
1 

 

Feeding frequency and dietary protein/carbohydrate ratio affect feed intake and 1 

appetite regulation-related genes expression in gilthead seabream (Sparus aurata)  2 

 3 

Catarina Basto-Silvaa,b,*, Ana Coutoa,b, Juliana Rodriguesb, Aires Oliva-Telesa,b, Isabel Navarroc, 4 

Hiroyuki Kaiyad, Encarnación Capillac, Inês Guerreiroa 5 

 6 

aCIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 7 

Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 8 

Matosinhos, Portugal 9 

bFCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 10 

s/n, Ed. FC4, 4169-007 Porto, Portugal 11 

cDepartment of Cell Biology, Physiology and Immunology, Faculty of Biology, University of 12 

Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain 13 

dDepartment of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 14 

6-1 Kishibe-Sinmachi, Suita, 564-8565 Osaka, Japan 15 

 16 

*Corresponding author: 17 

Catarina Basto-Silva (ORCID 0000-0003-2206-5430) 18 

bastosilva.c@gmail.com  19 

mailto:bastosilva.c@gmail.com


2 

 

Abstract 20 

To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios 21 

on appetite regulation of gilthead seabream, two practical diets were formulated to include high 22 

protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 23 

diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a 24 

FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 25 

3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific 26 

growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per 27 

day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing 28 

hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin 29 

(cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary 30 

P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead 31 

seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed 32 

twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed 33 

P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In 34 

conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to 35 

decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets 36 

or fed 1 or 2 meals a day.   37 
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1. Introduction 44 

Animals survival and growth depend on the amount of energy intake and energy expenditure.  45 

Under normal conditions, when energy intake exceeds energy requirements, anorexigenic 46 

responses are produced, inhibiting fish appetite; and when energy expenditure exceeds energy 47 

requirements, fish appetite is stimulated through orexigenic responses (Volkoff, 2011). A 48 

complex regulatory network is involved in the maintenance of this energy homeostasis, including 49 

several hormones and the hypothalamus feeding center that receives or sends orexigenic or 50 

anorexigenic signals from/to peripheral organs (Delgado et al., 2017; Rønnestad et al., 2017; 51 

Soengas et al., 2018; Volkoff, 2019).  52 

Between the most important hormones of this network are cocaine-amphetamine-related 53 

transcript (cart), mainly expressed in the brain, and cholecystokinin (cck), mainly expressed in 54 

the brain and digestive tract of the fish, being both generally recognized as potent satiety factors 55 

(Volkoff and Peter, 2000; 2001; Volkoff et al., 2003; Kobayashi et al., 2008; Murashita et al., 56 

2009; Ji et al., 2015; White et al., 2016; Pitts and Volkoff, 2017). Leptin has been also pointed as 57 

an anorexigenic hormone, since intraperitoneal and intracerebroventricular injections of this 58 

peptide promoted a reduction of feed intake (FI) in fish (Volkoff et al., 2003; Murashita et al., 59 

2008; Li et al., 2010; Won et al., 2012). However, this anorexigenic function does not seem so 60 

clear when evaluating the fasting effects on leptin expression across different fish species and 61 

tissues. For instance, in gilthead seabream (Sparus aurata), 23 days of fasting did not affect leptin 62 

expression in the adipose tissue (Babaei et al., 2017), but in orange-spotted grouper (Epinephelus 63 

coioides), 7 days of fasting promoted an increase of leptin expression in the brain (Zhang et al., 64 

2013), and in the red-bellied piranha (Pygocentrus nattereri), intestine leptin expression 65 

decreased after 7 days of fasting (Volkoff, 2015). In contrast, neuropeptide y (npy) is pointed as 66 

an orexigenic hormone mainly expressed in the brain (Volkoff et al. 2003; Wei et al. 2014; Ji et 67 

al. 2015; Li et al., 2017). The function of corticotropin-releasing hormone (crh)-related peptide is 68 

still poorly explored in fish appetite regulation, and the results seem to be controversial. Some 69 

studies described this peptide with an anorexigenic function, for instance, in goldfish (Carassius 70 

auratus) and rainbow trout (Oncorhynchus mykiss) (Bernier and Peter, 2001; Matsuda et al., 2008; 71 
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Ortega et al. 2013). However, in Schizothorax prenanti, crh expression was not affected either by 72 

fasting for 1 or 3 h nor by fasting by up to 5 days, being necessary at least 7 days of fasting to 73 

promote a decrease in brain crh expression (Wang et al., 2014). While, in gilthead seabream, 74 

fasting of 21 days did not affect brain crh expression (Martos-Sitcha et al., 2014). Ghrelin (ghrl), 75 

a hunger hormone already identified in several fish species including gilthead seabream, is mainly 76 

expressed in the stomach but it is also expressed in other peripheral tissues, like the intestine, 77 

liver, and spleen (Unniappan et al., 2002; Murashita et al., 2009; Xu and Volkoff, 2009; Feng et 78 

al., 2013; Volkoff, 2015; Song et al., 2017; Perelló-Amorós et al., 2018). This hormone seems to 79 

participate in several physiologic mechanisms in vertebrates, such as drink behavior, 80 

reproduction, and immunological regulation (Kaiya et al., 2008), but it is in energy balance 81 

control that ghrl has one of the most relevant roles, affecting FI (Unniappan et al., 2004; Jönsson 82 

et al., 2010; Tinoco et al., 2014a; Schroeter et al., 2015; Yuan et al., 2015). In fish, ghrl role in FI 83 

regulation seems to be species-dependent. For instance, after peripheral ghrl administration, FI 84 

increased in goldfish, brown trout (Salmo trutta), and grass carp (Ctenopharyngodon idellus) 85 

(Unniappan et al., 2004; Tinoco et al., 2014a; Yuan et al., 2015) but decreased in channel catfish 86 

(Ictalurus punctatus) and rainbow trout (Jönsson et al., 2010; Schroeter et al., 2015). To a better 87 

ghrl characterization, some studies have used imaging techniques, namely 88 

immunohistochemistry, besides gene expression analysis (Sakata et al., 2004; Kaiya et al., 2006; 89 

Arcamone et al., 2009; Breves et al., 2009; Sánchez-Bretaño et al., 2015; Cascio et al., 2018; 90 

Opazo et al., 2019; Barrios et al., 2020). Nevertheless, ghrl-immunopositive (ip) cells in gilthead 91 

seabream tissues have not been detected to date. 92 

However, the network between appetite-related hormones may be influenced by several factors, 93 

including feeding frequency (FF) and dietary composition. For instance, recently, Pham et al. 94 

(2021) studied the FI process in clown anemonefish (Amphiprion ocellaris) fed to satiety 1 or 3 95 

meals per day, and observed that some neuropeptides already known as appetite regulators in the 96 

brain (namely agouti-related protein, AgRP, and pro-opiomelanocortin, POMC) also seem to have 97 

a role in appetite regulation associated to FF. Differently, a fixed daily ration distributed by 98 
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different meals (1, 3, or 5 meals per day, or continuous feeding) did not affect gastric ghrelin 99 

(ghrl) or intestinal cck gene expression in gilthead seabream (Gilannejad et al., 2021).  100 

Regarding dietary composition effects on FI and appetite regulation mechanisms, it is important 101 

to consider dietary nutrient levels and available energy, since when provided a nutrient-balanced 102 

diet fish eat to meet energy requirements (Bureau et al., 2002). For instance, recently we evaluated 103 

the effect of different dietary P/CH ratios on appetite regulation in gilthead seabream (Basto-Silva 104 

et al., 2021) and observed a decrease in cck expression in fish fed a diet with a low P/CH ratio 105 

compared to a high P/CH ratio. This suggests a less satiety feeling with the former diet and agrees 106 

with previous observations in gilthead seabream, where FI was higher in fish fed diets with low 107 

P/CH ratios (Couto et al., 2008). However, different results were reported for rainbow trout, when 108 

changing the dietary P/CH ratio from 50/6 to 25/39 led to a decrease of FI but did not change the 109 

npy and cartpt expression (Figueiredo-Silva et al., 2012). This suggests that the exact mechanisms 110 

by which energy status is informed to the central or peripheral targets (i.e., cart, ghrl, leptin, npy, 111 

etc.) of appetite regulation are not yet clearly understood in fish and can vary depending on the 112 

fish species. Further, in gibel carp (Carassius auratus gibelio) it was reported that FI was 113 

consistently higher in fish fed simultaneously more meals per day and diets with a high P/CH 114 

ratio (Zhao et al., 2016), suggesting that FF optimization and dietary P/CH ratio can modulate 115 

fish appetite control.  116 

Therefore, as diet composition, namely P/CH ratio, and FF affect FI in gilthead seabream, changes 117 

in the appetite-regulatory mechanisms are also expected (Couto et al., 2008; Moreira et al., 2008; 118 

García-Meilán et al., 2013; Babaei et al., 2017; Busti et al., 2020; García-Meilán et al., 2020; 119 

Basto-Silva et al., 2021; Gilannejad et al., 2021). However, the simultaneous effects of both 120 

factors in gilthead seabream appetite regulation are yet to be explored.  121 

The present study aimed to evaluate the effects of different FF (1, 2, or 3 meals per day) and 122 

dietary P/CH ratios (P50/CH10 or P40/CH20) on appetite regulation-related genes expression and 123 

FI of gilthead seabream, one of the most important species in European aquaculture. The present 124 

study also aimed to locate, for the first time, ghrl cells in gilthead seabream stomach and intestine 125 

for a better characterization of this hormone. 126 
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 127 

2. Materials and methods 128 

 129 

2.1. Diets composition 130 

Two isolipidic (17% crude lipids) and isoenergetic (20 kJ g-1) practical diets were formulated to 131 

include 50% protein and 10% carbohydrates, or 40% protein and 20% carbohydrates (diets 132 

P50/CH10 or P40/CH20, respectively). All dietary ingredients were carefully mixed and dry 133 

pelleted in a laboratory pellet mill (California Pellet Mill, CPM Crawfordsville, IN, USA), using 134 

a 2 mm die. Pellets were dried in an oven for 48 h at 50 ºC and then stored in plastic containers 135 

at 4 ºC until use. The experimental diet composition and proximate analysis are presented in Table 136 

1. Dry matter, protein, lipid, and ash analyses of the diets were done following the Association of 137 

Official Analytical Chemists methods (AOAC, 2000), and dietary starch was determined as 138 

described by Beutler (1984). 139 

 140 

2.2. Experimental conditions and sampling 141 

The experiment was performed at the Marine Zoology Station, University of Porto, Portugal, with 142 

gilthead seabream (Sparus aurata) obtained from Sonríonansa, Pesués, Cantabria, Spain. Upon 143 

arrival at the experimental facilities, fish were submitted to a quarantine period of 19 days and 144 

fed a commercial diet (43% protein, 21% nitrogen free extract, 15% lipids, and 15% lipids, 1% 145 

fiber, and 9% ash; Aquasoja, Ovar, Portugal).  146 

The trial was performed in a recirculating water system equipped with 18 fiberglass tanks (100 L 147 

water capacity), thermo-regulated to 24 ± 1 ºC, and each tank was supplied with a continuous 148 

flow of filtered seawater (6.0 L min-1). During the trial, salinity was 36.0 ± 1.0 g L-1
, dissolved 149 

oxygen was kept near saturation (6.0 ± 0.5 mg L-1), and fish were under a 12 h light/12 h dark 150 

photoperiod. Eighteen groups of 20 fish with an individual body weight of 9.1 ± 0.01 g (mean ± 151 

standard deviation) were established into each tank, and the diets and FF conditions were 152 

randomly assigned to triplicate groups of fish. Fish were fed by hand for 60 days, 6 days a week, 153 

until visual satiation, 1 meal per day (9:00 h), 2 meals per day (9:00 and 17:00 h), or 3 meals per 154 
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day (9:00, 13:00, and 17:00 h). The amount of feed provided by meal was recorded for FI 155 

determination. 156 

At the end of the trial, 5 h after the morning meal (14:00 h), three fish from each tank (nine fish 157 

per experimental treatment) were euthanized by decapitation and dissected on chilled trays for 158 

collection of the stomach and anterior intestine for immunohistochemistry (IHC), and whole-brain 159 

(including hypophysis), stomach, anterior intestine, and liver for gene expression analyses. The 160 

samples for IHC were rinsed in phosphate-buffered saline (PBS), blotted dry with a paper towel, 161 

immediately fixed in Bouin (#57211, Thermo Scientific - Richard-Allan Scientific, USA) for 24 162 

h, and subsequently transferred to 70% ethanol until further processing. The samples for gene 163 

expression were immediately stored in RNA later, left at 4 °C overnight, and subsequently stored 164 

at -80 ºC until analyses. The sampling time was selected since it was shown to provide the best 165 

results concerning appetite regulation in a previous study (Basto-Silva et al., 2021). 166 

The experiment was performed by accredited scientists (following FELASA category C 167 

recommendations) and was conducted according to the European Union directive 2010/63/EU on 168 

the protection of animals for scientific purposes. 169 

 170 

2.3. Immunohistochemistry processing 171 

Tissues were processed and sectioned using standard histological techniques. Transversal sections 172 

with 4 µm thickness were collected in Poly-L-Lysine slides (#J2800AMNT, Fisher Scientific, 173 

UK), dewaxed with xylene, and rehydrated in descending concentrations of alcohol. The IHC 174 

procedure was performed as described in (Kaiya et al., 2006) with slight modifications. Thus, all 175 

sections were delimited with a Dako pen (#5200230-2, LusoPalex Lda, Portugal), incubated in 176 

proteinase K (20 µg ml-1 in Tris-EDTA buffer) for 20 min, at room temperature (RT), washed in 177 

deionized running-water for 5 min, and in PBS for 5 min more. Then, the sections were incubated 178 

in 3% H2O2 (#31642, Merck KGaA, Germany) in methanol for 40 min at RT, rinsed in PBS for 179 

10 min, incubated for 30 min with the Ultra V Block reagent from UltraVision Detection System 180 

Anti-Polyvalent, HRP kit #TP-060-HL (Thermo Fisher Scientific, USA), and quickly dipped 2-3 181 

times in PBS. Then, the sections were incubated overnight on a humidity chamber, at 4 ºC, in 182 
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anti-octanoylated rat ghrelin [1-11] rabbit serum diluted 1/50,000 in a solution of 1% bovine 183 

serum albumin/tris-buffered saline (BSA/TBS). After the incubation, slides were rinsed in PBS 184 

for 10 min, and the sections were incubated with the secondary antibody (Biotinylated Goat Anti-185 

Polyvalent Secondary from kit #TP-060-HL) for 30 min at RT. A new wash in PBS for 10 min 186 

was performed before incubation with Streptavidin Peroxidase reagent (from kit #TP-060-HL) 187 

for 30 min at RT and washed again with PBS. The sections were reacted with 3,3' 188 

diaminobenzidine, DAB Quanto kit #TA-060-QHDX (Thermo Fisher Scientific, USA) according 189 

to the manufacturers’ instructions, and rinsed in deionized running water for 10 min. Finally, the 190 

sections were dehydrated through a crescent series solution of alcohol, cleared in xylene, and 191 

mounted in DPX mounting media (#4112; Thermo Scientific, USA). To verify the specificity of 192 

the immunohistochemical staining reaction, two negative control sections were performed for 193 

each sample: one without anti-rat ghrelin serum and another without secondary antibody. The 194 

anti-rat ghrelin serum was kindly offered by Professor Hiroyuki Kaiya, from National Cerebral 195 

and Cardiovascular Center Research Institute, Osaka, Japan.  196 

 197 

2.3.1. Morphometric evaluation 198 

The morphological evaluation was only performed on the stomach sections since the IHC 199 

technique was not well-succeed in the intestine samples. Digital images were acquired using a 200 

light microscope (Axio Imager.A2; Zeiss, Germany) equipped with the Zen software (Blue 201 

edition; Zeiss, Germany) and analyzed individually. Ghrelin cell density was calculated as the 202 

number of ghrl-ip cells per unit area (cells mm-2). A double-blinded evaluation (i.e. two different 203 

person without previous knowledge of the treatments) was repeated for three times in each fish 204 

stomach section. The mean of the three counts from the same section was considered for ghrl cell 205 

density determination in this specific section. The ghrl-ip cells were only considered after 206 

verification of the negative control sections. The area of each section was measured using Image 207 

J, version 1.46 (National Institutes of Health, USA). For each experimental condition, nine fish 208 

were used (n = 9). 209 

 210 
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2.4. Gene expression 211 

Whole-brain (including hypophysis), stomach, intestine, and liver samples for RNA extraction 212 

were processed as described by Basto-Silva et al. (2021). RNA samples were used for cDNA 213 

synthesis using a DNase I (Life Technologies, Alcobendas, Spain) to remove genomic DNA 214 

contamination, followed by the Transcriptor First Strand cDNA synthesis Kit (Roche, Sant Cugat 215 

del Valles, Spain) according to the manufacturer's recommendations, from a starting amount of 216 

3300 ng of total RNA. Samples were stored at -20 ºC until used. Quantitative real-time PCR 217 

(qPCR) was performed as described in Basto-Silva et al. (2021) and the forward and reverse 218 

primers used were designed based on the deposited nucleotide sequences in the GenBank database 219 

(https://www.ncbi.nlm.nih.gov/) and are presented in Table 2. Translation elongation factor alpha 220 

(ef1a) and ribosomal protein s18 (rps18) genes were selected as reference genes since they were 221 

constitutively expressed and were not affected by the experimental treatments. Since some of the 222 

expressed genes did not have optimum efficiency curves (between 95-105%) thus, to normalize 223 

gene expression, the Pfaffl method (Pfaffl, 2001) was used. For each experimental condition, nine 224 

fish (n=9) were used. 225 

 226 

2.5. Statistical analysis 227 

All data are presented as the mean and standard deviation. Statistical analyses were done by two-228 

way ANOVA, with FF and dietary P/CH ratio as factors, using SPSS 27 software package for 229 

Windows (IBM® SPSS® Statistics, USA). Data were tested for normality by the Shapiro-Wilk 230 

test and homogeneity of variances by Levene's test. When normality was not verified, data were 231 

transformed before ANOVA. For the leptin receptor (lepr) gene expression in the brain, where 232 

interaction between factors was observed, a one-way ANOVA was performed for the P/CH ratio 233 

within each FF, and for FF within each P/CH ratio. Significant differences among FF groups were 234 

determined by the Tukey multiple range test. A statistical significance of p ≤ 0.05 was set for all 235 

the statistical tests performed.  236 

 237 

3. Results 238 
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Fish promptly accepted the experimental diets, and during the trial, neither FF nor diet 239 

composition affected mortality, which was very low (1.67-3.33%). Specific growth rate (SGR) 240 

was only affected by FF, being higher in fish fed 2 or 3 meals per day than in those fed only 1 241 

meal per day. FI and feed conversion ratio (FCR) were also higher in fish fed 2 and 3 meals than 242 

1 meal per day and, independently of the FF protocol, in fish fed the P40/CH20 diet than the 243 

P50/CH10 diet (Table 3).  244 

Gene expression levels were undetectable for leptin in the anterior intestine; ghrl in the brain, 245 

anterior intestine, and liver; ghrelin receptor-a (ghsr-a) in the anterior intestine; and ghsr-b in the 246 

brain. The expression of npy, cartpt, crh, leptin, and ghsr-a in the brain, cck in the intestine, and 247 

leptin and ghrl in the stomach was not affected by FF nor dietary P/CH ratio (Fig. 1). Fish fed 3 248 

meals per day presented lower cck expression in the brain than those fed twice per day, and higher 249 

hepatic ghsr-b expression than fish fed 1 meal per day. Fish fed the P40/CH20 diet presented 250 

higher hepatic leptin expression than those fed the P50/CH10 diet. In fish fed twice per day, the 251 

expression of lepr in the brain was higher with the P40/CH20 diet than with diet P50/CH10. The 252 

expression of this receptor was also higher in fish fed P40/CH20 diet 2 times per day than in fish 253 

fed 1 meal per day the same diet. 254 

In the stomach, ghrl-ip cells presented a small and round shape and were mainly encountered at 255 

the base of the gastric folds in the mucosal layer. No effect of FF or diet composition was observed 256 

on the density of ghrl-ip cells in the stomach (Fig. 2).  257 

 258 

4. Discussion 259 

A cumulative effect between FF and dietary P/CH ratio was previously reported in gibel carp 260 

since FI was consistently higher in fish fed simultaneously more meals per day and diets with 261 

higher P/CH ratios (Zhao et al., 2016). Moreover, interactions between FF and dietary P/CH ratio 262 

might also be expected, since starch digestibility can be compromised by an increase in FF 263 

(Yamamoto et al., 2007). Carnivorous fish not only have limited capacity to use dietary CH (Enes 264 

et al., 2011; Kamalam et al., 2017) but also nutrients digestion and absorption might be decreased 265 

by the increase in gut transit when fed at a higher FF (Liu and Liao, 1999; Thongprajukaew et al., 266 
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2017). Thus, under those conditions, fish may possibly present a higher FI to fulfill their 267 

nutritional requirements and energy needs. In the present study, however, despite independent 268 

effects are being reported, no major interactions between FF and dietary P/CH ratios were 269 

observed.  270 

Contrary to what we have observed, other studies on gilthead seabream did not report any 271 

significant effects of FF on FI (Yilmaz and Eroldogan, 2011; Busti et al., 2020) or in associated 272 

appetite regulation mechanisms (Gilannejad et al., 2021). In the study by Gilannejad et al. (2021) 273 

fish were fed a fixed daily amount of feed, while in the present study gilthead seabream were fed 274 

until apparent satiation, and this can contribute to explaining the apparently contradictory results 275 

between the two studies.  276 

In the present study, we have observed that gilthead seabream fed 3 meals per day presented 277 

higher FI and gene expression of hepatic ghsr-b than fish fed 1 meal per day, suggesting that 278 

eating more meals per day increases fish appetite, which might partially justify the increased FI 279 

and weight gain observed in those fish. These observations might also suggest that in gilthead 280 

seabream ghsr-b has an orexigenic action. Nonetheless, the role of ghsr-b in FI regulation in fish 281 

is poorly understood. Contrary to present results, fasting did not affect ghsr-b expression either 282 

in gilthead seabream brain or liver (Perelló-Amorós et al., 2018). In zebrafish (Danio rerio), this 283 

receptor seems to mediate an orexigenic effect (Eom et al., 2014), while in Mozambique tilapia 284 

(Oreochromis mossambicus) it seems to have an anorexigenic role (Peddu et al., 2009). Therefore, 285 

more studies should be done to better understand the role of ghsr in fish. 286 

We also observed lower brain cck expression in fish fed 3 meals per day comparing with fish fed 287 

2 meals per day. A clear anorexigenic role for cck has been shown in several fish species (Volkoff 288 

et al., 2003; Valen et al., 2011; Feng et al., 2012; Penney and Volkoff, 2014; Yuan et al., 2014; Ji 289 

et al., 2015; Volkoff et al., 2016; White et al., 2016). However, in the present study, we did not 290 

observe any FI differences between fish fed 3 or 2 meals per day.  291 

Gilthead seabream fed the P40/CH20 diet exhibited a similar growth to fish fed the P50/CH10 292 

diet, but had higher FI and presented higher leptin expression in the liver. The lepr expression in 293 

the brain was also higher in fish fed the P40/CH20 diet but that was only observed when fish were 294 



13 

 

fed 2 meals per day. The interactive effect of FF and P/CH ratio on brain lepr expression was not 295 

expected since no interaction was observed regarding FI. However, both leptin and lepr results 296 

might suggest that diets with a lower dietary P/CH ratio promote a less satiety feeling. 297 

Nonetheless, this lower satiety feeling can only be considered if both leptin in the liver and lepr 298 

in the brain have an orexigenic role. An orexigenic function of lepr in the brain was also suggested 299 

in a previous study in gilthead seabream (Basto-Silva et al., 2021), although in that study hepatic 300 

leptin was reported to have contrarily an anorectic role. Nonetheless, hepatic leptin seemed to 301 

present an orexigenic role in other fish species, like goldfish and orange-spotted grouper, since it 302 

only increased several hours after feeding (Tinoco et al. 2012; Zhang et al. 2013; Tinoco et al. 303 

2014b). It must be kept in mind that fish eat to meet nutrients and energy needs (Bureau et al., 304 

2011; NRC 2011), thus the less satiation feeling and the increased FI in fish fed P40/CH20 diets 305 

can be related to the lower dietary protein content of that diet, which does not meet the 306 

requirements for gilthead seabream (Vergara and Jauncey 1993; Santinha et al., 1996; Lupatsch 307 

et al., 2003). Hence, fish needed to consume more feed to satisfy their protein requirement. 308 

Previously, some studies also suggested that in gilthead seabream lower dietary P/CH ratios 309 

promote a smaller satiation feeling. That was the case of our previous work (Basto-Silva et al., 310 

2021), where gilthead seabream fed P40/CH20 diets presented higher expression of lepr in the 311 

brain and lower expression of cck in the intestine than fish fed P50/CH10 diets. Or the study by 312 

Babaei et al. (2017), where fish fed P39/CH37 diets presented lower cck and ghrl expression in 313 

the gastrointestinal tract and higher ghrl expression in the brain than fish fed P58/CH15 diets. The 314 

activation of different physiological mechanisms reported in various studies can be also related 315 

to the distinct diets used, as some genes might be activated at different times post-feeding 316 

depending on dietary components (Bonacic et al., 2017; Murashita et al., 2019). For instance, in 317 

Senegalese sole (Solea senegalensis) fed 18% of fish oil, cartpt expression in the brain peaked at 318 

1 h after feeding but in fish fed 8% of fish oil the peak occurred only 3 h after feeding (Bonacic 319 

et al., 2017). Similarly, in yellowtail fish (Seriola quinqueradiata) fed a low fishmeal diet (15%), 320 

cck expression was lowest at 2 h after feeding, but in fish fed a 50% fishmeal no differences were 321 

observed in cck expression at any of the post-feeding sampling points (Murashita et al., 2019). 322 
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However, no other significant differences were observed regarding gene expression, which might 323 

be connected with the observed high standard deviations, not allowing to make stronger 324 

conclusions. These high variation in appetite-relates genes expression was already presented in 325 

some other studies (Hernández-Cruz et al., 2015; Perelló-Amorós et al., 2018; Torrecillas et al., 326 

2021). Moreover, due to the small fish size and as previously done in other studies on appetite 327 

regulation in gilthead seabream we analyzed the whole-brain (Babaei et al., 2017; Perelló-Amorós 328 

et al., 2018; Basto-Silva et al., 2021; Pulido-Rodriguez et al., 2021). Nonetheless, this might have 329 

masked certain modifications that could have been detected if we had analyzed specific regions 330 

as the telencephalon and hypothalamus as observed in other studies reporting different levels of 331 

activity depending on the analyzed brain section (MacDonald and Volkoff, 2009; Babichuk and 332 

Volkoff, 2013; Volkoff, 2015; Blanco et al., 2016). Thus, in future studies, the brain should be 333 

sectioned, and gene expression results might be supported through complementary 334 

methodologies, such as protein measurement and quantification.  335 

In the present study, it was detected for the first-time gilthead seabream ghrl-ip cells in the 336 

stomach. As in rainbow trout, summer flounder (Paralichthys dentatus), European seabass 337 

(Dicentrarchus labrax), Japanese eel (Anguilla japonica), Streaked prochilodus (Prochilodus 338 

lineatus), and goldfish (Sakata et al., 2004; Kaiya et al., 2006; Arcamone et al., 2009; Breves et 339 

al., 2009; Sánchez-Bretaño et al., 2015; Barrios et al., 2020), ghrl-ip cells were small and round 340 

and were found mainly at the base of gastric folds in the mucosal layer of the stomach. In rainbow 341 

trout and Japanese eel two types of ghrl cells were observed (Sakata et al., 2004; Kaiya et al., 342 

2006): opened-type cells, which seem to be in contact with the lumen and could have as a function 343 

to receive the luminal information, e.g., type and quality of the nutrients or pH; and closed-type 344 

cells, which do not have a luminal connection, and seem to be regulated by other hormones, 345 

neuronal stimulation, or mechanical distention (Sakata and Sakai, 2010). However, the distinction 346 

between those two types of cells was not possible in this study. We also tried but did not succeed 347 

in immune-locating ghrl cells on the anterior intestine of gilthead seabream. This is in agreement 348 

with gene expression data, both in this study and that of Basto-Silva et al. (2021), where ghrl 349 
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expression was undetectable in the anterior intestine. These results further support that in gilthead 350 

seabream ghrl is mainly expressed in the stomach (Perelló-Amorós et al., 2018). 351 

The lack of FF and P/CH ratio effects on the density of ghrl-ip cells in the stomach is in agreement 352 

with the absence of effects observed on ghrl expression in this organ. In zebrafish larvae, it was 353 

suggested that ghrl might not be essential for appetite control, since neither ghrl expression nor 354 

peptide levels (measured through an IHC approach) were affected during fasting (Opazo et al., 355 

2019). However, the limited and diverse data available for gilthead seabream does not allow to 356 

conclude about the importance of ghrl on appetite control in this species. Indeed, contrary to what 357 

was observed in the present study and that of Basto-Silva et al. (2021), the work of Babaei et al. 358 

(2017) appeared to indicate that a low dietary P/CH ratio promotes ghrl expression in the brain 359 

and lower expression in the gastrointestinal tract. Perelló-Amorós et al. (2018) further showed 360 

that ghrl seems to have an important role during fasting, exhibiting a strong down-regulation at 361 

the post-prandial stage. Thus, ghrl role in gilthead seabream appetite regulation seems to be 362 

complex and needs to be further clarified.  363 

In conclusion, either 3 meals per day and low P/CH diets seem to decrease the satiation feeling 364 

of gilthead seabream juveniles, increasing FI and affecting the expression of some appetite-related 365 

genes. The present study also confirmed, for the first time in this species, the presence of ghrl 366 

cells in the base of gastric folds.  367 
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Table 1. Ingredients and proximate composition of the experimental diets. 694 

  Diets 

  P50/CH10 P40/CH20 

Ingredients (% DM)   

Fishmeal1 15.6 12.5 

Fish oil2 14.0 14.7 

Soybean meal3 25.0 20.0 

Corn gluten4 20.0 15.0 

Wheat gluten5 11.4 6.4 

Wheat meal6 9.4 26.2 

Monocalcium phosphate7 0.7 1.0 

Lysine8 0.1 0.5 

Taurine9 0.2 0.2 

Vitamin mix10 1.0 1.0 

Mineral mix11 1.0 1.0 

Binder12 1.0 1.0 

Choline chloride (50%) 0.5 0.5 

Proximate analysis (% DM)   

Dry matter 93.6 93.0 

Crude protein 51.9 42.2 

Crude fat 17.5 17.4 

Ash 6.0 5.4 

Starch 9.8 17.4 

Gross energy (kJ g-1)13 20.8 19.8 

CH: Carbohydrates; CP: Crude protein; D: Diet; DM: Dry matter; GL: Gross lipid; P: Protein. 695 
1Sorgal. S.A. Ovar. Portugal (CP: 73.5% DM; GL: 17.0% DM).   696 
2Sorgal. S.A. Ovar. Portugal. 697 
3Sorgal. S.A. Ovar. Portugal (CP: 54.3% DM; GL: 1.8% DM).  698 
4Sorgal. S.A. Ovar. Portugal (CP: 70.0% DM; GL: 3.3% DM).  699 
5Sorgal. S.A. Ovar. Portugal (CP: 84.2% DM; GL: 1.0% DM).  700 
6Sorgal. S.A. Ovar. Portugal (CP: 13.8% DM; GL: 1.1% DM).  701 
7Sorgal. S.A. Ovar. Portugal. 702 
8Feed-grade lysine. Sorgal. S.A. Ovar. Portugal.   703 
9Feed-grade taurine. Sorgal. S.A. Ovar. Portugal.   704 
10Vitamins (mg kg-1 diet): retinol acetate. 18000 (IU kg-1 diet); cholecalciferol. 2000 (IU kg-1 diet); alpha 705 

tocopherol acetate. 35; sodium menadione bisulphate. 10; thiamin-HCl. 15; riboflavin. 25; calcium 706 

pantothenate. 50; nicotinic acid. 200; pyridoxine HCl. 5; folic acid 10; cyanocobalamin. 0.02; biotin. 1.5; 707 

ascorbic acid. 50; inositol. 400. Premix. Lda.. Viana do Castelo. Portugal.   708 
11Minerals (mg kg-1 diet): copper (II) sulphate. 5; ferrous carbonate. 40; fluorine. 1; potassium iodide. 0.6; 709 

magnesium oxide. 500; manganese oxide. 20; sodium selenite. 0.3; zinc oxide. 30; Minerals content (%): 710 

Calcium. 17; Phosphorus. 13; Potassium. 6; Cloride. 7; Sodium chloride. 4. Premix. Lda.. Viana do 711 

Castelo. Portugal.   712 
12Liptosa. Madrid. Spain. 713 
13Gross energy calculated based on theoretical values (CP: 23.6 kJ g-1; GL: 39.5 kJ g-1; carbohydrates: 714 

17.2 kJ g-1): (23.6 × % dietary CP) + (39.5 × % dietary GL) + (17.2 × % dietary CH).  715 
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Table 2. Appetite regulation-related genes and primers used for qPCR. 716 

Gene ID primer Sequence (5´- 3´) 1Accession nº  Tm (ºC) Efficiency (%) 

cholecystokinin cck 
F: CTGTGTACGAGCTGTTTGGGG 

R: AGCCGGAGGGAGAGCTTT 
KP822925 60 90.5 

cocaine- and amphetamine-

regulated transcript 
cartpt 

F: CTGAGGAGCAAAGAGATGCCCTTAGAGAAA 

R: GCGTCACACGAAGGCAGCCA 
MG570186 60 81.8 

corticotropin-releasing hormone crh 
F: ATGGAGAGGGGAAGGAGGT 

R: ATCTTTGGCGGACTGGAAA 
KC195964 60 85.3 

ghrelin ghrl 
F: CCCGTCACAAAAACCTCAGAAC 

R: TTCAAAGGGGGCGCTTATTG 
MG570187 60 98.7 

ghrelin receptor-a ghsr-a 
F: GTCGGCGGCTGTGGCAAAGA 

R: GGCCAACACCACCACCACCAAC 
MG570188 60 112.0 

ghrelin receptor-b ghsr-b 
F: CGCACACGCATAACTTTGTC 

R: GAGGAGGATGAGCAGGTGAA 
MG570189 60 114.2 

leptin leptin 
F: TCTCTTCGCTGTCTGGATTCCTGGAT 

R: CTCCTTCTTGCTCTGTAGCTCTT 
KP822924 60 104.3 

leptin receptor lepr 
F: GGCGGAACTGATTCTACTCTG 

R: AGTATCGGACCTCGTATCTCA 
MG570178 60 105.5 

neuropeptide y npy 
F: AAACCGGAGAACCCCGGGGAGG 

R: CTGGACCTTTTTCCATACCTCTG 
KP822926 60 78.8 

Reference genes 

translation elongation factor ef1a 
F: CTTCAACGCTCAGGTCATCAT 

R: GCACAGCGAAACGACCAAGGGGA 
AF184170 60 96.5 

ribosomal protein S18 rps18 
F: GGGTGTTGGCAGACGTTAC 

R: CTTCTGCCTGTTGAGGAACCA 
AM490061.1 60 98.0 

F: Forward; R: Reverse; Tm: Melting temperature. 1from the GenBank database (https://www.ncbi.nlm.nih.gov/). 717 

https://www.ncbi.nlm.nih.gov/
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Table 3. Growth performance, feed intake, and feed utilization efficiency of gilthead seabream 718 

fed the experimental diets at different feeding frequencies. 719 

P/CH ratio P50/CH10 P40/CH20 

FF 1 2 3 1 2 3 

SGR (%)1 2.5 ± 0.0 2.8 ± 0.0 2.7 ± 0.1  2.4 ± 0.0 2.8 ± 0.2 2.7 ± 0.1 

FI2 

(g kg ABW-1 day-1) 
1.2 ± 0.0  1.5 ± 0.1 1.3 ± 0.0 1.3 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 

FCR3 1.1 ± 0.0 1.2 ± 0.1 1.2 ± 0.0 1.2 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 

Two-way ANOVA         

        Ratio P/CH FF 
 P/CH FF I P50/CH10 P40/CH20 1 2 3 

SGR (%)1 ns *** ns - - a b b 

FI2  

(g kg ABW-1 day-1) 
** *** ns A B a b b 

FCR3 *** *** ns A B a b b 

Values presented as means (n=3) and standard deviation. Different upper-case letters denote for significant 720 

differences between dietary P/CH ratio and different lower-case letters denote for significant differences 721 

between feeding frequencies. 722 

ns: not significant; **P ≤ 0.01; ***P ≤ 0.001.  723 

CH: Carbohydrates; FBW: Final body weight; FF: Feeding frequency; I: Interaction; P: Protein. 724 
1Specific growth rate, SGR: [(ln (FBW) – ln (IBW))/time in days] × 100. 725 
2Feed intake, FI (g kg ABW-1 day-1): FI (kg fish-1)/ABW/time in days. 726 

Average body weight, ABW: (IBW + FBW)/2. 727 
3Feed conversion ratio, FCR: dry FI/wet WG. 728 

 729 
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FF P/CH ratio FF x P/CH

npy 0.164 0.607 0.890

cartpt 0.718 0.329 0.172

crh 0.340 0.117 0.794

FF P/CH ratio FF x P/CH

1 2 3

cck , brain ≤ 0.01
† 0.792 0.329 ab b a

cck , intestine 0.514 0.410 0.631  -  -  -
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leptin , liver 0.256 ≤ 0.05
‡ 0.194

leptin , brain 0.366 0.474 0.328
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 731 

Fig. 1 Normalized appetite regulation-related genes expression of gilthead seabream fed the experimental 732 

diets at different feeding frequencies (FF). cocaine- and amphetamine-regulated transcript (cartpt), 733 

corticotropin-releasing hormone (crh) and neuropeptide y (npy) in the brain (a), cholecystokinin (cck) in 734 

the brain and intestine (b), leptin in the brain, liver, and stomach (c), leptin receptor in the brain (d), and 735 

ghrelin and their receptors (ghsr-a and ghsr-b) in the stomach, brain, and liver (e). Values presented as 736 

means (n=9) and standard deviation. † (FF) and ‡ (P/CH ratio) statistical significances are shown in the 737 

gray column in the tables. In case of interaction between FF and dietary P/CH ratio, one-way ANOVA was 738 

performed, and significant differences are indicated within the graph. Different lower-case letters denote 739 

significant differences between the FF, and upper-case letters denote significant differences between the 740 

dietary P/CH ratio, (p ≤ 0.05). All values are expressed as arbitrary units (a.u.). 741 

CH: carbohydrates; P: protein. 742 
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 743 

Fig. 2 Representative immunopositive ghrelin cells (►) in the middle part of the stomach (a), negative control without primary antibody (b), negative control without 744 

secondary antibody (c), density of immunopositive ghrelin cells (cells mm-2) in the stomach of gilthead seabream fed the experimental diets at different feeding frequencies 745 

(FF) (d). Images captured at 40× magnification from a gilthead seabream fed P50/CH10 diet, 2 meals per day. Values presented as means (n = 9) and standard deviation. No 746 

significant differences were found (p > 0.05) between the experimental conditions. CH: carbohydrate; P: protein. 747 
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