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Abstract

The main goal of this work is to study polynomial interpolation in several
variables from an algebraic perspective. To do so, we treat linear differential op-
erators as algebraic elements, and consider the solution space of a polynomial
interpolation problem as the orthogonal space via a sesqui-linear map of an ideal
of multivariate polynomials. Examples and a Mathematica code are also provided.

2020 Mathematics Subject Classification. 41A05 (13P10 41-02 41A10 41A63)



Introduction

When I entered university for the very first time I was as excited as afraid of
this new stage of my life and the unavoidable changes that were yet to come. I
didn’t even notice the guy who sat next to me, until he asked me if a had an
extra pen, as he had forgotten to bring one due to the excitement of the day.
That seemingly simple moment crossed our paths, which led us to become a part
of each other’s life, and four years later we have shared countless experiences
together.

In life, tiny details in the past continuously act like seeds, which slowly turn
into the emotional roots we experience today. It’s not until you think about it, that
you see how important this factor was in that special moment, where you first met
that person, that slowly became your best friend or loved one.

In mathematics, this phenomena also exists and seems to be always present.
There exists countless results, whose origins belong to a particular branch, but that
seem to be naturally expressed and treated with seemingly unrelated tools from a
completely different area. I like to think about branches of mathematics as inde-
pendent entities, that combine their roots in order to create results, unobtainable
in no other way.

I believe this project highlights perfectly this idea of knowledge combination
among different areas of mathematics as a required step for the creation of new
results, as the interpolation problem we are about to state can be naturally man-
aged with what I felt were, at first, completely unrelated abstract linear algebra
concepts.

Let us introduce a classic one-dimensional interpolation problem, which acts
as the precedent of this whole work. Let x0, . . . , xn, y0, . . . , yn, y1

0, . . . , y1
n ∈ R be

given values, and we want to find a polynomial f (x) ∈ R[x] such that

f (xj) = yj, f ′(xj) = y1
j ∀j = 0, . . . , n. (1)

A polynomial f satisfying those conditions is known as an unidimensional interpo-
lation polynomial. The main goal of this project is to extend the previous notion
of interpolation for an arbitrary number of variables and including any order of
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2

partial derivatives. As seen in example 7.2, a typical multivariate interpolation
problem would be to find a polynomial in 2 variables p = p(x, y) such that

(Dxx + Dy)p(0, 0) = 1, Dx p(0, 0) = i, p(0, 0) = 3, p(2, i) = 5 + i. (2)

A polynomial satisfying the previous system of differential equations is known
as a multidimensional interpolation polynomial. The procedure needed for finding the
solution space of a system like this requires abstract algebra tools, and hence it is
known as algebraic multivariate interpolation. This work contains a full theoretical
and practical interpolation study, which we will structure into 3 main blocks.

In the first block, consisting only of chapter 1, we dig deep into the theory
behind our original problem. We will see how Hermite’s interpolation formula is
the key to this type of problem. A generalization of (1) including higher order
derivatives ( f (2)(xj), f (3)(xj), etc) is also studied and finds an explicit solution,
known as Hermite’s generalized interpolation formula.

In the second block, formed by chapters 2 to 5, we will study the theoretical
foundations that will let us approach algebraic multivariate interpolation, needed
for solving systems such as (2). The main idea is that we can use linear differential
operators (chapter 3) to express any interpolation problem as the orthogonal space
of a sesqui-linear map (chapter 2). Let us remark that this type of mapping is a
natural extension of bilinear forms, working now over the complex numbers and
using spaces of infinite dimension, which added a very interesting extra challenge,
as previous known results on linear algebra used mostly finite spaces.

The use of polynomial rings in multiple variables is pretty much induced by
chapter 2, and essential properties of such rings are studied in chapter 4. The
last chapter of this block is reserved to Holonomic systems, whose study gives an
structure to orthogonal spaces, effectively leading us to the solution space we are
seeking.

In the third and final block, we will study a particular type of interpolation
based on holonomic systems, known as Hermite type interpolation (chapter 6). As-
suming certain regularity among the conditions of the differential system, and
using Noetherian operators as a theoretical tool, it is possible to create an algorith-
mic procedure for the computation of the solution space. Finally, we have included
in chapter 7 a list of examples that illustrate the procedure of Hermite type inter-
polation, from a theoretical point of view.

Let us remark we have written a Mathematica program, available in appendix
A, that includes a complete set of algorithms for the computation of a solution
in a Hermite type interpolation problem. This has been specially useful for the
examples in chapter 7, as many of the steps require the use of Gröebner basis,
which are already implemented in Mathematica.



Chapter 1

Interpolation in one variable

In this chapter we will explore one-dimensional algebraic interpolation and the
importance of Hermite’s interpolation formula and it’s generalization, as seen in
article [2].

Given a set o points in the plane {(xj, yj) ∈ R2 : j = 0, . . . , n}, a classic inter-
polation problem consists in finding a certain polynomial f such that

f (xj) = yj ∀j = 0, . . . , n.

The problem we want to solve generalizes the previous idea for any field K (not
necessarily R) and includes conditions on the derivatives of f at the given points.
Hence, the general statement of the problem can be stated as follows. Consider
x0, . . . , xn a set of points of some field K and some constants r0, . . . , rn ∈ N. We
want to find a polynomial f ∈ K[x] such that ∀j = 0, . . . , n:

f (k)(xj) = f k
j ∈ K ∀k = 0, . . . , rj.

That is, we want the evaluation at each point xj of the k-th derivative of f to be
some predefined value f k

j ∈ K. Notice that the value of rj indicates that we may
want to impose conditions up to a different derivative order for each point.

1.1 Hermite’s interpolation formula

Let’s first explore the case where k = 1, meaning we have a set of points
x0, . . . , xn, f0, . . . , fn, f 1

0 , . . . , f 1
n ∈ K and we want to find a certain f ∈ K[x]

satisfying f (xj) = f j and f
′
(xj) = f 1

j ∀ 0 ≤ j ≤ n. Hermite’s interpolation formula
provides an explicit polynomial, of degree 2n+ 1, which solves the problem stated.
Specifically,

f (x) =
n

∑
j=0

hj(x) f j +
n

∑
j=0

h̄j(x) f 1
j

3



4 Interpolation in one variable

where

hj(x) =

(
1−

q
′′
n(xj)

q′n(xj)
(x− xj)

)
Lj(x)2, h̄j(x) = (x− xj)Lj(x)2

qn(x) =
n

∏
j=0

x− xj, Lj(x) =
qn(x)

(x− xj)q
′
n(xj)

.

Example 1.1. Suppose we want to find a polynomial such that:

xj f (xj) f
′
(xj)

0 1 0

1 0 -1

-1 0 3

Then:

qn(x) = x(x− 1)(x + 1) = x3 − x, q
′
n(x) = 3x2 − 1, q

′′
n(x) = 6x

L0(x) =
qn(x)
xq′n(0)

= −x2 + 1 L1(x) =
qn(x)

(x− 1)q′n(1)
=

1
2
(x2 + x)

L2(x) =
qn(x)

(x + 1)q′n(−1)
=

1
2
(x2 − x)

h0(x) =

(
1− q

′′
n(0)

q′n(0)
(x)

)
L0(x)2 = (−x2 + 1)2

h̄1(x) = (x− 1)L1(x)2 =
1
4
(x− 1)(x2 + x)2

h̄2(x) = (x + 1)L2(x)2 =
1
4
(x + 1)(x2 − x)2.

Finally, the polynomial we seek turns out to be:

f (x) = (−x2 + 1)2 − 1
4
(x− 1)(x2 + x)2 +

3
4
(x + 1)(x2 + x)2 = 1− x2 − 1

2
x3 +

1
2

x5.

It’s easy to check that this polynomial indeed satisfies all conditions listed
below. As we are working in one dimension, we can also see this is the correct
polynomial visually, as the values of the derivatives are also the slopes of the
tangent lines at the given points.



1.2 Generalized interpolation formula 5

1.2 Generalized interpolation formula

Let’s now give a solution to the original problem, where we want to give values
up to the k-th derivative of the polynomial, for an arbitrary value of k ∈N.

Theorem 1.2. Suppose we are given xj, f k
j ∈ K and rj ∈ N, where 0 ≤ j ≤ n and

0 ≤ k ≤ rj. A polynomial that solves f (k)(xj) = f k
j and has degree n + ∑n

j=0 rj and is
given by

f (x) =
n

∑
j=0

rj

∑
k=0

Ajk(x) f k
j

where

Ajk(x) = pj(x)
(x− xj)

k

k!

rj−k

∑
t=0

1
t!

g(t)j (xj)(x− xj)
t

pj(x) =
rn

∏
s 6=j

(x− xs)
rs+1, gj(x) = (pj(x))−1.

Proof. Suppose the interpolation polynomial is of the form f (x) =
n
∑

j=0

rj

∑
k=0

Ajk(x) f k
j

for some polynomials Ajk. Then, as f (k)(xj) = f k
j , it must be that

A(s)
jk (xi) = 0 i f i 6= j, A(s)

jk (xj) = δks =

{
1, if k = s

0, if k 6= s.
(1.1)



6 Interpolation in one variable

Observe that each polynomial Ajk has degree n +
n
∑

j=0
rj, and from the previous

conditions we know that there are polynomials Rjk of degree rj − k such that

Ajk(x) = pj(x)(x− xj)
kRjk(x). (1.2)

If we let Sjk(x) = (x − xj)
k and gj(x) = (pj(x))−1 we can rewrite the previous

expression as
Sjk(x) Rjk(x) = Ajk(x) gj(x) (1.3)

We want to differentiate this equality k + t times, and observe that

S(k+t)
jk =

{
k! , if t = 0

0 , if t > 0.

By differentiating (1.3) k+t times we reach the expression

k

∑
i=0

(
k + t

i

)
S(i)

jk (x)R(k+t−i)
jk (x) =

k+t

∑
i=0

(
k + t

i

)
A(i)

jk (x)g(k+t−i)
j (x). (1.4)

We want to evaluate (1.4) for x = xj. Notice that S(s)
jk (xj) = 0 for s = 0, . . . , k− 1

and S(k)
jk = k!, and therefore we only need to consider the case i = k for the left-

hand side. Similarly, by (1.1) we know that A(s)
jk (xj) = 0 if s 6= k and A(k)

jk (xj) = 1,
and so we need to consider only i = k for the right-hand side too. Therefore we
have (

k + t
k

)
k! R(t)

jk =

(
k + t

k

)
g(t)j (xj).

This can be simplified to

R(t)
jk (xj) =

1
k!

g(t)j (xj), for t ≤ rj − k.

As we know that Rjk is a polynomial of degree rj − k, we can conclude that

Rjk(x) =
1
k!

rj−k

∑
t=0

1
t!

g(t)j (xj)(x− xj)
t. (1.5)

Finally, if we substitute (1.5) into (1.2) we get the desired expression for the poly-
nomials Ajk(x) stated in the theorem

Ajk(x) = pj(x)
(x− xj)

k

k!

rj−k

∑
t=0

1
t!

g(t)j (xj)(x− xj)
t.



Chapter 2

Sesqui-linear maps

The goal of the next few chapters is to extend algebraic interpolation to an
arbitrary number of variables, following our main reference [1]. In this chapter we
introduce the notion of sesqui-linearity, as a tool that will help us link differential
equations to abstract algebra theory.

Definition 2.1. Let Π, F and L be vector spaces over the complex field C.
A map 〈 , 〉 : Π× F → L is called sesqui-linear if for all a, b ∈ C and their corre-
sponding complex conjugates ā, b̄ ∈ C the following conditions are satisfied

〈ap + bq, f 〉 = a〈p, f 〉+ b〈q, f 〉

〈p, a f + bg〉 = ā〈p, f 〉+ b̄〈p, g〉.

If L = C then the map 〈 , 〉 : Π×F→ C is known as a sesqui-linear form.

Let’s now explore some of the properties that sesqui-linear maps and sesqui-linear
forms satisfy.

Definition 2.2. Consider a sesqui-linear map 〈 , 〉 : Π×F→ L. The orthogonal space of
a subset V ⊂ F is defined as V⊥ := {p ∈ Π : 〈p, f 〉 = 0 ∀ f ∈ V} ⊂ Π. Similarly, the
orthogonal space of a subset I ⊂ Π is defined as I⊥ := { f ∈ F : 〈p, f 〉 = 0 ∀p ∈ I}. In
particular, if V ⊂ F, we have V⊥ ⊂ Π, and so

V⊥⊥ = (V⊥)⊥ = { f ∈ F : 〈p, f 〉 = 0 ∀p ∈ V⊥}.

Lemma 2.3. Consider a sesqui-linear map 〈 , 〉 : Π×F→ L and a subset V ⊂ F. Then
V⊥ is a vector subspace, V ⊆ V⊥⊥ and V⊥ = V⊥⊥⊥.

Proof. Let’s first see that V⊥ it’s a vector subspace of Π. Indeed:

7



8 Sesqui-linear maps

• Let f ∈ V . By sesqui-linearity, 〈0, f 〉 = 〈0 + 0, f 〉 = 〈0, f 〉+ 〈0, f 〉.
Therefore, 〈0, f 〉 = 0 ∀ f ∈ V =⇒ 0 ∈ V⊥ =⇒ V⊥ 6= ∅.

• Let f ∈ V and suppose p, q ∈ V⊥ =⇒ 〈p, f 〉 = 〈q, f 〉 = 0. Then:

〈 f , p + q〉 = 〈 f , p〉+ 〈 f , q〉 = 0 + 0 = 0 =⇒ p + q ∈ V⊥.

• Let a ∈ C and p ∈ V⊥. We have 〈ap, f 〉 = a〈p, f 〉 = a · 0 = 0 =⇒ a · p ∈ V⊥.

Consider a certain f ∈ V. By definition we have 〈p, f 〉 = 0 ∀p ∈ V⊥. Observe
then that f "eliminates" all the elements of V⊥, and therefore f ∈ (V⊥)⊥ = V⊥⊥.
This proves the inclusion V ⊆ V⊥⊥, and in order to finish the proof we will need
the following result:

Proposition 2.4. Let V, W ⊂ F be two vector subspaces. Then, we have the following
relation: V ⊆W =⇒ W⊥ ⊆ V⊥.

Proof. Let x ∈ W⊥. By definition, we must have 〈x, f 〉 = 0 ∀ f ∈ W. As V ⊆ W, in
particular 〈x, f 〉 = 0 ∀ f ∈ V =⇒ x ∈ V⊥.

Finally, we must see that the equality V⊥ = V⊥⊥⊥ holds. Let us remark that:

p ∈ V⊥ ⇐⇒ 〈p, f 〉 = 0 ∀ f ∈ V

p ∈ V⊥⊥⊥ ⇐⇒ 〈p, f 〉 = 0 ∀ f ∈ V⊥⊥.

• ⊂ Suppose p ∈ V⊥. Then, 〈p, f 〉 = 0 ∀ f ∈ V⊥⊥ by the definition of the
orthogonal space V⊥⊥. By the previous remark this means p ∈ V⊥⊥⊥, as we
wanted.

• ⊇ We already know that V ⊆ V⊥⊥. By proposition 2.4, we must have that
(V⊥⊥)⊥ ⊆ (V)⊥ =⇒ V⊥⊥⊥ ⊆ V⊥.

Remark 2.5. All properties we have proven apply to a subset V ⊂ F, and can be
extended to a subset I ⊂ Π, as the roles of the spaces Π and F can be switched.

Definition 2.6. A sesqui-linear form 〈 , 〉 : Π×F→ C is non-degenerate if Π⊥ = 0 and
F⊥ = 0. In other words, we say that 〈 , 〉 is non-degenerate if:

• 〈p, f 〉 = 0 ∀p ∈ Π =⇒ f = 0.

• 〈p, f 〉 = 0 ∀ f ∈ F =⇒ p = 0.
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Lemma 2.7. Any non-degenerate sesqui-linear 〈 , 〉 : Π×F→ C satisfies:

(a) Let V ⊂ F be a vector subspace such that dimCV is finite or dimCΠ/V⊥ is fi-
nite. Then 〈 , 〉 induces a non-degenerate sesqui-linear form on Π/V⊥×V, and the
following properties are satisfied:

(a.i) dimCV = dimCΠ/V⊥.

(a.ii) V⊥⊥ = V.

(b) If V, W ⊂ F are subspaces, then (V + W)⊥ = V⊥ ∩W⊥.

(c) If V, W ⊂ F are finite dimensional vector spaces, then (V ∩W)⊥ = V⊥ + W⊥.

Proof. (a) Consider the quotient ring Π/V⊥ := {[p] : p ∈ Π}, and recall that [p]
denotes the class of the element p ∈ Π, meaning:

[p] = p + V⊥ = {p + q : q ∈ V⊥}.

We define a new sesqui-linear form in terms of the previous 〈 , 〉 : Π×F→ C as

〈 , 〉 : Π/V⊥ ×V−−−−−−→ C

(p, f ) 7→ 〈[p], f 〉 := 〈p, f 〉.

Now we must see that the new form is well defined, sesqui-linear and non-
degenerate. Indeed:

(1) Well - defined: Let p, p∗ ∈ Π be elements of the same class in Π/V⊥ and we
want to see they have the same image through the form. Observe that:

[p] = [p∗] ⇐⇒ p− p∗ ∈ V⊥ ⇐⇒ 〈p− p∗, f 〉 = 0 ∀ f ∈ V.

By sesqui-linearity of the original form, we have 〈p, f 〉 = 〈p∗, f 〉 and so the im-
ages are equal: 〈[p], f 〉 = 〈[p∗], f 〉.
(2) Sesqui-linear: Let p, q ∈ Π, f , g ∈ V and a, b ∈ C. Then:

(2.1) 〈a[p] + b[q], f 〉 = 〈a(p + V⊥) + b(q + V⊥), f 〉 = 〈ap + bq + V⊥, f 〉
= 〈[ap + bq], f 〉 = 〈ap + bq, f 〉 = a〈p, f 〉+ b〈q, f 〉
= a 〈[p], f 〉+ b 〈[q], f 〉.

(2.2) 〈[p], a f + bg〉 = 〈p, a f + bg〉 = 〈p, a f 〉+ 〈p, bg〉 = ā〈p, f 〉+ b̄〈p, g〉
= ā 〈[p], f 〉+ b̄ 〈[p], g〉.
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(3) Non-degenerate: Consider the orthogonal spaces

V⊥ = {[p] ∈ Π/V⊥ : 〈[p], f 〉 = 0 ∀ f ∈ V}

(Π/V⊥)⊥ = { f ∈ V : 〈[p], f 〉 = 0 ∀[p] ∈ Π/V⊥}.

The form is non-degenerated if V⊥ = {[0]} and (Π/V⊥)⊥ = {0}. Indeed:

• Let p ∈ Π be such that 〈[p], f 〉 = 0 ∀ f ∈ V, i.e. [p] ∈ V⊥. By definition of the
new sesqui-linear form, we have 〈p, f 〉 = 0 ∀ f ∈ V, and therefore p ∈ V⊥.
Then, the class of the element p is [p] = [0] in Π/V⊥. This proves V⊥ ⊆ {[0]}
and the other inclusion is trivial.

• Let’s see that if f ∈ V is not 0, then it can’t belong to (Π/V⊥)⊥. Suppose that
each p ∈ Π satisfies 〈p, f 〉 = 0, i.e. f ∈ Π⊥. As the original form 〈 , 〉 is non-
degenerate, we know Π⊥ = {0}, and so f = 0, which yields a contradiction.
Therefore, we know there exists some p ∈ Π such that 〈p, f 〉 6= 0. Hence,
〈[p], f 〉 6= 0 =⇒ f 6∈ (Π/V⊥)⊥. This gives us the inclusion (Π/V⊥)⊥ ⊆ {0},
and the opposite one is immediate.

In order to conclude section (a) let’s prove the listed properties.

(a.i) Let’s see that if dimCV is finite, then dimCV = dimCΠ/V⊥, that in particular
indicates that the other dimension is finite as well. Denote m := dimCV and
n := dimCΠ/V⊥, and suppose m < ∞. We take [p1], . . . , [pk] ∈ Π/V⊥ linearly
independent and consider the applications

hi : V−−−−−→ C

f 7→ hi( f ) := 〈[pi], f 〉.

Observe that these applications are C -linear, meaning that ∀a, b ∈ C:

hi(a f + bg) = 〈[pi], a f + bg〉 = 〈pi, a f + bg〉 = a〈pi, f 〉+ b〈pi, g〉
= a〈[pi], f 〉+ b〈[pi], g〉 = a hi( f ) + b hi(g).

Then, h1, . . . , hk ∈ V∗ and let’s see that these applications are linearly independent

as well. Suppose
k
∑

i=1
aihi( f ) = 0 ∀ f ∈ V for some a1, . . . , ak ∈ C. Then:

k

∑
i=1

ai h̄i( f ) =
k

∑
i=1

ai〈[pi], f 〉 = 〈
k

∑
i=1

āi[pi], f 〉 = 0 ∀ f ∈ V =⇒
k

∑
i=1

āi[pi] = 0.

As [p1], . . . , [pk] are linearly independent, it must be that each constant ai = 0,
as we wanted. Observe we have k linearly independent applications on V∗, and
therefore k ≤ dimCV∗ = dimCV = m < ∞. In particular, this implies that the
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maximum number of linearly independent vectors we can take in Π/V⊥ is m, and
so n ≤ m, which proves that n = dimCΠ/V⊥ is finite. We now repeat the same
procedure, taking f1, . . . , fm linearly independent vectors in V and considering
the applications

gi : Π/V⊥−−−−→ C

[p] 7→ gi([p]) := 〈[p], fi〉.

Let a, b ∈ C and let’s test that each gi ∈ (Π/V⊥)∗. Indeed:

gi(a[p] + b[q]) = 〈a[p] + b[q], fi〉 = 〈ap + bq, fi〉 = a〈p, fi〉+ b〈q, fi〉
= a gi(p) + b gi(q).

Suppose
m
∑

i=1
ai gi([p]) = 0 ∀[p] ∈ Π/V⊥ for some a1, . . . , am ∈ C. Then:

m

∑
i=1

ai gi([p]) =
m

∑
i=1

ai 〈[p], fi〉 = 〈[p],
m

∑
i=1

āi fi〉 = 0 =⇒
m

∑
i=1

āi fi = 0.

As f1, . . . , fm are linearly independent, it must be again that each ai = 0. There-
fore, we conclude that m ≤ dimC(Π/V⊥)∗ = dimCΠ/V⊥ = n. We already knew
that n ≤ m, and so we conclude that n = m, as we wanted.

Remark 2.8. The proof that dimCV = dimCΠ/V⊥ with the initial hypothesis that
Π/V⊥ is finite is analogous to the previous procedure.

(a.ii) Finally, let’s see that the equality V = V⊥⊥ holds. It’s already been proven
in lemma 2.3 that V ⊆ V⊥⊥, and so it is sufficient to see that dimCV = dimCV⊥⊥.
To do so, consider the application

φ : V⊥⊥−−→ (Π/V⊥)∗

f 7→ φ( f ) := φ f

defined in terms of the linear one

φ f : Π/V⊥−−−−→ C

[p] 7→ φ f ([p]) := 〈[p], f 〉.

We know that dimCΠ/V⊥ is finite, and so dimC(Π/V⊥)∗ must be finite as well,
and therefore if we see that φ is monomorphism, we will have that it is actually
an isomorphism. Indeed, let f , g ∈ V⊥⊥ be such that φ f = φg, and p ∈ Π. Then:

φ f ([p]) = φg([p]) =⇒ 〈[p], f 〉 = 〈[p], g〉 =⇒ 〈p, f 〉 = 〈p, g〉.
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As the previous expressions holds ∀p ∈ Π, it must be f = g, and so φ is a
monomorphism. Therefore V⊥⊥ ∼= (Π/V⊥)∗, which implies the desired equality

dimCV⊥⊥ = dimC(Π/V⊥)∗ = dimCΠ/V⊥ = dimCV.

(b) Let V, W ⊂ F. Let’s prove that (V + W)⊥ = V⊥ ∩W⊥.

• ⊇ Suppose x ∈ V⊥ ∩W⊥. By definition we have 〈x, v〉 = 0 ∀v ∈ V and
〈x, w〉 = 0 ∀w ∈ W. Then, 〈x, v〉+ 〈x, w〉 = 〈x, v + w〉 = 0, which implies
that each z ∈ V + W satisfies 〈x, z〉 = 0, and so x ∈ (V + W)⊥.

• ⊆ Suppose x ∈ (V + W)⊥ =⇒ 〈x, z〉 = 0 ∀z ∈ V + W. We know that
V ⊂ V + W and W ⊂ V + W, and so in particular 〈x, v〉 = 0 ∀v ∈ V and
〈x, w〉 = 0 ∀w ∈W. This means that x ∈ V⊥ and x ∈W⊥ =⇒ x ∈ V⊥ ∩W⊥.

(c) Let V, W ⊂ F be finite dimensional vector spaces, and note we will use that
V = V⊥⊥, W = W⊥⊥ and the analogous of part (b) for two subspaces I, J ⊂ Π,
meaning I⊥ ∩ J⊥ = (I + J)⊥. Let’s check the equality:

(V ∩W)⊥ = ((V⊥)⊥ ∩ (W⊥)⊥)⊥ = ((V⊥ + W⊥)⊥)⊥ = V⊥ + W⊥.

Lemma 2.9. Let 〈 , 〉 : Π×F→ C be a sesqui-linear form and p1, . . . , pr, f1, . . . , fs be
the bases of Π and F, respectively. Then the following conditions are equivalent.

(a) 〈 , 〉 is non-degenerate

(b) The bases have the same number of elements, r = s, and the matrix (〈pi, f j〉) is
invertible.

Proof. We must see the equivalence (a) ⇐⇒ (b). Indeed:
⇒ We will use the same procedure as in a previous proof to show that r = s.

We define the applications:

hi : F−−−→C gj : Π−−→C

f 7→ 〈pi, f 〉 p 7→ 〈p, f j〉.

We know that p1, . . . , pr are linearly independent, and we’ve already proven that
if 〈 , 〉 is non-degenerate, then h1, . . . , hr are also linearly independent and C -
linear. We must have then r ≤ dimCF∗ = dimCF = s. Similarly, we could prove
that s ≤ r by showing that the applications g1, . . . , gs belong to Π∗ and are linearly
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independent. We define the matrix of the sesqui-linear form in the given basis of
Π and F as:

M = (〈pi, f j〉)1≤i, j≤r =

〈p1, f1〉 . . . 〈p1, fr〉

〈pr, f1〉 . . . 〈pr, fr〉

 .

Consider p =
r
∑

i=1
ai pi and f =

r
∑

j=1
bj f j the expressions of some elements p ∈ Π

and f ∈ F in their respective basis. If we let a := (a1, . . . , ar) and b := (b1, . . . , br),
then we can express the product of p and f as:

〈p, f 〉 = 〈
r

∑
i=1

ai pi,
r

∑
j=1

bj f j〉 =
r

∑
i=1

r

∑
j=1

ai bj〈pi, f j〉 = a ·M · b̄T.

Let’s now see that if the form is non-degenerate then M is invertible. To do so,
suppose M · x = 0 for some x = (x1, . . . , xr) ∈ Cr, and we want to see that x = 0.
Indeed:

M · x =

〈p1, f1〉 . . . 〈p1, fr〉

〈pr, f1〉 . . . 〈pr, fr〉

 ·
x1

xr

 =


r
∑

i=1
xi〈p1, fi〉

r
∑

i=1
xi〈pr, fi〉

 =

0

0



This means that for each j = 1, . . . , r we have
r
∑

i=1
xi〈pj, fi〉 = 〈pj,

r
∑

i=1
x̄i fi〉 = 0.

Then, for any a1, . . . , ar ∈ C we have

r

∑
j=1

aj 〈pj,
r

∑
i=1

x̄i fi〉 = 〈
r

∑
j=1

aj pj,
r

∑
i=1

x̄i fi〉 = 0.

As the values of ai are arbitrary and pj form a base of Π, it must be

〈p,
r

∑
i=1

x̄i fi〉 = 0 ∀p ∈ Π =⇒
r

∑
i=1

x̄i fi = 0, as the form is non-degenerate.

Finally, as fi form a basis of F, we must have that the constants xi are all 0, and
therefore we have x = 0.
⇐ We proceed with the counter-reciprocal. Suppose the form 〈 , 〉 is degen-

erate. This means that there exists f 6= 0 such that 〈p, f 〉 = 0 ∀p ∈ Π or there
exists p 6= 0 such that 〈p, f 〉 = 0 ∀ f ∈ F.
Suppose the first case it’s true and let p = ∑r

i=1 ai pi, f = ∑r
j=1 bj f j. Then we have

that aMb̄T = 0 for all a = (a1, . . . , ar). In particular, if we take all the vectors in
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the canonic basis, a = (1, . . . , 0) until a = (0, . . . , 1), we would conclude that
Mb̄t = 0. As f 6= 0, some of the values bj 6= 0, and therefore we have a non-zero
vector is the kernel of the matrix M, and so M is not invertible.

Similarly, suppose we find ourselves in the second case. Then, we have that
aMb̄T = 0 for any vector b = (b1, . . . , br). By taking all the vectors b in the canonic
basis, we would see that aM = 0 =⇒ MTaT = 0. We know that p 6= 0, and
therefore some of the values ai 6= 0. We have then that aT 6= 0, and so MT is not
invertible =⇒ M is not invertible either.



Chapter 3

Linear differential operators

We want to create a link between multivariate algebraic interpolation and the
notion of sesqui-linearity seen in the previous chapter. The main idea behind this
relation is that any condition on the partial derivatives of a polynomial can be
expressed as the product via a sesqui-linear map between two very specific vector
spaces Π and F. In order to understand how exactly this new product can be
defined, let us first associate differential equations to multivariate polynomials via
differential operators.

Notation: We will work over C[x1, . . . , xn], the complex polynomial ring in
n variables. Naturally, in the case n = 2 and n = 3 we will denote x, y, z the
corresponding variables. We will also use standard notation for partial derivatives:

Dx p =
δ

δx
p, Dy p =

δ

δy
p, etc.

Definition 3.1. Consider p(x) = p(x1, . . . , xn) ∈ C[x1, . . . , xn] a polynomial in n
variables over the complex field. The linear differential operator identified with p is p(D),
where D = ( δ

δξ1
, . . . , δ

δξn
). That is, the k− th variable of the polynomial p corresponds to

the partial derivative in respect to xk of the operator p(D).

Example 3.2. Consider the polynomials p(x, y) = x + y and q(x, y) = 1 + xy in
C[x, y]. Their corresponding linear differential operators are:

• p(D) = δ
δξ1

+ δ
δξ2

• q(D) = 1 + δ2

δξ1δξ2
.

With this consideration, any condition on the partial derivatives of a poly-
nomial f can be reformulated in terms of differential operators. For example,
the equation δ f

δξ1
+ δ f

δξ2
= 0 is equivalent to the differential system p(D) f = 0,

with p(x, y) = x + y as in the previous example. Then, we would like to define

15
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〈p, f 〉 := p(D) f , effectively linking sesqui-linear maps to algebraic interpolation,
as f would be the solution to the differential system. Unfortunately, the previous
definition does not satisfy all conditions on sesqui-linearity. This problem can be
easily fixed with a small modification:

Proposition 3.3. Let Π = C[x] and F = C[[ξ]]. The assignation 〈 , 〉 : Π × F → F

defined as 〈p, f 〉 := p(D) f̄ is a sesqui-linear map.

Proof. Let p(x), q(x) ∈ Π, f , g ∈ F and a, b ∈ C. Then:

• 〈ap(x) + bq(x), f 〉 = (ap(x) + bq(x))(D) · f̄ = ap(D) f̄ + bq(D) f̄

= a〈p, f 〉+ b〈q, f 〉.

• 〈p(x), a f + bg〉 = p(D) · (a f + bg) = āp(D) f̄ + b̄p(D)ḡ = ā〈p, f 〉+ b̄〈p, g〉.

Observe that some of the previous equalities rely on the fact that the differential
operators we are using have constant complex coefficients, and therefore commu-
tativity and associativity properties are preserved.

Remark 3.4. Remark that the conjugate notation stands for

f = ∑
α∈Nn

aαξα ∈ F =⇒ f̄ = ∑
α∈Nn

āαξα.

Remark 3.5. In one hand, observe we define the set of symbols as Π = C[x], mean-
ing we are considering a system of differential equations that has derivatives with
finite order. On the other hand, the solution f of the system doesn’t necessar-
ily need to have finite degree, and so we must consider F to be the C-algebra of
formal power series, meaning that ξ = (ξ1, . . . , ξn) and:

F = C[[ξ]] =

{
∑
α

aαξα : α = (α1, . . . , αn) ∈N, aα ∈ C

}
.

Example 3.6. Suppose we are given the following p ∈ Π and f ∈ F:

p(x) = x + y, f (ξ) =
∞

∑
j=0

ξ
j−1
1 = 1 + ξ1 + ξ2

1 + ξ3
1 + . . .

Then, the product via the sesqui-linear form is

〈p, f 〉 = p(D) f̄ = (
δ

δξ1
+

δ

δξ2
) f =

∞

∑
j=1

j ξ
j
1 = 1 + 2ξ1 + 3ξ2

1 + . . .
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Remark 3.7. Consider a subset of polynomials I = {p1, . . . , pm} ⊂ Π and suppose
we want to find a certain f ∈ F such that pi(D) f = 0 ∀i = 1, . . . , m. Observe that:

p1(D) f = 0

. . . ⇐⇒ p(D) f = 0 ∀p ∈ 〈p1, . . . , pm〉.
pm(D) f = 0

Therefore a series f is a solution to the system only if it belongs to the orthogonal
space of I:

f ∈ I⊥ = 〈I〉⊥ = { f ∈ F : 〈p, f 〉 = 0 ∀p ∈ I.}

As the solutions starting with the set {p1, . . . , pm} and the ideal 〈p1, . . . , pm〉 are
the same, we can always assume I to be an ideal.

Now we know that this type of differential system of equations can be ex-
pressed in terms of the previous sesqui-linear form. We devote the remaining of
this chapter to a theory extension regarding this particular map, which will help
us approach the interpolation task of finding a series f solution to the system.

Definition 3.8. Let 〈 , 〉 : Π× F → F be a sesqui-linear map. We say two applications
h : Π→ Π and h∗ : F→ F are adjoints if for all p ∈ Π and for all f ∈ F we have:

〈h(p), f 〉 = 〈p, h∗( f )〉.

Proposition 3.9. (a) Consider α = (α1, . . . , αn), β = (β1, . . . , βn) ∈Nn. Then:

〈xβ, ξα〉 =

 α!
(α−β)! ξ

α−β if αi ≥ βi ∀i = 1, . . . , n.

0 otherwise.

(b) The sesqui linear map 〈 , 〉 is non-degenerate.

(c) The partial differentiation by ξi is adjoint to the multiplication by the dual variable xi:

〈xi p(x), f 〉 = 〈p(x), Di f 〉 〈q(x) p(x), f 〉 = 〈p(x), q(D) f 〉.

Proof. (a) Given α = (α1, . . . , αn) ∈ Nn , we denote α! = α1! · . . . · αn!. Recall that
the differential operator assigned to p(x) := xβ = xβ1

1 · . . . · xβn
n is

p(D) = Dβ =
δ|β|

ξ
β1
1 · . . . · ξβn

n
, |β| = β1 + . . . + βn.
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We will also use the notation Dj := δ
δξ j

, and so Dβ = Dβ1
1 · . . . · Dβn

n , as differential
operators are linear and commutative. Observe that:

〈xβ, ξα〉 = Dβξα = Dβξα = Dβ(ξα1
1 · . . . · ξαn

n ) = Dβ1
1 (ξα1

1 ) · . . . · Dβn
n (ξαn

n )

If for any i we have αi < βi, then we would take the derivative of the monomial
ξαi

i more than αi times, which would nullify the product. Otherwise, taking all the
derivatives we reach the expression

〈xβ, ξα〉 = α1!
(α1 − β1)!

ξ
α1−β1
1 · . . . · αn!

(αn − βn)!
ξ

αn−βn
n =

α!
(α− β)!

ξα−β.

(b) We will use definition 2.6 to see the form is non-degenerate.

• Suppose 〈p(x), f 〉 = 0 ∀p ∈ Π =⇒ p(D) f̄ = 0 ∀p ∈ Π. In particular, this
must hold for p(x) = 1, and so p(D) f̄ = 1 · f̄ = 0 =⇒ f = 0.

• Suppose 〈p(x), f 〉 = 0 ∀ f ∈ F and we want to see that p = 0. We write p as

p(x) = ∑
β

cβxβ for some β ∈Nn,

and we will see that the values of the constants cβ are all 0. As 〈p, f 〉 = 0 for
any f , in particular 〈p, ξα〉 = 0 for any α. Observe that for each monomial α:

〈p, ξα〉 = 〈∑
β

cβxβ, ξα〉 = cα〈xα, ξα〉+ ∑
β 6=α

cβ〈xβ, ξα〉 = cαα! + ∑
β 6=α

cβ〈xβ, ξα〉.

As α 6= β, each term in the sum will be either 0 (if any αi < βi) or a non-
constant polynomial on ξ1, . . . , ξn. As 〈p, ξα〉 must be exactly zero, this
means that aα = 0 and that each constant inside the sum is also zero. Re-
peating the argument for each monomial xβ in p, we see that all constants
cβ = 0, which of course implies p = 0.

(c) Let’s check that the adjoint conditions are satisfied.

• 〈xi p(x), f 〉 = (xi p(x))(D) f̄ = p(D)Di f̄ = p(D)Di f = 〈p(x), Di f 〉.

• 〈q(x)p(x), f 〉 = q(D)p(D) f̄ = p(D)q(D) f = 〈p(x), q(D) f 〉.

Definition 3.10. We say that a subset V ⊂ F is differentially closed, or D-closed for
short, if all partial derivatives of any f ∈ V also belong to V.
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Example 3.11. • V = 〈1, ξ1ξ2〉 is not D-closed as D1(ξ1ξ2) = ξ2 6∈ V.

• V = 〈1, ξ1, ξ2
1, ξ3

1〉 is D-closed, as we can only take partial derivatives on ξ1,
and it’s clear that the derivative of each generator also belongs to V.

Corollary 3.12. Consider the previous sesqui-linear map 〈p, f 〉 := p(D) f̄ .

(a) If V ⊂ F is a subset, then V⊥ ⊂ Π is an ideal.

(b) If I ⊂ Π is a subset, then I⊥ ⊂ F is a D-closed vector subspace.

Proof.

(a) Let p, q ∈ V⊥ and a ∈ Π, and remember the definition of orthogonality:

V⊥ = {p ∈ Π : 〈p, f 〉 = 0 ∀ f ∈ V} = {p ∈ Π : p(D) f̄ = 0 ∀ f ∈ V}.

Let’s test that this set is in fact an ideal of Π:

• 〈0, f 〉 = 0 · f̄ = 0 =⇒ 0 ∈ V⊥ =⇒ V⊥ 6= ∅.

• (p + q)(D) f̄ = p(D) f̄ + q(D) f̄ = 〈p, f 〉+ 〈q, f 〉 = 0 =⇒ p + q ∈ V⊥.

• (ap)(D) f̄ = a(D)p(D) f̄ = a(D)〈p, f 〉 = a(D) · 0 = 0 =⇒ ap ∈ V⊥.

(b) Consider the orthogonal space of the subset I ⊂ Π:

I⊥ = { f ∈ F : 〈p, f 〉 = 0 ∀p ∈ I} = { f ∈ F : p(D) f̄ = 0 ∀p ∈ I}.

By lemma 2.3 and remark 2.5 we already know that I⊥ ⊂ F, and so let’s now prove
that I⊥ is D-closed. Indeed, consider f ∈ I⊥ =⇒ p(D) f̄ = 0 ∀p ∈ I. We want
to see that the partial derivatives of f also belong to I⊥, which is the equivalent to
proving q(D) f ∈ I⊥ for any polynomial q ∈ Π. Let p ∈ I, then:

〈p, q(D) f 〉 = p(D)q(D) f̄ = q(D)p(D) f̄ = q(D) · 0 = 0 =⇒ q(D) f ∈ I⊥.

Definition 3.13. We define now the sesqui-linear form 〈 , 〉o : Π×F→ C as the evalua-
tion of the sesqui-linear map 〈 , 〉 at 0. That is:

〈p, f 〉o := 〈p, f 〉|ξ=0
= p(D) f̄ (ξ)|ξ=0

.



20 Linear differential operators

Proposition 3.14. Consider a polynomial p(x) = ∑
β

aβxβ and a a series f (ξ) = ∑
α

cαξα.

The evaluation of the sesqui-linear map can be expressed as

〈p, f 〉o = ∑
α∈Nn

1
α!

p(α)(0) f̄ (α)(0),

where we use the notation:

p(α) =
δ|α|p

δxα1
1 · . . . · δxαn

n
, f (α) =

δ|α| f
δξα1

1 · . . . · δξαn
n

.

Proof. We can use proposition 3.9 to easily see that:

〈xβ, ξα〉o =
{

α! if αi = βi ∀i = 1, . . . , n

0 otherwise.

The previous equality can be used to reach the following expression:

〈p, f 〉o = 〈∑
β

aβxβ, ∑
α

cαξα〉o = ∑
β

∑
α

aβ c̄α〈xβ, ξα〉o = ∑
α

α!aα c̄α.

This tells us that in order to calculate the value of the sesqui-linear form, we
only need to considerate the monomials that appear simultanously on p and on f .
Observe then that when calculating p(α)(0) and f (α)(0) we only need to considerate
the monomial aαxα of p and cαξα of f , as any other term will be canceled when
evaluating at 0. Therefore, we have

p(α)(0) =
δ|α|

δxα
(aαxα) = α! aα, f (α)(0) = α! cα,

which leads to the desired expression:

〈p, f 〉o = ∑
α

α!aα c̄α = ∑
α

p(α)(0)
α!

f̄ (α)(0)

��α! ��α! = ∑
α

1
α!

p(α)(0) f̄ (α)(0).

Example 3.15. Consider p = x2 + y3 and f = ξ2
1ξ4

2 + iξ2
1 + (2 + i)ξ3

2. We have:

〈p, f 〉 = p(D) f̄ = 2ξ4
2 − 2i + 24ξ2

1ξ2 + 6(2− i).

〈p, f 〉o = p(D) f̄ |ξ=0 = −2i + 6(2− i) = 12− 8i.
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If we just wanted to calculate the evaluation at ξ = 0, we could also use propo-
sition 3.14 to reach the solution much faster. Observe that p and f only have
the monomials α = (2, 0) and β = (0, 3) in common, which correspond to the
coefficients aα = aβ = 1 and cα = i, cβ = 2 + i. Then:

〈p, f 〉o = α!aα c̄α + β!aβ c̄β = 2! (−i) + 3! (2− i) = 12− 8i.

Corollary 3.16. Let p, q ∈ Π = C[x] and f ∈ C[ξ]. We have the following expressions:

〈Di p, f 〉o = 〈p, ξi f 〉o , 〈q(D)p(x), f (ξ)〉o = 〈p(x), q(ξ) f (ξ)〉o.

Proof. Consider a polynomial p = ∑β aβxβ ∈ Π and a series f = ∑α cαξα ∈ F.
Then Di p = ∑β aββixβ−ei , where ei it’s the i-th vector in the canonic basis. Let’s
check the equality 〈Di p, f 〉o = 〈p, ξi f 〉o. On one hand we have

〈Di p, f 〉o = 〈∑
β

aββixβ−ei , ∑
α

cαξα〉o = ∑
β

aβ βi c̄β−ei β (β− ei)! ,

where we only need to consider those monomials that satisfy β− ei = α. On the
other hand

〈p, ξi f 〉o = 〈∑
β

aβxβ, ∑
α

cαξα+ei〉o = ∑
β

aβ c̄β−ei β! ,

where this time we only need to consider monomials such that β = α + ei, which
is equivalent to the previous condition β− ei = α. Finally, as βi · (β− ei)! = β!, we
can clearly conclude that 〈Di p, f 〉o = 〈p, ξi f 〉o. Let q(x) = ∑γ bγxγ and let’s see
the second equality:

〈q(D)p(x), f 〉o = 〈∑
γ

bγDγ1
1 · . . . · Dγn

n p(x), f 〉o = ∑
γ

bγ〈p(x), ξ
γ1
1 · . . . · ξγn

n f 〉o =

= 〈p(x), ∑
γ

b̄γξγ f 〉o = 〈p(x), q̄(ξ) f (ξ)〉o.

Definition 3.17. Let V ⊂ F and I ⊂ Π be two subsets. We define the orthogonal spaces
of V and I with respect to the evaluation of the sesqui-linear form as:

V⊥o = {p ∈ Π : 〈p, f 〉o = 0 ∀ f ∈ V}

I⊥o = { f ∈ F : 〈p, f 〉o = 0 ∀p ∈ I}

It’s clear from the definition that V⊥ and I⊥ are vector subspaces of the spaces V⊥o and
I⊥o , respectively.
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Proposition 3.18. (a) If I ⊂ Π is an ideal, then I⊥o = I⊥ and these spaces are D-closed.

(b) If a vector subspace V ⊂ F is D-closed, then V⊥o = V⊥ and these sets are ideals.

Proof. (a) Let f ∈ I⊥o and p ∈ I. As I is an ideal of Π we have q(x)p(x) ∈ I for
any polynomial q ∈ Π and so

q(D)P(D) f̄ (0) = 〈q(x)p(x), f 〉o = 0 ∀q ∈ Π.

As this happens for any polynomial q ∈ Π, then any partial derivative of p(D) f̄ (ξ)
vanishes at 0, but this is only possible if p(D) f̄ = 0. Indeed, write

p(D) f̄ (ξ) = ∑
γ

aγξγ.

Then if we take q(x) = xγ for each monomial γ that appears we achieve:

0 = q(D)p(D) f (0) = 〈q(x), p(D) f̄ 〉o = 〈xγ, ∑
γ

aγξγ〉o = γ! āγ ,

and so it must be aγ = 0 for each γ =⇒ p(D) f̄ = 0. Finally, that last condition is
equivalent to 〈p, f 〉 = 0, which implies f ∈ I⊥. This proves the inclusion I ⊂ I⊥,
and the other one we already know is true, so we have the equality I⊥o = I⊥.
We’ve already seen that any partial derivative of an element of I⊥o also cancels at
0, and so it’s clear these spaces are D-closed.

(b) Let p ∈ V⊥o and f ∈ V. We know V is D-closed and f ∈ V, and so the partial
derivatives of f are also in V, i.e. q̄(D) f ∈ V for any polynomial q ∈ Π. Therefore,

q(D)p(D) f̄ (0) = 〈p, q̄(D) f 〉o = 0 ∀q ∈ Π

Using the same reasoning from before we have that 〈p, f 〉 = p(D) f̄ (ξ) = 0, and
so p ∈ V⊥. Again, the contrary inclusion it’s already given, and so we have
proven V⊥o = V⊥, as we wanted. Finally, if p ∈ V⊥o , f ∈ V and q ∈ Π, we have
p(D)q(D) f̄ (0) = 0 =⇒ 〈q(x)p(x), f 〉o = 0 =⇒ q(x)p(x) ∈ V⊥o , and therefore
it’s clear that the space V⊥o it’s an ideal.



Chapter 4

Zero-dimensional subset of Cn

In this chapter we will study the known correspondence between polynomial
ideals and algebraic varieties in the zero-dimensional case, which will lead us to
two essential theoretical results for the next few chapters. Said correspondence
guarantees that every ideal can be assigned to an algebraic variety and vice versa.
Particularly, an ideal I ⊂ Π can be matched with the variety

V(I) = {x ∈ Cn : p(x) = 0 ∀p ∈ I}.

Similarly, the corresponding ideal to the variety V ⊂ Cn is

I(V) = {p ∈ Π : p(x) = 0 ∀x ∈ V}.

Let us recall some definitions and properties from book [3] that will useful through-
out this chapter.

Definition 4.1. Let I be an ideal of a ring R. The radical of I is defined as
√

I = {p ∈ R : pn ∈ I for some n ∈N}.

Definition 4.2. Let I be an ideal of a ring R. We say I is a prime ideal if

f · g ∈ I =⇒ f ∈ I or g ∈ I.

Definition 4.3. Let I be an ideal of a ring R. We say I is a primary ideal if

f · g ∈ I =⇒ f ∈ I or gn ∈ I, f or some n ∈N.

Proposition 4.4. The radical of an ideal I ⊆ R it’s the intersection of all prime ideals of
R that contain I, that is √

I =
⋂
{P | P ⊆ R prime}.

23
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Definition 4.5. Let R be a ring and consider any chain of ideals I1 ( I2 ( . . . ( R.
Then, R is said to be a Noetherian ring if there exists n ∈N such that In = Im ∀m ≥ n.

Remark 4.6. It is proven that any field R is a Noetherian ring, and that if R is
Noetherian then the polynomial ring R[x] is also Noetherian (see [8]).

Definition 4.7. Let I be an ideal of a ring R. We say that I admits a primary decomposition
of ideals if there exist I1, . . . , Ir primary ideals of R such that I = I1 ∩ . . . ∩ Ir. We say
the decomposition is minimal if

√
Ii =

√
Ij only if i = j and

⋂
j 6=i

Ij 6⊂ Ii.

Theorem 4.8. (Lasker-Noether) Any ideal I of a Noetherian ring R[x] admits a minimal
primary decomposition of ideals I = I1 ∩ . . . ∩ Ir. Moreover, each Pi =

√
Ii is a prime

ideal, and this primes are the same to the proper primes of the set {
√

I : f , f ∈ R}.

Theorem 4.9. (Hilbert’s weak Nullstellensatz) Let I be an ideal of a ring K[x], where K

is an algebraically closed field. Then,

V(I) = ∅ ⇐⇒ 1 ∈ I.

Theorem 4.10. (Hilbert’s Nullstellensatz) Let I be an ideal of a ring K[x], where K is an
algebraically closed field. Then,

I(V(I)) =
√

I.

Proposition 4.11. Let I be an ideal of a ring Π and consider Π/I = {p + I : p ∈ Π}.
The ideals of Π/I are in one-to-one correspondence with the ideals of Π containing I. The
correspondence φ : {P : I ⊂ P} → {P̂ : P̂ ⊂ Π/I} is given by

φ(P) = P/I = {[p] : p ∈ P}, φ−1(P̂) = {p : [p] ∈ P̂}.

Theorem 4.12. (Isomorphism theorem I) Let R and S be two commutative rings and let
φ : R → S be an homeomorphism. Then, the function f : R/ker(φ) → Im(φ) defined by
f ([r]) = φ(r), r ∈ R, is an isomorphism. Therefore, we have

R/ker(φ) ∼= Im(φ).

Proof. Can be found in [5].
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Theorem 4.13. (Isomorphism theorem II) Let I ⊆ J be ideals of a ring R. Then,

R/J ∼= (R/I)/(J/I).

Proof. Can be found in [5].

With the previous considerations, let’s state this chapter’s first result.

Lemma 4.14. Let Π = C[x], where x = (x1, . . . , xn), and consider a proper ideal I ⊂ Π.
Then we have equivalence among the following conditions.

(a) I is maximal (among the proper ideals).

(b) I is an ideal of a point θ ∈ Cn, meaning I = I(θ).

(c) There exists a point θ ∈ Cn such that

I = (x− θ) =
n

∑
j=1

(xj − θj)Π = 〈x1 − θ1, . . . , xn − θn〉.

Proof. (a) =⇒ (b) : Suppose I is maximal and let X = V(I). It can’t be V(I) = ∅,
because then by Hilbert’s theorem, as C is algebraically closed, we would have that
1 ∈ I =⇒ I = Π, which contradicts that I is a proper ideal of Π. Therefore we
have X 6= ∅ and so we can consider a point θ ∈ X. If we have p ∈ I, then p(θ) = 0,
and so p ∈ I(θ). Therefore we have the inclusion I ⊆ I(θ), but I is a maximal
ideal, so it must be I = I(θ).

(b) =⇒ (c) : We must see that (x− θ) = I(θ).

• ⊆ If we let p ∈ (x− θ) = 〈x1 − θ1, . . . , xn − θn〉, then p can be expressed as
a sum, where all of it’s terms include at least one factor x− θj for some j, and
so it’s clear that p(θ) = p(θ1, . . . , θn) = 0, and therefore p ∈ I(θ).

• ⊇ Let p ∈ I(θ). Consider the Taylor expansion of the polynomial p around
the point θ. That is,

p(x) = A1(x1 − θ1) + . . . + An(xn − θn) + R ,

where Ai = Ai(x1, . . . , xn) and R ∈ C. Evaluating now at x = θ we get
p(θ) = R = 0, and so

p(x) = A1(x1 − θ1) + . . . + An(xn − θn) =⇒ p ∈ (x− θ).
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(c) =⇒ (a) : Consider the morphism φθ : C[x]→ C defined as φθ(p(x)) := p(θ).
Clearly, φθ is an epimorphism with ker(φθ) = 〈x1− θ1, . . . , xn− θn〉 = I(θ). Using
the first isomorphism theorem we get that

C[x]/ker(φθ) ∼= Im(φθ) =⇒ Π/I ∼= C.

As C is a field and it’s isomorphic to the quotient ring Π/I, I must be maximal.

Definition 4.15. Let R be a ring. The Krull dimension (see [8]) of the ring R is defined as

dim(R) = max{n | Po ( P1 ( . . . ( Pn ( R, Pi prime ideals}.

Meaning, the Krull dimension of R it’s the lenght of the longest chain of nested different
prime ideals we can obtain in R.

Example 4.16. • In R = Z, the prime ideals are of the form (p), for p prime.
If we had q such that (p) ( (q), then q could not be prime. Therefore the
longest chain we can obtain is (0) ( (p) ( Z, and therefore dim(Z) = 1.

• In R = C[x, y], there are many possible nested ideal sequences, such as
(0) ( (x) ( (x, y) or (0) ( (x + 1) ( (x + 1, y− 2), and it can be proven
there are no nested chains of lenght 3, and so dim(K[x, y]) = 2.

Remark 4.17. We can think of Π/I both as a ring quotient or as a C-vector space.
In order to avoid confusion regarding dimensions we will use the following con-
vention.

• dim(Π/I) denotes the Krull dimension defined above of the quotient ring
Π/I.

• dimC(Π/I) denotes the dimension of Π/I as a C-vector space.

Theorem 4.18. Let R be a commutative ring with an identity element and let P be an
ideal of R. Then, P is a prime ideal ⇐⇒ R/P is an integral domain.

Proof. Can be seen in [5].

Proposition 4.19. Let I be an ideal of a ring R and let J be a prime ideal such that
I ⊆ J ⊂ R. Then J/I is a prime ideal in the quotient ring R/I.
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Proof. We use theorem 4.18 and the second isomorphism theorem to prove this.
J is a prime ideal in R ⇐⇒ R/J ∼= (R/I)/(J/I) is an integral domain

⇐⇒ J/I is a prime ideal in R/I.

Theorem 4.20. Let I be an ideal of Π = C[x]. Then:

dimC(Π/I) < ∞ ⇐⇒ V(I) is a finite set.

Proof. Can be found in [3]. Remark this result hold for any ring K[x] with K an
algebraically closed field.

We will use all previous results in order to prove this chapter’s second result:

Lemma 4.21. Let Π = C[x] and consider an ideal I ⊂ Π. The following properties are
equivalent.

(a) dim(Π/I) = 0.

(b) There exists a finite subset V ⊂ Cn such that
√

I = I(V).

(c) There exist non-zero polynomials φi ∈ C[λ] such that φi(xi) ∈ I for i = 1, . . . , n.

(d) dimC(Π/I) < ∞.

Proof. Let’s see the chain of implications.

(a) =⇒ (b) : As C is a field, then C is a Noetherian ring and therefore the ring
Π = C[x] is also Noetherian (see [8]). Then, we can consider the shortest minimal
primary decomposition for the ideal I ⊂ Π. That is, I = I1 ∩ . . . ∩ Ir, with Ii

primary and
√

Ii = Pi prime for each i = 1, . . . , r. By proposition 4.19 each Pi/I is
a prime ideal in Π/I. Observe that if we had Q prime ideal such that Pi ⊆ Q ⊂ Π,
then Pi/I ⊆ Qi/I ⊂ Π/I. But as dim(Π/I) = 0, we must have each Pi/I to be
maximal and so Pi/I = Q/I =⇒ Pi = Q, and so each Pi is a maximal ideal. Then,
by lemma 4.14, for each Pi there must exist some point θi = (θi1, . . . , θin) such that
Pi = 〈x1 − θi1, . . . , xn − θin〉 = I(θi). Recall that the given A, B ideals we have the
equality

√
A ∩ B =

√
A ∩
√

B. Therefore, the radical of the ideal I = I1 ∩ . . . ∩ Ir

can be expressed as

√
I =

r⋂
i=1

√
Ii =

r⋂
i=1

Pi =
r⋂

i=1

I(θi) = I(θ1, . . . , θr).

Finally, V = {θ1, . . . , θr} ⊂ C is a finite subset and satisfies
√

I = I(V), as we
wanted.
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(b) =⇒ (a) : Suppose there exists finitely many points θ1, . . . , θr ∈ Cn such that√
I = I(θ1, . . . , θr) = P1 ∩ . . . ∩ Pr, where each Pi := I(θi) is maximal by lemma

4.14. Consider P a prime ideal such that I ⊆ P ⊂ Π, and we want to see that
it is maximal, as this implies that every prime in the quotient is also maximal
and hence dim(Π/I) = 0. As

√
I is the intersection of all primes that contain

I, we must have
√

I ⊆ P =⇒ P1 ∩ . . . ∩ Pr ⊆ P. Suppose there is no i such
that Pi ⊆ P. Then for each i = 1, . . . , r there exists ai ∈ Pi\P. Then, a1 · . . . · ar ∈
(P1\P)∩ . . .∩ (Pr\P) ⊆ P1 ∩ . . .∩ Pr ⊆ P. As P is prime, a1 · . . . · ar ∈ P =⇒ ai ∈ P
for some i, which yields a contradiction. Hence, Pi ⊆ P for some i = 1, . . . , r. As
each Pi is maximal, we must have Pi = P, and so P is maximal.

(b) =⇒ (c) : Suppose there exist points θ1, . . . , θr ∈ Cn such that
√

I = I(θ1, . . . , θr), where θj = (θj1, . . . , θjn).

Observe that as I(θj) = 〈x1− θj1, . . . , xn− θjn〉, we have that the polynomials xj−
θ1j, . . . , xj − θrj ∈ I(θ1, . . . , θr). Consider then the polynomials pi(x) = (x− θ1i) ·
. . . · (x− θri) that satisfy pi(xi) ∈ I(θ1, . . . , θr) for each i = 1, . . . , n. Then, as

√
I =

I(θ1, . . . , θr), there must exist some n ∈ N such that (pi(xi))
n ∈ I. Therefore, the

polynomial φi(x) := (pi(x))n satisfies φi(xi) ∈ I for each i = 1, . . . , n.

(c) =⇒ (d) : Suppose w.l.o.g. that each polynomial φi(xi) is monic and denote
di = deg(φi(xi)). Then,

φi(xi) = xdi
i +

di−1

∑
j=0

ajx
j
i ∈ I,

and so each monomial xdi
i is congruent modulo I to another polynomial of degree

less that di on the variable xi. Therefore, the quotient ring Π/I can be generated
as a C-vector space by the monomials xα1

1 · . . . · xαn
n , where αi < di for each i =

1, . . . , n. As there are finitely many monomials that satisfy this condition it’s clear
that dimC(Π/I) < ∞.

(d) =⇒ (b) : Hilbert’s Nullstellentzatz guarantees that I(V(I)) =
√

I, and as
dimC(Π/I) < ∞ we know by 4.20 that V := V(I) is a finite set. Then,

√
I = I(V)

where V is a finite set, as we wanted to see.



Chapter 5

Holonomic systems

In previous chapters we have studied the procedure in which any polynomial
induces a system of differential equations with constant coefficients. The theory on
such type of systems has been widely extend by Ehrenpreis and Palamodov (see
[4]), and we are only interested in the particular case where the solution space has
finite dimension, known as an holonomic system, as our goal is to find interpolation
polynomials.

In this chapter we want to study the structure of orthogonal spaces in the
particular case of holonomic systems, as recall such space contains the solutions
to the corresponding system of differential equations.

Definition 5.1. An holonomic system (HS) is a system of differential equations with
constant coefficients that has a finite-dimensional solution space.

Remark 5.2. Let Π = C[x] and F = C[[ξ]] and consider the sesqui-linear map
〈 , 〉 : Π× F→ F defined as in previous chapters: 〈p, f 〉 = p(D) f̄ . Any system of
differential equations with constants coefficients can be expressed as

〈p1, f 〉 = 0

. . . , for some polynomials p1, . . . , pr ∈ Π.

〈pr, f 〉 = 0

(5.1)

Theorem 5.3. (Cayley-Hamilton) Let A be a square matrix over a commutative ring and
let p(λ) = a0 + a1λ + . . . + anλn denote the characteristic polynomial of A. Then A
satisfies it’s own characteristic equation p(λ) = 0. That is, A satisfies the equation

P(A) = a0 · I + a1 · A + . . . + an · An = 0.

Proof. See [6].
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Theorem 5.4. Let V ⊂ F be a finite dimensional vector subspace. The following state-
ments are equivalent.

(a) V is the solution space of an holonomic system.

(b) V is D-closed.

Proof. ⇒ Suppose f ∈ V is a solution to the holonomic system given in 5.1, that
is: 〈pi, f 〉 = 0 ∀i = 1, . . . , r. Let q(x) ∈ C[x] be an arbirtrary polynomial and we
want to see that q(D) f ∈ V. Indeed,

〈pi, q(D) f 〉 = pi(D)q(D) f = q(D)〈pi, f 〉 = 0 ∀i = 1, . . . , r.

⇐ As V is subset, V⊥ is an ideal by corollary 3.12. Consider B = { f1, . . . , fr}
a basis of V as a vector space. As V is D-closed, the derivarives Di( f̄ j) can be ex-
pressed in the basis B for each i = 1, . . . , n and j = 1, . . . , k. Let f = ( f1, . . . , fk)

T

and consider Mi the matrix whose columns are the coordinates of Di( f̄ j) in the ba-
sis B. Then the equality Di f̄ = Mi f̄ holds. Denote by ϕi ∈ C[λ] the characterisitic
polynomial of Mi and observe that ϕi(Di) f̄ = ϕi(Mi) f̄ = 0 , as ϕi(Mi) = 0 by
Cayley-Hamilton’s formula. If we consider now each ϕi as polynomials in C[xi],
then we have that

ϕi(D) f̄ = 0 =⇒ 〈ϕi(xi), f 〉 = 0 =⇒ ϕi(xi) ∈ V⊥ for each i = 1, . . . , n.

By lemma 4.21 we have dim(Π/V⊥) = 0 and dimC(Π/V⊥) < ∞. We can use
proposition 3.18 to reach the equalities

V⊥o = V⊥ , V⊥o⊥o = V⊥⊥. (5.2)

Consider the sesqui-linear map 〈 , 〉o : Π×F→ C defined by 〈p, f 〉o = p(D) f̄ (ξ)|ξ=0

as in chapter 3. We are free to apply lemma 2.7 as dimC(V) < ∞ and 〈, 〉o is non-
degenerate, hence

dimCV = dimC(Π/V⊥) , V⊥o⊥o = V. (5.3)

Finally, equations (5.2) and (5.3) imply of course that V⊥⊥ = V, which tells us that
V is the solution space of an holonomic system.

Remark 5.5. Let V ⊂ F be a finite dimensional vector space. The theorem above
guarantees that V⊥ ⊂ Π is an ideal such that

dim(Π/V⊥) = 0, dimCV = dimC(Π/V⊥) and V⊥⊥ = V.

Recall that V⊥⊥ = { f ∈ F : 〈p, f 〉 = 0 ∀p ∈ V⊥}. It is known that every ideal
of Π = C[x] is finitely generated, i.e. there exist p1, . . . , pr ∈ C[x] such that
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V⊥ = 〈p1(x), . . . , pr(x)〉. Then, V⊥⊥ = V implies that every f ∈ V is a solution
to the system of equations 〈pi, f 〉 = 0, i = 1, . . . , r. Therefore, V is the solution
space of the holonomic system p(D) f = 0, p ∈ V⊥.

Recall the following classic results on commutative algebra, needed to prove
theorem 5.9 below.

Proposition 5.6. Let I and J be ideals of a ring R. Then

I, J maximals =⇒ I = J or I + J = R.

Proof. We know that I ⊆ I + J ⊆ R. As I is maximal and I + J is an ideal, we
either have I + J = I or I + J = R.

Definition 5.7. Let I, J be ideals of a ring R. We say that I and J are coprime if I + J = R.

Theorem 5.8. (Chinese Remainder Theorem) Let I1, . . . , Ik be ideals of a ring R and let
I = I1 ∩ . . . ∩ Ik. If for each i 6= j we have Ii and Ij coprime ideals, then

R/I ∼= R/I1 × · · ·× R/Ik.

Moreover, if R is a commutative ring then we also have

R/I = R/I1 ⊕ · · · ⊕ R/Ik

I = I1 ∩ . . . ∩ Ik = I1 · . . . · Ik.

Proof. Can be found in [7] and [8].

The following theorem is the underlying theory base needed for the construc-
tion of interpolation techniques in the next chapter.

Theorem 5.9. Let I ⊂ Π = C[x] be an ideal such that dim(Π/I) = 0 and consider
I = I1 ∩ . . . ∩ Ir it’s unique shortest primary decomposition. The following properties are
satisfied:

(a) There exist points θi = (θi1, . . . , θin) such that
√

Ii = (x− θi) for each i = 1, . . . , r.

(b) There exist decompositions of the ideal I and quotient ring Π/I

I = I1 · · · Ir, Π/I = Π/I1 ⊕ · · · ⊕Π/Ir

and of the D-closed subspace
I⊥ = I⊥1 ⊕ · · · ⊕ I⊥r

such that dimC(I⊥i ) = dimC(Π/Ii) < ∞, I⊥⊥i = Ii and I⊥⊥ = I.
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(c) We define the shift of Ii as

τi := {p(x + θi) : p ∈ Ii} ⊂ Π.

Then each τi is a primary ideal whose radical ideal is
√

τi = (x) = ∑n
j=1 xjΠ, which

corresponds to the origin, and τ⊥i consists in polynomials. We also have

I⊥i = τ⊥i · exp(θ̄i, ξ)

where
(θ̄i · ξ) := θ̄1ξ1 + . . . + θ̄nξn.

Proof. Statement (a) it’s proven in lemma 4.21. Let’s focus in proving (b) and (c).
As dim(Π/I) = 0, we know that each

√
Ii is maximal by 4.21, and that

√
Ii 6=

√
Ij

if i 6= j as the decomposition is minimal. Then, the sum
√

Ii +
√

Ij = Π ∀i 6= j by
proposition 5.6, and so there exist x ∈

√
Ii and y ∈

√
Ij such that 1 = x + y. We

know that xn ∈ Ii and ym ∈ Ij for some n, m ≥ 0 by the definition of radical. By
the binomial theorem

1 = (x + y)n+m =
m

∑
k=0

(
n + m

k

)
xn+m−kyk +

n+m

∑
k=m+1

(
n + m

k

)
xn+m−kyk.

The left sum includes the terms xn, xn+1, . . . , xn+m ∈ Ii multiplied by some ele-
ment in Π, and so the whole sum belongs to Ii. Similarly, the sum on the right
belongs to Ij as it includes the terms ym, ym+1, . . . , yn+m. Then,

1 ∈ Ii + Ij =⇒ Ii + Ij = Π, and so each pair Ii, Ij is coprime.

By the Chinese Remainder Theorem

R/I = R/I1 ⊕ · · · ⊕ R/Ir , I = I1 · . . . · Ir.

In particular, Ii + Ir = Π for each i = 1, . . . , r− 1, which means there exist pi ∈ Ii

and qi ∈ Ir such that pi + qi = 1. Then,

p1 · . . . · pr−1 =
r−1

∏
i=1

(1− qi) = 1− q, for some q ∈ Ir.

The previous can be written as p1 · . . . · pr−1 + q = 1, and so given f ∈ F

f = (p1 · . . . · pr−1 + q)(D) f = (p1 · . . . · pr−1)(D) f + q(D) f .

We know that p1 · . . . · pr−1 ∈ I1 ∩ . . . ∩ Ir−1 and q ∈ Ir, and so we can conclude
that each element f ∈ F satisfies:

f ∈ (I1 ∩ . . . ∩ Ir−1)(D) f + Ir(D) f . (5.4)
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Let’s prove now that I⊥ = (I1 ∩ . . . ∩ Ir−1)
⊥ + I⊥r . Indeed:

• ⊇ As I1 ∩ . . . ∩ Ir−1 ⊆ I and Ir ⊆ I, it must be (I1 ∩ . . . ∩ Ir−1)
⊥ ⊇ I⊥ and

I⊥r ⊇ I⊥. Then it’s clear that I⊥ ⊇ (I1 ∩ . . . ∩ Ir−1)
⊥ + I⊥r .

• ⊆ Suppose f ∈ I⊥ and let’s prove the inclusion Ir(D) f ⊂ (I1 ∩ . . . ∩ Ir−1)
⊥.

Indeed, if we take x ∈ Ir(D) f , there exists pr ∈ Ir such that x = pr(D) f .
Given g ∈ Ir ∩ . . . ∩ Ir−1 we have

g(D)x = g(D)pr(D) f = (g · pr)(D) f = 0,

as f ∈ I⊥ and g · pr ∈ I, which implies x ∈ (I1 ∩ . . . ∩ Ir−1)
⊥. The inclusion

(I1 ∩ . . . ∩ Ir−1)(D) f ⊂ I⊥r is analogous. Finally, using 5.4 we get the desired
inclusion

f ∈ I⊥ =⇒ f ∈ (I1 ∩ . . . ∩ Ir−1)(D) f + Ir(D) f ⊂ (I1 ∩ . . . ∩ Ir−1)
⊥ + I⊥r .

We could repeat the previous procedure recursively to reach the equality

I⊥ = I⊥1 + . . . + I⊥r . (5.5)

Consider the shift τi := {p(x + θi) : p ∈ Ii} ⊂ Π and let’s prove that
√

τi = (x).
Observe that if p ∈ Ii ⊆

√
Ii = I(θi), there must exist a1, . . . , an ∈ Π such that

p(x) = a1(x1 − θi1) + . . . + an(xn − θin). Then

p(x + θi) ∈ 〈x1, . . . , xn〉 = (x) =⇒ τi ⊆ (x).

This implies that
√

τi ⊆
√
(x) = (x), as (x) = I(0) is the maximal ideal corre-

sponding the the origin. For the other inclusion, observe that
√

Ii = I(θi) implies
that for each j = 1, . . . , n :

f j(x) = xj − θij ∈
√

Ii =⇒ pj(x) = f j(x)mj = (xj − θij)
mj ∈ Ii for some mj.

Then, pj(x + θi) = x
mj
j ∈ τi and so x1, . . . , xn ∈

√
τi. This proves the inclusion√

τi ⊇ (x). Finally, as
√

τi = (x) is a maximal ideal, τi is a primary ideal. Now
let’s prove the equality

I⊥i = τ⊥i · exp(θ̄i, ξ).

To do so, observe that if f = g · exp(θ̄i · ξ) then

p(D) f̄ = p(D)(ḡ · exp(θi · ξ)) = exp(θi · ξ) · p(D + θi)ξ̄. (5.6)

The previous gives us the desired equality:

f ∈ I⊥i ⇐⇒ g ∈ τ⊥i ⇐⇒ g · exp(θ̄i · ξ) ∈ τ⊥i · exp(θ̄i · ξ).
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We know that
√

τi = (x), which implies that (x)m ⊆ τi for some m. Then,
τi must include all the monomials with order greater than or equal to m, and τ⊥o

i
includes all polynomials with order smaller than m. Consider Fm the complex vec-
tor subspace spanned by all monomials with total order less than m and consider
the non-degenerate sesqui linear form

〈 , 〉 : Π/(x)m × Fm → C.

We denote by ⊥m
o the orthogonal space with respect to this sesqui-linear form. By

the second isomorphism theorem 4.13:

Π/τi
∼= (Π/(x)m)/(τi/(x)m).

As Π/(x)m has finite dimension, we can apply lemma 2.7 to see that Π/τi has
finite dimension as well.

dimC(Π/τi) = dimC(Π/(x)m)/(τi/(x)m) = dimC

Π/(x)m

(τi/(x)m)⊥m
o ⊥m

o

= dimC(τi/(x)m)⊥
m
o = dimC(τ

⊥o
i ) = dimC(Π/τ⊥o⊥o

i ) < ∞.

Therefore we have that τi = τ⊥o⊥o
i = τ⊥⊥i and we can check that I⊥⊥i = Ii :

I⊥⊥i = (τi · exp(θ̄i · ξ))⊥ = {q(x) : q(D)( f̄ (x)exp(θi · ξ̄) = 0 ∀ f ∈ τ⊥i }
= {q(x) : q(D + θi) f̄ (x) = 0 ∀ f ∈ τ⊥i }
= {p(x− θi) : p ∈ τ⊥⊥i = τi}
= Ii.

Finally, observe that so far we know that I⊥ = I⊥1 + . . . + I⊥r , but we desire to
see that they are in fact direct sums. To do so, we will see that the dimension of
I⊥ is the sum of the dimensions of all I⊥i . By theorem 5.8 we know that

Π/I ∼= Π/I1 ⊕ · · · ⊕Π/Ir,

and lemma 2.7 guarantees dimC I⊥ = dimCΠ/I and dimC I⊥i = dimC(Π/Ii) for
each i = 1, . . . , r. Then:

dimC(I⊥) = dimC(Π/I) = dimC(Π/I1) + . . . + dimC(Π/Ir)

= dimC(I⊥1 ) + . . . + dimC(I⊥1 ).

Remark 5.10. In the previous theorem we take I ⊂ Π as the ideal of the polynomi-
als with constant coefficients that correspond to the linear operators of the system
of differential equations. Moreover, we will strict ourselves to holonomic systems,
where we can use the result stated in lemma 4.21.



Chapter 6

Nature of interpolation

6.1 Hermite type interpolation

In this section we will study the construction of an interpolation polynomial
based on the result seen in theorem 5.9. Let θ1, . . . , θr ∈ Cn be a set of points and
consider the interpolation problem of finding some q ∈ C[x] such that

(gij(D)q)(θi) = bij (6.1)

where bij ∈ C are given values and

Gi = {gij ∈ C[ξ] : j = 1, . . . , si}

is a set of linearly independent polynomials for each i = 1, . . . , r. Meaning, we
want not to have redundant or contradictory conditions for all points θi. For
the sake of clarity, observe we have used x as the variable of the interpolation
polynomial and the conditions will be expressed on ξ, in order to maintain the
notation from the theorem on the previous section. The sesqui-linear form we are
using is 〈 , 〉o : Π×F→ C, where Π = C[x] and F = C[ξ], defined as usual:

〈q, g〉o := q(D)ḡ(ξ)|ξ=0
. (6.2)

The problem stated above it’s known as Hermite type interpolation, and we will
develop the theory using the following assumption

Span Gi is D-closed for each i = 1, . . . , r. (6.3)

Remark that Span G denotes the C− vector space generated by the elements of a
given set G, meaning:

Span G =

{
r

∑
i=1

ai gi : ai ∈ C, gi ∈ G, r ∈N arbitrary

}
.
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Example 6.1. A valid system of equations for Hermite type interpolation is

(Dx2 + Dy) q(θ1) = Dx q(θ1) = q(θ1) = 0.

This is true because the corresponding set of conditions G1 = {ξ2
1 + ξ2, ξ1, 1} is

differentially closed.

Let us recall the definition of a monomial order.

Definition 6.2. A monomial order � in Nn is a total order such that ∀α, β, γ ∈Nn:

• (0, . . . , 0)� α

• α ≺ β =⇒ α + γ ≺ β + γ.

Example 6.3. We will use the following monomials orders:

• Lexicographic order: α ≺lex β ⇐⇒ The first non-zero term found in the list
β1 − α1, . . . , βn − αn is positive.

• Degree Lexicographic order α ≺grlex β ⇐⇒ The first non-zero term found in

the list
n
∑

i=1
βi −

n
∑

i=1
αi, β1 − α1, . . . , βn − αn is positive.

Definition 6.4. Given p ∈ Π, we denote by LE(p) the leading multi-exponent of p, that
is, α that maximizes the value of |α|, and xα is a monomial that appears in p.

Let’s go through the idea behind the construction of a polynomial that solves
the system of differential equations (6.1). Consider

τi := (Span Gi)
⊥o = {q ∈ Π : g(D)q(x)|x=0

= 0 ∀g ∈ Span Gi}.

the orthogonal space of each Gi, which is an ideal by corollary 3.12 and proposi-
tion 3.18, and consists of solutions to the corresponding homogeneous system of
equations given by the polynomials of Gi when evaluating at x = 0. The polyno-
mials in Span Gi have some bounded degree m− 1, and so if all terms of q(x) have
degree greater than m− 1 then the polynomial belongs to τi. Therefore

(x)m = 〈xα : |α| = m〉 ⊂ τi,

meaning τi includes a power of the maximal ideal (x) associated to the origin.
Then, if g ∈ (x) =⇒ gm ∈ (x)m ⊂ τi =⇒ f ∈ τi. Therefore (x) ⊆ √τi, and it’s
in fact an equality as (x) is maximal. Observe that the radical of τi is a maximal
ideal, and so τi must be a primary ideal, that is associated to the origin as well.
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We define Ii as the set of solutions to the homogeneous system of equations when
shifting the evaluation to x = θi, i.e. imposing bij = 0 in equation (6.1). That is

Ii := {p(x− θi) : p ∈ τi}.

With the previous notation, the set of solutions of (6.1) for all points θ1, . . . , θr is:

I = I1 ∩ . . . ∩ Ir = I1 · . . . · Ir.

Consider 〈 , 〉o : Π/I × I⊥ → C the non-degenerate sesqui-linear form induced
by 6.2, meaning given [q] ∈ Π/I and g ∈ I⊥ we consider

〈[q], g〉o := q(D)ḡ(ξ)|ξ=0
.

Consider MI the set of multi-exponents that do not appear in {LE(p) : p ∈ I},
meaning we exclude leading exponents of I. Each class in Π/I can be represented
(see [3]) by a unique element of the set

Span{xα : α ∈ MI}.

For any values of bij ∈ C there exists a unique element q(x) ∈ Span{xα : α ∈ MI}
such that

〈q(x), gij(ξ)exp(θ̄ · ξ)〉o = q(D)ḡij(ξ)exp(θ · ξ))|ξ=0
= b̄ij.

Observe now that

〈q(x), gij(ξ)exp(θ̄ · ξ)〉o = 〈gij(x), q(ξ)〉θi

Therefore
gij(D)q(ξ)|ξ=θi

= bij,

and so the polynomial q(x) is a solution to the system of equations in (6.1).
Hence, we have proven Hermite’s interpolation theorem:

Theorem 6.5. Let θ1, . . . , θr ∈ Cn be points and consider Gi = {gij : j = 1, . . . , si} a
set of linearly independent polynomials for each i = 1, . . . , r. Suppose that each Span Gi

is D-closed. Then, there exists a unique q(x) ∈ Span{xα : α ∈ MI} solution to the system

(gij(D)q)(θi) = bij, where bij ∈ C are given values.

Remark 6.6. The previous theorem guarantees the existence of an interpolation
polynomial solution to the differential system, and the proof hints an algorithmic
approach to it’s computation. Observe that

q(x) ∈ Span{xα : α ∈ MI},
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and so the interpolation space is induced by the set of multi-exponents MI . We
want then to find an expression for such set, which in our case is computed as

I = I1 ∩ . . . ∩ Ir ,

where Ii = τ⊥i is orthogonal space of the ideal

τi = (Span Gi)
⊥, i = 1, . . . , r.

Recall that each τi corresponds to the solution space of the holonomic system

gij(D)p = 0, for a fixed value of i. (6.4)

Therefore, conditions on each point θi in (6.1) can be treated separately, and we
only need to compute the solution of the corresponding homogeneous system of
equations (6.4).
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6.2 Noetherian operators

We conclude this chapter with an introduction to Noetherian operators, which
serve as a tool to caracterize the ideal of symbols of an holonomic system, effec-
tively letting us calculate the orthogonal spaces that Hermite type interpolation
requires.

Definition 6.7. Consider I = I(θ) ⊂ Π a primary ideal that satisfies dim(Π/I) = 0.
The differential operators g1(D), . . . , gr(D) are known as Noetherian operators for I if

p ∈ I ⇐⇒ (gi(D)p)(θ) = 0 ∀i = 1, . . . , r.

Lemma 6.8. Let p ∈ Π = C[x] and f ∈ C[ξ]. For any point θ ∈ Cn we have

〈p, f · exp(θ̄ · ξ)〉o = 〈 f , p〉θ .

Proof. This equality holds by (5.6):

〈p, f · exp(θ̄ · ξ)〉o = exp(θ · ξ)p(D + θ) f̄ (ξ)|ξ=0
= 〈p(x + θ), f (ξ)〉o

= 〈 f (x), p(ξ + θ)〉o = 〈 f , p〉θ .

The following theorem caracterizes the Noetherian operators of the ideal I in
theorem 6.5, and will be essential in the computation of explicit solutions.

Theorem 6.9. Let I ⊂ Π be a primary ideal with
√

I = I(θ), for some point θ ∈ Cn.
Suppose that

g1 · exp(θ̄ · ξ), . . . , gr · exp(θ̄ · ξ)

is a basis of the D-closed vector space I⊥. Then, the differential operatos g1(D), . . . , gr(D)

are Noetherian operators for I.

Proof. As I⊥⊥ = I and by proposition (3.18) we have that

p ∈ I ⇐⇒ 〈p, gi · exp(θ̄ · ξ)〉o = 0 ∀i = 1, . . . , r.

Then, using the previous lemma we achieve that

p ∈ I ⇐⇒ 〈gi, p〉θ = (gi(D)p)(θ) = 0 ∀i = 1, . . . , r.

Therefore, g1(D), . . . , gr(D) are Noetherian operators for the ideal I.
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Chapter 7

Interpolation examples

In this section we will construct the solution space of an interpolation problem
of Hermite type, following the steps that have led us to theorem 6.5.

Remark 7.1. In the following examples we will solve 2-dimensional interpolation
problems, meaning we seek a polynomial p(x, y) that satisfies

(gij(D)p)(θi) = bij, where bij ∈ C and gij ∈ C[η], η = (ξ, µ).

We will use standard notation for the partial derivatives of p in respect to the
variables x and y, meaning Dx p = δ

δx p and Dy p = δ
δy p.

Example 7.2. Suppose we want to find a polynomial p(x, y) such that

(Dxx + Dy)p(0, 0) = 1, Dx p(0, 0) = i, p(0, 0) = 3, p(2, i) = 5 + i.

We will seek first the interpolation space that corresponds to θ = (0, 0) and then
the one corresponding to θ = (2, i).

The space of symbols of θ = (0, 0) is G1 = {ξ2 + µ, ξ, 1}. We define V1 as
the space spanned by the polynomials {g · exp(θ̄ · η) : g ∈ G1}, in this case this is
V1 = Span G1, and consider the D-closed space τ1 = V⊥1 . We will apply theorem
6.9 in order to find Noetherian operators for the ideal τ1. That is, if gi · exp(θ̄ · η)
form a basis of τ⊥1 , then gi(D) are Noetherian operators for τ1. By construction, a
basis of τ⊥1 = V1 is {ξ2 + µ, ξ, 1}, and so the corresponding Noetherian operators
are Dxx + Dy, Dx and 1. Therefore,

p ∈ τ1 ⇐⇒ (Dxx + Dy)p(0, 0) = Dx p(0, 0) = p(0, 0) = 0.

Observe now that p(0, 0) = 0 =⇒ p ∈ 〈x, y〉, as p cannot have an independent
term. Similarly, Dx p(0, 0) = 0 =⇒ p ∈ 〈x2, y〉 and so we know it must be
p ∈ 〈x, y〉 ∩ 〈x2, y〉 = 〈x2, y〉. This means that the solution polynomial can be
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written as p = ax2 + by, where a, b ∈ C[x, y]. In order to completely determine τ1

we need to apply the remaining Noetherian operator. That is,

(Dxx + Dy)p(x, y) = (axx + ay)x2 + (bxx + by)y + 2a + b

(Dxx + Dy)p(0, 0) = 2a(0, 0) + b(0, 0) = 0.

This last condition implies that the polynomial 2a(x, y) + b(x, y) ∈ 〈x, y〉, and
so there exist r, s ∈ C[x, y] such that 2a + b = r x + s y. Isolationg b in the last
expression we can write

p = ax2 + (−2a + rx + sy)y = ax2 − 2ay + rxy + sy2 = a(x2 − 2y) + rxy + sy2.

Therefore, we can conclude that τ1 = 〈x2 − 2y, xy, y2〉. In this case, this ideal is
the shift corresponding to I1 = {p(x − θ) : p ∈ τ1} = τ1. Now we repeat the
process to find the interpolation space corresponding to θ = (2, i). Let G2 = {1}
and V2 = Span {g · exp(θ̄ · η) : g ∈ G2} = Span {exp(2ξ − iµ)}. Consider now
τ2 = V⊥2 = 〈x, y〉, as g(D) = 1 is the unique operator that defines τ2. Then we
have I2 = {p(x− θ) : p ∈ τ2} = 〈x− 2, y− i〉. Consider now I = I1 ∩ I2 = I1 · I2.
Using Groëbner basis (see [3]) we can calculate the intersection, and so we could
see that I is generated by

x2 − 2y + (4− 2i)y2, xy + 2iy2, y3 − y2.

The leading monomials of I with respect to the graded lexicographic order are
LM(I) = {x2, xy, y3}. Consider MI the set of monomials smaller than each mono-
mial in LM(I) with respect to the graded lexicographic. That is MI = {1, x, y, y2},
and those are all the generators we need as

|MI | = dimCC[x, y]/I =
∣∣{ξ2 + µ, ξ, 1, exp(ξ − iµ)}

∣∣ = 4

and so the interpolation space in which the polynomial p(x, y) lives is

Span MI = Span {1, x, y, y2}

Therefore, there exist a1, a2, a3, a4 ∈ C such that p(x, y) = a1 + a2x + a3y + a4y2 is
a solution to the interpolation problem. In order to find the constant values, let’s
impose the original conditions:

p(0, 0) = a1 = 3

Dx p(0, 0) = a2 = i

(Dxx + Dy)p(0, 0) = a3 = 1

p(2, i) = a1 + 2a2 + a3i− a4 = 5 + i =⇒ a4 = −2 + 2i

Finally, the Hermite interpolation polynomial is:

p(x, y) = 1 + ix + y + (−2 + 2i)y2.
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Example 7.3. Suppose we want to find a polynomial p(x, y) such that

(Dxx + Dxy)p(0, 0) = 4i, Dx p(0, 0) = i, Dy p(0, 0) = 1 + i,

p(0, 0) = 2 + 3i, p(1, i) = −i, Dy p(1, i) = 1− i.

We will proceed as in the previous example. In one hand, the space of symbols of
θ = (0, 0) is G1 = {ξ2 + ξµ, ξ, µ, 1} which corresponds to the interpolation space

V1 = Span {g · exp(θ̄ · η) : g ∈ G1} = Span {ξ2 + ξµ, ξ, µ, 1}.

The Noetherian operators corresponding to the ideal τ1 = V⊥1 are Dxx +Dxy, Dx, Dy

and 1. Meaning,

p ∈ τ1 ⇐⇒ (Dxx + Dxy)p(0, 0) = Dx p(0, 0) = Dy p(0, 0) = p(0, 0) = 0.

The conditions regarding the Noetherian operators Dx, Dy and 1 imply that

p ∈ 〈x2, y〉 ∩ 〈x, y2〉 ∩ 〈x, y〉 = 〈x2, xy, y2〉.

Then, we can write p = ax2 + bxy + cy2, where a, b, c ∈ C[x, y]. Applying the
remaining Noetherian operator we get

(Dxx + Dxy)p(0, 0) = 2a(0, 0) + b(0, 0) = 0.

This means that 2a + b ∈ 〈x, y〉 =⇒ 2a + b = r x + s y. Then,

p = ax2 + (−2a + rx + sy)xy + cy2 = a(x2 − 2xy) + rx2y + cy2 + sxy2,

which implies that p ∈ 〈x2 − 2xy, x2y, y2, xy2〉 = τ1 = I1. On the other hand, for
θ = (1, i) we have G2 = {µ, 1} and so V2 = {µ · exp(ξ − iµ), 1 · exp(ξ − iµ)}. The
ideal τ2 = V⊥2 has Dy and 1 as Noetherian operators, and so

p ∈ τ2 ⇐⇒ Dy p(0, 0) = p(0, 0) = 0.

The previous implies that τ2 = 〈x, y2〉 ∩ 〈x, y〉 = 〈x, y2〉, which is the shift ideal of

I2 = {p(x− θ) : p ∈ τ2} = 〈x− 1, (y− i)2〉.

A Gröebner basis for the ideal I = I1 ∩ I2 is

iy3 + x2 + 3y2, −y3 + xy + 2iy2, y4 − 2iy3 − y2.

The leading monomials are LM(I) = {y3, y4}, and then smaller monomials are
{1, x, x2, x3, y, y2, xy, x2y, xy2}. As |MI | = dimCC[x, y]/I = 6, we conclude that

Span MI = Span{1, x, x2, x3, y, y2}.



44 Interpolation examples

Therefore the interpolation polynomial can be written as p(x, y) = a0 + a1x +

a2x2 + a3x3 + a4y + a5y2. The coefficients are calculated imposing the following
conditions: 

(Dxx + Dxy)p(0, 0) = 2a2 = 4i

Dx p(0, 0) = a1 = i

Dy p(0, 0) = a4 = 1 + i

p(0, 0) = a0 = 2 + 3i

p(1, i) = a0 + 11 + a2 + a3 + ia4 − a5 = −i

Dy p(1, i) = a4 + 2ia5 = 1− i.

The previous system leads to the desired interpolation polynomial:

p(x, y) = 2 + 3i + ix + 2ix2 − (2 + 8i)x3 + (1 + i)y− y2.

Let us finish this section with a 3-dimensional example. We will use again the
notation Dz p = δ

δz p and the differential conditions will correspond to polynomials
in C[η], where η = (ξ, µ, λ).

Example 7.4. Consider the interpolation problem of finding a polynomial p(x, y, z)
solution of the following system of differential equations:

Dxx p(1, i, −i) = 2 + i, Dyy p(1, i, −i) = 4i

Dzz p(1, i, −i) = 2 + 3i, Dxyz p(1, i, −i) = i.
(7.1)

Observe that the set {ξ2, µ2, λ2, ξµλ} does not span a differentially closed
subset and so we can’t proceed as in previous examples directly. In order to fix
this, we must consider also the following differential operators:

Dxy, Dxz, Dyz, Dx, Dy, Dz, 1. (7.2)

Therefore, we are considering the set G = {ξ2, µ2, λ2, ξµλ, ξµ, ξλ, µλ, ξ, µ, λ, 1}.
Let V = Span {g · exp(θ̄ · η) : g ∈ G} and τ = V⊥. A polynomial q belongs to τ

only if g(D)q(0, 0, 0) = 0 for each g ∈ G. As before, the polynomial ξ2 corre-
sponds to the ideal 〈x3, y, z〉 and ξµλ corresponds to 〈x2, y2, z2〉, etc. Therefore, τ

will be the intersection of all ideals corresponding to polynomials of G. This turns
out to be

τ = 〈z3, yz2, y2z, y3, xz2, xy2, x2z, x2y, x3〉.

This corresponds to the ideal I = {p(x − 1, y− i, z + i) : p ∈ τ}, whose leading
monomials are

LT(I) =
{

z3, yz2, y2z, y3, xz2, xy2, x2z, x2y, x3} .
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The monomials that are smaller with respect to the degrelexicographic order are

MI =
{

1, x, x2, y, xy, y2, z, xz, yz, xyz, z2} .

We know that the interpolation polinomial satisfies p ∈ Span MI , and so there
exist some constants ai ∈ C such that:

p(x, y, z) = a0 + a1x+ a2x2 + a3y+ a4xy+ a5y2 + a6z+ a7xz+ a8yz+ a9xyz+ a10z2.

Now, in order to determine the constants ai we must impose the conditions
(7.1), and also we must give values the derivatives listed in (7.2), when evaluating
at θ = (1, i, −i). Choosing all these values to be zero, i.e.

Dxy p(1, i, −i) = Dxz p(1, i, −i) = . . . = p(1, i, −i) = 0,

the values of the constants are

a0 = −4i, a1 = −2, a2 = 1 +
i
2

, a3 = 5, a4 = −1, a5 = 2i

a6 = −4 + 2i, a7 = 1, a8 = −i, a9 = i, a10 = 1 +
3i
2

.

Therefore, the interpolation polynomial is:

p(x, y, z) =− 4i− x + (1 +
i
2
)x2 + 5y− xy + 2iy2+

(−4 + 2i)z + xz− iyz + ixyz + (1 +
3i
2
)z2.
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Appendix A

Mathematica code

The code used for all computations can be accessed via scanning the following
QR code, which is linked to a Github repository. There is a Mathematica font
available (in format .nb) and also a readable PDF version of the notebook.

In case the previous code does not work, please click or enter the following
URL in your browser:

https://github.com/josegimenez1999/TFG

The algorithms found in the code generalize the procedure seen in the exam-
ples of chapter 7. We have used Mathematica as the algorithm for Gröebner basis
calculations is already implemented. Mainly, we require the use of such basis for
the computation of the intersection of two ideals, which is a known procedure
based on the following theorem:

Theorem A.1. Let I = 〈 f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be ideals of C[x1, . . . , xn].
Let ≺ be a monomial order satisfying xi ≺ t for each variable xi. Then, I ∩ J admits the
following Gröebner basis:

GB≺{t f1, . . . , t fr, (1− t)g1, . . . , (1− t)gs} ∩C[x1, . . . , xn].
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