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Introduction

One of the basic premises of model theory is the formalization of objects and
the properties they satisfy as independent entities, called structures and theories,
respectively. It goes without saying that this dichotomy leaves room for a more
thorough description and handling of the classes of such objects, as well as their
theories.

Starting from a determinate set of properties from some field of mathematics,
we may seek their translation into first-order logic and ask what kind of structures
satisfy them. This will narrow down the possible characteristics of both our objects
and their class as a whole. The question, as always, concerns what we can achieve
from this approach.

We can ask ourselves how to relate these structures beyond them fulfilling
the formulas from a same theory. Under certain conditions of their class, Fraïssé
[Fra54] proved the existence of a countable structure which can embed any of the
structures and satisfies some additional homogeneity criteria. In other words, we
obtain new information about the maps between the elements of the class.

The constructions we will delve into nowadays constitute a paramount imple-
ment in some areas of model theory. Beyond this, their potential is manifested
in their capability to attain various structures, which are pivotal in other fields of
mathematics, solely through the application of a single method to different classes
of lesser structures.

Our goal throughout this work is to describe the properties which support
Fraïssé’s framework, present the centrals results of his theory and provide other
specific results for particular instances of structure classes. In this manner, we
will be able to review and study some of the most celebrated examples of limit
structures, while detailing a selection of their peculiarities.

As any other widespread result, Fraïssé’s method is outlined in multiple refer-
ence texts on model theory, such as Hodges’ [Hod93], Evans’ [Eva94] or Tent and
Ziegler’s [TZ12]. We will follow the formalization of the latter to provide a back-
ground for the central theorem and point out some of its results. Some other prop-
erties (including the central result or the amalgamation of finite Boolean algebras)
were discussed over unpublished materials from Casanovas [Cas09][Cas14][Cas22]
and during some meetings with him.

Regarding the occurrences of the limit structure in algebraic and relational
classes, we followed Evans’ [Eva94] compendium for a reference on some exam-
ples and a few brief summaries of their methodologies. A selection of these cases
was then extended with the help of other sources, aiming to provide a systematic
study on several properties established beforehand.

The thesis is structured as follows:
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• Chapter 1 presents a short collection of definitions and propositions which
are basic to understand the subsequent results. An undergraduate level of
mathematical knowledge is sufficient to comprehend its entirety.

• Following the previous framework, chapter 2 discerns the candidates for our
classes of structures and develops the theoretical core of the work. After that,
it introduces some supplementary results which further characterize Fraïssé
constructions.

• Chapter 3 revolves around some first examples of classes, namely those of
finite graphs, finite orders and vector spaces over a fixed finite field. For
that purpose, it establishes a series of general properties so as to handle the
different cases more efficiently.

• We finish the work with chapter 4, dealing with more complex structures
which require the background of Fraïssé’s theory, but introduce distinctive
nuances from their respective fields.

I would like to acknowledge the unswerving commitment and insightful guid-
ance of Enrique Casanovas, my advisor for this project. There is nothing but
thankfulness for his time and dedication, which pass on his eagerness for the
study of model theory.

Undoubtedly, I want to express my foremost and deepest gratitude to my fam-
ily and friends. I am forever indebted to them for being unrelentingly supportive
and for the uncountable times they made me feel that carrying on was worth it.



Abstract

Fraïssé limits are a fundamental construct in model theory. Their significance
relies on the fact that they generate overarching structures for certain classes of
non-logical objects. This work focuses on two main objectives: to lay the theo-
retical foundations for Fraïssé limits and develop several well-known instances of
algebraic and relational structures. To do so, we introduce a series of intermediate
results which will apply to finite relational languages or more general contexts.
Lastly, we describe some properties for the ω-categoricity and quantifier elimina-
tion of theories, and verify which of our examples satisfy them.

Notation: We will employ terminology from first order-logic and provide a
concise summary of the necessary concepts, following [TZ12] and [Eva94].

2020 Mathematics Subject Classification. 03C30, 03C35, 03C52.



Chapter 1

Preliminary notions

This preparatory chapter focuses on providing the essential concepts and tools
to sufficiently develop the results which lead to the construction of Fraïssé limits,
in line with the formalization of the model theory foundations in [TZ12]. In ad-
dition, some properties set the bases for the analysis and discussion of particular
cases, which will be presented in chapters 3 and 4. The reader is presupposed to
possess a level of knowledge equivalent or superior to an undergraduate introduc-
tory course on elementary logic: for reference on set theory and other fundamental
topics, we adhere to [End77].

1.1 Structures and maps

Classical model theory revolves around the interaction of first-order formulas
and the classes of objects which satisfy them. Characterizing the collections of
structures by means of statements which hold in them, as another of the main
subjects of study, illustrates the continuous perspective switch which pervades the
distinctive methods of the field. Said formulas are constructed upon a concrete
language, that is, a –possibly empty– set of constants, function symbols and pred-
icates (also referred to as relation symbols). Accordingly, languages also underlie
the structures which will interact with subsequent collections of formulas:

Definition 1.1. Let L be a language. An L-structure is a pair A= (A, (ZA)Z∈L), where

A is a non-empty set, the universe of A,
ZA ∈ A if Z is a constant,
ZA : An → A if Z is an n-ary function symbol, and
ZA ⊆ An if Z is an n-ary relation symbol.

Thinking of sets as universes of structures equipped with the same language
allows us to define special maps which connect interpretations of a same element.

1



2 Preliminary notions

Definition 1.2. Let A and B be L-structures. A map h : A → B is called a homomor-
phism if for all a1, . . . , an ∈ A, and for all c constants, f function symbols and R predicates
from L:

h(cA) = cB

h( fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

RA(a1, . . . , an)⇒ RB(h(a1), . . . , h(an))

Furthermore, h is called an embedding1 if it is injective and the converse of the last
implication is also true; an isomorphism is a surjective embedding.

Homomorphisms, embeddings and isomorphisms are denoted, respectively,

by h : A→B, h : A
⊂∼−→B and h : A ∼−→B. Hence, automorphisms of A are defined as

isomorphisms A
∼−→ A.

Definition 1.3. A= (A, (ZA)Z∈L) is a substructure of B= (B, (ZB)Z∈L) (equivalently,
B is an extension of A, or A ⊆ B) if A ⊆ B and the inclusion map is an embedding
A

⊂∼−→B.

Note that if ∅ ̸= A ⊆ B, where B is the universe of an L-structure, A is the uni-
verse of a uniquely determined substructure if and only if A contains all cB and
it is closed under all functions fB. This is particularly relevant for relational lan-
guages like graphs or lineal orders, where any non-empty subset of an L-structure
will be the universe of an L-structure.

Similarly, we can find other structures called reducts (denoted by A ↾ L0 =

(A, (ZA)Z∈K)) and expansions, by considering sublanguages L0 ⊂ L. As a related
case, given A and B ⊆ A, we name AB the structure with universe L ∪ B which
interprets the elements of B as themselves (and maintains the interpretation of the
remaining elements). The following definition presents the elements of a structure
which determine the values of any homomorphism:

Definition 1.4. Let B be an L-structure and ∅ ̸= S ⊆ B. An L-structure A ⊆ B is
generated by S if every A′ ⊆B containing S satisfies A ⊆ A′. We then write A= ⟨S⟩B,
and call A finitely generated if S is finite.2

1Also called monomorphism in some literature, due to the general concept in category theory.
2Notice that we will often reserve A, B, . . . for the associated universes of structures A,B, . . .
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1.2 Theories

The previous definitions allow us to recursively present the notion of L-term,
as any variable, constant from L, or sequence f t1 . . . tn, where f ∈ L is an n-ary
function symbol and ti are L-terms. In order to construct formulas from L-terms,
we must be able to interpret them by means of the elements of our L-structures.
Let us assign elements b⃗ = (b1, . . . ,bm) of an L-structure A to a set of variables
v1, . . . ,vm. We then define the interpretation tA [⃗b] in A of an L-term t as

vAi [⃗b] = bi, cA [⃗b] = cA, f t1 . . . tAn [⃗b] = fA
(

tA1 [⃗b], . . . , tAn [⃗b]
)

,

for every c ∈ L constant and f ∈ L function symbol. We may also express
tA [⃗b] as tA[b1, . . . ,bm] and, given L-terms t, t1, . . . , tn, consider the L-term t(t1, . . . , tn)

obtained by substituting each vi with ti. From this, letting h : A ∼−→B be an isomor-
phism, the following equalities are deduced:

t(t1, . . . , tn)
A [⃗b] = tA

[
tA1 [⃗b], . . . , tAn [⃗b]

]
, h

(
tA[b1, . . . ,bm]

)
= tB[h(b1), . . . , h(bm)]

The objects which we have introduced are enough to define formulas from
the elements of L (constants, function symbols and relation symbols), variables,
parentheses, quantifiers (∃,∀) and other logical symbols ( .

=,¬,∧,∨,→,↔):

Definition 1.5. Let L be a language. Given t1, . . . , tn L-terms, R ∈ L an n-ary relation
symbol and x a variable, we denominate formula any sequence of symbols of the form

t1
.
= t2, Rt1 . . . tn, ¬ϕ, (ϕ1 ∧ ϕ2), ∃xϕ,

where ϕ,ϕ1,ϕ2 are formulas. Formulas of the first two kinds are called atomic, while they
and their negations are sometimes referred to as basic. We use ∀xϕ, ϕ1 ∨ ϕ2, ϕ1 → ϕ2,
ϕ1 ↔ ϕ2, as abbreviations for ¬∃x¬(ϕ), ¬(¬ϕ1 ∧ ¬ϕ2), ¬ϕ1 ∨ ϕ2, (ϕ1 → ϕ2) ∧ (ϕ2 →
ϕ1), respectively.

Having developed a syntax, now it is possible to provide a semantic relation
which will allow for formulas to describe most of the attributes a structure may
have. The subsequent is well-defined due to the fact that every formula has a
unique decomposition, i.e., as long as two given formulas are of the same kind
(from the definition), the terms or subformulas which define them will be equal.

Definition 1.6. Let A be an L-structure, φ an L-formula and b⃗ an assignment. We say
that φ holds for b⃗ in A (or that B satisfies φ) if the relation A |= φ[⃗b], defined by the
following statements, holds:

A |= t1
.
= t2 [⃗b]⇔ tA1 [⃗b] = tA2 [⃗b]
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A |= Rt1 . . . tn [⃗b]⇔ RA
(

tA1 [⃗b], . . . , tAn [⃗b]
)

A |= ¬ϕ[⃗b]⇔ A ̸|= ϕ[⃗b]

A |= (ϕ1 ∧ ϕ2)[⃗b]⇔ A |= ϕ1 [⃗b] and A |= ϕ2 [⃗b]

A |= ∃xϕ[⃗b]⇔ there is a ∈ A: A |= ϕ [b0, . . . ,bi−1, a,bi+1,bm] , if x = vi.

Moreover, two formulas are equivalent if they hold for the same assignments; and an
element a ∈ A realizes a set of formulas Σ(x) if a satisfies in A all formulas from Σ(x)
(A |= Σ(a)).

Retrieving one of the previous equalities, we can establish an equivalence
sometimes known as the substitution lemma:

A |= φ(t1, . . . , tn)[⃗b]⇐⇒ A |= φ
[
tA1 [⃗b], . . . , tA1 [⃗b]

]
Formulas can be assigned several attributes regarding the occurrence of quan-

tifiers and quantified variables. We denote formulas without any symbols ∃,∀ as
quantifier-free formulas. Every formula is equivalent to one in negation normal form,
i.e., it is built from basic formulas by employing ∧,∨,∃,∀; these are also called uni-
versal (respectively, existential) if they do not contain existential (resp. universal)
quantifiers.

On the other hand, we say that a variable x is free in a formula if does not
appear in the range of some ∃x, and bound otherwise. In other words, x is free in
t1

.
= t2 or in Rt1 . . . tn if it occurs in one of the ti; it is free in ¬ϕ0 or in (ϕ1 ∧ ϕ2) if

it is free in some of the ϕi; and it is free in ∃yϕ if it is free in ϕ and x ̸= y. Then,
we call a formula sentence if it does not contain free variables, and denote A |= φ

when it holds for some (equivalently, all) assignment. We also say that A satisfies,
is a model of or models φ.

A set of L-sentences is said to be consistent or satisfiable3 if it has a model, that
is, a structure which models all its sentences. Similarly, given a structure A and
B ⊆ A, a set of L(B)-formulas Σ(x) is consistent or satisfiable in A if it is realized
by some a ∈ A. We extend the notion of satisfiability to finite satisfiability if these
conditions are met for finite subsets of the set of sentences or formulas.

A sentence φ is said to follow from a set of sentences T (T ⊢ φ) if it holds in
all models of T. A set of L-sentences T is then called an L-theory if any φ which
follows from T is in T. Thus, any equivalent theories S and T (S ≡ T), that is S ⊢ T
and T ⊢ S, are equal. A set of formulas Σ is said to be consistent with a theory T
if Σ ∪ T is consistent. Lastly, a consistent L-theory T is said to be complete if, for all
L-sentences φ, either T ⊢ φ or T ⊢ ¬φ. holds.

3In first-order logic, the general notions of consistency and satisfiability are equivalent, so we
may use the two terms interchangeably.
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1.3 Models, elementarity and chains

Structures are inherently tied to theories and sets of formulas they are models
of: for instance, the atomic diagram Diag(A) is defined as the class of basic L(A)-
sentences which hold in AA, while the theory (of a structure) Th(AA) is the class
of L(A)-sentences which hold in AA. As demonstrated in [TZ12], these construc-
tions allow us to characterize collections of sentences and provide criteria for their
properties:

Proposition 1.7. Let T be a consistent L-theory. The following are equivalent:

a) T is complete.
b) All models of T are elementarily equivalent, i.e. have the same L-theory.
c) There exists an L-structure A with T = Th(A).

There is a stronger distinction for maps between L-structures: whenever they
preserve the validity of arbitrary formulas (that is, A |= φ[a1, . . . , an] just in case
B |= φ[h(a1), . . . , h(an)]), they are called elementary embeddings and denoted by h :
A

≼−→ B, and also A ≼ B if A ⊆ B. It follows that the models of Diag(A) and

Th(AA) are the structures (B, h(a))a∈A for, respectively, embeddings h : A
⊂∼−→ B

and elementary embeddings h : A ≼−→B.

Theorem 1.8 (Tarski’s Test). Let B be an L-structure. A ⊆ B is the universe of an
elementary substructure if and only if every L(A)- formula φ(x) satisfiable in B is also
satisfied by an element of A.

We introduce a last bundle of results which ensure some properties carry over
to higher structures: given a linear order (I,≤), a chain (resp. elementary chain)
(Ai)i∈I of L-structures is such that, if i ≤ j, then Ai ⊆ Aj (resp. Ai ≼ Aj).

Lemma 1.9. Let (Ai)i∈I be a chain of L-structures. Then, A =
⋃

i∈I Ai is the universe of
a uniquely determined L-structure A=

⋃
i∈I Ai which is:

i) an extension of all Ai.
ii) (Tarski’s Chain Lemma) an elementary extension of all Ai, if (Ai)i∈I is elementary.



Chapter 2

Theoretical construction

From a naive perspective, the interest of Fraïssé constructions is two-fold: they
constitute an overarching structure which both extends a collection of smaller
models and induces more specific theories with stronger properties. In order to
elaborate on these matters, this chapter is laid out in the following fashion: the first
section presents some necessary notions regarding theories and satisfiability of
formulas and sentences; section 2.2 is the core of the theoretical half of the paper;
and, lastly, a series of results are developed as implications of Fraïssé limits.1

2.1 ω-categoricity

Let us begin by stating one of the classical results in first-order logic, which
provides an essential shift in the methods of proving certain properties for sets of
formulas and theories in particular, as shown in [Hod93]:

Theorem 2.1 (Compactness Theorem). A set of formulas is satisfiable if and only if it
is finitely satisfiable.

As a consequence, a sentence follows from a theory T if and only if it follows
from some finite subset of T; furthermore, a theory is consistent with a set of
formulas Σ if and only if it is consistent with every finite subset of Σ. Along
with the following definition and an immediate result, the consequences of the
compactness theorem motivate the concept of type, which is pivotal for this work.

First note that a finite subset of a finitely satisfiable Σ in L(A) is realized in A

if and only if it is consistent with Th(AA). Then, as seen in section 1.3, the latter
occurs if and only if there exists an elementary extension of A where Σ is realized:
this now becomes an equivalent condition for Σ(x) being finitely satisfiable in A.

1Let ω = |N|. We will make use the notation n < ω to express n is a natural number.

6



2.1 ω-categoricity 7

Definition 2.2. Let A be an L-structure and B a subset of A. A set p(x1, . . . , xn) of L(B)-
formulas is called an n-type over B (referred to as its domain) if it is maximal finitely
satisfiable in A. We denote the set of n-types over B by Sn(B) = SA

n (B).

In particular, we may refer to 1-types simply as types and denote their set by
S(B) = SA(B). We will usually follow the convention that n-types are complete n-
types, i.e., so-called partial n-types (sets of formulas defined accordingly, but with-
out the maximality requirement) will often be introduced with that distinction.

Moreover, n-types being maximal with respect to inclusion implies the follow-
ing equivalence: an n-tuple a from A realizes the n-type p ∈ Sn(B) if and only if
p = tp(a/B), which is defined as the set of L(B)-formulas satisfied by a in A. We
deduce from this fact that both n-types and the set of n-types are preserved over
elementary extensions of A.

Types motivate the definition of a kind of structures which are fundamental to
Ryll-Nardzewski’s Theorem and to determine uniqueness up to isomorphism for
models of cardinality ω: we say an L-structure is ω-saturated if all types over finite
subsets of A are realized in A.2

Precisely, as powerful as the Compactness Theorem may be, it also presents
us with some hindrances when it comes to describing the models which satisfy a
theory. Following the properties about types gathered from [TZ12], the subsequent
well-known results show that finding an infinite model automatically implies the
existence of many more structures which satisfy the same theory:

Theorem 2.3 (Löwenheim-Skolem). Let B be an L-structure, S a subset of B and κ an
infinite cardinal. Then,

1. B has an elementary substructure of cardinality κ containing S if

max(|S|, |L|) ≤ κ ≤ |B|

2. B has an elementary extension of cardinality κ if B is infinite and

max(|B|, |L|) ≤ κ

Corollary 2.4. An L-theory satisfied by an infinite model has a model in every cardinality
κ ≥ max(|L|,ω).

Thus, in order to classify theories according to the specificity of their models,
we must limit ourselves to considering only individual cardinalities.

2It can be seen that the restriction to 1-types can be suppressed without consequences.
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Definition 2.5. Let κ be a cardinal. An L-theory T is κ-categorical if it has exactly one
model of cardinality κ up to isomorphism.3

The upcoming section provides tools to determine whether classes of finitely
generated structures which respond to specific theories can be extended to a model
of size ω, thus deeming the theory ω-categorical.

2.2 Fraïssé limits

In order to prove some of the results in this chapter, we need an auxiliary
method to connect the aforementioned notions with a practical way of checking
the ω-categoricity of structures. [Ber15] describes the following result, which al-
lows us to construct isomorphisms between structures, and relates its implications:

Theorem 2.6 (Back-and-forth). Let L be a language and M, N be L-structures of size
ω. Consider I : M ∼=p N, the nonempty set of isomorphisms between finitely generated
substructures of M and N with the properties:

• Back: for every f ∈ I and every n ∈ N, there exists some f ′ ∈ I which extends f
and contains n in its image.

• Forth: for every f ∈ I and every m ∈ M, there exists some f ′ ∈ I which extends f
and contains m in the domain.

Then, there exists an isomorphism h : M ∼−→N.

We will now present a weak version of the Fraïssé theorem, which does not
ensure the uniqueness of the constructed structure. Departing from a fixed theory
and a limited class of its models, our goal is to reach a countable4 structure which
also satisfies the theory and behaves properly with the aforementioned class.

Definition 2.7. The age5 K of an L-structure M, Age(M), is the class of all finitely
generated L-structures which are isomorphic to a substructure of M.

In other words, a finitely generated L-structure belongs to Age(M) exactly
when it is embeddable into M. For the sake of simplicity, let us also handle
the elements of classes in terms of the equivalence relation ∼=, of isomorphism
between structures. Throughout the following two definitions, consider a class
K of finitely generated structures closed under isomorphism, such that there are
countably many isomorphism types of said structures (that is, |K/ ∼= | ≤ ω).

3We can also attribute the property of κ-categoricity to structures inasmuch their theories may be
κ-categorical.

4In this work, countable refers to a cardinality equal or less than ω.
5Also referred to as skeleton by some sources.
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Definition 2.8. The class K has the Hereditary Property (HP) if, for any A in K,
Age(A) is a subset of K.

Definition 2.9. The class K has the Joint Embedding Property (JEP) if, for any B0,B1

in K, there are some D ∈ K and embeddings gi : Bi
⊂∼−→D (i ∈ {0,1}).

These properties are sufficient to construct a “weak” Fraïssé limit of the class
K, which is not uniquely determined with respect to isomorphism:

Theorem 2.10. Let L be a countable language and K a class of finitely generated L-
structures. Suppose K is closed under isomorphism and |K/ ∼= | ≤ ω. Then, there exists
a countable L-structure M such that K = Age(M) if and only if K satisfies HP and JEP.

Proof. Age(M) has the HP since any A ∈ Age(M) embeds into M, and every
A0 ∈ Age(A) is finitely generated and embeds into A. For the JEP, consider some
B0,B1 ∈ Age(M) and find ⟨{b1

0, . . . ,bn0
0 }⟩M ∼=B0, ⟨{b0

1, . . . ,bn1
1 }⟩M ∼=B1. The struc-

ture D = ⟨{b0
0, . . . ,bn0

0 ,b0
1, . . . ,bn1

1 }⟩M ∈ Age(M), embeds both B0 and B1 as sub-
structures.

Conversely, assume K satisfies HP and JEP, and let (Bi : i < ω) be an enumer-
ation of the isomorphism representatives of the elements of K. We will construct
the limit M as the union

⋃
i<ω

Ai of a chain (Ai : i < ω) of structures of K, in a

way that every Bi embeds into Ai. We begin by setting A0 = B0: for each i < ω,

there exists some A′
i+1 ∈ K and embeddings g0

i : Ai
⊂∼−→ A′

i+1 and g1
i : Bi+1

⊂∼−→ A′
i+1,

due to JEP. Additionally, we may consider a structure Ai+1 ⊇ Ai in K such that
Ai+1

∼=h A′
i+1. Then, g0

i = h ◦ IdAi , and we can embed Bi+1 into Ai+1 via h−1 ◦ g1
i .

Thus, we have constructed a proper chain of (Aj) which assimilates the represen-
tatives Bi of isomorphism type in every step.

It remains to be checked that K=Age(M): by construction, every Bi is embed-
dable into M, so K ⊆ Age(M); conversely, there exists an embedding from every
finitely generated structure in M into some Ai, which completes the proof.

Example 2.11. While this method works for countable structures in general (in
the sense their cardinality is not greater than ω), only one of the implications is
preserved when switching to the finite case. Specifically, considering |K/ ∼= | < ω

does not necessarily yield a finite model M: for instance, a class based on the set
of integers with the successor and predecessor function symbols, K = (Z,S, P),
only produces the trivial isomorphism type ⟨0⟩, whereas any model which results
as the Fraïssé limit of K will have an infinite model into which Z embeds.

However, we may require additional properties in order to obtain a unique
Fraïssé limit. For the remainder of the section, let us suppose L is a countable
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language and M is a countable L-structure. We temporarily divert from Fraïssé
limits so that we can adhere to the homogeneity approach in [Cas09], and define:

Definition 2.12. M is ultrahomogeneous if any isomorphism between its finitely gen-
erated substructures can be extended to an automorphism of M. M is algebraically ω-
homogeneous if, for any every isomorphic finitely generated substructures of M, A∼=h B,
and for each a ∈ M, there exists b ∈ M such that h ∪ {(a,b)} can be extended to an iso-
morphism between ⟨Aa⟩M and ⟨Bb⟩M. More weakly, M is strongly ω-homogeneous
if every finite elementary map in M can be extended to an automorphism of M. Finally,
M is ω-homogeneous if, for any a ∈ M, every finite elementary map h in M can be
extended to an elementary map h ∪ {(a,b)}, for some b ∈ M.

Let us write a ≡q f r b whenever two finite tuples a,b ∈ M satisfy the same
quantifier-free formulas. This is equivalent to the condition that the map a 7→ b
can be extended to a (unique) isomorphism ⟨a⟩M ∼−→ ⟨b⟩M.6 Given this fact, every
isomorphism between finitely generated substructures of M is elementary if and
only if for any a,b ∈ M, a ≡q f r b implies a ≡ b. Hence:

Proposition 2.13. The following conditions are equivalent:

1. M is algebraically ω-homogeneous.

2. For any finite tuples a ≡qr f b of M and for each a ∈ M, there exists some b ∈ M
such that aa ≡q f r bb.

3. For all finitely generated A⊆B⊆M, every embedding f : A
⊂∼−→M can be extended

to an embedding g : B
⊂∼−→M.

The second condition implies that every isomorphism between structures is el-
ementary, so M is algebraically ω-homogeneous if and only if it is ω-homogeneous
and every isomorphism between substructures is elementary. In general, a struc-
ture is ultrahomogeneous if and only if it is strongly ω-homogeneous and every
isomorphism between its substructures is elementary. Therefore, if M is count-
ably generated, M being ultrahomogeneous is equivalent to it being algebraically
ω-homogeneous. From definition 2.12, we derive:

Lemma 2.14. Let K be the age of and L-structure M. Then, the following are equivalent:

1. M is algebraically ω-homogeneous.

6A further characterization is provided in section 2.3.
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2. For all A,B∈K and embeddings f0 : A
⊂∼−→M, f1 : A

⊂∼−→B, there is some embedding
g : B

⊂∼−→M such that g ◦ f1 = f0.

3. For all A⊆M,B in K and f1 : A
⊂∼−→B, there is some embedding g : B

⊂∼−→M such
that g ◦ f1 = IdA.

Definition 2.15. The L-structure M is said to be rich7 with respect to K if its age is K
and for all A,B ∈ K and embeddings f0 : A

⊂∼−→M, f1 : A
⊂∼−→B, there is some embedding

g : B
⊂∼−→M such that g ◦ f1 = f0.

With this definition, we may proceed using interchangeable equivalences of
richness depending on the context. We can now return to Fraïssé theory to prove
a result and introduce the last concept before showing the central theorem:

Theorem 2.16. Let M and N be countably generated L-structures rich with respect to a
same K. Then, M∼=N.

Proof. Let (mi : i < ω) and (ni : i < ω) be the generators of M and N, respectively.
We will apply a back-and-forth approach to construct an isomorphism f between
M and N, as the union of a chain ( fi : i < ω) of isomorphisms between finitely
generated structures Mi ⊆M and Ni ⊆ N, such that mi ∈Mi+1 and ni ∈ Ni+1 for
every i < ω. Since M and N have age K, we can choose any substructure M0

and find an isomorphism f0 into some N0 ⊆ N. Now, consider fi : Mi
∼−→ Ni and

the inverse over an extended codomain f−1
i : Ni

⊂∼−→ ⟨Mimi⟩M. Using lemma 2.14

we obtain an embedding g : ⟨Mimi⟩M
⊂∼−→ N′

i ⊆ N such that g ◦ f−1
i = IdNi , i.e. an

embedding g ⊇ fi. Applying the same reasoning to g : ⟨Mimi⟩M
⊂∼−→ ⟨N′

ini⟩N we
find an extension fi+1 of g from Mi+1 ∋ mi to Ni+1 ∋ ni. The union

⋃
i<ω

fi is an

isomorphism M
∼−→N since it regards every mi,ni.

Definition 2.17. The class K has the Amalgamation Property (AP) if, for any A ̸=
∅,B0,B1 in K, and for all embeddings f0 : A

⊂∼−→B0, f1 : A
⊂∼−→B1, there are some D ∈ K

and embeddings gi : Bi
⊂∼−→D (i ∈ {0,1}) such that g0 ◦ f0 = g1 ◦ f1.

We restrict A to non-empty sets in order to avoid AP implying JEP. Proving
this third Property may be somewhat troublesome when focusing in particular
cases, but it will provide the following central theorem:

7[TZ12] reach this definition by other means and choose the name K-saturated.
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Figure 2.1: Diagrams for HP, JEP and AP, respectively

Theorem 2.18 (Fraïssé). Let L be a countable language and K a class of finitely generated
L-structures. Suppose K is closed under isomorphism and |K/ ∼= | ≤ ω. Then, there exists
a unique (up to isomorphism) countable L-structure M rich with respect to K if and only
if K satisfies HP, JEP and AP. In this case, M is called the Fraïssé limit of K.

Proof. First, if K is the age of such M, any structure from the age of any of its
elements will be again isomorphic to some substructure of M; and any two ele-
ments of K will be finitely generated and naturally embedded into a larger, finitely
generated structure of K. For the AP, let A,B0,B1, f0, f1 be as required. There

exists an embedding h : A
⊂∼−→ M, due to the fact that A ∈ K. Take the restriction

f0 : A ∼−→ f0(A)⊆B0 of f0 and consider the composition h ◦ f−1
0 : f0(A)

⊂∼−→M, which

can be extended to some h0 : B0
⊂∼−→M thanks to the richness of M. Now, consid-

ering f1 ◦ f−1
0 : f0(A)

⊂∼−→B1, we can apply that M is rich with respect to K to find

an embedding h1 : B1
⊂∼−→M such that h0 = h1 ◦ ( f1 ◦ f−1

0 ). If we define g0, g1 as the
restrictions of g0 to h0(⟨B0,B1⟩M) and g1 to h1(⟨B0,B1⟩M), respectively, we can
check that g0 ◦ f0 = g1 ◦ f1 holds for any element a ∈ A:

(g0 ◦ f0)(a) = (g1 ◦ ( f1 ◦ f0)−1) ◦ f0)(a) = (g1 ◦ f1 ◦ ( f−1
0 ◦ f0))(a) = (g1 ◦ f1)(a)

Conversely, assume K has HP, JEP and AP. Guided by the reasoning in [Cas09],
M will be constructed as the union

⋃
i<ω

Ai of a chain of finitely generated L-

structures Ai ∈ K, hence it will be countable. Consider a representative list (Bi :
i < ω) of the isomorphism types in K, and observe that, for any Bi, there is a
countable amount of embeddings from all finitely generated substructures of any
given A ∈ K into Bi: these can be enumerated as ( fA,i

r : r < ω).
Taking A0 =B0, we can follow a reasoning similar to theorem 2.10 and apply

the JEP whenever A2n is known, to find some A2n+1 such that A2n ⊆ A2n+1 and
Bn ⊂∼ A2n+1. In the case Ai = A2n+1 is already constructed, we will apply AP
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A

B1B0

M

h

h0

f0 f1

g0

h1

g1

Figure 2.2: Diagram for the proof of the AP

repeatedly (a finite amount of times) to ensure that any embedding needed for
the condition of algebraic ω-homogeneity exists. Following figure 2.3, we will
construct a finite chain Ai ⊆ A1

i ⊆ . . . ⊆ Am
i =: Ai+1 by using the amalgamation

property on every Aj ⊆ Ai, our new structures As
i and every Bk, k ≤ i, taken as

embeddings the inclusion and every correspondent f
Aj,k
r up to r ≤ i (thus, we

invoke AP at most i3 times): this allows us to find new structures of the chain and
an embedding g : Bk

⊂∼−→ As
i ⊆ Ai+1 such that g ◦ f

Aj,k
r = IdAj . Actually, we obtain

some structure As
i
′ and a morphism g′ : Ai

⊂∼−→ As
i
′, but g′ can be assumed to be the

inclusion if we consider As
i
∼=h As

i
′:

IdAj = IdAi ◦ IdAj = (h−1 ◦ g′) ◦ IdAj = h−1 ◦ (g′ ◦ IdAj) = h−1 ◦ g′′ ◦ f
Aj,k
r

We define Ai+1 to be the last of the elements in the chain, which is finite and is
expanded at each new A2n′+1 in a way that every embedding between substruc-

tures is eventually covered. This works because the f
Aj,k
r are involved gradually as

n grows larger.
To prove the resultant M is rich with respect to K, we proceed analogously

to theorem 2.10 for the computation of Age(M). By lemma 2.14, there only re-
mains to check that, for every finitely generated A ⊆M and for every k < ω, any

embedding f : A
⊂∼−→ Bk induces some g : Bk

⊂∼−→ M such that g ◦ f is the identity.

But f = f
Aj,k
r ↾ A for some r < ω, as A ⊆ Aj is finitely generated: by construction,

this yields the requested embedding Bk
⊂∼−→ Ai+1 ⊆ M when selecting any odd

i ≥ j,k,r.
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Figure 2.3: During the second part of theorem 2.18, we can assume the left side to
be the inclusion (left); amalgamation process (right)

In practical terms, during chapter 4, we will consider fixed, restricted lan-
guages (which will yield more powerful results, as in the case of finitely relational
languages) or certain structures which will require additional properties to ensure
some of the hypotheses are met (such as universally local finitude, needed for
finite generatedness).

2.3 Subsequent properties

By requesting some further conditions, we can obtain stronger properties for
several of the newly-created structures. Let us introduce:

Theorem 2.19. Let L be a countable language. Any two elementarily equivalent, count-
able, ω-saturated L-structures A and B are isomorphic.

Proof. Following a back-and-forth argument, we will construct an isomorphism
f : A ∼−→ B as the union of a chain of elementary maps Ai → Bi between finite
substructures of A and B. Let us begin by setting enumerations for A = {ai | i < ω}
and B = {bi | i < ω}, and f0 the empty map, which is elementary as A≡B.

If fi, i = 2n, is constructed, we consider the 1-type tp(an/Ai) of L(Ai)-formulas
satisfied by an in A, in order to extend fi to Ai+1 = Ai ∪ {an}. fi is elementary due
to its construction, thus fi(p)(x) is a type over Bi in B. B being ω-saturated
implies the existence of an element b′ ∈ B which realizes fi(p)(x). Then, given
any tuple a ⊆ A and some L(Ai)-formula φ, A |= φ(an, a) implies B |= φ(b′, fi(a)):
this proves that the map fi+1 : An+1 → Bn+1 := Bn ∪ b′, with fi+1(an) = b′, is an
elementary extension of fi.

Finally, Aj and Bj are defined for every j < ω and have as a union A and B,
respectively. Therefore, the isomorphism f : A ∼−→ B emerges as the union of a
well-defined chain { fi | i < ω} of elementary maps between the Aj and the Bj.
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This result shows that ω-saturated models are ω-homogeneous. It is applied
by [TZ12] to prove the Ryll-Nardzewski theorem and infer some of the remaining
propositions in this section, whose demonstrations we will develop.

Theorem 2.20 (Ryll-Nardzewski). Let L be a countable language and T a complete L-
theory. T is ω-categorical if and only if, for every n, there are only finitely many formulas
φ(x1, . . . , xn) up to equivalence relative to T.

Ryll-Nardzewski’s theorem is well-spread and may be expressed under a third
equivalent condition, which is every type over T being isolated: this means there
exists an L-formula φ(x) consistent with T such that every formula σ(x) in the
type satisfies T ⊢ ∀x(φ(x) → σ(x)). It also provides a criterion for ω-categoricity
which requires a preparatory notion (and its direct consequence):

Definition 2.21. An L-theory T is said to have quantifier elimination if every L-
formula8 φ(x1, . . . , xn) in the theory is equivalent, modulo T, to some quantifier-free for-
mula ρ(x1, . . . , xn).

Proposition 2.22. An L-theory T has quantifier elimination if and only if any models
M,N of T with a common substructure A are elementary equivalent for L(A)-sentences
(i.e., MA ≡NA).

A celebrated example of a quantifier-free theory is the theory of rational dense
lineal orders without endpoints, which will be introduced in 3. Precisely, finite
relational languages (which contain no constants or function symbols, thus every
finitely generated structure is finite) need few conditions to imply other properties:

Lemma 2.23. Let L be a finite relational language. A complete L-theory T with quantifier
elimination is ω-categorical.

Proof. Given some n < ω, we can show in two steps that there is a finite amount
of non-equivalent quantifier-free formulas ρ(x1, . . . , xn). First, there are finitely
many atomic L-formulas, since they can either be equalities between variables or
be derived from the finite predicates of the language. Then, every quantifier-free
formula is equivalent modulo T to a formula in conjunctive normal form, which is
expressed as

∧
i<m

∨
j<mi

πij, where πij is an atomic L-formula or its negation. As
in Boolean algebra, given that our finite many atomic L-formulas can or cannot be
satisfied, we can check there is a finite amount of non-equivalent formulas in con-
junctive normal form, which stem from their combination. Therefore, quantifier
elimination implies all formulas φ(x1, . . . , xn) are equivalent to some ρ(x1, . . . , xn)

modulo T. By theorem 2.20, T is ω-categorical.
8In the strict sense, excluding sentences and having exactly the required number of free variables.
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We finish this section by proving one last equivalence theorem and presenting
a corollary which sums up the results for a particular case. Let us call any φ = ∃yρ,
with a quantifier-free ρ, a simple existential formula.

Theorem 2.24. Let L be a finite relational language and T a complete L-theory. Given a
countably infinite model M of T, the following are equivalent:

1. T has quantifier elimination.

2. Any isomorphism between finite substructures of M is elementary.

3. The domain of any isomorphism between finite substructures of M can be extended
to any further element.

Proof. (1) ⇒ (2): We first prove that any isomorphism h : A ∼−→ B between finite
substructures of M preserves the validity of quantifier-free formulas. Formulas of
the form f (t1, . . . , tn)

.
= f ′(t′1, . . . , t′n) hold their truth value: for every assignment

b⃗, every z .
= z′ constants or variables satisfy h(zA [⃗b]) = zB[h(⃗b)] .

= (z′)B[h(⃗b)] =
h((z′)A [⃗b]). By induction, assume that, for every assignment b⃗, any terms t .

= t′

with as many function symbols as ti, t′i satisfy h(tA [⃗b]) = h((t′)A [⃗b]). Then,

h
(

fA
(

tA1 , . . . , tAn
)
[⃗b]
)
= fB

(
h
(

tA1 [⃗b]
)

, . . . , h
(

tAn [⃗b]
)) .

=(
f ′
)B(h

((
t′1
)A

[⃗b]
)

, . . . ,
((

t′n
)A

[⃗b]
))

= h
((

f ′
)A((t′1)A , . . . ,

(
t′n
)A)

[⃗b]
)

.

Formulas of the form R(t1, . . . , tn), where R is a predicate follow analogously due
to the third condition of embeddings, RA(a1, . . . , an) ⇔ RB(h(a1), . . . , h(an)). Fi-
nally, it is easy to see that h preserves formulas of the form ¬ρ(x) or ρ1(x1) ∨
ρ2(x2). The implication follows from every quantifier-free formula being equiva-
lent to one in disjunctive normal form.

(2) ⇒ (1): Let us prove, in the first place, that all n-tuples a which satisfy in M

the same quantifier-free n-type tpqf(a) = {ρ(x) | M |= ρ(a), ρ(x) quantifier-free}
satisfy a same collection of simple existential formulas. That is, given a,b ∈
M, if tpqf(a) = tpqf(b), then tpsp(a) = tpsp(b), with tpsp(a) = {∃yρ(x,y) | M |=
∃yρ(a,y), ρ(x,y) ∈ tpqf(a)}. The equality between quantifier-free n-types allows

us to construct some well-defined isomorphism h : A ∼−→B, h(a) = b, which is ele-
mentary due to (2). Hence, tpsp(a) = tpsp(b).

Now, to show the implication, we need to prove that every simple existential
formula9 φ(x1, . . . , xn) = ∃yρ(x1, . . . , xn,y) is equivalent to a quantifier-free formula

9A supplementary result justifies that every existential formula can be expressed equivalently as
a simple existential one.
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modulo T. Consider the set TP(φ) of quantifier-free n-types {tpqf(ai) | i ≤ m} of

the n-tuples ai which satisfy φ(x) in M: since L is finite relational, TP(φ) is finite
and we can denote the conjunction of the formulas in each of the tpqf(ai) by ρi(x).
We need to prove that

T ⊢ ∀x(φ(x)↔
∨

i≤m

ρi(x)).

For the right implication, any a satisfying φ in M will necessarily satisfy tpqf(ai)

for some i ≤ m, due to our construction, and thus M |= ρi(a). Conversely, every
a which satisfies

∨
i≤m

ρi(x) in M will also satisfy, in particular, some ρi(x) and will

realize tpqf(ai). Then, by the preliminary property, a will satisfy the same simple

existential formulas as ai (tpsp(a) = tpsp(ai)), including M |= φ(a).
(1) ⇒ (3): Lemma 2.23 implies T is ω-categorical. As it is also complete, all

types over finite subsets of A are realized in its countable model M, thus M is
ω-saturated: the proof of 2.19 additionally ensures they are ω-homogeneous. By
the equivalence of (1) and (2), any isomorphism between finite substructures is
elementary, so it can be extended to any element due to ω-homogeneity.

(3) ⇒ (2): Again, we can use an inductive argument to show the elementarity
of finite isomorphisms: given the class I : M∼=p M of isomorphisms between finite
substructures of M, we show any f ∈ I is elementary. The empty map is elemen-
tary, because we are considering satisfiability with regards to a same structure M.
Isomorphisms preserve the validity of quantifier-free formulas, so –for any f – the
only case left to check is φ(x1, . . . , xn) = ∃yρ(a1, . . . , an,y), with a1, . . . , an ∈ dom( f ).
(3) allows us to find a value b which extends the isomorphism along with the
corresponding y = a (i.e., f (a) = b), so we can establish:

M |= ∃yρ(a1, . . . , an,y)⇔ ∃a ∈ M : M |= ρ(a1, . . . , an, a)⇔
⇔ ∃b ∈ N : N |= ρ( f (a1), . . . , f (an),b)⇔N |= ∃yρ( f (a1), . . . , f (an),y)

The second implication holds since ρ(x1, . . . , xn,y) is a quantifier-free formula.

Corollary 2.25. Let L be a finite relational language and K a class of finite L-structures.
If the Fraïssé limit of K exists, its theory is ω-categorical and has quantifier elimination.

Proof. The (countably infinite) Fraïssé limit of K, M, is unique up to isomorphism
thanks to theorem 2.18: therefore, its theory is ω-categorical. M is also alge-
braically ω-homogeneous due to lemma 2.14, so –in particular– the domain of any
isomorphism between finite substructures of M can be extended to any further
element. Thus, by theorem 2.24, the theory of M has quantifier elimination.



Chapter 3

Basic examples

The latter half of this work is devoted to the study of widespread instances of
classes which the Fraïssé theorem can be applied to, specifically from [Eva94] and
[KT17]. For this purpose, most of the times we will need to introduce necessary
lemmata before we can resort to the previous results. Afterwards, we will be
able to introduce the corresponding languages and theories which represent the
aforementioned classes of structures, which will comply with HP, JEP and AP.

In most of the cases, we will provide and justify a concrete definition for each
of the Fraïssé limits with the help of bibliographic references from other areas of
mathematics. However, our methods to demonstrate the existence of this kind of
structures do not produce an explicit axiomatization.

This chapter is mostly centered on finite relational languages. As we saw in
section 2.3, they induce useful properties to structures and theories based on them.
We will start with a brief, trivial archetype of a theory based on finite relational
language, sets without structure:

Definition 3.1. Let L∅ = ∅ be the empty language.1 The theory InfSet of infinite sets
consists of –for every natural n ≥ 1– the axioms2

∃x0 . . . xn−1
∧

i<j<n

¬xi
.
= xj

This theory defines indeed an infinite (in particular, possibly countable) set,
as we can select an arbitrary natural number n and eventually find n different
elements. In terms of Fraïssé, this countable infinite set is relevant as the unique
limit of the class of finite sets without structure:

1Notice that the equality symbol .
= is implicitly featured in the construction of formulas due to

our definition in 1, and not as a part of any language.
2Also note that, usually, natural numbers designate indexes for variables or constants in our

formulas, so they are not part of the language either.

18
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Proposition 3.2. The structure N= (N) models the L∅-theory InfSet and is the unique
(up to isomorphism) Fraïssé limit of the class S of finite sets without structure.

Proof. S is closed under isomorphism and its elements are finite structures. An
isomorphism between any two of them can be established whenever they have
the same cardinality, so the quotient |S/ ∼= | is countable. For the HP, the age of
any set is a collection of finite sets, which is clearly a subset of S. To prove the
JEP, it suffices to consider the set-theoretical union of the considered structures
and their embedding through inclusion. The AP is shown by considering any
pair of embeddings defined to be the inverse of our existing embeddings (over the
respective images of the initial set).

The set N has countably infinitely many different elements and is therefore a
model of InfSet. To see that it is the Fraïssé limit of S, we show that it is rich with
respect to S: the L∅-structures which are embeddable into N are exactly the finite

sets. And, secondly, any embedding f1 : A
⊂∼−→ B between structures in S induces

some g : B
⊂∼−→ N such that g ◦ f1 = IdA: it can be defined defined as the trivial

extension of a set-theoretic inverse of f1 over the image of f1, i.e., g ↾ f1(A) = f−1
1 ,

g ↾ (B \ f1(A)) = IdB\ f1(A).

Having proven this proposition, we can state that InfSet is ω-categorical and
has quantifier elimination.

3.1 Finite graphs

In order to show the existence of a Fraïssé limit, we need to prove that the
class we are addressing is countable up to isomorphism, as well as the HP, JEP
and AP. In the next pages, we will present a series of intermediate results (pre-
ceding those in [Hod93]) which will guarantee these properties or will serve as
a significant shortcut. Recall that, without constants or function symbols in L,
finitely generated L-structures are in particular finite.

Proposition 3.3. Let L be a finite relational language, consisting of ki-ary relation symbols
{Ri}i≤m, and K a class of finite L-structures. Then, |K/ ∼= | ≤ ω.

Proof. We shall prove that, for every n < ω, there is a finite amount of isomorphism
types in the subclass Kn ⊆K of L-structures of cardinality n. This will allow us to
introduce an enumeration for K =

⋃
n<ω Kn.

We may assume the universe of our structures is {0, . . . ,n− 1}= N: essentially,
the only conditions for a map h to be an isomorphism between A,B ∈ Kn are it
being a bijection and satisfying, for any i ≤ m, for any a1, . . . , aki ∈ Aki ,

RA
i (a1, . . . , aki)⇔ RB

i (h(a1), . . . , h(aki))
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So the isomorphism types will be exclusively determined by the elements which
are related in the different relations. For any i ≤ m, any of the nki ki-tuples of
elements can be related by Ri, which adds up to 2nki possible combinations for
each Ri. Overall, taking into account the combinations for the m relations Ri, we
still obtain a finite number ∏i≤m 2nki of possibilities.

Given the same conditions, we can also infer HP from an argument based
on the finitude of substructures and their behavior with respect to embeddings.
Notice that the classes which are object of our study are defined by the finite
models which satisfy a set of axioms. Then,

Proposition 3.4. Let L be a finite relational language and K a class of finite L-structures.
Then, K has the Hereditary Property, i.e., for any A in K, Age(A) is a subset of K.

In general, it is more effective to provide case-by-case arguments when prov-
ing the JEP. Nevertheless, most of them are based on creating a separated copy of
one of the structures and embedding through inclusion: the particularities of each
example rely on whether the resultant structure needs to be “connected” any fur-
ther by the relation. There is not a general method to prove the AP either, but we
may assume the initial elements are arranged in a particular, simplified manner.
Let us first prove a required lemma, which was excerpted from a communication
based in [Cas09] with the author:

Lemma 3.5. Let L be a language, A and B L-structures and f : A
⊂∼−→B. For every set X,

there exists an L-structure C⊇A and an isomorphism g : C ∼−→B such that (C \ A)∩ X =

∅ and g ↾ A = f .

Proof. We choose some set D such that D ∩ X = ∅ and |D| = B \ f (A). This is
sufficient to build a set-theoretical bijection h : D → B \ f (A). We can now define C
as D ∪ A and g = f ∪ h, which is again a bijection whose inverse naturally defines
an L-structure C on the universe C. Then, g : C ∼−→ B is a proper isomorphism
between the structures.

The lemma essentially ensures that we can extend any embedding between
structures to an isomorphism in a way that the universe of the new structure can
avoid certain sets. We will apply the result to prove:

Theorem 3.6 (Free amalgamation). Let L be a language and K a class of L-structures
closed under isomorphism. Suppose that, for any L-structures M,N0 ⊇M,N1 ⊇M in K
with N0 ∩ N1 = M, there exist some D∈K and embeddings g′0 :N0

⊂∼−→D and g′1 :N1
⊂∼−→D

such that g′0 ↾ M = g′1 ↾ M. Then, K has the Amalgamation Property.
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A f (A)f

C B

D
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Figure 3.1: The embedding f in lemma 3.5 naturally extends to C.

Proof. Let us consider the initial setting to prove the AP: let A ̸= ∅,B0,B1 be in

K and f0 : A
⊂∼−→ B0, f1 : A

⊂∼−→ B1. We want to find some D ∈ K and embeddings

gi : Bi
⊂∼−→D (i ∈ {0,1}) such that g0 ◦ f0 = g1 ◦ f1. Using lemma 3.5, we can find:

• An L-structure N0 ⊇A in K and an isomorphism f ′0 : N0
∼−→B0 which extends

f0 ( f0 ⊆ f ′0).

• An L-structure N1 ⊇ A in K, with (N1 \ A) ∩ N0 = ∅, and an isomorphism
f ′1 : N1

∼−→B1 which extends f1 ( f1 ⊆ f ′1).

Notice that N0 ∩ N1 = A. This places us in the situation of the theorem hypothesis:
A is a substructure of both N0 and N1, and its universe is exactly the intersection of

the Mi. Thus, there are some D ∈K and embeddings g′0 : N0
⊂∼−→D and g′1 : N1

⊂∼−→D

such that g′0 ↾ A = g′1 ↾ A. If we take D as our overarching structure and, for

i ∈ {0,1}, set gi : Bi
⊂∼−→D with gi = g′i ◦ ( f ′i )

−1, it is easy to see that, for every a ∈ A,

(g0 ◦ f0)(a) = (g′0 ◦ ( f ′0)
−1 ◦ f0)(a) = g′0(a) =

= g′1(a) = (g′1 ◦ ( f ′1)
−1 ◦ f1)(a) = (g1 ◦ f1)(a)

Additionally, the following instances of D, g′0, g′1 might suffice sometimes: D =

N0 ∪ N1, ZD = ZN0 ∪ZN1 (for any relation or function symbol Z ∈ L), cD = cN0 = cN1

(for any constant c ∈ L), g′0 = IdN0 , g′1 = IdN1 . We then call D the free amalgam of
M,N0,N1.

Having displayed these supplementary results, we can introduce the first ex-
ample of structures build upon finite relational languages. Let us start with the
class of finite (undirected, simple) graphs.

Any graph G is defined as a pair (V, E), where V is a set of elements called
vertices and E is a set of pairs of vertices (known as edges). The notion of graph
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Figure 3.2: Initial setting of free amalgamation (left) and diagram for the AP maps
in theorem 3.6

easily translates into model theory, as a structure with a universe of vertices which
interprets a binary relation symbol as the set of edges. In order to completely
axiomatize our selected graphs, we need to impose that the relation is irreflexive
and symmetric: this way, there will be no loops (edges starting and ending at
the same vertex) and edges will not regard any orientation, so the graph will be
simple3 and undirected.

Definition 3.7. Let E be a binary predicate and LGraph = {E} the language of graphs.
Graph, the theory of graphs,4 consists of the following axioms:

• ∀x(¬xEx) (irreflexivity)

• ∀x∀y(xEy → yEx) (symmetry)

Given a finite set VG, a structure G = (VG, EG) is called a finite graph if G |= Graph.

For the remainder of the section, let us assume L := LGraph.5 We can now
consider the class K of all finite graphs. K is closed under isomorphism, since any
additional graph which is isomorphic to some that we already considered will be
also finite. Propositions 3.3 and 3.4 guarantee, respectively, that K has a countable

3Actually, simpleness requires that no more than one edge exists between two vertices, but that
is redundant due to the way we have defined the relation (it would need to be a multiset or some
other kind of specific collection).

4Unless stated otherwise, graphs are considered to be simple and undirected.
5We shall proceed this way in every other example.
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amount of isomorphism types and satisfies the Hereditary Property. To prove it
has a Fraïssé limit, we will prove it also satisfies the JEP and the AP.

Proposition 3.8. The class K of all finite graphs satisfies the Joint Embedding Property.

Proof. Let G0 = (V0, R0), G1 = (V1, R1) ∈ K.6 We need to find an L-structure H ∈ K,
a finite graph, into which G0 and G1 can be embedded. Consider an isomorphic
copy G′

1
∼=h G1 over an arbitrary set of vertices V ′

1
∼=h V1 such that V0 ∩V ′

1 =∅, hence
E1 is preserved in E′

1 with regard to V ′
1. The finite graph H := (V0 ∪ V ′

1, E0 ∪ E′
1)

works as a joint embedding, as the maps g0 : G0 → D (g0 = IdV0) and g1 : G1 → D
(g1 = IdV′

1
◦ h−1) both are injective and preserve the edge structure, i.e., they are

embeddings.

Although it may look as an insignificant nuance, we generate a copy of one
of the structures in order to avoid contradictory configurations of edges: if we
consider two graphs G0, G1 based on the same two vertices, G0 connected and G1

disconnected, we can no longer use the inclusion to find some embeddings in a
trivial way. Note that the core of the issue resides in the naming of the vertices in
the final graph: there is no binding property which forces G0 and G1 to preserve
the structure of common graphs, since they are separate structures despite being
built from the same set.

In general, this duplication method fails if we try to apply some variation to
the process of proving the AP, since now there is a common substructure A which
ties the interpretations over the images f0(A)⊆B0 and f1(A)⊆B1. However, the
free amalgam of any graph H = G0 ∩ G1 is again a finite graph which includes G0

and G1, without the need of establishing further connections. Therefore, as seen
in theorem 3.6, we have established the following:

Proposition 3.9. The theory K of all finite graphs satisfies the Amalgamation Property
and has a unique Fraïssé limit.

Definition 3.10. The random graph is the countable L-structure G = (V, E), unique
up to isomorphism, which satisfies the L-theory RG, made up of:

• The axioms of Graph.

• For every m,n < ω, the axiom ∀x0 . . .∀xm−1∀y0 . . .∀yn−1

∧
i,j

¬xi
.
= yj → ∃z

((∧
i<m

zExi

)
∧
(∧

i<n

¬zEyj ∧ ¬z .
= yj

))
6From now on, for any example (whether it is graph-related), we may use notations like Vi :=VGi ,

Ei := EGi .
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That is, the random graph is countably infinite and, for every disjoint pair of
finite sets V1,V2 ⊆ V, it contains a vertex which is connected to every element of V1

by an edge, but not to any vertex in V2. Also known as Rado’s graph, it receives its
name due to the fact that it can be constructed (up to isomorphism) by choosing
with a fixed probability p ∈ (0,1) whether to connect each pair of vertices. Both
axiomatizations and their relationship are detailed in [Cam13], which we used as
a reference for the class of finite graphs. To see that its Fraïssé limit is the random
graph, we need to check it is rich with respect to the class:

Proposition 3.11. The random graph G = (V, E) |= RG is the Fraïssé limit of the class
K of finite graphs.

Proof. In the first place, Age(G) = K must hold: any G0 ∈ Age(G) is embedded

into G by some map f : G0
⊂∼−→ G, so it is a finite structure which inherits the

interpretation E of the relation. Thus, EG0 is irreflexive and symmetric, and G0

a finite graph. Conversely, let us show any H = (VH, EH) ∈ K is isomorphic to
some finite substructure of G: given an enumeration {vi ∈ VH | 1 ≤ i ≤ |H|} of the
elements of H, we will prove inductively that, for every r ≤ |H|, there exists an
isomorphism hr between Hr = (VHr = {vi ∈ VH | i ≤ r}, EH ↾ VHr × VHr) and some
finite subgraph Gr ⊆ G, and define h : H = H|H|

∼−→ G|H| ⊆ G.
Start with {v1}: the structures generated by v1 ∈ H and any v′1 ∈ G are trivially

isomorphic. Now suppose Hr, Gr and hr : Hr
∼−→ Gr are known for some r < |H|,

and consider the partition VHr = V1 ∪ V2 such that {(v,vr+1) | v ∈ V1} ⊆ EH and
{(v,vr+1) | v ∈ V2}∩ EH = ∅. Choosing m = |V1|,n = |V2|, the corresponding axiom
in RG provides the existence of a vertex v′r+1 ∈ VG \ V{Gr}, in a way that any
pair (v′r+1, hr(v)) with v ∈ V1 represents an edge of G and any pair (v′r+1, hr(v))
with v ∈ V2 does not. This extends hr to some hr+1 : Hr+1

∼−→ Gr+1, so the union
h|H| =

⋃
r≤|H| hr is an isomorphism between H and some finite G|H| ⊆ G.

To prove that G is rich with respect to K, consider any finite graphs H0, H1 and

the embeddings f0 : H0
⊂∼−→ G, f1 : H0

⊂∼−→ H1. Restricting f0 to f ′0 : H0
⊂∼−→ f0(H0), we

can apply the AP to obtain a graph H ∈ K and two embeddings g0 : f0(H0)
⊂∼−→ H,

g1 : H1
⊂∼−→ H such that g0 ◦ f ′0 = g1 ◦ f1. We can apply lemma 3.5 to extend g0 to

some g′0 : H′
0

∼−→ H, where H′
0 is a finite graph disjoint from H0, f0(H0) and H1. If

we define g′1 : H1
⊂∼−→ G as g′1 = (g′0)

−1 ◦ g1, for every v ∈ VH0 , we see that f0(v) =

= ((g′0)
−1 ◦ g′0 ◦ f0)(v) = ((g′0)

−1 ◦ g0 ◦ f ′0)(v) = ((g′0)
−1 ◦ g1 ◦ f1)(v) = (g′1 ◦ f1)(v)

Conceiving G |= RG as a Fraïssé makes it stand out as one of the few countable
graphs (the only one, up to isomorphism, if we consider the richness property)
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Figure 3.3: Diagram for the proof that G |= RG is rich with respect to K

which contains an isomorphic copy of every finite graph. In the next chapter, we
will see some more specific variations of RG, as well as other approaches to graphs
from model theory.

3.2 Finite orders

The process for defining and addressing other structures built around finite
relational languages (in particular, consisting of a single element) does not distance
itself much from the previous example. Finite orders are no exception, as they can
be characterized by transitive, irreflexive relations: from these, one can deduce
their asymmetry. For instance, we will show that the Fraïssé limit of the class of
finite lineal orders is the (countable) dense, linear order without endpoints, which
we know to be ω-categorical thanks to Cantor’s back-and-forth argument. Let us
first introduce some notation:

Definition 3.12. Let E be a binary predicate and LOrder = {<} the language of orders.7

TOSet, the theory of linear (or total) orders, consists of the following axioms:

• ∀x(¬x < x) (irreflexivity)

• ∀x∀y∀z(x < y ∧ y < z → x < z) (transitivity)

• ∀x∀y(¬x .
= y → x < y ∨ y < x) (linearity/totality)

Given a finite set X, a structure P = (X,<) is called a finite linear order if P |= TOSet.

7As usual, we shall employ the notation x ≤ y whenever x < y or x .
= y, as well as x > y if y < x.
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Proposition 3.13. The class K of finite linear orders has the Joint Embedding Property.

Proof. As in proposition 3.8, for any two structures P0 = (X0,<0), P1 = (X1,<1

) ∈ K, we can create a copy P′
1 of P1 with X′

1 ∩ X0 = ∅ and embed P0 and P′
1

into a structure of universe X0 ∪ X′
1 through inclusion. However, we need to

properly define a relation < in the union so that it extends <0,<′
1, and check that

(X0 ∪ X′
1,<) is a model of TOSet.

Set <:=<0 ∪ <′
1 ∪(X0 × X′

1): that is, for every x,y ∈ X0 ∪ X′
1, x < y exactly if

x <0 y, x <′
1 y or (x,y) ∈ X0 × X′

1. Now for the axioms, irreflexivity holds because
no element is related to itself in P0 or P′

1. Every element of P0 is smaller than any
in P′

1, hence the linearity. To prove that < is transitive, note that if x,z ∈ X0 and
x < z, any y ∈ X0 ∪ X′

1 such that x < y < z will be y ∈ X0, so the transitivity of
<0 applies (and similarly for any x,z ∈ X′

1): then, we only need to check the cases
x < y < z with x ∈ X0 and z ∈ X′

1. Regardless of whether y > x,y < z belongs to
X0 or X′

1, our definition of < ensures x < z.

The method of generating disjoint copies is not as convenient when proving
the AP. Instead of simply defining arbitrarily P0 × P1 ⊆<, we will use the elements
of the intersection to mediate between the structures, as hinted at in [Eva94].

Lemma 3.14. The class K of finite linear orders satisfies the Amalgamation Property.

Proof. We start with three orders Q, P0, P1 ∈ K such that the intersection Y := X0 ∩
X1 is the universe of Q ⊆ P0, P1, i.e., it is a common substructure with <0↾ Y =<1↾
Y. If we construct a structure in X0 ∪ X1 such that its relation < extends the
relations <0,<1, theorem 3.6 will guarantee the AP holds (setting the required g0

and g1 as the identities).
We define <: in the first place, let <0,<1⊆<. It only remains to compare any

x ∈ X0 \ Y with x′ ∈ X1 \ Y. We first give an enumeration of Y = {y0, . . . ,yn} such
that yi < yj whenever i < j.8 It is enough to order the elements of X0 ∪ X1 \ Y
within each of the intervals {x < y0}, {x | y0 < x < y1},. . . , {x > yn} they belong
to: for instance, take x < x′ for each x ∈ X0, x′ ∈ X1, in any fixed region. So, for <
to be linear, we set z < z′ for every z,z′ ∈ X0 ∪ X1 whenever there exists some i ≤ n
such that z < yi < z′.

This respects the properties of <0 and <1 in <. Irreflexivity of < is inferred
directly from that of <0 and <1. To prove that < is transitive, consider any
x,y,z ∈ X0 ∪ X1 such that x < y < z. Due to the construction of <, x and z can
be distributed either within a same interval (x,z < y0, x,z > yn, or yi < x,z < yi+1

for some i ≤ n − 1) or x < yi < z for some i ≤ n. The latter is already defined

8We allow the abuse of the notation ≤ for natural numbers with their respective order.



3.2 Finite orders 27

to imply x < z. For the former case, we have several possibilities: if x,z ∈ Xj, for
j ∈ {0,1}, y must also belong to Xj, so the result follows from the transitivity of <j;
if x ∈ X0 and z ∈ X1, we previously defined x < z for any of the cases. Finally, note
that x ∈ X1 with z ∈ X0 would imply z < x, contradicting our construction.

We can now introduce a candidate for the Fraïssé limit of K. We should bear
in mind that theorem 2.18 provides criteria for ω-categoricity, but the discussion
of upper cardinalities is far beyond the reach of this work.

Definition 3.15. We call an L-structure P = (X,<) a dense linear order without
endpoints if it satisfies the L-theory DLO, which consists of:

• The axioms of TOSet.

• ∀x∀y∃z(x < y → x < z < y) (X is dense regarding <)

• ∀z∃x∃y(x < z < y) (without endpoints)

This, in particular, entails any order satisfying DLO to be infinite. To stay in the
countable case, we shall consider the ordered rational numbers for the next result.

Proposition 3.16. The order of the rational numbers, Q = (Q,<) |= DLO, is the Fraïssé
limit of the class K of finite linear orders.

Proof. We prove that Q is rich with respect to K using an argument analogous
to that of proposition 3.11, based on [Ber15]: we start with orders P0, P1 ∈ K and

embeddings f0 : P0
⊂∼−→ f0(P0) ⊆ Q, f1 : P0

⊂∼−→ P1, and find –due to the AP– P2 ∈ K
and embeddings g0 : f0(P0)

⊂∼−→ P2, g1 : P1
⊂∼−→ P2, such that g0 ◦ f0 = g1 ◦ f1. Then,

g′1 := g−1
0 ◦ g1 : P1

⊂∼−→ f0(P0) satisfies, for every element x ∈ P0, f0(x) = (g′1 ◦ f1)(x).
It remains to be shown that Age(Q) = K: any element of Age(Q) is a finite

substructure of Q, so it is a linear order as well. On the other hand, any order P ∈
K must be isomorphic to some finite substructure of Q: we denote P = {xi}i<|P|,
select an arbitrary y0 ∈ Q, and construct P′ ⊆ Q by extending h0 : {x0}

∼−→{y0} ⊆ P′

to an isomorphism h : P ∼−→ P′.
For any i < |P|, having established hi : Pi

∼−→ P′
i , we define Pi+1 = Pi ∪ {xi+1}

and P′
i+1 = P′

i ∪ {yi+1} in the following way: due to the linearity of P, we have
xi+1 < xj for every j ≤ i, xi+1 > xj for every j ≤ i, or xj < xi+1 < xj′ for some j, j′ ≤ i.
Then, since Q is linear, dense and without endpoints, we can accordingly find
some yi+1 ∈ Q such that yi+1 < yj for every j ≤ i, yi+1 > yj for every j ≤ i, or
yj < yi+1 < yj′ for some j, j′ ≤ i. Then h :=

⋃
i<|P| hi is an isomorphism between

P = P|P|−1 and P′ = P′
|P|−1.
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Once having explored the class of finite linear orders, we can infer the existence
of a Fraïssé limit for the case where totality is not required. Let us call POSet

the theory of finite partial (non-total) orders, and K their class. The JEP is proved
following the reasoning in 3.8, as the lack of linearity eases some of the restrictions
needed for TOSet, such as having to relate the elements of the new structure.
However, the Amalgamation Property is slightly more intricate and requires a
previous result.

Remark 3.17. For every binary relation R in A, there exists some transitive R′ ⊆
A × A such that R ⊆ R′ and, for every transitive S ⊆ A × A with R ⊆ S, R′ ⊆ S.

Proof. Given two binary relations S, T in A, define the relation S | T as

{(x,z) | ∃y ((x,y) ∈ S ∧ (y, x) ∈ T)} .

If we denote recursively R0 := R and, for every n < ω, Rn+1 := Rn ∪ (Rn | Rn), it is
easy to see that a transitive R′ ⊇ R can be defined as R′ =

⋃
n<ω Rn. To show that

it is minimal, given a relation S ⊇ R, we check by induction that every Ri ⊆ S: by
definition, R0 ⊆ S; and, if Ri ⊆ S holds, any (x,z) ∈ Ri+1 \ Ri must be generated by
some (x,y), (y,z) ∈ Ri, so it is also contained in S.

Definition 3.18. Let A be a set and R ⊆ A × A be a binary relation. The transitive
closure R′ of R is defined as the smallest transitive relation in A such that R ⊆ R′.

Lemma 3.19. Let Q0, P0 = (X0,<0), P1 = (X1,<1) be three finite partial orders, with
Q0 = (X0 ∩ X1,<0 ∩ <1). The relation <, defined as the transitive closure of <0 ∪ <1,
is compatible with P0, P1 in the sense that, for every x,z ∈ Xi, i ∈ {0,1}, x < z if and only
if x <i z.

Proof. The leftward direction is trivial. Let us prove the converse by contradiction.
Assume –without loss of generality– that x < z, but x ≮0 z, for some x,z ∈ X0.
Then, there must exist {xi ∈ X0 ∪ X1 | i ≤ n} such that x0 = x, xn = z and xi < xi+1

for every i < n: this way, the transitivity of < will imply x < z, but that of <0 will
not, at first – we will search for a subsequence of the xi in X0 so that the transitivity
of <0 implies x <0 z.

The fact that some given a ∈ X0 \ X1, c ∈ X1 \ X0 satisfy a < c implies that
there exists some b ∈ X0 ∪ X1 such that a < b < c, because of the way the transitive
closure is constructed. Eventually, we can express the relation of the closure in
terms of <0 and <1, finding {ai}i<N and {ci}i<M so that

a <0 a0 <0 . . . <0 aN <0 b <1 c0 <1 . . . <1 cM <1 c.
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Thus, we may assume that for every xi ∈ X0 \ X1 and xj ∈ X1 \ X0 (respectively
X1 \ X0, X0 \ X1) with i < j ≤ n, there exists some y ∈ X0 ∩ X1 such that xi <0 y and
y <1 xj (resp. <1,<0).

Furthermore, we can decompose {xi ∈ X0 ∪ X1 | i ≤ n} into several sequences
{x0, . . . , xi0} ⊆ X0, {xi0 , . . . , xi1} ⊆ X1,. . . , {xim , . . . , xn} ⊆ X0 delimited by elements
xij from X0 ∩ X1. By the transitivity of <0 and <1, we can state x0 <0 xi0 <1

xi+1 <0 . . . <1 xim <0 xn. Equivalently, since P0 and P1 agree on their intersection,
x0 <0 xi0 <0 xi1 <0 . . . <0 xim <0 xn. But <0 is transitive, so x0 <0 xn leads to a
contradiction.

X0 X1
x0

xi0

xi1

xi2

xi3xim

xn . . .

Figure 3.4: We can break down lemma 3.19’s sequence of xi into several segments.

This lemma allows us to prove the AP by defining a new relation in the union
of the universes. Notice that this distinction was not necessary in TOSet, since
we already explicitly constructed an order which addressed the difficulties which
involve a common substructure. Therefore,

Proposition 3.20. The class K of finite partial orders has a Fraïssé limit.

Besides Fraïssé’s construction, Albert and Burris [AB86] characterize the limit
in a finite axiomatization by introducing terminology regarding model compan-
ions and existential closure, summarized below. Additionally, the authors provide
a method to create these limit structures from finite orders.

Definition 3.21. Let P = (X,≤) be a partial order. Two elements x,y are said to be
incomparable (x ∥ y) if x ≰ y and y ≰ x. A set A ⊆ X is an antichain if every two of
its elements which are different are incomparable. We use the following notation: ↑ A :=
{x ∈ X | ∃a ∈ A(a ≤ x)} and ↓ A := {x ∈ X | ∃a ∈ A(x ≤ a)}.
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Definition 3.22. Let P = (X,≤) be a partial order and K, M, N be finite subsets of X
with cardinalities k,m,n, respectively. The tuple (K, M, N) is a (k,m,n)-configuration if
it satisfies all the conditions:

1. M and N are antichains.

2. For every x ∈ M and every z ∈ N, x < z.

3. K∩ ↓ M = K∩ ↑ N = ∅.

Theorem 3.23 (Albert, Burris). Let P = (X,≤) be a partial order and POSetec the theory
which models the Fraïssé limit of the class of finite partial orders. Let kϕn

m be a first order
sentence which states the following:

For any (k,m,n)-configuration (K, M, N), there is y ∥ K such that M < y < N.

Then, POSetec is finitely axiomatizable as POSet∪ {∧k≤1,n≤2,m≤2(kϕn
m)} ∪ {2ϕ1

1}.

Observe that, rather than being a detached structure, the order which we have
just constructed translates and generalizes the notion of density (as we defined it
for dense linear orders without endpoints) into the context of partial orders.

3.3 Finite vector spaces over finite fields

We now abandon finite relational languages and begin to consider function
symbols, with the aid of [Hod93]. Handling some of the properties will demand
more attention to detail as to the size of substructures, because they well surpass
the sets which they are build upon. If the classes which concern us are uniformly
locally finite, showing they have a countable amount of isomorphism types will
become a more accessible task, as well as proving their theory is ω-categorical:

Definition 3.24. Let K be a class of structures over a same language. We call A ∈ K
locally finite if every finitely generated substructure of A is finite. Furthermore, suppose
there exists a function g : ω → ω such that, for every structure A ∈ K, any substructure
B⊆ A generated by at most n elements has |B| ≤ g(n). Then, K is said to be uniformly
locally finite.

Theorem 3.25. Let L be a finite language and K a uniformly locally finite class of finitely
generated L-structures with HP, JEP and AP, closed under isomorphism and with a count-
able amount of isomorphism types. If M is the Fraïssé limit of K, Th(M) is ω-categorical
and has quantifier elimination.
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Definition 3.26. Let A = {αi | i ≤ n} be a finite field. We denote the language of vector
spaces over A by LVectorA = {0,+, fα0 , . . . , fαn}, where 0 is a constant, + a binary operator
and, for every i ≤ n, fαi is a unary operator. The theory FVectorA of vector spaces over a
finite field A consists of the following axioms:

• Sum properties:

– ∀u∀v∀w(u + (v + w)
.
= (u + v) + w) (associativity of +)

– ∀u∀v(u + v .
= v + u) (commutativity of +)

– ∀v(0 + v .
= v + 0 .

= v) (neutral element of +)

– ∀v∃w(v + w .
= 0) (opposed element (−u) := w for +)

• Scalar properties: given α, β ∈ A and 1 ∈ A the neutral element with respect to
multiplication in A,

– ∀v( fαβ(v))
.
= fα( fβ(v))) (associativity with scalars)

– ∀v( f1v .
= v) (neutral element of the product of scalars)

– ∀u∀v( fα(u + v) .
= fαu + fαv) (distributivity of vector sum)

– ∀v( fα+β(v)
.
= fα(v) + fβ(v) (distributivity of scalar sum)

Let V be a set finitely generated by A. The structure E = (V, (ZE)Z∈L) is called a finitely
generated vector space over A if E |= FVectorA.

Note that we use the same notation for the vector sum and scalar sum, as well
as for the product with and between scalars, given that they can be corresponded
thanks to properties like distributivity. Here the function symbols fα can be inter-
preted as the operator which assigns to any vector its product with the scalar α.
We will develop the following proofs employing basic linear algebra notions from
[Cla71], such as the representation of vector spaces by means of bases.

Proposition 3.27. The class K of finitely generated vector spaces over a finite field A =

{αi}i≤n is uniformly locally finite and, thus, has a countable amount of isomorphism types.

Proof. Let F ∈ K be a vector space generated by a base {v1, . . . ,vm}. By the def-
inition of base, any linear combination ∑j≤m fαij

(vj) will equal 0E exactly when
αi1 = . . . = αim = 0. Hence, any two elements of F will be different if their represen-
tation in terms of elements of the base is different. This implies that any subspace
E ⊆ F generated by {vi1 , . . . ,vik} has exactly nk = |A|k elements, so we can choose
the function g(k) = nk.

From here, we can show that any pair of vector spaces E, E′ generated by bases
B, B′ of cardinality k are isomorphic. There exists a map h : E → E′ which assigns
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the i-th element of B′, v′i, to the i-th of B, vi, and can factor out the product by a
scalar, namely

h( fα(vi) + fβ(vj)) = fα(v′i) + fβ(v′j), for any α, β ∈ A.

This naturally defines a map h( fα(u) + fβ(v)) = fα(h(u)) + fβ(h(u)), for every
u,v ∈ VE, which is injective due to the aforementioned property of linear combi-
nations, and is exhaustive since |E| = |E′| = nk.

We may no refer to K as the class of finite vector spaces over A. The Hereditary
Property is also substantiated with the fact that any subspace is generated from a
subset of generators. Specifically, it is constructed by taking an embedding which
sends the new base to that of the original structure. Let us now prove the JEP and
the AP, employing theorem 3.6 for the latter.

Proposition 3.28. The class K of finite vector spaces over A satisfies the Joint Embedding
Property.

Proof. Consider E, E′ vector spaces generated by the bases B = {vi | i ≤ k}, B′ = {v′i |
i ≤ k′}. As in the previous examples, we may presume B ∩ B′ = ∅, and now con-
sider the vector space F over A generated by E ∪ E′. F is indeed finitely generated
of cardinality nk+k′ and embeds through the inclusion E and E′, mapping their
generators into B ∪ B′. The neutral element 0F exists in F as the only common ele-
ment in the intersection of E and E′, and F naturally extends the interpretations of
each fα from the original spaces. The sum operator can be extended to F by letting
F = E ⊕ E′, so that the resulting structure satisfies the axioms of FVectorA.

Lemma 3.29. The class K of finite vector spaces over a finite field A has the Amalgamation
Property.

Proof. Let F, E0, E1 |= FVectorA be finite vector spaces such that F = E0 ∩ E1 is a
common substructure. E0 and E1 can be viewed as substructures of some space
generated at least by the union of their elements. By Grassmann’s Theorem, there
exists an vector space E0 + E1 as an L-structure of a finite dimension dim(E0) +

dim(E1) − dim(E0 ∩ E1), thus finite. Additionally, E0 and E1 can be embedded
into the sum by keeping fixed the elements of their bases. Therefore, for every
u = ∑i fαi(vi) ∈ F,

(IdE0+E1↾E0 ◦ IdE0↾F)(v) = ∑
i

fαi(vi) = ∑
i

fαi(v
′
i) = (IdE0+E1↾E1 ◦ IdE1↾F)(v).
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This particular way to glue spaces together, and the fact that structures gener-
ated by an equal number of generators are isomorphic, point towards a distinctive
significance of a space with a countably infinite base. As we will observe in fur-
ther examples, this kind of limit construction will become usual for other kinds of
finitely generated structures.

Proposition 3.30. Let E = (VE, (ZE)Z∈L) |= FVectorA be a countably infinite vector
space over a finite A. Then, E is the Fraïssé limit of the class K of finite vector spaces
over A. Furthermore, FVectorA is ω-categorical and has quantifier elimination as a con-
sequence of theorem 3.25.

Proof. To show that Age(E) = K, we simply observe that any finitely generated
substructure of E is a finite vector space over A, which belongs to K. And every
vector space over A generated by a finite number k of elements is isomorphic to a
subspace ⟨v0, . . . ,vk−1⟩E of E, where {vi}i≤k−1 any linearly independent subset of
the generators of E.

On the other hand, select some vector spaces E0, E1 ∈ K and embeddings f0 :

E0
⊂∼−→ E, f1 : E0

⊂∼−→ E1. Again, there exists an isomorphism h : f1(E0)
∼−→ f0(E0), h =

f0 ◦ f−1
1 ↾ f1(E0), which we can extend to an embedding g1 : E1

⊂∼−→ E by assigning
an image to the the elements of the base of E1 which are not in f0(E0). Then, g1

satisfies f0 = g1 ◦ f1.

Consequently, in general terms, the Fraïssé theorem presents an alternative
construction of a vector space which can embed any other finite vector space over
the same finite field, instead of having to rely on the formalization of infinite bases.
Notice as well that one could also formulate some of the proofs –which refer to
the extension of bases– in terms of quotient spaces: by identifying the elements
of an embedded vector space, a map between the resulting classes emerges nat-
urally. This was suggested in [Eva94], though we opted for another path to the
conclusions Evans summarized.



Chapter 4

Further Fraïssé constructions

4.1 Henson graphs

In section 3.1, we presented Rado’s graph as an ultrahomogeneous structure
which emerges as the limit of the class of all finite graphs. As retrieved by
MacPherson in [Mac11], Henson introduced countably infinitely many more ultra-
homogeneous examples, characterized by the embedding of (simple, undirected)
finite graphs which satisfy some additional restrictions:

Definition 4.1. Let n ≥ 3 natural number. The complete graph with n vertices, Kn, is
such that every two vertices are connected by an edge. We say that a graph is Kn-free if
none of its subgraphs is isomorphic to Kn.

Definition 4.2. Let E be a binary predicate and LGraph the language of graphs again. The
theory of Kn-free graphs, Kn-Graph, is made up of the following axioms:

• ∀x(¬xEx) (irreflexivity)

• ∀x∀y(xEy → yEx) (symmetry)

• ∀x1 . . .∀xn

(∧
i ̸=j ¬xi

.
= xj →¬∧i ̸=j xiExj

)
(Kn-free)

Given a finite set VG, an L-structure G = (VG, EG) is called a finite Kn-free graph if
G |= Kn-Graph.

We are dealing with a finite relational language once more. As a subclass of
the collection of finite graphs, the class Kn of finite Kn-free graphs has a countable
amount of isomorphism types. The proof for the HP is analogous to that of finite
graphs, noting that any embedded structure still has a finite universe and pre-
serves the relations which define a finite Kn-free graph. The JEP follows a similar

34
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proof, because we can embed the graphs in the union of universes through inclu-
sion, which does not contain any complete graph of n vertices as no additional
edge was added.

Proposition 4.3. The class Kn of finite Kn-free graphs has the Amalgamation Property.

Proof. Consider H0, H1 ∈ Kn graphs, and G = H0 ∩ H1 ∈ Kn a common substruc-
ture. Their free amalgam, H := H0 ∪ H1 is a finite graph whose set of vertices
is the union of the universes of H0, H1, with exactly the same edges as H0 and
H1. To check that H is Kn-free, assume some finite substructure S ∪ S0 ∪ S1 is the
complete graph Kn and S ⊆ G, S0 ⊆ H0 \ G, S1 ⊆ H1 \ G: neither of the S1 can be
empty, since otherwise S ∪ S1 ⊆ H1 or S ∪ S0 ⊆ H0 would be Kn. But no vertices of
S0 and S1 are connected, so S ∪ S0 ∪ S1 can not be Kn.

Thus, any Kn has a unique Fraïssé limit, also known as the generic Kn-free
graph Hn or n-Henson graph. Due to the equivalence between ultrahomogeneity
and algebraic ω-homogeneity for countably generated structures, Henson [Hen72]
also defines it as a countable Kn-free graph (unique up to isomorphism) with age
Kn, such that any isomorphism between finite substructures of Hn extends to an
automorphism of Hn.

In fact, it can be shown ([Mac11]) that any countably infinite homogeneous
graph (or its complement) is isomorphic to Rado’s graph, some Hn or a disjoint
union of complete graphs. Casanovas [Cas14] recalls and addresses a preeminent
characterization for H3 which strengthens the connection between the random
graph and Henson graphs.

Definition 4.4. The triangle-free random graph is the countable L-structure H3 =

(V, E), unique up to isomorphism, which satisfies the L-theory K3−RG, made up of:

• The axioms of K3−Graph.

• For every m,n < ω, the axiom ∀x0 . . .∀xm−1∀y0 . . .∀yn−1

∧
i<m

∧
j<n

¬xi
.
= yj ∧

∧
k<m

¬xiExk

→ ∃z

(∧
i<m

zExi ∧
∧
i<n

(
¬zEyj ∧ ¬z .

= yj
))

Proposition 4.5. The triangle-free random graph H3 = (V, E) |= K3−RG is the Fraïssé
limit of the class K3 of finite triangle-free graphs.
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Proof. We prove the richness of H3 in an identical way to proposition 3.11. To
check that the age of H3 is K3, we notice that any of its finite subgraphs is triangle
free. Conversely, we apply the same argument as in the proof for Rado’s graph:
given a graph H ∈ K3, we propose an enumeration {vi | 1 ≤ i ≤ |H|} and show
that any Hr = {vi | i ≤ r ≤ |H|} is isomorphic to some substructure of H3.

We still select an arbitrary vertex v′1 ∈ H3 as the starting point, but the in-
ductive step manifests a slight nuance: suppose that hr : Hr

∼−→ Gr ⊆H3 is already
constructed and vr+1 induces a partition V1 ∪V2 of Hr depending on whether their
vertices are connected to vr+1. No pair of elements from V1 is connected, otherwise
they form a triangle along with vr+1. The same applies for hr(V1), so the premises
of the last axiom of K3−RG are satisfied for hr(V1), hr(V2) and there exists some
v′r+1 ∈ H3 which extends the isomorphism.

By considering directed edges (an asymmetric relation), Henson also describes
in [Hen72] 2ω pairwise non-isomorphic countable homogeneous digraphs. We
adopt the language of simple graphs (which exclusively consists of a relation E)
to define a tournament as any digraph which satisfies either E(a,b) or E(b, a), for
any of its vertices a ̸= b.

Definition 4.6. Let T be a class of finite tournaments with the HP. We define the class
C(T ) as the collection of all finite digraphs whose substructures which are tournaments
are isomorphic to a digraph of T .

The class C(T ) has again a countable amount of isomorphism types, as it is
based on a finite relational language. Any tournament T0 which appears as a
substructure of a digraph G0 embeddable into an element of G ⊆ C(T ) will be
isomorphic to a tournament T ⊆ G, and thus to a tournament of T . This proves
the Hereditary Property for C(T ). The JEP and the AP follow an argument similar
to the finite graph case: note that any tournament in the common substructure is
preserved over the free amalgam, and that no additional tournament can appear
since the new relation is defined as the union of the relations from the structures.

These general classes have a Fraïssé limit. Henson constructs a tournament
Tn for each natural n ≥ 3 by adding an extra vertex and connecting it to a fixed
directed version of Kn. No embedding can be defined between any two of these
digraphs, so it is possible to choose a set {Ti}i∈I and define TI as the class of
tournaments which embed into some Ti, with i ∈ I. The uncountably many homo-
geneous graphs emerge as the limit of each C(TI).
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4.2 Finite groups

Besides some classes based on finite relational languages, the case of finite
groups will present the loosest conditions that define our structures, as any other
algebraic object we study –in addition– can be seen as a group. While the results in
this section are somewhat more general, the fact that we need to take into account
map properties keeps us from applying them to the rest of the cases. Furthermore,
this generality will also prevent the Fraïssé limits from being ω-categorical.

Definition 4.7. Let 1 be a constant, · a binary operator.1 We denote the language of
groups by LGroup = {1, ·}. The theory Group of groups consists of the following axioms:

• ∀a∀b∀c(a · (b · c) .
= (a · b) · c) (associativity)

• ∀a(1 · a .
= a · 1 .

= a) (neutral element)

• ∀a∃b(a · b .
= 1) (opposed element)

The structure G = (S,{1G, ·G}) is called a finite group if S is finite and G |= Group.

Observation 4.8. Finitely generated groups are not finite in general, as in the case of
⟨1⟩Z. However, given a collection {Gj}j∈J of finite groups, any structure generated by a
finite set of generators from the Gj is finite.

As in the case of vector spaces, the Hereditary Property of the class K of finite
groups is satisfied because any subgroup is generated by a subset of the domain
of the group and the axiomatic is preserved. Cayley’s representation theorem (as
gathered in [Cla71]) implies that there are countably many isomorphism types in
all K, since symmetric groups on a finite amount of letters have a finite amount of
subgroups.

Theorem 4.9 (Cayley). Let G be a finite group. There exists an n < ω such that G is
isomorphic to a subgroup of Sn, the symmetric group on n letters.

In fact, the Joint Embedding Property of K also follows directly from this
theorem: any two finite groups will be isomorphic to some subgroups H, H′ of
Sn and Sm, respectively, so they will be embeddable into some subgroup of SN ,
N := max(m,n), generated by H and H′. Neumann [Neu60] showed how to amal-
gamate any finite collection of groups, but his argument can be narrowed down
to our particular setting. For that, let us introduce some notation:

Definition 4.10. Let G be a finite group, H ⊆ G a subgroup. For any element g of G, we
define a left coset of H in G as gH = {gh | h ∈ H}.

1Also expressed by means of juxtaposition.
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Remark 4.11. Left cosets over a fixed subgroup H induce an equivalence relation
on G: define two elements a,b to be equivalent if aH = bH, that is, if a−1b ∈ H.
Choosing a set of representatives of the equivalence classes (the left cosets), we
obtain a partition of G and a unique decomposition for every element of G as the
product of a representative and an element of H.

Definition 4.12. Let G be a finite group, H ⊆ G a subgroup. We define the left transver-
sal S of H as the fixed set of left coset representatives (representatives of the aforemen-
tioned equivalence classes). Given an element a ∈ G and its unique product decomposition
a = sh in terms of s ∈ S, h ∈ H, we denote s = aσ, h = a−σ+1.

Theorem 4.13. The class K of all finite groups satisfies the Amalgamation Property.

Proof. Let A, B, H ∈ K such that H = A ∩ B is a common subgroup of A and B.
We must show that A and B embed into some finite group through some em-
beddings g, g′, such that g(h) = g′(h) for any element h of H. To do that we will
construct a group of permutations on the Cartesian product K := A × B × H of
the underlying sets, and assign to every element of A ∪ B a permutation. Let us
choose left transversals S, T of H, for A and B respectively, and reintroduce the
decompositions2

a = sh, s = aσ ∈ S, h = a−σ+1 ∈ H; b = th, t = bτ ∈ T, h = b−τ+1 ∈ H.

Firstly, we define K as the set-theoretic product S × T × H and build permu-
tations in it: given some a ∈ A, there is a map ρ(a) : K → K which assigns to any
triplet (s, t, h) ∈ K the element (s′, t′, h′) ∈ K, such that t′ = t and s′h′ = sha. Since
we can decompose elements of A and H uniquely, this is equivalent to stating

(s, t, h)ρ(a) = ((sha)σ, t, (sha)−σ+1).

For any element b ∈ B, we can define a map ρ′(b) analogously, with (s, t, h)ρ′(b) =

(s, (thb)τ, (thb)−τ+1). Additionally, the maps ρ(h0) and ρ′(h0) coincide for any ele-
ment h0 ∈ H, because hh0 ∈ H and the decompositions σ,τ fix the representatives:

(shh0)
σ = s, (thh0)

τ = t ⇒ (s, t, h)ρ(h0) = (s, t, hh0) = (s, t, h)ρ′(h0)

We can now view ρ as a map from A to a permutation group ρ(A) of K, and prove
that it is an isomorphism. It is exhaustive by definition, and injective because its
kernel is a = 1: if ρ(a) = IdK, for all s ∈ S, h ∈ H,

(sha)σ = s, (sha)−σ+1 = h
2Observe that the exponent notation for the maps σ, τ, etc. is purely mnemonic and no operation

is defined beyond their composition.
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so sha = sh and necessarily a = 1. To show that ρ is a homomorphism, let a0, a1 ∈ A
and any (s, t, h) ∈ K:

(s, t, h)ρ(a0)ρ(a1) =
(
(sha0)

σ , t, (sha0)
−σ+1

)ρ(a1)
=

=

((
(sha0)

σ (sha0)
−σ+1 a1

)σ
, t,
(
(sha0)

σ (sha0)
−σ+1 a1

)−σ+1
)
=

=
(
(sha0a1)

σ , t, (sha0a1)
−σ+1

)
= (s, t, h)ρ(a0a1)

The third equality holds as any g ∈ G can be factored into g = gσg−σ+1; the rest
follow from the definition of ρ. Notice how this also proves that ρ(A) is a group
equipped with the composition as its operator.

We can show a similar result for ρ′ : B → ρ′(B) ∈ Sym(K). Therefore, we have
established that A and B embed into the symmetric group Sym(K) ∈ K through

the embeddings ρ : A
⊂∼−→ P, ρ′ : B

⊂∼−→ P. These coincide for any element of H = A∩ B
and assign them some permutation in ρ(A) ∩ ρ(B).

The subgroup of Sym(K) generated by the images ρ(A),ρ(B) is sometimes
referred to as a permutation group of A and B (for instance, in [Neu60]), and it de-
pends on the chosen transversals of H. The class K now satisfies the requirements
of Fraïssé’s theorem, so there exists a limit which is known (and can be checked
immediatly) to be Hall’s universal group ([Hal59]).

Definition 4.14. Let U be a countable, locally finite group. We say U is Hall’s universal
group if the following hold:

• Every finite group G ∈ K admits an embedding G
⊂∼−→ U.

• Given G0, G1 ∈ K, any embeddings f0 : G0
⊂∼−→ U, f1 : G1

⊂∼−→ U are conjugate by
some inner automorphism of U.

However, since Hall’s group embeds any countable locally finite group, it is
not of finite exponent, so it is not ω-categorical. This property will be seen in
the next lemma from [Ros73], which helps us restrict our examples to classes of
groups whose limits have bounded exponent:

Definition 4.15. Let G be a group. The order of G is the number of elements of its
underlying set. For any a ∈ G, the order of a in G is defined as the order of the subgroup
generated by a, i.e. the least positive integer n such that an = 1, if it exists. As long as
it is defined, we call the least common multiple of the orders of all the elements of G the
exponent of G.
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Lemma 4.16. Let G be an ω-categorical group. Then, G has finite exponent.

Proof. We will prove the existence of some M < ω such that the order of any a ∈ G
is less than M, which implies the exponent of G is less than M!. Let us define
the formula αn(x) as “x has order greater than n”, that is, αn(x) :=

∧
i≤n ¬xi .

= 1.
Since G is ω-categorical, by theorem 2.20, the collection {αn(x) | n < ω} contains
only finitely many types of non-equivalent formulas in G. Specifically, we have a
partition

T0 ∪ . . . ∪ TN := {αi(x) | 1 ≤ i < n1} ∪ {αi(x) | n1 ≤ i < n2} ∪ . . . ∪ {αi(x) | nN < i}

of equivalent formulas in G, because it is not possible to have a situation like
αm(x) ≡ αm+2(x) ̸≡ αm+1(x).

This also induces a partition S0 ∪ . . . ∪ SN of elements of G which satisfy each
Tj. Note that the equivalence of formulas in TN (αi(x) with i > nN) implies that
the elements of SN do not have a finite order. We will show now that SN = ∅:
assume, otherwise, there exists some g ∈ SN . For every j < ω, we can define the
formula ϕj(x,y) = xj .

= y. But if g has infinite order, ϕ(g, gi) holds in G if and only
if i = j, so no ϕj,ϕj′ are equivalent in G. This contradicts the ω-categoricity of G.
Therefore, SN = ∅ and the order of the elements is bounded by nN .

Adopting arguments similar to the case of vector spaces, it can be shown that
the class of finite abelian (with the axiom ∀a∀b(ab = ba)) groups of exponent divid-
ing n has the Amalgamation Property. Saracino and Wood [SW82] prove that its
Fraïssé limit will be ω-categorical and have quantifier elimination, as the k gener-
ators of any group have finite order less than n, so the group has no more than nk

elements and the class is uniformly locally finite. Moreover, the limit is isomorphic
to Zω

n .

4.3 Finite fields of characteristic p

Back in section 3.3, we portrayed some vector spaces as basic constructions
over finite fields. Now we will do the same for finite fields themselves. Let us
recall that the order of a field is its cardinality, and the order of any of its elements
is the cardinality of its generated subgroup. For this purpose, we will introduce
their notation and a first necessary result:

Definition 4.17. Let + and · be binary operators, and 0,1 constants. We denote the
language of fields by LField = {0,1,+, ·}, and the sum 1 + . . . + 1 of n < ω times 1 by
n · 1. Given a prime number p, the theory Fieldp of fields of characteristic p is made up of
the following:
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• The axioms of groups on {0,+} (associativity, neutral element and opposed element)

• The axioms of groups on {1, ·} applied to every non-zero element

• ¬0 .
= 1

• ∀a∀b(a + b .
= b + a) (commutativity of +)

• ∀a∀b(a · b .
= b · a) (commutativity of ·)

• ∀a∀b∀c(a(b + c) .
= ab + ac (distributivity of +)

• Characteristic p: p · 1 .
= 0; and, for any n < p, ¬(n · 1 .

= 0)

Given a finite set A, the L-structure F = (A, (ZF)Z∈L) is called a finite field of charac-
teristic p if F |= Fieldp.

Lemma 4.18. Any finite field F has order pn, for some p prime and positive integer n. F
is isomorphic to any field F′ with the same order.

Proof. By the Pigeonhole principle, any finite field must have finite characteristic,
in particular, equal to a prime number p (otherwise, 0 would be the product of
some non-zero elements corresponding to its divisors). We can now consider
the subfield F0 generated by the neutral element of the product, {0,1, . . . , p − 1}.
Knowing that F is a group with respect to the sum, and restricting · to an operation
F0 × F → F, we can check that F can be defined as a vector space over F0. Its
dimension n narrows the cardinality to pn.

For the claim that F and F′ are isomorphic, it is clear that there exists an
isomorphism h between F0 and F′

0, the subfield generated by the neutral element
of the product in F′. Since both F and F′

0 have characteristic p, h can be extended
by taking into account the isomorphism defined between their vector spaces.

This lemma shows that any subfield has characteristic p, so the Hereditary
Property follows necessarily for the class K of all finite fields of characteristic p,
as all substructures are subfields. |K/ ∼= | is automatically countable, thanks to
the result as well. In fact, having considered such F0 and constructed F as a vector
space, the JEP is checked with a straightforward reasoning, once some notions
from [Cha09] are introduced.

Definition 4.19. Let K be a field, p(X) a polynomial over K. A field extension L of K
is called the splitting field of p(X) if p factors into linear factors over L, and any L′

with the same property has L ⊆ L′. Given n a positive integer and p a prime number, the
splitting field of Xpn − X is denoted by Fpn .
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Proposition 4.20. The class K of all finite fields of characteristic p has the Joint Embed-
ding Property.

Proof. Given two positive integers m,n and a prime p, we have Fpm ⊂ Fpn if and
only if m divides n: for the rightward implication, we see that Fpn is a vector space
over Fpm , hence |Fpn |= |Fpm |k and pn = pmk. Conversely, pm − 1 divides pn − 1, so
all roots of Xpm−1 − 1 are also roots of Xpn−1 − 1, which implies that Fpn contains
all the roots of Fpm .

Suppose F0, F1 are two finite fields of characteristic p and respective orders
pn0 , pn1 . It is a well-known fact that F0 ∼= Fpn0 and F1

∼= Fpn1 . Therefore, by the
previous observation, F0 and F1 embed into FpN , where N = lcm(n0,n1).

The Amalgamation Property can be deduced similarly, as the common subfield
can be embedded into the amalgamated structure with the identity. We can now
introduce the object (described by [KT17]) which will serve as the Fraïssé limit of
K. Much like countably infinite vector spaces, it will have an ω-categorical theory
with quantifier elimination due to the uniformly local finitude of finite fields.

Definition 4.21. Let p be a prime number. The algebraic closure Fp :=
⋃∞

n=1 Fpn of a
field Fp is the least extension of Fp in which any non-constant polynomial has a root.

Proposition 4.22. Given a prime p, Fp is the Fraïssé limit of the class K of all finite fields
of characteristic p.

Proof. Firstly, Age(K) = Fp because Fp consists of the union of splitting fields
of prime base p, and every finite field of characteristic p is isomorphic to some

splitting field Fpn . Now, for any fields F0, F |= Fieldp and embeddings f0 : F0
⊂∼−→ Fp ,

f1 : F0
⊂∼−→ F, consider isomorphic copies Fpn ∼=h f0(F0) and Fpm ∼=h′ F. We can infer

n | m due to the proof of proposition 4.20, since f1(F0) is a subfield of F. Then,
f0 = h−1 ◦ h′ ◦ f1 commutes for elements of F0.

4.4 Finite Boolean algebras

One last object of study oriented toward algebraic structures is the case of
Boolean algebras. For this work, their interest relies on the capability to be seen
as ordered structures, which will present resemblances with totally ordered sets
when constructing their Fraïssé limit.

Definition 4.23. Let 0 and 1 be constants, ⊔ and ⊓ binary operators, and a unary
operator.3 We denote the language of Boolean algebras by LBAlg = {0,1,⊔,⊓, }. The
theory BAlg of Boolean algebras consists of the following axioms:

30,1,⊔,⊓, often recieve the names of bottom, top, join, meet and complement, respectively.
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• ∀a∀b∀c (a ∗ (b ∗ c) .
= (a ∗ b) ∗ c) (associativity of ∗ ∈ {⊔,⊓})

• ∀a∀b (a ∗ b .
= b ∗ a) (commutativity of ∗ ∈ {⊔,⊓})

• ∀a∀b∀c (a ∗ (b ⋆ c) .
= (a ∗ b) ⋆ (a ∗ c)) (distributivity of {∗,⋆} = {⊔,⊓})

• ∀a∀b (a ∗ (a ⋆ b) .
= a) (absorption for {∗,⋆} = {⊔,⊓})

• ∀a (a ⊔ 0 .
= a ⊓ 1 .

= a) (identity)

• ∀a (a ⊔ a .
= 1 ∧ a ⊓ a .

= 0) (complement)

Given a finite set A, an L-structure A = (A,{0A,1A,⊔A,⊓A, A}) is called a finite
Boolean algebra if A |= BAlg.

It is fundamental to introduce an order relation for the elements of algebras:
for any a,b ∈ A, A |= Balg, we write a ≤ b when a ⊔ b = b, or equivalently a ⊓
b = a. In this sense, 0 and 1 are called infimum and supremum, respectively, as
0 ≤ a ≤ 1 for every a ∈ A. This notion will help us express some of the properties
which characterize finite Boolean algebras. For this section, we will rely on several
standard results from [GH09].

Definition 4.24. Let A be a Boolean algebra. An a ∈ A \ {0} is called an atom of A if,
for every b < a, b = 0. A is referred to as atomic if, for every b ∈ A \ {0}, there exists an
atom a ∈ A such that a ≤ b. An algebra is said to be atomless if it contains no atoms.

Remark 4.25. Every finite Boolean algebra is atomic. This is shown inductively,
since every non-atom element must have some element below.

Intuitively, this relies on the fact that, as opposed to –say– topologies, Boolean
algebras contain a complement for every element, which end up spanning every
possible atom along with the meet operator ⊓. Actually, any finite algebra A is
determined by its atoms At(A) in the following sense: any element a ∈ A can
be expressed as the join a′ =

⊔{a0 ≤ a | a0 ∈ At(A)} of its atoms, since otherwise
0 ̸= a ⊓ a′ ≤ a or there would exist an atom a∗ ≤ a ⊓ a′ ≰ a′. The next result points
at Boolean algebras as generalization of structures based on power sets.

Lemma 4.26. Any finite Boolean algebra A is isomorphic to the Boolean power set algebra
defined over P(At(A)), with 0 being the empty set, 1 the universe A of A, ⊔ the union
of sets, ⊓ the intersection, and the set-theoretic complement with respect to A.

Having laid the groundwork to understand Boolean algebras as ordered struc-
tures with strong properties, we can now characterize homomorphisms through
the equalities

h(x ⊔ y) = h(x) ⊔ h(y), h(x ⊓ y) = h(x) ⊓ h(y), h(x) = h(x).
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Additionally, these also imply h(0) = 0, h(1) = 1 and h(x) ≤ h(y), for any x ≤ y.
The previous lemma directly evidences there are countably many isomorphism
types for finite Boolean algebras. And, since any embedded substructure is char-
acterized by the choice of its atoms, the class K of finite Boolean algebras also
has the Hereditary Property. The JEP and the AP are motivated by a embedding
extension criterion in [GH09], the latter being presented by [Cas22].

Proposition 4.27. Let A be a Boolean algebra generated by E and denote, for every a ∈ A,
a1 := a and a0 := a. A map g from E into a Boolean algebra B can be extended to an
embedding A

⊂∼−→ B just in case, for every finite F ⊆ E, for every function ε : F → {0,1},

⊔

a∈F

aε(a) = 0 if and only if ⊔

a∈F

g(a)ε(a) = 0

This easily extends lemma 4.26 to handle embeddings from atomic algebras
into power set algebras, as defined with set-theoretic operators: given an atomic

algebra A and a partition (Xa | a ∈ At(A)), there exists an embedding A
⊂∼−→ P(X)

which extends the map a 7→ Xa. Therefore, K satisfies the JEP by letting any two
finite algebras |B0| < |B1| embed into P (At(B1)).

Proposition 4.28. The class K of finite Boolean algebras has the Amalgamation Property.

Proof. Let A,B0,B1 ∈ K such that A = B0 ∩ B1 and A is a substructure of both
B0 and B1: we will show that the Bi embed into some power set algebra P(X)

through the embeddings gi : Bi
⊂∼−→P(X), with g0(a) = g1(a) for every a ∈ A. To do

so, we will construct X by relating each atom a of A to the set of atoms Bi lesser
than a, and including in X whichever of the sets is larger. Thus, by proposition
4.27, the mappings we consider from At(Bi) into P(X) will extend to our sought
gi. Let us define, for each a ∈ At(A):

• For i ∈ {0,1}, Ba
i := {x ∈ At(Bi) | x ≤ a}. Every pair Ba1

i , Ba2
i is disjoint,

since otherwise any b ∈ Ba1
i ∩ Ba2

i would belong to A and would satisfy
0 ̸= b ≤ a1 ⊓ a2 < a1, a2, contradicting the fact that a1, a2 ∈ At(A). The Ba

i
also form a partition of At(Bi), as any b ∈ At(Bi) \ At(A) satisfies b ≤ 1Bi =

1A =
⊔

At(A).

• If |Ba
0| ≥ |Ba

1|, set Ba := Ba
0 and choose some a∗ ∈ Ba

1 if the inequality is strict.
Otherwise, Ba := Ba

1 and select some a∗ ∈ Ba
0.

• If a ∈At(A0)∩At(B1) (thus, Ba = Ba
i = {a} for i ∈ {0,1}), let ha be the identity

on {a}. On the other hand, if |Ba
0| ≥ |Ba

1|, define an injective map ha : Ba
1 →

Ba
0 = Ba. Lastly, if |Ba

0|< |Ba
1|, let ha : Ba

0 → Ba
1 = Ba another injective mapping.
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Now we can define X as the union
⋃

a∈At(A) Ba, so that it contains the largest of
each Ba

i and we can define an injective map g0 : At(A0) → P(X) for any element
b ∈ At(A0)∩ Ba

0 (for some a ∈ At(A)) as: g0(b) = {b} if |Ba
0| ≥ |Ba

1|; g0(b) = {ha(b)}
if |Ba

0| < |Ba
1| and b ̸= a∗; and, lastly, g0(b) = {ha(b)} ∪ (Ba \ ha(Ba

0)) if |Ba
0| < |Ba

1|
and b = a∗. For g1 : At(B1) → P(X), we proceed analogously, but letting g1(b) =
{ha(b)} whenever b ∈ At(B1) ∩ Ba

1 happens for some |Ba
0| = |Ba

1|.
The images of the maps are indeed partitions of X, so the gi can be extended

to embeddings gi : Bi
⊂∼−→ P(X) due to the observation after proposition 4.27. It

remains to be seen that g0 ↾ A = g1 ↾ A. Notice that showing this for At(A),
instead, implies the result, since every element in A can be expressed from the
combination of its atoms.

• For every a ∈ At(A0) ∩ At(B1), g0(a) = g1(a) = {a}.

• Given i ̸= j, for every a ∈ At(Bi) \ At(Bj), Ba
i = {a} and |Ba

i |< |Ba
j |, so a∗ = a

and gi(a) = Ba
j . On the other hand, gj(a) = gj(

⊔
b∈Ba

j
b) =

⋃
b∈Ba

j
gj(b) = Ba

j .

• Finally, for every a /∈ At(A0) ∪ At(B1), we distinguish two cases: if |Ba
0| =

|Ba
1|, for every b ∈ Ba

0 we defined g0(b) = {b}, and so g0(a) = g0(
⊔

b∈Ba
0
b) =⋃

b∈Ba
0

g0(b) = Ba
0. Likewise, we get g1(a) = g1(

⊔
b∈Ba

1
b) =

⋃
b∈Ba

1
{ha(b)} = Ba

0.

• If, otherwise, a /∈ At(A0)∪At(B1) and |Ba
i |< |Ba

j |, the maps result in gj(a) =
gj(
⊔

b∈Ba
j
b) =

⋃
b∈Ba

j
gj(b) =

⋃
b∈Ba

j
{b} = Ba

j . For gi, we obtain that gi(a) =
gi(
⊔

b∈Ba
i
b) =

⋃
b∈Ba

i
gi(b) = {ha(a∗)} ∪ (Ba

j \ ha(Ba
i ))∪

⋃
b∈Ba

i \{a∗}{ha(b)}= Ba
j .

This proves that P(X) and gi : Bi →P(X) are the required structures for A,B0,B1

to check the Amalgamation Property.

Therefore, K has a Fraïssé limit M, which can be shown to be atomless: to
prove that every element a ∈ M finds some b ∈ M \ {0} lesser than it, we consider
the algebra A ⊂∼ f0

M with universe A = {0, a, a,1}, isomorphic to P({2,3}) by the
map f1 : a 7→ {3}, a 7→ {2}. We can embed P({2,3}) into P({2,3,4}) by mapping
f2 : {2} 7→ {2},{3} 7→ {3,4}. Then, due to the richness of M, there is an embedding

g : P({2,3,4})
⊂∼−→ M which satisfies f0(x) = g ◦ ( f2 ◦ f1)(x) for every x ∈ A, so

b = g({3}) < g({3,4}) = f0(a) = a is smaller than a in M. The following result
from [Poi00] substantiates the ω-categoricity of the limit (due to lemma 2.23).

Theorem 4.29. The theory of atomless Boolean algebras is complete and admits quantifier
elimination in the language L = {0,1,⊔,⊓, }.

A Fraïssé limit of K can also be constructed explicitly, as described by [Ver10]:

Definition 4.30. Let S be the set of infinitely countable sequences on {0,1} and, for
any s∈ S, let s(n) denote its nth element. We set the algebra S = (S,{0S ,1S ,⊔S ,⊓S , S}):
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• 0S (resp. 1S ) is the sequence such that 0S (n) = 0 (resp. 1S (n) = 1) for every n < ω.

• ⊔S represents the pointwise maximum (resp. minimum), that is, for any s, t ∈ S,
(s ⊔S t)(n) = max {s(n), t(n)} (resp. min {s(n), t(n)}) for every n < ω.

• S is defined, for every s ∈ S, as sS (n) = 1 − s(n) for every n < ω.

Let us now omit the S in the function symbols of S , and consider the periodic
sequences, that is, the elements s ∈ S such that there exists a natural k > 0 with
s(n + k) = s(n) for every n < ω. These can be represented by the elements of each
period as [x0 . . . xk−1] = x0 . . . xk−1x0 . . . xk−1 . . . We will define an algebra on the set
Sp of periodic sequences on {0,1}.

Remark 4.31. The subalgebra Sp ⊆ S of periodic sequences on {0,1} is countably
infinite, since there exist finitely many elements in Sp for each period k < ω. It is
also atomless: for every s = [x0 . . . xk−1]∈ Sp, the sequence s′ = [x0 . . . xk−10 . . . 0]∈ Sp

with k added zeros satisfies s ⊔ s′ = s, so 0 < s′ < s.

Definition 4.32. Let Sp be the set of periodic sequences on {0,1}. We define the count-
able atomless Boolean algebra Sp as the subalgebra of S over the universe Sp.

Theorem 4.33. The countable atomless Boolean algebra Sp is the Fraïssé limit of the class
K of finite Boolean algebras. Its theory is ω-categorical and has quantifier elimination.

Proof. Firstly, we will show that Age(Sp) = K. It is enough to consider the power
set algebras P(X) with X = {0, . . . ,k}. Given S k

p ⊆ Sp, the subalgebra of sequences
of period k, notice that the map h : P(X) → Sk

p, h(X) = [χX(0) . . . χX(k)] is an
isomorphism, where χX(i) is the characteristic function. Then, every finite algebra
is isomorphic to some S k

p. For the converse, note that any subalgebra of S k
p has a

finite amount of atoms and is isomorphic to a power set algebra.
To prove that G is rich with respect to K, consider any finite algebras A ∼=

P({0, . . . ,r}),B ∼= P({0, . . . , s}) (with N the least multiple of r not smaller than s)

and the embeddings f0 : A
⊂∼−→ Sp, f1 : A

⊂∼−→ B. Note that A defines through f0 a
subalgebra S ′

p ⊆ S r
p whose atoms are the images of the atoms of A. Also, since we

can work with power set algebras, let us assume that f1 maps the atoms of A to
At(B), which we denote by f1 : ai 7→ bi for i < r. The map g : At(B)→SN

p defined

below extends to an embedding B
⊂∼−→ SN

p , with f0(a) = g ◦ f1(a) for every a ∈ A:

g(bi) =


f0(ai), for i < r

[0 (r). . . 0xr . . . xN−1], with xj = 1 ⇔ j = i, for r ≤ i < s − 1

[0 (s−1). . . 01 (N−s+1). . . 1], for i = s − 1
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