, produces more relevant DNA
breaks in relation to hydrogen peroxide, making the results easier to quantify.

An interesting question is to determine whether these GM-CSF treated macrophages
are actually resistant to DNA damage, or if they have increased/rapid repair capabilities.
We have shown (Figure 2C) that the repairing mechanisms of cells submitted to the same
injury previously treated with M-CSF are superior if the cells were treated later on with
GM-CSF instead of M-CSF.

Another interesting question is the role of GM-CSF in DNA repairing. It has been
shown in macrophages that GM-CSF induces ATM activating the Akt kinase [54], which
is the key factor in the phosphoinositide 3-kinase (PI3K) pathway and regulates the ac-
tivation of the major signals for cell growth, survival, metabolism and DNA repair [55].
Furthermore, monocytes accumulated DSBs following temozolomide treatment because
they lack the DNA repair proteins XRCC1, ligase IIIa and PARP-1. Treatment with GM-CSF
restored the expression of these proteins during differentiation into dendritic cells being
able to repair DSBs [56].

Both M-CSF and GM-CSF activate two pathways upon interaction with their respective
receptors in macrophages, inducing the same activities, one for proliferation, involving
ERK, and the other one for protection against the induction of apoptosis associated with
proliferation, which needs the PI-3K/Akt kinases and p21Waf1 [17]. However, M-CSF and
GM-CSF induce two different differentiation programs in macrophages. Whereas M-CSF
differentiates CD34 cells into macrophages [57], GM-CSF differentiates macrophages into
“monocyte-derived” or “inflammatory” dendritic cells [58]. Therefore, upon engaging with
their receptors, M-CSF and GM-CSF share the same pathways to induce proliferation and
survival, but have different pathways to induce differentiation with diverse results.

In this study, we used bone marrow-derived macrophages differentiated in vitro.
These untransformed cells provide an excellent model that responds to growth factors as
well as pro- (IFN-γ or LPS) and anti-inflammatory (IL-4) agents [59]. In our studies, two
different DNA-damaging agents were used with similar results, although the effects of
etoposide were stronger than those of hydrogen peroxide. Interestingly, not only does
GM-CSF provide better protection against DNA damage, but it is also able to induce more
rapid recovery of DSBs as monitored by the induction of γ-H2AX or phosphorylated p53.
The reduction in proliferation that occurs following the DNA breaks was lower if the
macrophages were treated with GM-CSF. This is due to the diminished induction of genes
such as Gadd45 or Cyclin B1, which code for proteins that block the cell cycle. Cellular
proliferation is associated with DNA damage, being the basis for many chemotherapeutic
agents used in the treatment of cancer or autoimmune diseases [60].

GM-CSF is an important factor that induces differentiation [61]. Our results showed
that in macrophages incubated with GM-CSF for 24 h a population of cells emerged with
the cell surface markers CD 11c and MHC class II, suggesting that they had become differ-
entiated [19,46]. It has recently been shown that the exposure of bone marrow macrophages
to GM-CSF induces the expression of CD11c and MHC class II molecules in two groups of
cells that comprise conventional dendritic cells and monocyte-derived macrophages that
behave as separable entities [47]. The data presented in that study do not invalidate our
results since in both cases we demonstrated the differentiation produced by GM-CSF, which
translated into an increase in CD11c and MHC II. We also showed that GM-CSF induces
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other differentiation markers, such as lysosomal senescence-associated β-galactosidase
staining, a marker of aging and differentiation [49].

Interestingly, the more differentiated macrophages were the more resistant to induction
of apoptosis/necrosis. After etoposide treatment and 24 h incubation with GM-CSF, fewer
apoptotic cells were observed in relation to those incubated with M-CSF. Fascinatingly,
when we tested different anti-apoptotic genes, only Bcl-2A1 was induced by GM-CSF and
not by M-CSF, confirming previous results [62]. Bcl2-A1 is a hematopoietic-specific protein
and protects cells from apoptosis induced by a variety of apoptotic stimuli, such as DNA-
damaging agents [63]. In response to GM-CSF, the BCL2-A1 gene is induced and is a direct
transcriptional target of nuclear factor NF–κB [44]. The transcription factor Spi-B regulates
human plasmacytoid dendritic cell survival through direct induction of the antiapoptotic
gene BCL2-A1 [64].

BCL2A1 is able to reduce the release of pro-apoptotic cytochrome c from mitochondria
and block caspase activation. The interaction of BCL2A1 with pro-apoptotic factors BAX
and BAK has been described with conflicting results; however, it seems clear that BCL2A1
interacts with and blocks most of the BH3-only proteins that induce apoptosis through
activation of BAX and BAK [65].

Our results could have implications for our understanding of the inflammatory process.
Ly6Chigh monocytes in an inflammatory locus differentiate into macrophages with a pro-
inflammatory profile, releasing a number of molecules (IL-1α, IL-1β, TNF-α and IL-12)
that activate helper T cells and induce the production of GM-CSF [66,67]. This cross-talk
between macrophages and helper T cells, as well as the autocrine production of GM-CSF
by monocytes [68], are crucial in inflammatory loci. On the one hand, GM-CSF induces
macrophage differentiation of monocytes to inflammatory dendritic cells that play an
important role in innate and adaptive immunity [69] and monocyte-derived macrophages
that are double positive for CD11c and MHC class II. On the other hand, GM-CSF protects
these two types of cell from DNA damage produced by the high levels of ROS. Although
both macrophages and dendritic cells require mechanisms to repair DNA damage such as
Trex1 [27,70], they also require the presence of GM-CSF to enhance their survival. Indeed,
macrophages need to survive the anti-inflammatory phase to repair the tissue damage, and
dendritic cells need to move from the inflammatory loci to the lymph nodes, carrying the
antigens and initiating the acquired immune response. It has been reported that GM-CSF
blockade in murine models of inflammation decreased the severity of the disease [71–73].

DNA breaks in the cells of the immune system and, particularly in macrophages, play
a key role in immune-senescence [74]. It is interesting to note that macrophages from aged
mice showed increased susceptibility to oxidants and an accumulation of intracellular reac-
tive oxygen species [32], which could be responsible for DNA breaks [4]. Finally, telomeres
shorten with age in macrophages, leading, as a result of decreased phosphorylation of
STAT5a, to a reduced GM-CSF response [32]. Therefore, the increased susceptibility in aged
macrophages to DNA breaks together with the reduced capacity of GM-CSF to repair the
breaks may contribute to the reduced functional capacity of these cells in aging.

These observations, together with our results, emphasize the critical role of GM-CSF
in protecting against DNA damage and ensuring the survival of macrophages in the
homeostasis of the immune response.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/cells11060935/s1, Figure S1: Hydrogen peroxide induced more
double strand breaks (DSBs) in macrophages incubated with M-CSF than in those incubated with
GM-CSF. Figure S2: Different CD11c and MHCII phenotypes induced in macrophages by M-CSF and
GM-CSF. Figure S3: Similar CD11b and F4/80 phenotypes induced in macrophages by M-CSF and
GM-CSF. Figure S4: Etoposide did not induce apoptosis or necrosis in CD11c- or MHCII-positive
macrophages. Figure S5: Different CD11c and MHCII phenotypes induced in macrophages by
M-CSF or GM-CSF. Figure S6: Similar CD11b and F4/80 phenotypes induced in macrophages by
M-CSF or GM-CSF. Figure S7: Etoposide did not induce apoptosis or necrosis in CD11c- and MHCII-
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positive macrophages. Table S1: Primers used for real-time RT-PCR of mRNA. Table S2: Antibodies:
identification, source, application and dilution used.
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