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Abstract

We report a study of the suppressed B− → DK−π+π− and favored B− → Dπ−π+π−

decays, where the neutral D meson is detected through its decays to the K∓π± and
CP -even K+K− and π+π− final states. The measurement is carried out using a
proton-proton collision data sample collected by the LHCb experiment, corresponding
to an integrated luminosity of 3.0 fb−1. We observe the first significant signals in
the CP -even final states of the D meson for both the suppressed B− → DK−π+π−

and favored B− → Dπ−π+π− modes, as well as in the doubly Cabibbo-suppressed
D → K+π− final state of the B− → Dπ−π+π− decay. Evidence for the ADS
suppressed decay B− → DK−π+π−, with D → K+π−, is also presented. From
the observed yields in the B− → DK−π+π−, B− → Dπ−π+π− and their charge
conjugate decay modes, the most probably value of the weak phase γ corresponds to
γ = (74+20

−19)o. This is one of the most precise single-measurement determinations of
γ to date.
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1 Introduction

The study of beauty and charm hadron decays provides a powerful probe to search for
physics beyond the Standard Model that is complementary to direct searches for new,
high-mass particles. In the Standard Model, the flavor-changing charged currents of quarks
are described by the 3×3 unitary complex-valued Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix [1, 2], whose elements, Vij (i = u, c, t and j = d, s, b), quantify the relative
i ↔ j coupling strength. Its nine matrix elements can be expressed in terms of four
independent parameters, which need to be experimentally determined.

In general, decay rates that involve the i ↔ j quark transition are sensitive to the
magnitudes of the CKM matrix elements, |Vij|. The (weak) phases between different
CKM matrix elements can be probed by studying the interference between two (or more)
decay amplitudes. Particle and antiparticle amplitudes are related by the CP operator,
where C signifies charge conjugation, and P refers to the parity operator. Under the
CP operation, weak phases flip sign, leading to different decay rates for particles and
antiparticles, if the weak and (CP -invariant) strong phases differ between the contributing
amplitudes. Precision measurements of the magnitudes and phases of the CKM elements
provide constraints on many possible scenarios for physics beyond the Standard Model.

One of the least well-measured phases is γ ≡ arg[−(VudV
∗
ub)/(VcdV

∗
cb)], which can be

probed by studying the interference between b → u and b → c transitions. The most
promising method to determine γ is to study the interference between B− → D0K−

and B− → D0K− decays, when states accessible to both the D0 and D0 mesons are
selected. These modes are particularly attractive for the determination of γ because
their amplitudes are dominated by only a pair of tree-level processes, leading to a small
theoretical uncertainty [3]. Hereafter, we use D without a charge designation when the
charm meson can be either a D0 or D0. A number of methods, depending on the D
decay mode, have been discussed in the literature, and are often grouped into three
categories: (i) CP eigenstates, such as D → K+K− and D → π+π− decays [4, 5] (GLW);
(ii) flavor-specific final states, such as the Cabibbo-favored (CF) and doubly Cabibbo
suppressed (DCS) D → K±π∓ decays [6, 7] (ADS); and (iii) multi-body self-conjugate
final states, such as D → K0

Sπ
+π− [8] (GGSZ)1.

Beyond this simplest set of modes, these techniques are also applicable to modes with
vector mesons, such as B− → D∗K−, B0 → DK∗0 [9], and B0

s → Dφ [5], as well as
b-baryon decays, e.g. Λ0

b → DΛ [10–12] decays. It has also been suggested that other
multi-body final states of the recoiling strange quark system could be useful [13], due to
the larger branching fractions to these final states, and potentially a larger interference
contribution.

The current experimental measurements, averaged over several decays modes, are
γ = (73+9

−10)o by the LHCb collaboration [14], γ = (69+17
−16)o by the BaBar collaboration [15],

and γ = (68+15
−14)o by the Belle collaboration [16]. The overall precision on γ from a global

fit to direct measurements of γ is about 7o [17]. To improve the overall precision on γ, it

1The letters in the brackets are commonly used to refer to these general approaches, after the original
authors.
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is important to study a wide range of final states.
In this article, we present the first ADS and GLW analyses of the decay B− → DX−s ,

where the D meson is observed through its decay to K±π∓, K+K− and π+π− final states
and X−s ≡ K−π+π−. When specific charges are indicated in a decay, charge conjugation
is implicitly included, except in the definition of asymmetries discussed below. The
measurements use proton-proton (pp) collision data collected by the LHCb experiment,
corresponding to an integrated luminosity of 3.0 fb−1, of which 1.0 fb−1 was recorded at a
center-of-mass energy of 7 TeV and 2.0 fb−1 at 8 TeV.

2 Formalism

The formalism that was developed to describe the B− → DK− modes can be applied in
the B− → DX−s case with only minor modifications [13]. The decay rates in the CP final
states can be expressed as

Γ(B− → [h−h+]DX
−
s ) ∝ 1 + r2

B + 2κrB cos(δB − γ), (1)

Γ(B+ → [h−h+]DX
+
s ) ∝ 1 + r2

B + 2κrB cos(δB + γ). (2)

Here, h± = π± or K±, and [h−h+]D indicates that the state in brackets is produced in
the decay of the neutral D meson. The quantities rB ≡ |A(B− → [h−h+]D0X−s )/A(B− →
[h−h+]D0X−s )| and δB are the amplitude ratio and strong phase difference between B− →
D0X−s and B− → D0X−s contributions, averaged over the DX−s phase space. The
parameter κ is a coherence factor that accounts for a dilution of the interference due to
the variation of the strong phase across the phase space; its value is bounded between
0 and 1. In principle, κ can be obtained in a model-dependent way by a full amplitude
analysis of this decay. Here, we consider it as a free parameter to be determined in the
global fit for γ. The strong parameters, rB, δB and κ are specific to this decay, and differ
from those obtained from other B → DK modes.

The decay rates for the D → K±π∓ final states can be written as

Γ(B− → [K+π−]DX
−
s ) ∝ r2

B + r2
D + 2κrBrD cos(δB + δD − γ), (3)

Γ(B+ → [K−π+]DX
+
s ) ∝ r2

B + r2
D + 2κrBrD cos(δB + δD + γ), (4)

Γ(B− → [K−π+]DX
−
s ) ∝ 1 + (rBrD)2 + 2κrBrD cos(δB − δD − γ), (5)

Γ(B+ → [K+π−]DX
+
s ) ∝ 1 + (rBrD)2 + 2κrBrD cos(δB − δD + γ). (6)

Here, additional parameters rD and δD enter, which quantify the ratio of the DCS to CF
amplitude, A(D0 → K+π−)/A(D0 → K−π+) = rDe

iδD . Values of rD and δD are taken
from independent measurements [18, 19].

The determination of the CP observables in the B− → DX−s decay uses the favored
B− → Dπ−π+π− decay for normalization, denoted here as B− → DX−d . For brevity, we
will use X− to refer to either X−d or X−s . In addition, D → Kπ is used when both charge
combinations are considered.
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The CP observables of interest for the GLW analysis are the charge-averaged yield
ratios

Rh+h−

CP+ ≡ 2
Γ(B− → [h+h−]DX

−
s ) + Γ(B+ → [h+h−]DX

+
s )

Γ(B− → [K−π+]DX−s ) + Γ(B+ → [K+π−]DX+
s )

= 1 + r2
B + 2κrB cos δB cos γ. (7)

Because of the different D final states in Eq. 7, systematic uncertainty due to the precision
of the D branching fractions and the different selections is incurred. Following Ref. [13],
we neglect CP violation in the B− → DX−d and the favored D final state of B− → DX−s
decays, and approximate Rh+h−

CP+ by the following double ratio

RCP+ '
Rh+h−

s/d

RKπ
s/d

, (8)

where

Rh+h−

s/d ≡ Γ(B− → [h+h−]DX
−
s ) + Γ(B+ → [h+h−]DX

+
s )

Γ(B− → [h+h−]DX
−
d ) + Γ(B+ → [h+h−]DX

+
d )
, (9)

RKπ
s/d ≡

Γ(B− → [K−π+]DX
−
s + Γ(B+ → [K+π−]DX

+
s )

Γ(B− → [K−π+]DX
−
d + Γ(B+ → [K+π−]DX

+
d )
. (10)

This double ratio has the benefit that almost all systematic uncertainties cancel to first
order. The neglected CP -violating contribution of magnitude κrB|VusVcd/VudVcs| . 0.01 is
included as a source of systematic uncertainty.

We also make use of the charge asymmetries

AfX± ≡
Γ(B− → fDX

−)− Γ(B+ → f̄DX
+)

Γ(B− → fDX−) + Γ(B+ → f̄DX+)
= 2κrB sin δB sin γ/RCP+, (11)

where f refers to either K+K−, π+π− or the CF K−π+ final state in the D meson decay.
For simplicity, small contributions from direct CP violation in D → π+π− and D → K+K−

are not included here, but are accounted for in the fit for γ [14].
For the ADS modes, we measure the relative widths of the DCS to CF decays, separated

by charge, as

RX± =
Γ(B± → [K∓π±]DX

±)

Γ(B± → [K±π∓]DX±)
=

r2
B + r2

D + 2κrBrD cos(δB + δD ± γ)

1 + r2
Br

2
D + 2κrBrD cos(δB − δD ± γ)

. (12)

The nearly identical final states in these ratios lead to a cancellation of the most significant
sources of systematic uncertainty. Corrections to RX± for D0−D0 mixing [20] are omitted
for clarity, but are included in the fit for γ [14].

All of the above equations, except for Eqs. 8–10, can be applied to either B± → DX±s or
B± → DX±d decays. The values of rB, δB and κ differ between the favored and suppressed
decays; however γ is common to both. Most of the sensitivity is expected to come from
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the B± → DX±s decays, since A(B− → D0X−d )/A(B− → D0X−d ) is O(λ2), as compared
to O(1) for A(B− → D0X−s )/A(B− → D0X−s ), where λ = 0.2253± 0.0014 [21] is the sine
of the Cabibbo angle. Taken together, the observables that contain the most significant
information on γ are RCP+, Ah+h−Xs

and RX±s . Measurements of these four quantities
constrain rB, δB, κ and γ.

The product branching fraction for B− → DX−s decays, with D → h+h−, is at the level
of about 10−6. The small branching fractions, combined with a total selection efficiency
that is of order 0.1%, makes the detection and study of these modes challenging. The
corresponding ADS DCS decay mode is expected to have a yield of at least 10 times less
than the CP modes, and is very sensitive to the values of rB, δB, κ, and γ (see Eqs. 3
and 4). For this reason, the signal region of the ADS suppressed decays (both B− → DX−d
and B− → DX−s ) was not examined until all selection requirements were determined.

3 The LHCb detector and simulation

The LHCb detector [22] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-
rounding the pp interaction region, a large-area silicon-strip detector located upstream of
a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes [23] placed downstream of the magnet. The combined
tracking system provides a momentum measurement with a relative uncertainty that varies
from 0.5% at low momentum, p, to 1.0% at 200 GeV/c, and an impact parameter mea-
surement with a resolution of about 20µm [24] for charged particles with large transverse
momentum, pT. The polarity of the dipole magnet is reversed periodically throughout
data-taking to reduce asymmetries in the detection of charged particles. Different types of
charged hadrons are distinguished using information from two ring-imaging Cherenkov
detectors [25]. Photon, electron and hadron candidates are identified by a calorimeter sys-
tem consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter
and a hadronic calorimeter. Muons are identified by a system composed of alternating
layers of iron and multiwire proportional chambers [26]. Details on the performance of the
LHCb detector can be found in Ref. [27].

The trigger [28] consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.
The software trigger requires a two-, three- or four-track secondary vertex with a large
pT sum of the tracks and a significant displacement from all primary pp interaction
vertices (PVs). At least one particle should have pT > 1.7 GeV/c and χ2

IP with respect
to any PV greater than 16, where χ2

IP is defined as the difference in χ2 of a given PV
reconstructed with and without the considered particle. A multivariate algorithm [29] is
used for the identification of secondary vertices consistent with the decay of a b-hadron.

Proton-proton collisions are simulated using Pythia [30] with a specific LHCb con-
figuration [31]. Decays of hadronic particles are described by EvtGen [32], in which
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final-state radiation is generated using Photos [33]. The interaction of the generated par-
ticles with the detector, and its response, are implemented using the Geant4 toolkit [34]
as described in Ref. [35]. In modeling the B− → DX− decays, we include several resonant
and nonresonant contributions to emulate the X−s and X−d systems, as well as contributions
from orbitally excited D states, e.g D1(2420)0 → D0π+π−. The contributions are set
based on known branching fractions, or tuned to reproduce resonant substructures seen in
the data.

4 Candidate selection

Candidate B− decays are reconstructed by combining a D → Kπ, D → K+K− or
D → π+π− candidate with an X− candidate. A kinematic fit [36] is performed, where
several constraints are imposed: the reconstructed positions of the X− and B− decay
vertices are required to be compatible with each other, the D candidate must point back to
the B− decay vertex, the B− candidate must have a direction consistent with originating
from a PV in the event, and the invariant mass of the D candidate must be consistent
with the known D0 mass [21]. The production point of each B− candidate is designated
to be the PV for which the χ2

IP is smallest.
Candidate D mesons are required to have invariant mass within 3σD (2.5σD for

D → π−π+ decays) of the known value, where the mass resolution, σD, varies from
7.0 MeV/c2 for D → K+K− to 10.2 MeV/c2 for D → π+π− decays. Unlike the D mesons,
the invariant mass of the X− system covers a broad range from about 0.9− 3.3 GeV/c2.
Candidates are required to have an invariant mass, M(X−) < 2.0 GeV/c2. For the X−s
system, we also require the K−π+ invariant mass to be within 100 MeV/c2 of the known
K∗0 mass. The latter two requirements not only improve the signal-to-background ratio,
but should also increase the coherence factor κ in the final state.

To improve the signal-to-background ratio further, we select candidates based on particle
identification (PID) information, and on the output of a boosted decision tree (BDT) [37,
38] classifier. The latter discriminates signal from combinatorial background based on
information derived primarily from the tracking system. For the BDT, signal efficiencies are
obtained from large samples of simulated signal decays. Particle identification efficiencies
are obtained from a large D∗+ → D0π+ calibration data sample [25], reweighted in pT, η
and number of tracks in the event to match the distributions in data. The effect of the
BDT and PID selection requirements on the background is assessed using sidebands well
away from the B− peak region. In the optimization, a wide range of selection requirements
on the PID and BDT outputs are scanned, and we choose the value that optimizes the
expected statistical precision of the B− → DX−s signal yield. Expected signal yields
are evaluated based on known or estimated branching fractions and efficiencies obtained
from simulation (for the BDT) or D∗+ → D0π+, D0 → K−π+ calibration data (for the
PID). Due to the smaller expected yields in the ADS modes, separate optimizations are
performed for the GLW and the ADS analyses. Using simulated decays, we find that the
relative efficiencies for B− → DX−s and B− → DX−d decays across the phase space are
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compatible for the GLW and ADS selections. Due to the uniformity of the selections, and
the fact that the observables are either double ratios, e.g. RCP+, or ratios involving almost
identical final states, the systematic uncertainty on the relative efficiencies is negligible
compared to the statistical uncertainty.

Several other mode-specific requirements are imposed to suppress background from
other b-hadron decays. First, we explicitly veto contributions from B− → D0D−s , with
either D−s → π−π+π− or D−s → K−π+π−, by rejecting candidates in which the X− system
has invariant mass within 15 MeV/c2 of the known D−s mass. Contamination from other
final states that include a charmed particle are also sought by forming all two-, three- and
four-body combinations (except the D → h+h′− signal decay), and checking for peaks at
any of the known charmed particle masses. Contributions from D0 → K−π+, K−π+π−π+,
D+
s → K+K−π+ and D+ → K−π+π+ decays are seen, and ±15 MeV/c2 mass vetoes are

applied around the known charm particle masses. In addition, D∗+ contributions are
removed by requiring the invariant mass difference, M [(K−π+)Dπ

+] −M [(K−π+)D] >
148.5 MeV/c2. This removes both partially reconstructed B → D∗+X final states and fully
reconstructed states, such as B− → D1(2420)0h−, D1(2420)0 → D∗+π−, D∗+ → D0π+

signal decays. The latter, while forming a good signal candidate, are flavor-specific,
and therefore would reduce the coherence of the final state. Those D∗∗0 → D0π+π−

contributions that do not have a D∗+ intermediate state are kept, since they are not
flavor-specific.

Another potentially large source of background is from five-body charmless B decays.
Unfortunately, their branching fractions are generally unknown, but they are likely to be
sizable compared to those of the B− → DX−s signal decays. Moreover, these backgrounds
could have large CP asymmetries, as seen in three-body B-meson decays [21, 39,40]. It is
therefore important to suppress their contribution to a negligible level. This is investigated
by applying all of the above selections, except that D candidates are selected from a D mass
sideband region instead of the signal region. The sideband region is chosen to avoid the
contribution from the other two-body D decays with one misidentified daughter. Charmless
backgrounds are seen in all modes. These backgrounds are reduced to a negligible level by
requiring that the D decay vertex is displaced significantly downstream of the B− decay
vertex, corresponding to three times the uncertainty on the measured D decay length. A
more stringent requirement, corresponding to five times the uncertainty on the measured
D decay length, is imposed on the B− → [π+π−]DX

−
s,d decays, which is found to have a

much larger charmless contribution. After these requirements are applied, the charmless
backgrounds are consistent with zero, and the residual contribution is considered as a
source of systematic uncertainty.

Another important background to suppress is the cross-feed from the ADS CF B− →
[K−π+]DX

− decay into the ADS DCS B− → [K+π−]DX
− sample, which may happen

if the K− and π+ are both misidentified. Since the CF yield is expected to be several
hundred times larger than that of the DCS mode (depending on the values of rB, δB, κ
and γ), a large suppression is necessary. The combined D0 mass and PID requirements
provide a suppression factor of 6× 10−5. An additional requirement that the Kπ invariant
mass (after interchanging the K− and π+ masses) differs by at least 15 MeV/c2 from the
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known D0 mass decreases the suppression level to 0.9× 10−5. This leads to a negligible
contamination from the CF ADS mode into the DCS decay. The same veto is applied
to both the ADS CF D0 → K−π+ and DCS D0 → K+π− decays, so that no efficiency
correction is needed for RX± .

Lastly, in order to have a robust estimate of the trigger efficiency for signal events, we
impose requirements on information from the hardware trigger; either (i) one or more of the
decay products of the signal candidate met the trigger requirements from the calorimeter
system, or (ii) the event passed at least one of the hardware triggers, and would have
done so even if the signal decay was removed from the event. These two classes of events
constitute about 60% and 40% of the signal candidates, respectively, where the overlap is
assigned to category (i).

The selection efficiencies as a function of several two- and three-body masses in the
B− → [K−π+]DX

−
d decay are shown in Fig. 1, for both the GLW and ADS selections.

The efficiencies for other D final states are consistent with those for D → K−π+. The
m(Dπ−) and m(π+π−) efficiencies include two entries per signal decay, as there are two
π− in the final state. The analogous efficiencies for the B− → DX−s decay are shown in
Fig. 2. The relative efficiencies of the ADS to GLW selections are consistent with being flat
across each of these masses. These efficiencies include all selection requirements, including
PID. However, events in which any of the signal decay products is outside of the LHCb
detector acceptance are not included, since they are not simulated; thus to obtain the total
selection efficiency, these efficiencies should be scaled by a factor of 0.11, as determined
from simulation.

Figure 3 shows the X−d and X−s invariant mass distributions for B− → [K−π+]DX
−
d

and B− → [K−π+]DX
−
s signal decays after all selections, except for the X− and K∗0

mass requirements. These signal spectra are background subtracted using the sPlot
method [41], with the B− candidate invariant mass as the discriminating variable. The X−d
and X−s contributions peak in the region below 2 GeV/c2, consistent with the dominance
of resonances such as a1(1260)− → π−π+π− to the X−d system, and one or more excited
strange resonances contributing to X−s . The dip at 1.97 GeV/c2 is due to the D−s mass
veto.

5 Fits to data

The signal yields are determined through a simultaneous unbinned extended maximum
likelihood fit to the 16 B± candidate invariant mass spectra. These 16 spectra include the
four B− → DX−d decays, where D → K±π∓, K+K− and π+π−, the corresponding four
charge-conjugate decays, and the set of eight modes where X−d is replaced with X−s . The
signal and background contributions across these modes are similar, although not identical.
Where possible, common signal and background shapes are used; otherwise simulation
is used to relate parameters in the lower yield modes to the values obtained from the
high yield CF D → Kπ modes. Signal and background yields are all independent of one
another in the B+ and B− mass fits; thus CP violation is allowed for all contributions in
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Figure 1: Signal efficiencies for the B− → [K−π+]DX
−
d decay when applying the GLW and ADS

selections. The efficiencies are shown as a function of five different two- and three-body masses.

the mass spectrum. Unless otherwise noted, the shapes discussed below are obtained from
simulated decays.

5.1 Signal shapes

The B− mass signal shapes are each parameterized as the sum of a Crystal Ball (CB)
shape [42] and a Gaussian (G) function,

Fsig ∝ fCBCB(mB, σCB, αCB, n) + (1− fCB)G(mB, σg). (13)

The Gaussian function accounts for the core of the mass distribution, whereas the CB
function accounts for the non-Gaussian radiative tail below, and a wider Gaussian resolution
component above, the signal peak. A small difference is seen between the shapes for the
B− → DX−d and B− → DX−s decays, and so a different set of signal shape parameters
is used to describe each, except for a common value of the fitted B− mass, mB. The
signal shapes are not very sensitive to the power-law exponent, n, which is fixed to
10. The parameters αCB, σg and fCB are allowed to vary freely in the fit to the data.
From simulation, we find that for all 16 modes, σCB/σg is consistent with 1.90, and
this ratio is imposed in the fit. Simulation is also used to relate the mass resolution in
the D → K+K−, π+π− modes to that of the D → Kπ mode, from which it is found
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Figure 2: Signal efficiencies for the B− → [K−π+]DX
−
s decay when applying the GLW and ADS

selections. The efficiencies are shown as a function of five different two- and three-body masses.

that σ
[KK]DX

−
g = (0.947± 0.011)σ

[Kπ]DX
−

g and σ
[ππ]DX

−
g = (1.043± 0.011)σ

[Kπ]DX
−

g . The
relations are consistent between the B− → DX−d and B− → DX−s modes, and are applied
as fixed constraints (without uncertainties) in the mass fit.

5.2 Backgrounds and their modeling

The primary sources of background in the mass spectra are partially reconstructed B →
D(∗)X− decays, cross-feed between B− → DX−d and B− → DX−s , and other combinatorial
backgrounds. All of the spectra have a contribution from combinatorial background, the
shape of which is described by an exponential function. Its slope is taken to be the same
for the CP -conjugate B− and B+ decays, but differs among the various D and X− final
states.

The main contribution to the partially reconstructed background comes from B− →
[D0π0, D0γ]D∗0X

− or B0 → [D0π+]D∗+X
− decays, where a pion or photon is not considered

when reconstructing the B− candidate. Because the missed pion or photon generally has
low momentum, these decays pass the full selection with high efficiency. The shapes of
these distributions are modeled using parameterized shapes based on simulated decays.
Since the Dalitz structure of these backgrounds is not known, we do not rely entirely on
simulation to reproduce the shape of this low-mass component. Instead, the parameters
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Figure 3: Signal distributions of the (left) X−d invariant mass in B− → DX−d decays and (right)
X−s invariant mass, in B− → DX−s decays, for D → K−π+. The distributions are obtained
using the sPlot method. In both cases, all selections, except the M(X−) < 2 GeV/c2 and the
K∗0 mass selection, are applied. The dip at 1.97 GeV/c2 is due to the D+

s meson veto.

of the shape function that depend on the decay dynamics are allowed to vary freely,
and are determined in the fit. The shape parameters for these backgrounds are varied
independently for B− → DX−d and B− → DX−s decays.

Another background contribution which primarily contributes to the B− → DX−d ADS
suppressed mode is the B0 → D0π−π+π−π+ decay, where there is no D∗+ intermediate
state. This decay can contribute to the ADS CF mode if a π+ is excluded from the
decay, or to the ADS DCS mode if a π− is not considered. The branching fraction
for this decay is not known, but the similar CF decay B0 → D∗0π−π+π−π+ is known
to have a relatively large branching fraction of (2.7 ± 0.5) × 10−3 [43, 44]. Assuming
B(B0 → D0π−π+π−π+) ' B(B0 → D∗0π−π+π−π+), this background contribution is
about two orders of magnitude larger than the DCS signal, although it peaks at lower
mass than the signal. The selection efficiency and shape of this background are difficult
to determine from simulation, since there have not been any studies of this final state
to date. Its shape is obtained from simulations that assume a quasi two-body process,
B0 → D0R, R → π−π+π−π+, which decays uniformly in the phase space. An ARGUS
shape [45] convolved with a Gaussian function provides a good description of this simulated
background. Its shape parameters are shared between B+ and B− and are allowed to
vary freely in the fit, except for the Gaussian width, which is fixed to the expected mass
resolution of 15 MeV/c2.

The analogous B0 → D0K−π+π−π+ decay does not pose the same contamina-
tion to the DCS ADS B+ → [K−π+]DX

+
s signal, since a missed π− leads to a

B+ → D0K−π+π+ candidate, which is not one of the decays of interest. However,

10



in the B0
s → [K−π+]D0K+π−π+π− decay, opposite-sign kaons are natural due to the

presence of the s̄ quark within the B0
s meson. This decay is unobserved, but the similar

decay, B0
s → D0K+π−, has a relatively large branching fraction of (1.00±0.15)×10−3 [46].

Based on other B-meson decays, one would expect the B0
s → D0K+π−π+π− decay to be

at the same level, O(10−3), which is two orders of magnitude larger than the signal. The
shape of this background has a similar threshold behavior as for the B0 → D0π−π+π−π+

decay discussed previously, and therefore its contribution is also modeled from simulated
decays using an ARGUS shape convolved with a Gaussian function with freely varying
shape parameters.

In the fit, we also model cross-feed between the B− → D(∗)X−d and B− → DX−s
decays. The shapes of these cross-feed backgrounds are obtained from simulation. The
cross-feed rate is obtained from D∗+ → D0π+, D0 → K−π+ calibration data, reweighted
to match the properties of the signal decays. All selection requirements on the B− → DX−

decays, including |M(K−π+) −MK∗0 | < 100 MeV/c2 and M(X−) < 2 GeV/c2, are taken
into account. In total, we find that 0.66% of B− → DX−d are misidentified as B− → DX−s
for the GLW modes and 0.16% for the ADS modes. The lower value for the ADS modes
is due to the tighter PID requirements on the K− candidate in the X−s system. The
cross-feed from B− → DX−s into B− → DX−d is evaluated in an analogous manner, and
is found to be 13.7%. Since the ratio of branching fractions is B(B− → DX−s )/B(B− →
DX−d ) ' 0.09 [47], the yield of this background is only about 1% of the signal yield.

Other sources of background that contribute to the B− → DX−s modes are the
B− → D0[K−K+π−]D−s and B− → D0K−[K+π−]K∗0 decays, where the K+ is misidentified
as a π+ meson. The shapes are similar for these two backgrounds and thus a single shape
is used, based on a parameterization of the B− candidate mass distribution in simulated
B− → D0[K−K+π−]D−s decays. Taking into account known branching fractions [21],
efficiencies from simulation, and K+ → π+ misidentification rates from D∗+ → D0π+

calibration data, we expect a contribution of 1.6% of the B− → DX−s signal.

5.3 Fit results

The invariant mass spectra for the B− → DX−s ADS and GLW signal modes are shown in
Figs. 4 and 5, with the corresponding spectra for the B− → DX−d normalization modes
in Figs. 6 and 7. Results from the fits are superimposed along with the various signal
and background components. The fitted yields in the ADS and GLW modes are given in
Tables 1 and 2.

Highly significant signals are seen in all modes, except for the ADS DCS B− → DX−s
decay. This is the first time these decays have been observed in modes other than the CF
D0 → K−π+ decay. Figure 8 shows the suppressed ADS mode, B± → D[K+π−]DK

±π∓π±,
summed over both B-meson charge states. The significance of the peak, which exceeds
three standard deviations, is discussed later.
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Table 1: Fitted yields in the ADS modes with f = Kπ, for the signal and corresponding
normalization modes.

Decay mode B− yield B+ yield

(N f

fit,X−d
) (N f

fit,X+
d

)

B± → DX±d , D → K−π+ 36 956± 214 37 843± 219

B± → DX±d , D → K+π− 161± 20 162± 20

(N f

fit,X−s
) (N f

fit,X+
s

)

B± → DX±s , D → K−π+ 1234± 37 1226± 37
B± → DX±s , D → K+π− 13.0± 5.3 6.6± 4.0

Table 2: Fitted yields used in the GLW analysis with f = K±π±, K+K− and π+π−, for the
signal and corresponding normalization modes.

Decay mode B− yield B+ yield

(N f

fit,X−d
) (N f

fit,X+
d

)

B± → DX±d , D → K−π+ 45 213± 226 46 488± 230
B± → DX±d , D → K+K− 3899± 63 4084± 65
B± → DX±d , D → π+π− 1669± 38 1739± 40

(N f

fit,X−s
) (N f

fit,X+
s

)

B± → DX±s , D → K−π+ 1699± 47 1744± 47
B± → DX±s , D → K+K− 155± 14 171± 14
B± → DX±s , D → π+π− 59± 9 70± 9

6 Determination of CP observables

The CP observables are obtained by expressing the fitted signal yields in terms of corrected
yields and the CP parameters. For the decay B± → fDX

±
d , where fD is either the ADS

CF decay or a CP eigenstate, the fitted yields can be written as

N f

fit,X±d
=

1

2

(
N f

corr,Xd

1 + F f

�D,Xd

)
(1∓Afraw,Xd

) + Cf

�c,X
±
d

, (14)

where N f
corr,Xd

is the total corrected yield (sum of B− and B+), F f

�D,Xd
are the estimated

fractions of signal events removed by the D0 and D
(∗)+
(s) vetoes, Cf

�c,X
±
d

are the estimated

charmless background yields, and Afraw,Xd
is the raw CP asymmetry.

The fitted yields in the corresponding B± → DX±s decays are written in terms of
the corrected B± → DX±d yields in Eq. 14 and the CP observable Rf

s/d defined in Eqs. 9
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Figure 4: Mass distributions of B− → DX−s candidates using the ADS selections, for (top left)
B− → [K−π+]DX

−
s , (top right) B+ → [K+π−]DX

+
s , (bottom left) B− → [K+π−]DX

−
s , and

(bottom right) B+ → [K−π+]DX
+
s .

and 10, as

N f

fit,X±s
=

1

2
Rf
s/d

(
N f

corr,Xd

1 + F f

�D,Xs

)
(1∓Afraw,Xs

) + Cf

�c,X
±
s
, (15)

where the meaning of the symbols parallels those in Eq. 14.
For the ADS suppressed modes, the four DCS yields NK∓π±

fit,X± are expressed in terms of
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Figure 5: Mass distributions of B− → DX−s candidates using the GLW selections, for (top
left) B− → [K−π+]DX

−
s , (top right) B+ → [K+π−]DX

+
s , (middle left) B− → [K+K−]DX

−
s ,

(middle right) B+ → [K+K−]DX
+
s , (bottom left) B− → [π+π−]DX

−
s , and (bottom right)

B+ → [π+π−]DX
+
s .
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Figure 6: Mass distributions of B− → DX−d candidates using the ADS selections, for (top left)
B− → [K−π+]DX

−
d , (top right) B+ → [K+π−]DX

+
d , (bottom left) B− → [K+π−]DX

−
d , and

(bottom right) B+ → [K−π+]DX
+
d .

the corrected CF yields, NK±π∓
corr,Xd

, as

NK∓π±

fit,X±d
=
(
R
X±d
raw

)( NK±π∓
corr,Xd

1 + FK∓π±

�D,Xd

)
+ CK∓π±

�c,X
±
d
, (16)

NK∓π±

fit,X±s
=
(
RX±s

raw

)( NK±π∓
corr,Xs

1 + FK∓π±

�D,Xs

)
+ CK∓π±

�c,X
±
s
, (17)
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Figure 7: Mass distributions of B− → DX−d candidates using the GLW selections, for (top
left) B− → [K−π+]DX

−
d , (top right) B+ → [K+π−]DX

+
d , (middle left) B− → [K+K−]DX

−
d ,

and (middle right) B+ → [K+K−]DX
+
d , (bottom left) B− → [π+π−]DX

−
d , and (bottom right)

B+ → [π+π−]DX
+
d
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Figure 8: Mass distributions for the suppressed ADS mode, B± → [K∓π±]DK
±π∓π± (sum of

B+ and B−).

where NK±π∓

corr,X±s
= NK±π∓

corr,Xs
(1 ∓ AK±π∓raw,Xs

) gives the corrected yield for the favored B± →
[K±π∓]DX

±
s decays.

The corrections for the D0 and D
(∗)+
(s) vetoes, F f

�D,Xd,s
, are determined by interpolating

from the mass regions just above and below the veto region, and lead to corrections that
range from 0.6% to 5.8% of the expected yield. Uncertainties on these corrections are
considered as sources of systematic uncertainty. Potential contamination from charmless
five-body decays is determined by fitting for a B± signal component when the D candidates
are taken from the D0 mass sideband region, as described previously. The charmless
contributions are negligible, and the uncertainties are included in the systematic error.
The yields, as determined from the fitted values of the CP parameters in Eqs. 14-17, are
given in Tables 1 and 2.

The raw observables, Afraw,X and RX±
raw include small biases due to the production

asymmetry of B± mesons, AB± (affecting Afraw,X only), and from the detection asymmetries
of kaons and pions, AK and Aπ. The corrected quantities are then computed according to
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AK+K−

Xd
= AK+K−

raw,Xd
−AB± −Aπ, (18)

Aπ+π−

Xd
= Aπ+π−

raw,Xd
−AB± −Aπ, (19)

AK−π+

Xd
= AK−π+

raw,Xd
−AB± −AK , (20)

AK+K−

Xs
= AK+K−

raw,Xs
−AB± −AK , (21)

Aπ+π−

Xs
= Aπ+π−

raw,Xs
−AB± −AK , (22)

AK−π+

Xs
= AK−π+

raw,Xs
−AB± − 2AK +Aπ, (23)

RX+
d = R

X+
d

raw(1− 2AK + 2Aπ), (24)

RX−d = R
X−d
raw(1 + 2AK − 2Aπ), (25)

RX+
s = RX+

s
raw(1− 2AK + 2Aπ), (26)

RX−s = RX−s
raw(1 + 2AK − 2Aπ). (27)

The pion detection asymmetry of Aπ = 0.000 ± 0.003 is obtained by reweighting the
measured π± detection efficiencies [48] with the expected momentum spectrum for signal
pions. The kaon detection efficiency of AK = −0.011± 0.004 is obtained by reweighting
the measured K−π detection asymmetry [49] using the momentum spectrum of signal
kaons, and then subtracting the above pion detection asymmetry. For the production
asymmetry, the value AB± = −0.008 ± 0.007 is used [50], based on the measured raw
asymmetry in B± → J/ψK± decays [51] and on simulation.

6.1 Systematic uncertainties

Most potential systematic uncertainties on the observables are expected to cancel in
either the asymmetries or ratios that are measured. The systematic uncertainties that
do not cancel completely are summarized in Table 3. The PID and trigger asymmetries
are evaluated using measured kaon and pion efficiencies from D∗+ → D0π+ calibration
samples in data that are identified using only the kinematics of the decay. The efficiencies
for the B+ and B− signal decays are then obtained by reweighting the kaon and pion
efficiencies using simulated B± → DX± decays to represent the properties of signal data.
We find no significant charge asymmetry with respect to the PID requirements, and use
APID
h = 0.000± 0.006, where the uncertainty is dominated by the finite sample sizes of

the simulated signal decays in the reweighting. The asymmetry of the hardware trigger is
assessed using measured hadron trigger efficiencies in D∗+ → D0π+, D0 → K−π+ decays,
reweighted to match the momentum spectrum of tracks from signal decays. Defining the B±

hadron trigger efficiency as εB± , the charge asymmetry of the trigger (εB−−εB+)/(εB−+εB+)
varies from 0.000± 0.003 for B− → [K+K−]DX

−
s to 0.007± 0.003 for B− → [K+π+]DX

−
s .

These values are applied as corrections.
On RCP+ and RX± , we have either a double-ratio or a ratio of final states with

identical particles (apart from the charges), and therefore there is a high degree of
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Table 3: Systematic uncertainties, in percent, on the fitted parameters.

Source A(B± → DX±d ) A(B± → DX±s ) RCP+ R±d R±s
D → h+h− Kπ h+h− Kπ K+K− π+π− Kπ Kπ

AB± 0.7 0.7 0.7 0.7 – – – –
AK – 0.4 0.4 0.8 – – 0.7 0.7
Aπ 0.3 – – 0.3 – – 0.6 0.3
Trigger 0.4 0.4 0.4 0.4 1.5 1.5 1.5 1.5
PID 0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2
Signal model – – – – 1.1 1.1 – –
Bkgd. model – – – – 1.6 1.6 4.0 10.0
Charmless back. – – – – 1.0 1.0 1.0 1.0
Cross-feed – – – – 1.0 1.0 1.0 1.0
D vetoes – – – – 1.0 1.7 1.0 1.0
RCP+ approx. – – – – 1.0 1.0 – –
Total 1.0 1.1 1.1 1.3 3.4 3.8 4.9 10.4

cancellation of potential systematic uncertainties. We expect that for these ratios, the
relative trigger efficiencies would yield a value close to unity. After reweighting the
measured trigger efficiencies according to the kinematical properties of signal decays
(obtained from simulation), we find that the ratios of trigger efficiencies are within 1.5%
of unity, which is assigned as a systematic uncertainty. Using an analogous weighting
procedure to the measured PID efficiencies, we find that the relative PID efficiency is
equal to unity to within 1.2%, which is assigned as a systematic uncertainty.

We also consider uncertainty from the signal model, the background model, the charm-
less contamination, the D vetoes, and the detection asymmetries. For the signal model
uncertainty, all of the fixed signal shape parameters are varied by one standard deviation,
and the resulting changes in the CP parameters are added in quadrature to obtain the total
signal shape uncertainty (1.1%). For the background-related uncertainties, we consider
a polynomial function for the combinatorial background, and vary the fixed background
shape parameters of the specific b-hadron backgrounds within their uncertainties, and add
the deviations from the nominal result in quadrature (1.6%). For the ADS-suppressed
modes, larger uncertainties are assigned based on an incomplete understanding of the
contributions to the low mass B̄0

(s) → D0X background.
The charmless backgrounds are all consistent with zero, and the uncertainty is taken

from fits to the D sideband regions (1.0%). Uncertainties due to the cross-feed contribu-
tions (such as B− → DX−d reconstructed as B− → DX−s ) are assessed using simulated
experiments, by simulating the mass distributions with a larger cross-feed and fitting with
the nominal value (1.0%). The uncertainties due to vetoing potential contributions from
other D mesons are assessed by interpolating the mass spectrum just above and below the
veto region into the veto region. The associated uncertainties are all at the 1.0% level,
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except for the the B → [π+π−]DX
−
s mode, which has an uncertainty of 1.7%.

The uncertainties on the ratios Rh+h′−

s/d and RX−s,d are each summed in quadrature,

giving total uncertainties in the range of (3.4− 10.4)%, depending on the mode.

7 Results and summary

The resulting values for the CP observables are

RK+K−

CP+ = 1.043± 0.069± 0.034,

Rπ+π−

CP+ = 1.035± 0.108± 0.038,

AK+K−

Xd
= −0.019± 0.011± 0.010,

Aπ+π−

Xd
= −0.013± 0.016± 0.010,

AK−π+

Xd
= −0.002± 0.003± 0.011,

RX+
d = (43.2± 5.3± 2.1)× 10−4,

RX−d = (42.1± 5.3± 2.1)× 10−4,

AK+K−

Xs
= −0.045± 0.064± 0.011,

Aπ+π−

Xs
= −0.054± 0.101± 0.011,

AK−π+

Xs
= 0.013± 0.019± 0.013,

RX+
s = (107+60

−44 ± 11)× 10−4 [ < 0.018 at 95% CL ],

RX−s = (53+45
−42 ± 6)× 10−4 [ < 0.012 at 95% CL ].

The values of RCP+ are averaged to obtain

RCP+ = 1.040± 0.064,

where the uncertainty includes both statistical and systematic sources, as well as the
correlations between the latter.

The significances of the suppressed ADS modes are determined by computing the ratio
of log-likelihoods,

√
2 log(L0/Lmin), after convolving L with the systematic uncertainty.

From the value of L at the minimum (Lmin), and the value at RX±s = 0 (L0), the

significances of the non-zero values for RX−s and RX+
s are found to be 2.0σ and 3.2σ,

respectively. The overall significance of the observation of the ADS suppressed mode is
obtained by adding the log-likelihoods, resulting in a significance of 3.6 standard deviations.
This constitutes the first evidence of the ADS suppressed mode in B− → DK−π+π−

decays.
For completeness, we also compute the related observables RADS and AADS, which are
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commonly used. For the B− → DX−s modes, the values are

RXs
ADS ≡ (RX−s +RX+

s )/2 = (85+36
−33)× 10−4,

AXs
ADS ≡

RX−s −RX+
s

RX−s +RX+
s

= −0.33+0.36
−0.34.

For the favored modes, the corresponding values are

RXd
ADS ≡ (RX−s +RX+

s )/2 = (42.7± 5.6)× 10−4,

AXd
ADS ≡

RX−s −RX+
s

RX−s +RX+
s

= −0.013± 0.087.

The averages are computed using the asymmetric uncertainty distributions, and include
both statistical and systematical sources.

To assess the constraints on γ that these observables provide, they have been imple-
mented in the fitter for γ described in Ref. [14]. Two fits are performed, one that uses
only information from B− → DX−s , and a second that uses the observables from both
B− → DX−s and B− → DX−d decays. In both fits, the parameters from the D-meson
system, rD, δKπD , xD, yD, Adir

CP (K+K−), and Adir
CP (π+π−), are constrained in an analogous

way to what was done for the B− → DK− and B− → Dπ− case [14]. The four parameters
rB, δB, κ and γ are freely varied in each fit. In the combined fit, three additional strong
parameters, rDXd

B , δDXd
B , κDXd are included, which are analogous to those that apply to

the B− → DX−s decay.
The projections of the fit results for γ, rB and rB versus γ, are shown in Fig. 9 using

the method of Ref. [52] (see also Refs. [14].) The value of γ is found to be (74+20
−23)o for the

B− → DX−s -only fit, and (74+20
−19)o for the for the combined B− → DX−s and B− → DX−d

fit. The value of rB is nearly identical in the two cases, with corresponding values of
rB = 0.081+0.025

−0.027 and rB = 0.081+0.026
−0.029. As expected, most of the sensitivity comes from

the B− → DX−s decay mode. This value is almost identical to the LHCb combined result
of (73+9

−10)
o found in Ref. [14]. The value of rB is similar to the values found in other

B− → DK− decays [50, 53–56], but smaller than the value of 0.240+0.055
−0.048 [57] found in

neutral B-meson decays. The strong phase δB, averaged over the phase space, peaks at
172o for both fits, but at 95% CL all angles are allowed. The constraints on the coherence
factor are relatively weak; while the most likely value is close to 1, any value in the interval
[0, 1] is allowed at one standard deviation.

In summary, a pp collision data sample, corresponding to an integrated luminosity of
3.0 fb−1, has been used to study the B− → DX−s and B− → DX−d decay modes, where the
D meson decays to either the quasi-flavor-specific Kπ final state or the K+K− and π+π−

CP eigenstates. We observe for the first time highly significant signals in the CP modes
for both the favored and suppressed B− decays, and we also report the first evidence for
the ADS DCS B− → [K+π−]DK

−π+π− decay. We measure the corresponding ADS and
GLW observables for the first time in these modes. A fit for γ using only these modes
is performed, from which we find γ = (74+20

−23)
o for the fit with only B− → DX−s , and
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Figure 9: Projections of 1−CL versus (left) γ, (right) rB
−→DK−π+π−

B , and (bottom)

rB
−→DK−π+π−

B versus γ, using only B− → DK−π+π− decays, and the combination of
B− → DK−π+π− and B− → Dπ−π+π− decays. The 68.3% and 95.5% confidence level
(CL) limits are indicated for the γ and rB projections. The 39% level contours in rB

−→DK−π+π−
B

versus γ correspond to the 68.3% level contours in the one-dimensional projections.

γ = (74+20
−19)o for the combined B− → DX−s and B− → DX−d fit. Values of γ below about

25o and larger than approximately 165o are not excluded by these modes alone, but are
excluded when other modes are considered [14]. The precision on γ in this analysis is
comparable to, or better than, most previous measurements.
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L. Garrido36, D. Gascon36, C. Gaspar38, U. Gastaldi16, R. Gauld55, L. Gavardi9, G. Gazzoni5,
A. Geraci21,v, D. Gerick11, E. Gersabeck11, M. Gersabeck54, T. Gershon48, Ph. Ghez4,
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aUniversidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
bP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
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rUniversità di Padova, Padova, Italy
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