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Abstract

The aim of this work is to study Dirichlet series, as well as some of the function spaces
that they form. We will see the convergence properties of these series and how they differ
from power series, as well as other important properties. We will also study the Hardy-
Dirichlet spaces H ∞ and H 2. Finally, we will study the relationship between Dirichlet
series in these spaces and power series in an infinite number of variables in the poly-torus
T∞ and poly-disk D∞.
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Introduction

One of the most famous unsolved problems in mathematics is to prove the Riemann
hypothesis, that states that all the non-trivial zeros of the complex function defined by

ζ(s) =

∞∑
n=1

1

ns

lie on the line s = 1/2 + it, where t ∈ R.

One way in which mathematicians have tried to solve the problem is to develop the
study of a more general type of series, known as Dirichlet series,

f(s) =

∞∑
n=1

an
ns

which were introduced by Peter Gustav Lejeune Dirichlet in 1837. Dirichlet and Dedekind
began the study of these series for their applications in number theory, and proved some
important results concerning Dirichlet series. But they only considered them for real
values and the first one to consider complex valued Dirichlet series was Jensen. They were
also used in 1896 by Jacques Hadamard and Charles-Jean de la Vallée Poussin to prove
the Prime Number Theorem. Although the attempts to prove the Riemann hypothesis
using Dirichlet series have not succeeded, they began to be studied for their own sake
during the beginning of the twentieth century.

A fundamental mathematician in the development of the theory of Dirichlet series
at this time was Harald Bohr2, brother of the physics Nobel prize winner Niels Bohr.
He proved a deep theorem relating the uniform convergence of these series and their
boundedness, which we will see a particular case of in the third chapter (see Theorem
3.11). This theorem leads to a natural question concerning the convergence of Dirichlet
series, which he could not answer, but he developed fundamental tools that finally allowed
to answer the question (see Theorem 2.26). The key tool is Bohr’s transformation, which
will be very useful more than once in this work.

The second half of the twentieth century saw a decrease in the interest of Dirichlet
series, until the publishing of the 1997 paper by Hedenmalm, Lindqvist, and Seip [12].
Several properties of Dirichlet series were brought back and new function spaces were
studied, using the developments of functional analysis and infinite dimensional holomorphy
theory which were not available to mathematicians at the beginning of the 1900s. This
paper sparked a revival of this area of study and function spaces of Dirichlet series, which
continues up to the present day.

Dirichlet series are not as general as power series in the sense that they only represent
a special type of analytic functions. Nonetheless, their study has become fundamental in
analytic number theory.

2Before receiving his PhD in mathematics, Bohr was a member of the Danish national football team,
and won a silver medal in the 1908 London Olympics. In fact, he participated in the 17-1 match against
France that still holds the Olympic record for most goals scored in one game. His fame as a footballer was
so big that when he defended his doctoral thesis, the room was filled with more fans than mathematicians.
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This paper is organised as follows.

The first chapter of this work is a brief overview of definitions and classical results for
power series. We will see some basic results on their regions of convergence, the Cauchy-
Hadamard formula, and representation formulas to recover the coefficients from the power
series.

The second chapter will be dedicated to the study of Dirichlet series. We will see that
their regions of convergence differ from those of power series. It is well known that power
series converge absolutely in an open disk and uniformly in any disk with a smaller radius.
Instead, Dirichlet series converge in vertical half-planes and the behaviour of their absolute
and uniform convergence might be different. One can define the convergence abscissas,
which are the left-most abscissa of the half-plane where the Dirichlet series converges. In
particular we have the absolute and uniform convergence abscissas, respectively:

σa = inf

{
σ ∈ R :

∞∑
n=1

an
nσ

is absolutely convergent

}
,

σu = inf

{
σ ∈ R :

∞∑
n=1

an
nσ

is uniformly convergent in Cσu

}
.

One of the objectives of this chapter will be to prove the Bohnenblust-Hille Theorem,
which answers the question Bohr posed on the separation of the absolute and uniform
convergence abscissas. In particular,

Theorem If D is the set of all Dirichlet series which converge at some point in the
complex plane, then

S := sup
D∈D

(σa(D)− σu(D)) = 1/2.

We will also see different properties of Dirichlet series, formulas to compute the different
abscissas and the analogies and differences to power series.

In the third chapter we will study some important Dirichlet series function spaces,
namely the so called Hardy-Dirichlet spaces. In particular, we will study H ∞ and H 2,
their properties and how they are related. They are analogous to the classic Hardy spaces
in the disk H∞(D) and H2(D). We will also define at last Bohr’s lift. This transformation
identifies spaces of Dirichlet series with spaces of power series in an infinite number of
complex variables. Using this transformation, we can use the knowledge of power series to
prove properties of Dirichlet series and vice-versa. We will do so at the end of the chapter,
where we will prove the multiplier theorem, which roughly states that:

Theorem: If m is analytic in C1/2, then fm ∈ H 2 for any f ∈ H 2 if and only if
m ∈ H ∞.

This theorem was proved in the seminal paper by Hedenmalm, Lindqvist and Seip in
1997.

The main references used for the theory of Dirichlet series are the classical books by E.C.
Titchmarsh [16] and T.M. Apostol [1], and the preliminary version of a yet unpublished
book by J.L. Férnandez [13]. The proof of the Bohnenblust-Hille Theorem is based on
the 1997 paper by H.P. Boas [3]. For the Hardy-Dirichlet spaces, the main references are
Queffélec and Queffélec [14] and the ever so useful book by Defant et al. [11]. The proof
of the multiplier theorem is based on the 1997 paper by Hedenmalm et al. [12].
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Notation and preliminaries

We will write N = {0, 1, 2, 3, . . . } for the set of natural numbers, Z for the set of integers
and R and C denote the field of real and complex numbers respectively. The letters s and
z are usually reserved for complex numbers, using s as the complex variable for Dirichlet
series and z for power series. If z ∈ C, then we will write its real part as Rz. In particular,
for Dirichlet series we will write s = σ+ it with σ = Rs. We will usually write the letters
n,m,N and M to mean a natural number. If x ∈ R, we define the integer part of x as
[x] := max{n ∈ Z : n ≤ x}. The letter p will usually mean a prime number {2, 3, 5, 7, . . . },
pn will be the n-th prime and p = (p1, p2, p3, . . . ). We will use

∑
p and

∏
p to mean the

sum and product over the primes, respectively. The function π(n) is the prime counting
function

π(n) = #{p : p ≤ n},

where # is the cardinality of the set.

The unit open disk, the closed disk and the circle (also knwon as torus) in the complex
plane are

D = {z ∈ C : |z| < 1},

D = {z ∈ C : |z| ≤ 1},

T = {z ∈ C : |z| = 1},

respectively. An open disk of arbitrary center a and radius r will be written as D(a, r) =
{z ∈ C : |z − a| < r}. The closure of a set A will be written as A. We write a finite

product of a set A as AN =

N︷ ︸︸ ︷
A× · · · ×A. We will also use the infinite complex plane, the

infinite poly-disk and the infinite poly-torus, defined as

C∞ = {z = (z1, z2, . . . ) : zi ∈ C},
D∞ = {z = (z1, z2, . . . ) : |zi| < 1},
T∞ = {z = (z1, z2, . . . ) : |zi| = 1}

respectively. We will consider DN as a subset of D∞, and similarly TN as a subset of
T∞, with the identification (z1, . . . , zN ) → (z1, . . . , zN , 0, . . . ). Though this will not be
essential in this work, for the sake of completion, on T∞ we will consider the probability
measure ρ, which is the product of the normalized arc length measure in each T. We will
also consider Bochner integration in T∞.

We will say that a topological space X is separable if there exists a countable dense
subset A ⊂ X, i.e. A = X and A is countable.

As for sequence spaces, ℓ2 is the set of sequences (an)n ⊂ C∞ such that
∑∞

n=1 |an|2 <
+∞. The space of all bounded complex sequences that converge to zero is c0.

If ρ is a positive measure on a set A, the space L1(A, ρ) will be the space of all
measurable functions f : A → C such that

∥f∥L1(A,ρ) =

∫
A
|f |dρ < +∞.

Similarly, the space L2(A, ρ) will be the space of all measurable functions f : A → C such
that

∥f∥2L2(A,ρ) =

∫
A
|f |2dρ < +∞.
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Given a path γ : [a, b] → C, we will write the integral of a function f on γ as∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

In general if A,B ∈ C, we write
∫ B
A for the integral over the segment path that starts at

A and ends at B. We will also write
∫ ρ+i∞
ρ−i∞ when we refer to limT→∞

∫ ρ+iT
ρ−iT , and suppose

that the limit exists.

If f(x) and g(x) are two real valued functions, we will write f(x) ≲ g(x) if there is
a constant C ≥ 0 independent of x such that f(x) ≤ Cg(x). We will also use Landau’s
big O notation. We will write f(x) = O(g(x)) if there exists M ≥ 0 and x0 such that
|f(x)| ≤ Mg(x) for all x ≥ x0.

A useful tool that we will use is summation by parts, otherwise known as Abel trans-
formation. If (an)n and (bn)n are two sequences, then

n∑
i=m

ai(bi+1 − bi) = anbn+1 − ambm −
n∑

i=m+1

bi(ai − ai−1).

A common tool that will be used often is the residue theorem, which applies to mero-
morphic functions.

Definition 0.1. Let f be a function defined in an open set Ω ⊂ C. We say that f is
meromorphic in Ω if it is holomorphic in Ω except on a set of isolated points, which are
called the poles of the function.

If f is a meromorphic function with a pole in z0, it can be written as a Laurent series
around z0:

f(z) =
∞∑

n=−∞

an
(z − z0)n

Considering the Laurent series expansion, we define the residue of f at z0 as

Res(f, z0) = a−1.

Definition 0.2. Let γ be a piece-wise continuously differentiable loop in C and z0 ∈ C a
point not in the image of γ. Then we define the index of z0 with respect to γ as

Ind(γ, z0) =
1

2πi

∮
γ

dz

z − z0
.

Proposition 0.3 (Residue Theorem). Let f be a meromorphic function in Ω with poles
{a1, . . . , an} ⊂ Ω. Let γ be a piece-wise continuously differentiable loop in Ω\{a1, . . . , an}.
Then ∮

γ
f(z)dz = 2πi

n∑
i=1

Ind(γ, ai)Res(f, ai).

We will also use the following result for infinite products.

Proposition 0.4. Let (zn)n ⊂ {z ∈ C : Rz > 0}. Then the following are equivalent:

•
∏∞

n=1 zn is unconditionally convergent.
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•
∑∞

n=1 log zn is unconditionally convergent.

•
∑∞

n=1 | log zn| < +∞.

•
∑∞

n=1 |1− zn| < +∞.

Proposition 0.5 (Fatou’s lemma). Let (Ω, µ) be a mesurable space and fn : Ω → [0,+∞)
a sequence of mesurable functions for n ≥ 1. Then∫

Ω

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
Ω
fndµ.

We will use the following convergence tests and results for series

Proposition 0.6 (M-Weierstrass test). Let (fn)n be a sequence of functions defined in
A ⊂ C. If there exists a sequence of numbers (Mn)n such that for all n ≥ 1 and z ∈ A

|fn(z)| ≤ Mn

and
∞∑
n=1

Mn < +∞

then the series
∞∑
n=1

fn(z)

converges absolutely and uniformly on A.

Proposition 0.7 (Root test). Let
∑

n=1 an be a complex series. Consider

L := lim sup
n→∞

|an|1/n.

If L < 1, the series converges absolutely, and if L > 1, the series does not converge.

Proposition 0.8 (Condensation test). Let (an)n be a sequence of non-increasing non-
negative real numbers. Then the series

∑∞
n=1 an converges if and only if

∑∞
n=1 2

na2n

converges.

Proposition 0.9 (Comparison test). Let (an)n and (bn)n be two sequences of non-negative
real numbers. If there exists N ≥ 1 such that 0 ≤ an ≤ bn for all n ≥ N , then

• if
∑∞

n=1 bn converges, then
∑∞

n=1 an also converges.

• if
∑∞

n=1 an diverges, then
∑∞

n=1 bn also diverges.

Proposition 0.10 (Abel-Dirichlet-Dedekind alternating series test). Let (an)n be a se-
quence of complex numbers. If

∞∑
n=1

|an − an+1| < +∞

and limn→∞ an = 0, then the series
∞∑
n=1

(−1)nan

converges.
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1 Power Series

This brief chapter recaps the main definitions and properties of power series. It will
serve as a comparison of the similarities and differences that Dirichlet series have with
respect to power series.

Definition 1.1. Given a sequence of complex numbers (an)n≥0 we define its corresponding
power series centered around 0 as

A(z) =

∞∑
n=0

anz
n,

where we will refer to an as the coefficients of the series.

In a similar way one can define the power series centered around a given complex
number z0

∞∑
n=0

an (z − z0)
n .

By means of a translation, one can always assume that z0 = 0.

Definition 1.2. Given a power series A(z) =
∑∞

n=0 anz
n we define its radius of conver-

gence as:

R = sup
r∈R

{
|z| < r :

∞∑
n=0

anz
n converges

}
.

Similarly one can define the radius of absolute convergence Ra, uniform convergence
Ru and the radius of holomorphy Rh as:

Ra = sup
r∈R

{
|z| < r :

∞∑
n=0

anz
n converges absolutely

}
,

Ru = sup
r∈R

{
|z| < r :

∞∑
n=0

anz
n converges uniformly on D(0, r)

}
,

Rh = sup
r∈R

{
|z| < r :

∞∑
n=0

anz
n is holomorphic in D(0, r)

}
.

Theorem 1.3. Let A(z) =
∑∞

n=0 anz
n be a power series. The four radii coincide and can

be calculated using the Cauchy-Hadamard formula:

R = Rh = Ra = Ru =
1

lim supn→∞
n
√
|an|

.

More importantly

• If |z| < R then the power series converges absolutely and uniformly on |z| ≤ r for
any 0 ≤ r < R,

• If |z| > R then the power series does not converge.
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Proposition 1.4. Let A(z) =
∑∞

n=0 anz
n be a power series with radius of convergence

R > 0, we then have

an =
1

2πi

∫
|z|=r

A(z)

zn+1
dz n ≥ 0; 0 < r < R.

Proof. We begin with the following integral formula for an integer k and any r > 0,

1

2πi

∫
|z|=r

zkdz =

{
1, if k = −1,

0, if k ̸= −1,

which is obtained doing a parametrization of the circle and using

1

2πi

∫ 2π

0
einθdθ =

{
1, if n = 0,

0, if n ̸= 0.

Now A(z) is holomorphic in D(0, R) and is uniformly convergent in the circle {|z| = r} if
r < R, so we can permute integral and sum in the next expression

1

2πi

∫
|z|=r

A(z)

zn+1
dz =

1

2πi

∫
|z|=r

∑∞
k=0 akz

k

zn+1
dz =

1

2πi

∞∑
k=0

∫
|z|=r

ak
zn−k+1

dz = an.

This last formula is very useful and pretty well-known, but now we will give a not so
well-known formula for the partial sums of a series, that is a corollary of this one after we
perform a clever transformation.

Corollary 1.5. Let A(z) =
∑∞

n=0 anz
n be a power series with radius of convergence R.

If we define the partial sum of the coefficients AN =
∑N

n=0 an, for any 0 < r < min(1, R)
we have

AN =
1

2πi

∫
|z|=r

A(z)

(1− z)zN+1
dz.

Proof. For all z ∈ D(0,min(1, R)) we claim that

B(z) :=
A(z)

1− z
=

∞∑
N=0

ANzN .

Firstly note that aN = AN −AN−1 for N ≥ 1, thus we can write the following

A(z) =

∞∑
N=0

aNzN = a0 +

∞∑
N=1

aNzN = A0z
0 +

∞∑
N=1

(AN −AN−1)z
N

=
∞∑

N=0

ANzN −
∞∑

N=1

AN−1z
N =

∞∑
N=0

ANzN −
∞∑

N=0

ANzN+1 = (1− z)
∞∑

N=0

ANzN .

So now we have written B(z) as a power series which coefficients are the partial sums
for the initial series. Using Proposition 1.4 we get the desired expression

AN =
1

2πi

∫
|z|=r

B(z)

zN+1
dz =

1

2πi

∫
|z|=r

A(z)

(1− z)zN+1
.
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2 Dirichlet Series

Definition 2.1. Given a sequence of complex numbers (an)n≥1 we define its corresponding
general Dirichlet series as:

f(s) =

∞∑
n=1

ane
−λns,

where (λn)n≥1 is an increasing sequence of non-negative real numbers which approaches
+∞.

In the special case that λn = log n we then have an ordinary Dirichlet series:

f(s) =
∞∑
n=1

an
ns

.

We will refer to these last type of series from now on simply as Dirichlet series, without
specifying that they are ordinary. These series are defined wherever they converge.

Observation 2.2. We will use s as the complex variable instead of z, as is usual in the
study of Dirichlet series. We will also write s = σ + it with σ ∈ R, t ∈ R.

Also, note that a general Dirichlet series with λn = n is a power series with the change
of variable z = e−s. Indeed: f(s) =

∑∞
n=1 ane

−ns = g(e−s) with g(z) =
∑∞

n=1 anz
n a

power series.

Example 2.3. • The simplest Dirichlet series is when an = 1 for n ≥ 1, and we get the
famous Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns
.

• A related series is the Dirichlet eta function, given by

η(s) =
∞∑
n=1

(−1)n+1

ns
.

• The function

Θ(s) =
∞∑
n=1

µ(n)

ns
,

where µ is the Möbius function. It is defined for n = pα1
1 · · · pαr

r , where pi are the
prime factors of n for 1 ≤ i ≤ r, by

µ(n) =


0, if αi ≥ 2 for some 1 ≤ i ≤ r,

(−1)r, if αi = 1 for 1 ≤ i ≤ r,

1, if n = 1.

Now let us give two definitions for regions that we will be using throughout this section.

3



Definition 2.4. Given a real number σ, we define the vertical half-plane

Cσ = {s ∈ C : Rs > σ} .

Given an angle β ∈ [0, π/2), we define the closed cone

Γβ =
{
s = reiθ : r ≥ 0, |θ| ≤ β

}
=

{
s ∈ C : |s| ≤ Rs

cosβ

}
.

Figure 1: Visual representation of the regions in Definition 2.4.

Proposition 2.5 (Jensen’s Lemma). If the general Dirichlet series f(s) =
∑∞

n=1 ane
−λns

converges for a certain s0 ∈ C then f(s) converges uniformly in s0 + Γβ, ∀β ∈ [0, π/2).

Proof. By the means of a translation, we can assume that s0 = 0 without loss of generality,
which implies that

∑∞
n=1 an converges. Indeed, if f(s) converges for s1, then f(s + s1)

converges for s = 0.

Fix 0 ≤ β < π/2. Since
∑∞

n=1 an converges, for any ϵ > 0 there exists N0 ≥ 1 such
that for any M > N ≥ N0 ∣∣∣∣∣

M∑
n=N

an

∣∣∣∣∣ < ϵ

2
cosβ.

Now consider s = σ + it ∈ Γβ . Writing Ak =
∑k

n=N an for n ≥ N and Ak = 0 for
k < N and performing an Abel transformation we get

M∑
n=N

ane
−λns =

M∑
n=N

Ane
−λns −

M∑
n=N

An−1e
−λns =

M∑
n=N

Ane
−λns −

M−1∑
n=N−1

Ane
−λn+1s

=

M−1∑
n=N

An

(
e−λns − e−λn+1s

)
+AMe−λMs.

Hence ∣∣∣∣∣
M∑

n=N

ane
−λns

∣∣∣∣∣ ≤
M−1∑
n=N

|An|
∣∣∣e−λns − e−λn+1s

∣∣∣+ |AM |
∣∣∣e−λMs

∣∣∣
<

ϵ

2
cosβ

M−1∑
n=N

∣∣∣e−λns − e−λn+1s
∣∣∣+ ϵ

2
cosβ

∣∣∣e−λMs
∣∣∣ . (2.1)

4



Notice that for s ∈ Γβ , we have Rs ≥ 0. Also, since (λn)n is a sequence of non-negative
numbers, for any n ≥ 1 we have |e−λns| ≤ 1. Now we can write

e−λns − e−λn+1s =

∫ λn+1

λn

se−stdt.

Thus ∣∣∣e−λns − e−λn+1s
∣∣∣ ≤ |s|

∫ λn+1

λn

∣∣e−st
∣∣ dt = |s|

∫ λn+1

λn

e−σtdt,

and hence

M−1∑
n=N

∣∣∣e−λns − e−λn+1s
∣∣∣ ≤ M−1∑

n=N

|s|
λn+1∫
λn

∣∣e−st
∣∣ dt ≤ |s|

∞∫
λ1

e−σtdt =
|s|
σ
e−λ1σ ≤ |s|

σ
≤ 1

cosβ
,

(2.2)
where the last equality holds for any s ∈ Γβ . For any M ≥ 1 we have

|e−λMs| ≤ 1 ≤ 1

cosβ
. (2.3)

Finally, substituting equations (2.2) and (2.3) into equation (2.1) we get∣∣∣∣∣
M∑

n=N

ane
−λns

∣∣∣∣∣ < ϵ,

which proves the result.

Observation 2.6. Jensen’s lemma shows that if a Dirichlet series is convergent at a point
s0 then it is convergent at the right half-plane of that point, as we can let β approach π/2.
This leads us the next definition, given that the regions of convergence for Dirichlet series
are half-planes instead of open disks, as they are for power series.

Definition 2.7. Given an ordinary Dirichlet series f(s) =
∑∞

n=1 ann
−s, we define the

convergence abscissa:

σc = inf

{
σ ∈ R :

∞∑
n=1

an
nσ

is convergent

}
.

Jensen’s lemma tells us that if σc is the convergence abscissa for a Dirichlet series f(s) =∑∞
n=1 ann

−s, then:

• If Rs > σc then the Dirichlet series converges.

• If Rs < σc then the Dirichlet series does not converge.

If the series is convergent in all the complex plane, we say that σc = −∞ and if it is
nowhere convergent then σc = +∞.

We will write σc(f) should we need to make explicit that the convergence abscissa is for
the corresponding Dirichlet series f .
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Observation 2.8. Note that we have not said anything about the convergence of the series
on the line Rs = σc. That is because, similarly to power series, the Dirichlet series can
converge nowhere, on some points or on all the line.

Using the above definition of σc, from Jensen’s Lemma we get the following corollary.

Corollary 2.9. Let f be a Dirichlet series f(s) =
∑∞

n=1 ann
−s with convergence abscissa

σc. Then f is a holomorphic function in Cσc and its derivatives are:

f (k)(s) =

∞∑
n=1

(−1)k(log n)k
an
ns

s ∈ Cσc , k ≥ 1.

Proof. Jensen’s Lemma shows that the Dirichlet series converges uniformly for compacts
in Cσc so we can thus differentiate term by term. So it is easy to show by induction
that the k-th derivative of each term ann

−s with respect to s is (−1)kann
−s(log n)k and,

applying Weierstrass’s theorem, that the derivatives for f are of the form shown in the
corollary and that they are continuous.

2.1 Abscissas

This section is dedicated to the study of the abscissas given in the following definition.

Definition 2.10. Let f(s) =
∑∞

n=1 ann
−s be an ordinary Dirichlet series, we define the

following abscissas. Firstly, the uniform convergence abscissa:

σu = inf

{
σ ∈ R :

∞∑
n=1

an
ns

is uniformly convergent on Cσ

}
,

which was introduced by Harald Bohr. The absolute convergence abscissa:

σa = inf

{
σ ∈ R :

∞∑
n=1

an
nσ

is absolutely convergent

}
.

And finally, the holomorphy abscissa:

σh = inf

{
σ ∈ R :

∞∑
n=1

an
ns

extends to a holomorphic function in Cσ

}
.

And we will use the same conventions for these abscissas as we did for the convergence
abscissa.

Observation 2.11. Given these definitions, we can see easily that σc ≤ σu and σc ≤ σa.
As we have seen, the Dirichlet series defines an analytic function in the half-plane Cσc ,
so σh ≤ σc.

Also, the absolute abscissa for a series f(s) =
∑∞

n=1 ann
−s is the convergence abscissa

for the series g(s) =
∑∞

n=1 |an|n−s.
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2.1.1 Examples and properties

One might ask themselves now if these different abscissas coincide as they do for power
series, or if we really need these four different definitions. The answer is that they do
not coincide for all Dirichlet series. We will show so in the next couple of examples,
by computing some of these abscissas for the following series, and give other important
properties.

Example 2.12. The Riemann ζ function has σc(ζ) = σa(ζ) = σh(ζ) = 1.

It is a pretty well-known fact that the harmonic series
∑∞

n=1 1/n
s converges if and only

if Rs > 1, so σc(ζ) = 1. Also, all the coefficients are positive so σa(ζ) = 1. The ζ function
has a pole at s = 1 because the harmonic series diverges, and thus cannot be extended as
a holomorphic function in a half-plane bigger than C1, hence σh(ζ) = 1.

Example 2.13. The function η(s) =
∑∞

n=1
(−1)n+1

ns has σc(η) ≤ 0 and σa(η) = 1.

For the absolute convergence abscissa, we have σa(η) = σc(ζ) = 1.

Now if Rs > 0, we apply the Abel-Dirichlet-Dedekind alternating series test. Indeed,
the sequence bn = 1/ns is of bounded variation because

∞∑
n=1

|n−s−(n+1)−s| =
∞∑
n=1

∣∣∣∣∫ n+1

n

−s

ts+1
dt

∣∣∣∣ ≤ ∫ ∞

1

∣∣∣∣ −s

ts+1

∣∣∣∣ dt = |s|
∫ ∞

1

1

t1+Rs
dt =

|s|
Rs

< +∞,

so
∑

(−1)n+1n−s converges and σc(η) ≤ 0.

We can relate it to the zeta function. For Rs > 1, where both of them converge abso-
lutely, we can rearrange the terms by separating the even and odd terms and get:

η(s) =
∞∑
n=1

(−1)n+1

ns
=

∞∑
n=1

1

(2n+ 1)s
−

∞∑
n=1

1

(2n)s
=

∞∑
n=1

1

ns
− 2

∞∑
n=1

1

(2n)s

=
∞∑
n=1

(
1

ns
− 2

(2n)s

)
=

∞∑
n=1

1− 21−s

ns
=
(
1− 21−s

)
ζ(s).

(2.4)

Lemma 2.14. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series. If the sequence (an)n is

bounded, then σa(f) ≤ 1.

Proof. Let M > 0 be such that |an| ≤ M for any n ≥ 1, then for σ > 1, |an|n−σ ≤ Mn−σ.
Hence, by the comparison test, the series

∑∞
n=1 |an|n−s converges for Rs > 1.

A well known property of the Riemann ζ function that was famously proved by Euler
is its relationship to a product concerning primes, that is stated in the next proposition.

Proposition 2.15 (Euler product). If Rs > 1, then

ζ(s) =
∞∑
n=1

1

ns
=

∞∏
n=1

(
1

1− p−s
n

)
, (2.5)

where pn are the ordered list of prime numbers.
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Proof. It is clear that since Rs > 1, we have that |1/psi | = 1/pRs
i < 1, and hence we can

write each factor in (2.5) as
1

1− p−s
n

=
∞∑
k=0

p−ks
n .

Now if we take the finite product of the first N prime numbers, applying the distributive
property of the product

N∏
n=1

(
1

1− p−s
n

)
=

∞∑
j=1

n−s
j ,

where nj are integers which are the product of only the primes p1, . . . , pN , and they all
appear only once by the unique factorization in prime numbers. By letting N tend to ∞,
the sum gets extended to all the positive integers, and we get the result.

Observation 2.16. Note that since a convergent product of non-zero factors is not zero,
the identity (2.5) implies that ζ(s) ̸= 0 for Rs > 1.

The fact that σh(ζ) = 1 does not mean that the ζ function cannot be extended in a
bigger domain. In fact, we have the next proposition which extends the definition of the
function.

Proposition 2.17. The Riemann ζ function is a meromoprhic function with a pole at
s = 1 with residue 1. It verifies the functional equation

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s), (2.6)

where Γ(s) =
∫∞
0 ts−1e−tdt.

This is a well known result and was shown by Riemann in his 1859 seminal paper [15],
and another proof can be found in [17] (see Theorem 2.1 ). Note that a consequence of
this proposition, using that ζ(s) ̸= 0 for Rs > 1, is that ζ(s) ̸= 0 for Rs < 0, except
for s = −2n, n ≥ 1, which are known as the trivial zeros of the ζ function. Hence all
non-trivial zeros of ζ lie in 0 < Rs < 1, which is known as the critical strip.

Example 2.18. The absolute convergence abscissa for the Θ function is σa(Θ) = 1. It is
easy to see that since µ(n) is bounded, then σa(Θ) ≤ 1.

To show that σa(Θ) ≥ 1, we need to see first that Θ is the reciprocal of the ζ function,
wherever both converge and ζ does not vanish

Θ(s) =
1

ζ(s)
. (2.7)

We will show it for Rs > 1, using the reciprocal of the Euler product for the zeta function:

1

ζ(s)
=
∏
p

(1− p−s) =

(
1− 1

2s

)(
1− 1

3s

)(
1− 1

5s

)
· · ·

If we expand the product we get a sum which is equal to the Θ(s) function, remembering
the definition of the Möbius function µ:

1 +
∑
n=pi

(
−1

psi

)
+
∑

n=pipj

(
−1

psi

−1

psj

)
+

∑
n=pipjpk

(
−1

psi

−1

psj

−1

psk

)
+ . . . ,
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where each sum extends to the integers that are product of one, two, etc. primes.

Hence Θ(s) =
∏

p(1 − p−s). If σa(Θ) < 1, then by the theory of infinite products we
would have that ∑

p

|1− (1− p−s)| =
∑
p

p−Rs < +∞,

for all s with Rs > σa(Θ). In particular we would have that
∑

p 1/p < +∞, which is a
contradiction. So σa(Θ) = 1.

A lot of effort will be put in the next section on the study of the different abscissas for
Dirichlet series. To remark the importance of this study and its non triviality in general,
we have the next result on the convergence abscissa of the Θ function, which is an unknown
quantity.

Proposition 2.19. If σc(Θ) = 1/2, then the Riemann hypothesis is true.

Proof. As we have seen in equation (2.7), Θ(s)ζ(s) = 1 in C1, and the equality can be
extended in Cσc(Θ), considering the ζ function defined using its analytical extension and
that σc(Θ) ≤ 1. Thus if σc(Θ) = 1/2 this implies that ζ(s) does not vanish in C1/2. Given
the symmetry of ζ(s) inside the critical band by Proposition 2.17, it can only vanish in
the critical line, which is the statement of the Riemann hypothesis.

2.1.2 Study of the abscissas

In the next proposition we will see the relationships between the different abscissas.

Proposition 2.20. For a given Dirichlet series f(s) =
∑∞

n=1 ann
−s, we have:

σh ≤ σc ≤ σu ≤ σa.

We will now prove each inequality as different lemmas, and give other important in-
equalities.

Lemma 2.21. For all Dirichlet series f(s) =
∑∞

n=1 ann
−s, we have:

σc ≤ σa ≤ σc + 1.

Proof. By the definitions of the abscissas, σc ≤ σa. Now let ρ > σc, then
∑

ann
−ρ

converges so ann
−ρ → 0. Let M := supn≥1

|an|
nρ < +∞.

For all ϵ > 0, we have

∞∑
n=1

|an|
nρ+ϵ+1

≤ M
∞∑
n=1

1

nϵ+1
< +∞.

So σa ≤ ρ+ ϵ+ 1 for all ϵ > 0, so σa ≤ σc + 1.

Observation 2.22. In the Example 2.13 we have seen that σc(η) ≤ 0 and σa(η) = 1.
By the last lemma, we can conclude that σc(η) = 0. And more importantly, this example
yields that the bound σa ≤ σc + 1 is sharp and cannot be improved in general.

Corollary 2.23. For any t ∈ [0, 1], there exists a Dirichlet series f such that σa(f) −
σc(f) = t.
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Proof. Considering that σc(ζ) = σa(ζ) = 1 and that σc(η) = 0 and σa(η) = 1, we can
produce the Dirichlet series

f(s) = ζ(s+ t) + η(s) =

∞∑
n=1

1

ns+t
+

∞∑
n=1

(−1)n+1

ns
=

∞∑
n=1

n−t + (−1)n+1

ns
.

For Rs < 1 − t the series ζ(s + t) does not converge, for 1 − t < Rs < 1 both series
converge but f does not converge absolutely because σa(η) = 1, and for Rs > 1 both
series converge absolutely. So σc(f) = 1− t and σa(f) = 1, hence σa(f)− σc(f) = t.

Lemma 2.24. For all Dirichlet series f(s) =
∑∞

n=1 ann
−s, we have:

σu ≤ σa ≤ σu + 1/2.

Proof. For the first inequality, it is easy to see that the Dirichlet series converges uniformly
where it does so absolutely. Indeed, for ρ > σa, and N ≥ 1, using Weierstrass M-test,

sup
Rs≥ρ

∣∣∣∣∣f(s)−
N∑

n=1

an
ns

∣∣∣∣∣ = sup
Rs≥ρ

∣∣∣∣∣
∞∑

n=N+1

an
ns

∣∣∣∣∣ ≤
∞∑

n=N+1

|an|
nρ

N→∞−−−−→ 0,

since
∑∞

n=1 |an|n−ρ converges.

Now let us prove the second inequality. Let us consider ρ and τ such that ρ > σu and
τ > ρ + 1/2. We want to prove that

∑∞
n=1 |an|n−τ < +∞, so σa ≤ τ , and since ρ and τ

were arbitrary, we will have that σa ≤ σu + 1/2.

By the Cauchy-Schwarz inequality, we have

∞∑
n=1

|an|
nτ

=
∞∑
n=1

|an|
nρnτ−ρ

≤

( ∞∑
n=1

|an|2

n2ρ

)1/2( ∞∑
n=1

1

n2(τ−ρ)

)1/2

.

Now since τ − ρ > 1/2, the second term on the right-hand side converges, and we have to
show that the first one also does to finish the proof.

We claim that the partial sums SN (s) =
∑N

n=1 ann
−s are uniformly bounded at Rs = ρ,

that is
sup
N≥1

sup
Rs=ρ

|SN (s)| ≤ M, (2.8)

for some M ≥ 0.

Indeed, for each N ≥ 1 we define

bN :=

N∑
n=1

|an|
nρ

,

which is a non-decreasing sequence, and satisfies that for any N ≥ 1

sup
Rs=ρ

|SN (s)| ≤ bN .

Next, we define
cN := sup

Rs=ρ
|f(s)− SN (s)|.
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Since cN → 0, there exists N0 ∈ N such that cN ≤ 1, for any N ≥ N0. It follows that

sup
Rs=ρ

|f(s)| = sup
Rs=ρ

|f(s)− SN0(s) + SN0(s)| ≤ cN0 + bN0 ≤ 1 + bN0 .

Since (bN )N is non-decreasing, we have that for all N ≤ N0, supRs=ρ |SN (s)| ≤ bN0 .
Next, if N ≥ N0, since cN ≤ 1, we have supRs=ρ |SN (s)| ≤ supRs=ρ |f(s)|+ cN ≤ 2+ bN0 .

So writing M := bN0 + 2 we have that the partial sums are uniformly bounded at
Rs = ρ, which proves the claim (2.8).

The final step is to see that
∞∑
n=1

|an|2

n2ρ
≤ M2.

We have that, by equation (2.8), for any N ≥ 1 and for any s such that Rs = ρ∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣
2

≤ M2,

so for any t ∈ R and for N ≥ 1

M2 ≥

∣∣∣∣∣
N∑

n=1

an
nρ+it

∣∣∣∣∣
2

=

N∑
n=1

|an|2

n2ρ
+

∑
1≤m<k≤N

amak
(mk)ρ

(
k

m

)it

. (2.9)

We will now use the following fact: for y ∈ (0,+∞) \ {1}, writing yit = eit log y we can
get

lim
T→∞

1

2T

∫ T

−T
yitdt = lim

T→∞

sin(T log y)

T log y
= 0,

to obtain by integration that the second term on the right-hand side of equation (2.9)
vanishes:

lim
T→∞

1

2T

∫ T

−T

∑
1≤m<k≤N

amak
(mk)ρ

(
k

m

)it

dt = 0.

Thus, for any N ≥ 1
N∑

n=1

|an|2

n2ρ
≤ M2,

and hence
∞∑
n=1

|an|2

n2ρ
≤ M2,

which ends the proof.

We have seen that σa ≤ σu +1/2, but we may ask ourselves if it is possible to improve
on this bound, or even if both abscissas coincide for all Dirichlet series. Let us define

S := sup
D∈D

(σa(D)− σu(D)), (2.10)

where D is the set of all Dirichlet series that converge at some point. So the problem then
is to find how big S is.
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This question was first posed by Harald Bohr in 19133. In [5], he proved that S ≤ 1/2,
but he was not actually able to find any Dirichlet series such that σa ̸= σu. In fact, in the
same volume of the journal, Otto Toeplitz constructed a series such that σa − σu = 1/4
and thus the bound was improved to 1/4 ≤ S ≤ 1/2.

The problem of finding the value of S was harder than expected, and remained open for
nearly twenty years. H. F. Bohnenblust and Einar Hille found a solution to the problem
in 1931 in a seminal paper in Annals of Mathematics [4], proving that S is exactly 1/2.
They approached the problem in a fashion similar to Bohr, using an ingenious transforma-
tion and translating the problem from Dirichlet series to power series in infinitely many
variables. We will expand on this idea at the end of the next chapter.

A more direct and simpler proof was given by Harold P. Boas [3] much later, in 1997,
which relies on these ideas. We will give this alternative proof, although we will assume
a couple of technical results whose proof are out of the scope of this work. But firstly,
we will need the following lemma by Bohr which relates different abscissas for a Dirichlet
series.

Lemma 2.25 (Bohr). Let c < b < a and let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series

that converges absolutely for Rs > a and that can be extended analytically for Rs > c. If
f is bounded in Cb, then σu ≤ b, i.e. the Dirichlet series converges uniformly in Cb+δ for
every δ > 0.

Proof. Since f is bounded in Cb, there exists K ≥ 0 such that supRs≥b |f(s)| ≤ K. We
will see that, for δ > 0 and s ∈ Cb+δ, then

sup
s∈Cb+δ

∣∣∣∣∣f(s)−
M∑
n=1

an
ns

∣∣∣∣∣ M→∞−−−−→ 0.

In fact we will see that this difference is bounded by a constant times M−δ logM , where
the constant is independent of s and M . We will do so by integrating over a closed contour
and using the residue theorem.

Let us fix s ∈ Cb+δ and M ≥ 1. We will consider the rectangular path Γ with
vertices s + a − b ± iMa−b+2 and s − δ ± iMa−b+2, and we will label each side of the
path as Γi, i = 1, . . . , 4, starting from the right-hand side of the rectangle and following
a counterclockwise order, as shown in Figure 2. In order to simplify the notation, we will
write Mab := Ma−b+2. We will integrate the function g(z) = f(z)(M + 1/2)z−s(z − s)−1

which only has a simple pole at z = s with residue

Res(g, s) = lim
z→s

(z − s)g(z) = lim
z→s

(z − s)f(z)
(M + 1/2)z−s

z − s
= f(s).

So
∫
Γ g(z)dz = 2πif(s), and moreover∣∣∣∣2πif(s)− ∫

Γ1

g(z)dz

∣∣∣∣ ≤ ∣∣∣∣∫
Γ2

g(z)dz

∣∣∣∣+ ∣∣∣∣∫
Γ3

g(z)dz

∣∣∣∣+ ∣∣∣∣∫
Γ4

g(z)dz

∣∣∣∣ .
3"Whether or not the number 1/2 can be replaced by a smaller number [...] I do not know"
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Figure 2: Rectangular path of integration Γ

For the left side of the rectangle we have∣∣∣∣∫
Γ3

g(z)dz

∣∣∣∣ = ∣∣∣∣∫ Mab

−Mab

f(s− δ + it)
(M + 1/2)−δ+it

−δ + it
idt

∣∣∣∣ ≤ K

∫ Mab

−Mab

(M + 1/2)−δ

| − δ + it|
dt

≤ KM−δ

∫ Mab

−Mab

dt√
δ2 + t2

= KM−δ log

 Mab +
√

δ2 +M2
ab

−Mab +
√

δ2 +M2
ab


= KM−δ log

2M2
ab + δ2 + 2Mab

√
δ2 +M2

ab

δ2

 = O(M−δ logM).

For the top we have an even better bound, using that Mab = Ma−b+2∣∣∣∣∫
Γ2

g(z)dz

∣∣∣∣ = ∣∣∣∣∫ a−b

−δ
f(s+ t+ iMab)

(M + 1/2)t+iMab

t+ iMab
dt

∣∣∣∣ ≤ KM−1
ab

∫ a−b

−δ

(
M +

1

2

)t

dt

=
KM−(a−b+2)

log(M + 1/2)

(
(M + 1/2)a−b − (M + 1/2)−δ

)
≤ KM−(a−b+2)

log(M + 1/2)
Ma−b = O(M−2).

And similarly for the bottom side we can compute∣∣∣∣∫
Γ4

g(z)dz

∣∣∣∣ = O(M−2).

Hence ∣∣∣∣2πif(s)− ∫
Γ1

g(z)dz

∣∣∣∣ = O(M−δ logM). (2.11)

Now since the path Γ1 is inside the region of absolute convergence for f , it also converges
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absolutely and we can commute integral and series as follows∣∣∣∣2πif(s)− ∫
Γ1

g(z)dz

∣∣∣∣ =
∣∣∣∣∣2πif(s)−

∫
Γ1

∞∑
n=1

an
nz

(M + 1/2)z−s

z − s
dz

∣∣∣∣∣
=

∣∣∣∣∣2πif(s)−
∞∑
n=1

an
ns

∫
Γ1

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣ .
(2.12)

The behaviour of the integral depends on whether M + 1/2 is bigger or smaller than
n. Thus, given that M is an integer, we will distinguish the cases M +1 ≤ n and M ≥ n.
In both of these cases we will perform the integral using the residue theorem applied to
the function h(z) = ((M + 1/2)/n)z−s (z − s)−1.

If n ≥ M + 1, we will consider the rectangular path with left side Γ1 and right side
with abscissa R > Rs + a − b, as seen in Figure 3. There are no singularities inside this

Figure 3: Rectangular path of integration used when n ≥ M + 1

region so the integral over Γ1 is equal to minus the contributions for the other three sides.
The right side vanishes as R → ∞. Indeed:∣∣∣∣∫ R−iMab

R+iMab

h(z)dz

∣∣∣∣ =
∣∣∣∣∣
∫ R−iMab

R+iMab

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣
=

∣∣∣∣∣
∫ −Mab

Mab

(
M + 1/2

n

)R+it−s idt

R+ it− s

∣∣∣∣∣
≤ 1

R− s

∫ Mab

−Mab

(
M + 1/2

n

)R−s

dt ≤ 2Mab

R− s

(
M + 1/2

n

)R−s
R→∞−−−−→ 0,

since (M + 1/2)/n < 1. For the top side∣∣∣∣∫ R+iMab

s+a−b+iMab

h(z)dz

∣∣∣∣ =
∣∣∣∣∣
∫ R+iMab

s+a−b+iMab

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣
=

∣∣∣∣∣∣
R−s∫
a−b

(
M + 1/2

n

)t+iMab dt

t+ iMab

∣∣∣∣∣∣ ≤ M−(a−b+2)

R−s∫
a−b

(
M + 1/2

n

)t

dt

≤ M−(a−b+2)

∞∫
a−b

(
M + 1/2

n

)t

dt = M−(a−b+2)

(
M + 1/2

n

)a−b −1

log M+1/2
n

.
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And we can arrive at the same inequality for the bottom side. Now observe that for
all n ≥ M + 1 we have

− log

(
M + 1/2

n

)
≥ − log

(
M + 1/2

M + 1

)
= − log

(
1− 1

2M + 2

)
>

1

2M + 2
, (2.13)

where the last inequality is given by the Taylor expansion of the logarithm function.

Hence all the terms in equation (2.12) with n ≥ M + 1 are bounded by∣∣∣∣∣
∞∑

n>M

an
ns

∫
Γ1

h(z)dz

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n>M

an
ns

∫
Γ1

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣
≤ 2

∞∑
n>M

|an|
nRs

M−(a−b+2)

(
M + 1/2

n

)a−b −1

log M+1/2
n

≤ 2(2M + 2)M−(a−b+2)(M + 1/2)a−b
∞∑

n>M

|an|
nRs+a−b

≤ 2(2M + 2)M−(a−b+2)(M + 1/2)a−b
∞∑

n>M

|an|
na+δ

,

and the series converges because f is absolutely convergent for Rs > a. So we can write∣∣∣∣∣
∞∑

n>M

an
ns

∫
Γ1

h(z)dz

∣∣∣∣∣ = O(M−1). (2.14)

Using equations (2.11) and (2.14) we get the following expression∣∣∣∣∣2πif(s)−
M∑
n=1

an
ns

∫
Γ1

h(z)dz

∣∣∣∣∣ =
∣∣∣∣∣2πif(s)−

∫
Γ1

g(z)dz +

∞∑
n=M+1

an
ns

∫
Γ1

h(z)dz

∣∣∣∣∣
≤ O(M−δ logM) +O(M−1) = O(M−δ logM),

If n ≤ M , we will integrate around the rectangle with right side Γ1 and left side with
abscissa −R < Rs, as shown in Figure 4. Now the function h(z) has a pole at z = s with

Figure 4: Rectangular path of integration used when n ≤ M

residue 1. In consequence∣∣∣∣∫
Γ1

h(z)dz − 2πi

∣∣∣∣ ≤ ∣∣∣∣∫
γ2

h(z)dz

∣∣∣∣+ ∣∣∣∣∫
γ3

h(z)dz

∣∣∣∣+ ∣∣∣∣∫
γ4

h(z)dz

∣∣∣∣ ,
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where γ2, γ3 and γ4 are the top, left and bottom sides of the rectangle respectively.

Similarly to the previous case, for the top side we have∣∣∣∣∫
γ2

h(z)dz

∣∣∣∣ =
∣∣∣∣∣
∫ R+iMab

s+a−b+iMab

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣ =
∣∣∣∣∣∣
−R−s∫
a−b

(
M + 1/2

n

)t+iMab dt

t+ iMab

∣∣∣∣∣∣
≤ −M−1

ab

∫ −R−s

a−b

(
M + 1/2

n

)t

dt = M−1
ab

∫ a−b

−R−s

(
M + 1/2

n

)t

dt

≤ M−1
ab

∫ ∞

a−b

(
M + 1/2

n

)t

dt = M−1
ab

(
M + 1/2

n

)a−b 1

log M+1/2
n

.

and we can get an analogous inequality for the bottom side. For the left side we have a
decaying exponential:

∣∣∣∣∫
γ3

h(z)dz

∣∣∣∣ =
∣∣∣∣∣∣∣
−R+iMab∫

−R−iMab

(
M + 1/2

n

)z−s dz

z − s

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

Mab∫
−Mab

(
M + 1/2

n

)−R+it−s idt

−R+ it− s

∣∣∣∣∣∣∣
≤ 1

R

∫ Mab

−Mab

(
M + 1/2

n

)−R−Rs

dt ≤ 2Mab

R

(
M + 1/2

n

)−R−Rs
R→∞−−−−→ 0.

Thus the terms in (2.12) with n ≤ M are bounded by∣∣∣∣∫
Γ1

h(z)dz − 2πi

∣∣∣∣ =
∣∣∣∣∣
∫
Γ1

(
M + 1/2

n

)z−s dz

z − s
− 2πi

∣∣∣∣∣
≤ 2M−(a−b+2)

(
M + 1/2

n

)a−b 1

log M+1/2
n

≤ 2
M−(a−b+2)

logM
(M + 1/2)a−b = O(M−2 log−1M),

and hence ∣∣∣∣∣2πif(s)− 2πi
M∑
n=1

an
ns

∣∣∣∣∣ = O(M−δ logM).

Finally ∣∣∣∣∣f(s)−
M∑
n=1

an
ns

∣∣∣∣∣ = O(M−δ logM),

uniformly for s ∈ Cb+δ , as we wanted.

Theorem 2.26 (Bohnenblust-Hille). If D is the set of all Dirichlet series which converge
at some point in the complex plane, then

S := sup
D∈D

(σa(D)− σu(D)) = 1/2.

Proof. We have already seen that S ≤ 1/2. Now we will construct a Dirichlet series
f(s) =

∑∞
n=1 ann

−s which converges uniformly in Cδ+1/2 for any δ > 0 but which does
not converge absolutely for Rs < 1, and hence S = 1/2. We will assume the following
results without proof, as they are out of the purpose of this work:
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• Prime number theorem: It states that the number of primes less than a number x is
asymptotic to x/ log x. We need the weaker version that states that the n-th prime pn
is bounded by

1/c1 <
pn

(n log n)
< c1, (2.15)

where c1 > 1 is a constant.

• Quantity of monomials: We need to know how many monomials of degree m in n vari-
ables exist, that is, how many monomials of the form zα1

1 · · · zαn
n exist, with αi ∈ N and

|α| :=
∑

αi = m. The exact quantity is
(
n+m−1

m

)
, but we only need the lower bound

nm

m!
, (2.16)

which is obtained by thinking of the monomial as a product of m factors with n choices
for each factor, and dividing by the number of possible permutations, which is at most
m!.

• Random polynomial modulus: A homogeneous polynomial of degree m in n variables
with coefficients ±1 is a polynomial of the form

∑
α1+···+αn=m±zα1

1 · · · zαn
n . According

to the theory of random polynomials, if the signs ± are assigned at random, then the
maximum modulus of the polynomial in Dn is bounded above with high probability by

c2n
(m+1)/2

√
logm, (2.17)

where c2 is a constant. This bound does not work for all homogenous polynomials, but
we know that there are many that satisfy it, and we will only need for one to exist for
each m and n. For the proof of this result, see [11, §7.1] and the references therein.

With all these tools, we will now construct the described Dirichlet series f(s) in blocks, and
every coefficient will either be 0 or ±1. For the k-th block, k ≥ 2, consider a homogeneous
polynomial with degree k in 2k variables and with coefficients ±1 assigned at random.
Now consider the ordered list of the 2k consecutive prime numbers starting from the 2k-th
prime, for each p we will substitute 1/ps in each corresponding variable zi, 1 ≤ i ≤ 2k:

zi 7−→
1

(p2k+i−1)
s∑

α1+···+α
2k

=k

±zα1
1 · · · zα2k

2k
7−→

∑
α1+···+α

2k
=k

±1(
pα1

2k
· · · pα2k

2k+1−1

)s .
So the polynomial becomes a sum of ±1/ns, where each n appears only once by the
uniqueness of the factorization in prime numbers, and each n is the product of exactly k
prime numbers (counted with multiplicity). If a number n does not appear in the process
described, we will assign an = 0. Observe that the first coefficient which is not null is a49,
as 49 is the smallest product of two primes from the list starting at p22 = 7. The series
f(s) will be the sum of the different blocks, and now we need to prove that this series has
the desired properties.

We claim that σa(f) = 1. By Lemma 2.14, since all the coefficients are bounded, we
have σa(f) ≤ 1.

Next, let us prove that σa(f) ≥ 1. For the k-th block, by equation (2.15), the primes
are bounded by

pi < c1i log i ≤ c12
k+1 log(2k+1) < 3c1(k + 1)2k, (2.18)

17



for 2k ≤ i ≤ 2k+1 − 1.

On another note, the number of integers n that are the product of k prime numbers
from p2k to p2k+1−1 is bounded below by equation (2.16) with n = 2k and m = k:

2k
2

kk
<

2k
2

k!
< #

{
n : n =

∏
|α|=k

1≤i≤2k

pαi

2k+i−1

}
.

Using equation (2.18), such integers n are bounded by

n =
∏
|α|=k

1≤i≤2k

pαi

2k+i−1
≤ (3c1(k + 1)2k)k.

Hence
∞∑

n=49

|an|
nRs

≥
∞∑
k=2

2k
2
/kk

(3c1(k + 1)2k)kRs
=

∞∑
k=2

2k
2(1−Rs)

(3c1(k + 1))kRskk
.

Using the root test, this series diverges for Rs < 1, and thus σa(f) = 1.

We claim that f(s) converges uniformly for Rs ≥ 1/2+δ. We will estimate the modulus
of the each block in the series. By the definition of f , we have that the modulus of the
k-th block Bk(s) is

|Bk(s)| =

∣∣∣∣∣∣
∑
|α|=k

±1(
pα1

2k
· · · pα2k

2k+1−1

)s
∣∣∣∣∣∣ .

Since that Bk is a homogeneous polynomial, using equation (2.17) with n = 2k and
m = k, we obtain that the supremum of the modulus of each block is bounded by
c2(2

k)(k+1)/2
√
log k, times the modulus of each variable |1/psi | = 1/pRs

i :

|Bk(s)| ≤
c2(2

k)(k+1)/2
√
log k(

pα1

2k
· · · pα2k

2k+1−1

)Rs

In turn, each prime pi in the k-th block is bounded by equation (2.15), and considering
that 1/2 < log 2 we get:

k2k

2c1
<

2k log(2k)

c1
< p2k ≤ pi, 2k ≤ i ≤ 2k+1 − 1.

Hence

|Bk(s)| ≤
c2(2

k)(k+1)/2
√
log k(

k2k

2c1

)kRs
=: Mk.

We want to apply the Weierstrass M-test to prove that the series f(s) converges uni-
formly in Rs ≥ 1/2. Thus we have to prove that the series

∑∞
k=2Mk converges. We will

do so using the root test. We compute the following limit

lim
k→∞

c22
k(k+1)

2
√
log k(

k2k

2c1

)kRs


1/k

= (2c1)
Rs lim

k→∞

c
1/k
2 2(k+1)/2(log k)1/(2k)

(k2k)Rs

= (2c1)
Rs lim

k→∞

2(k+1)/2

(k2k)Rs
=

√
2(2c1)

Rs lim
k→∞

2k(1/2−Rs)

kRs
,
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where we have used that limk→∞(log k)1/(2k) = 1. The last limit converges to 0 if Rs ≥
1/2, and goes to infinity if Rs < 1/2.

So the series summed in the described blocks it converges uniformly for Rs ≥ 1/2 to a
bounded function f , and it is analytical in C1/2. In Rs ≥ 1, the series converges absolutely
and thus it is equal to f since we can perform the sum in any order. By Bohr’s Lemma
2.25 with c = 1/2 < b = 1/2 + δ < a = 1, the series converges uniformly in Rs ≥ 1/2 + δ
for each δ > 0. This finishes the proof.

There is no bound between the distance of the holomorphy and convergence abscissa.
We can see it in the next example:

Example 2.27. For the η function we have seen that σc(η) = 0. But we know from
equation (2.4) that η(s) = (1 − 21−s)ζ(s), and this can be extended to the whole plane
using the functional equation for ζ (see equation (2.6)). We can observe that 1 − 21−s

cancels the pole that ζ has at s = 1, and thus η is an entire function. So σh(η) = −∞.

Proposition 2.28. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with non-negative coef-

ficients, the next equality holds

σh = σc = σu = σa.

Proof. Since all coefficients are non-negative σc = σa. Now to prove that σh = σc we will
see that s = σc is a singularity of f , and thus cannot have a holomorphic extension in
D(σc, r) for any r > 0.

Without loss of generality, we can assume that σc = 0. We will also assume that
the series

∑∞
n=1 ann

−s extends to a holomorphic function in D(0, r), for the sake of a
contradiction argument. Now if f is holomorphic in D(0, r), then there exists a R > 1
close to 1 such that f extends in D(1, R) (see Figure 5). In a neighbourhood of s = 1 we

Figure 5: Diagram of the disks used in the proof.

have the series expansion

f(s) =
∞∑
n=0

f (k)(1)

k!
(s− 1)k =

∞∑
k=0

∑∞
n=1(− log n)kann

−1

k!
(s− 1)k,

where we have used Corollary 2.9 to write the k-th derivative of f .
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Now let ε be such that 1−R < −ε < 0. We then have

f(−ε) =
∞∑
k=0

∞∑
n=1

(− log n)kan
nk!

(−ε− 1)k =
∞∑
k=0

∞∑
n=1

(log n)kan
nk!

(1 + ε)k

=
∞∑
n=0

an
n

∞∑
k=1

(log n)k

k!
(1 + ε)k =

∞∑
n=0

an
n
e(1+ε) logn =

∞∑
n=0

an
n−ε

.

Where we can permute the series because all the terms are non-negative. Hence σc <
−ε < 0, which is a contradiction.

Observation 2.29. We have seen that the point s = σc is always a singularity for a series
with non-negative coefficients. But as the the example of the function η(s) shows, this is
not true for series with negative coefficients, because η(s) is an entire function. Thus
the intuition given by power series that they always have a singularity on their circles of
convergence does not apply to Dirichlet series, which might not have any singularity on
their boundary of convergence.

Knowing all this information about the different abscissas and their relationships to
one another, one important question is how to compute them for a given Dirichlet series,
and if there is a formula as there is for power series. In 1894, Cahen gave a formula in
his doctoral thesis [8] to compute the abscissa of convergence when the series does not
converge at s = 0. There is also a second formula given by Schnee and by Titchmarsh [16]
for when the series does converge at s = 0. These results are presented in the following
theorem.

Theorem 2.30. For a Dirichlet series f(s) =
∑∞

n=1 ann
−s we have:

• (Cahen) If
∑∞

n=1 an does not converge, then

σc = lim sup
N→∞

log
∣∣∣∑N

n=1 an

∣∣∣
logN

.

• (Schnee-Titchmarsh) If
∑∞

n=1 an converges, then

σc = lim sup
N→∞

log
∣∣∑∞

n=N+1 an
∣∣

logN
.

Proof.

• Let us begin by giving a proof for Cahen’s equation. The fact that f(0) =
∑∞

n=1 an does
not converge gives us automatically that σc ≥ 0. For N ≥ 1, we define AN =

∑N
n=1 an,

and we write A0 = 0. We want to prove that

γ := lim sup
N→∞

log |AN |
logN

= σc.

We shall prove firstly that γ ≤ σc and then that γ ≥ σc.
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– Let s ∈ R, s > σc ≥ 0. Hence f(s) converges. We define bn = ann
−s, Bn =

∑n
k=1 bk

and B0 = 0. Performing an Abel transformation

AN =
N∑

n=1

an =
N∑

n=1

bnn
s =

N∑
n=1

(Bn −Bn−1)n
s =

N−1∑
n=1

Bn(n
s − (n+ 1)s) +BNN s.

Since (Bn)n converges, it is bounded. Then there exists B ≥ 0 such that |Bn| ≤ B
for n ≥ 0. Hence

|AN | ≤ B
N−1∑
n=1

((n+ 1)s − ns) +BN s = B(N s − 1s) +BN s < 2BN s. (2.19)

Applying logarithms to both sides we get:

log |AN | < s logN + log 2B =⇒ log |AN |
logN

< s+
log 2B

logN
=⇒ γ ≤ σc.

– Let s > γ and we maintain the definitions from the last section. We choose ρ such
that s > ρ > γ. There exists N0 such that for any N ≥ N0

ρ ≥ log |AN |
logN

which yields Nρ > |AN |. Hence, there exists C > 0 such that |AN | ≤ CNρ, N ≥ 0.
We want to show that (BN )N is convergent, so s > σc and hence γ ≥ σc. We will use
Cauchy’s criterion and Abel’s transformation, for M > N :

BM −BN =
M∑

n=N+1

an
ns

=
M∑

n=N+1

(An −An−1)
1

ns

=

M−1∑
n=N+1

An

(
1

ns
− 1

(n+ 1)s

)
+

AM

M s
− AN

(N + 1)s
.

Hence

|BM −BN | ≤
M−1∑

n=N+1

∣∣∣∣An

(
1

ns
− 1

(n+ 1)s

)∣∣∣∣+ ∣∣∣∣AM

M s

∣∣∣∣+ ∣∣∣∣ AN

(N + 1)s

∣∣∣∣
≤ C

M−1∑
n=N+1

nρ

(
1

ns
− 1

(n+ 1)s

)
+

CMρ

M s
+

CNρ

(N + 1)s

≤ C
M−1∑

n=N+1

nρ

(
1

ns
− 1

(n+ 1)s

)
+

2C

N s−ρ
.

Applying the mean value theorem to the function g(x) = 1/xs, there exists c ∈
(n, n+ 1) such that

g′(c) =
−s

cs+1
=

1
ns − 1

(n+1)s

n− (n+ 1)
=⇒ s

ns+1
≥ s

cs+1
=

1

ns
− 1

(n+ 1)s
,

and so

|BM −BN | ≤ Cs
M−1∑

n=N+1

nρ

ns+1
+

2C

N s−ρ
.
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Now comparing with the integral

M−1∑
n=N+1

nρ

ns+1
≤
∫ ∞

N+1
nρ−s−1dn =

(N + 1)ρ−s

s− ρ
= O(Nρ−s),

we finally get the inequality

|BM −BN | ≤ Cs
(N + 1)ρ−s

s− ρ
+

2C

N s−ρ
=

C

N s−ρ

(
s

s− ρ
+ 2

)
= O(Nρ−s).

Hence
sup
M>N

|BM −BN | N→∞−−−−→ 0,

and (BN )N converges, so γ ≥ σc. In conclusion γ = σc.

• The proof for the Schnee-Titchmarsh formula is very similar to this one, because as one
might have noticed, we have barely used the hypothesis that f does not converge at
0. Let us write RN =

∑∞
n=N+1 an, so we want to see that the convergence abscissa is

equal to

β := lim sup
N→∞

log |RN |
logN

.

We will firstly see that β ≤ σc and then β ≥ σc, and use the same notations as before
for BN and bn. Because f converges at 0, we know that β ≤ 0 and σc must be negative
or 0.

– We observe first that if σc = 0 then we already know that β ≤ σc, so we can assume
σc < 0. So BN converges and we have that |BN | ≤ B for some B. Let σc < s < 0, so

RN =
∞∑

n=N+1

an =
∞∑

n=N+1

bnn
s =

∞∑
n=N+1

(Bn −Bn+1)n
s =

∞∑
n=N

Bn(n
s − (n+ 1)s)−BNN s,

and thus

|RN | ≤ B
∞∑

n=N

(ns − (n+ 1)s) +BNρ = 2BN s N→∞−−−−→ 0,

which yields β ≤ σc.

– As in the Cahen formula proof, let β < s < 0 and let ρ be such that β < ρ < s.
Arguing as in the Cahen’s case, ∃C ≥ 0 such that |RN | ≤ CNρ, N ≥ 1. If we show
that

∑∞
n=1 ann

−s converges, then s ≥ σc and β ≥ σc. Again, using Cauchy’s criterion
for M > N

RM−1 −RN−1 =
∞∑

n=M

an
ns

−
∞∑

n=N

an
ns

=

M∑
n=N+1

an
ns

=

M∑
n=N+1

Rn−1 −Rn

ns

=

M∑
n=N

Rn

(
1

(n+ 1)s
− 1

ns

)
− RM

(M + 1)s
+

RN

N s
.

Applying a similar argument to the one used in the Cahen formula, we arrive at∣∣∣∣∣
M∑

n=N+1

an
ns

∣∣∣∣∣ ≤ Cs
(N − 1)ρ−s

s− ρ
+

2C

N s−ρ
.
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Finally

sup
M>N

∣∣∣∣∣
M∑

n=N+1

an
ns

∣∣∣∣∣ N→∞−−−−→ 0,

so
∑∞

n=1 ann
−s converges and β ≥ σc, which ends the proof.

Corollary 2.31. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series, we have that:

• If
∑∞

n=1 |an| diverges, then

σa(f) = lim sup
N→∞

log
∣∣∣∑N

n=1 |an|
∣∣∣

logN
.

• If
∑∞

n=1 |an| converges, then

σa(f) = lim sup
N→∞

log
∣∣∑∞

n=N+1 |an|
∣∣

logN
.

Proof. The result follows from the observation that the absolute abscissa for a series
f(s) =

∑∞
n=1 ann

−s is the convergence abscissa for the series g(s) =
∑∞

n=1 |an|n−s.

The formulas in Theorem 2.30 are analogous to the Cauchy-Hadamard formula for
power series in Theorem 1.3.

2.2 Properties

In this section we will go over some properties of Dirichlet series. One of the usual
questions concerning a function is where its zeros lie. This is a difficult problem in general,
as shown by the difficulty of proving the Riemann hypothesis. Nonetheless, the next
proposition gives an interesting result on the topic of zeros for Dirichlet series.

Proposition 2.32. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series. Except for the trivial

case where an = 0 for all n, there exists ρ such that f(s) ̸= 0 for all s with Rs > ρ.

Proof. Let N := min {n ∈ N : an ̸= 0}, and let us fix ρ > σa. We have

Cρ :=

∞∑
n=1

|an|
nρ

< +∞.

For s with Rs ≥ ρ

|f(s)| =

∣∣∣∣∣
∞∑

n=N

an
ns

∣∣∣∣∣ ≥ ∣∣∣aNN s

∣∣∣− ∣∣∣∣∣
∞∑

n>N

an
ns

∣∣∣∣∣ ≥ |aN |
NRs

−
∞∑

n>N

|an|
nRs

, (2.20)

where we can bound the last term by

∞∑
n>N

|an|
nRs

=
∞∑

n>N

|an|
nρnRs−ρ

≤ Cρ

(N + 1)Rs−ρ
.
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Now since limx→∞
Nx

(N+1)xCρ(N + 1)ρ = 0, there exists a τ ≥ ρ such that

NRs

(N + 1)Rs
Cρ(N + 1)ρ ≤ |aN |

2

for all s such that Rs ≥ τ . Hence

Cρ(N + 1)ρ

(N + 1)Rs
=

Cρ

(N + 1)Rs−ρ
≤ |aN |

2NRs
,

for s such that Rs ≥ τ . Substituting this in equation (2.20) we have that

|f(s)| ≥ |aN |
NRs

−
∞∑

n>N

|an|
nRs

≥ |aN |
2NRs

> 0,

and thus f(s) ̸= 0 for s with Rs ≥ τ .

A consequence of this proposition is the uniqueness of Dirichlet series.

Theorem 2.33 (Dirichlet-Dedekind). Let f(s) =
∑∞

n=1 ann
−s and g(s) =

∑∞
n=1 bnn

−s

be two Dirichlet series with σa(f), σa(g) < +∞. If there exists a sequence (sk)k ⊂ C with
Rsk

k→∞−−−→ +∞ such that f(sk) = g(sk) for any k ∈ N, then an = bn for all n ≥ 1 and
f ≡ g.

Proof. We apply the last proposition to the series h(s) = f(s)−g(s) =
∑∞

n=1(an−bn)n
−s,

and the result follows.

Proposition 2.34. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with σa < +∞. Then

lim
σ→∞

(
sup
Rs≥σ

|f(s)− a1|

)
= 0,

and in particular
lim

Rs→∞
f(s) = a1.

Proof. Let σ0 > σa and define A :=
∑∞

n=1 |an|/nσ0 < +∞. Then for s = σ + it with
σ > σ0 we have that

|f(s)− a1| ≤
∞∑
n=2

|an|
nσ

≤
∞∑
n=2

|an|
nσ0

1

nσ−σ0
≤ A

2σ−σ0
.

Hence
sup
Rs≥σ

|f(s)− a1| ≤
A

2σ−σ0
,

and letting σ → ∞ we get the desired result.

An interesting result on the growth of the coefficients is given in the following propo-
sition.

Proposition 2.35. If the Dirichlet series f(s) =
∑∞

n=1 ann
−s has σc < +∞, then the

coefficients an have at most polynomial growth.
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Proof. Since σc < +∞, we can fix any s0 such that Rs0 > σc, hence f(s0) converges.
Then, by Lemma 2.21, the series converges absolutely for some integer s = N > Rs0 + 1,
and so the general term |ann−N | tends to 0. Thus, for a big enough n ∈ N, we have
|ann−N | < 1, which implies the polynomial growth of an.

We also have an equivalent to the maximum modulus principle in half-planes for Dirich-
let polynomials, which are truncated Dirichlet series.

Definition 2.36. For N ≥ 1, we define a Dirichlet polynomial as f(s) =
∑N

n=1 ann
−s.

Proposition 2.37. Let f(s) =
∑N

n=1 ann
−s be a Dirichlet polynomial. We have

sup
Rs>σ

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣
N∑

n=1

an
nσ+it

∣∣∣∣∣ .
Proof. Assume first that σ = 0. Let us define

A = sup
t∈R

∣∣∣∣∣
N∑

n=1

an
nit

∣∣∣∣∣ and B = sup
Rs>0

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ .
It is clear that A ≤ B. We now need to show that B ≥ A. If A = 0 this is trivial. So

suppose A > 0 and let us consider the function

gϵ(s) = e−ϵ
√
s

N∑
n=1

an
ns

,

which is a holomorphic function in C0, considering the principal branch of the square root
in C \ (−∞, 0], with

√
0 = 0, and is continuous in C0. For any s = reiα ∈ C0 we have

|gϵ(s)| = e−ϵ
√
r cosα/2

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ ≤ Be−ϵ
√
r cosπ/4.

Since the last expressions tends to 0 as r → ∞, there exists an R > 0 such that for any
r ≥ R, |gϵ(reiα)| ≤ A. Now considering the set D̃ := C0 ∩D(0, R), we have that for any
s ∈ D̃ with s = it, t ∈ R

|gϵ(it)| = e−ϵ
√
t cosπ/4

∣∣∣∣∣
N∑

n=1

an
nit

∣∣∣∣∣ ≤ e−ϵ
√
t cosπ/4A ≤ A.

By the maximum modulus principle, we have that |gϵ(s)| ≤ A for s ∈ D̃. Hence |gϵ(s)| ≤ A
for s ∈ C0. By letting ϵ → 0 we obtain the result for σ = 0.

To prove the statement for an arbitrary σ, we apply the result to the polynomial∑N
n=1(an/n

σ)n−s:

sup
Rs>σ

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ = sup
Rs>0

∣∣∣∣∣
N∑

n=1

an
ns+σ

∣∣∣∣∣ = sup
Rs>0

∣∣∣∣∣
N∑

n=1

an
nσ

1

ns

∣∣∣∣∣
= sup

t∈R

∣∣∣∣∣
N∑

n=1

an
nσ

1

nit

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣
N∑

n=1

an
nσ+it

∣∣∣∣∣ = sup
Rs=σ

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ .
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We will now give the analogous formulas to those in Propositions 1.4 and 1.5 for power
series, which tell us that the coefficients and the partial sums of a Dirichlet series are
uniquely determined by the function.

Proposition 2.38 (Perron’s inversion formula). Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet

series. For all n ≥ 1 and all ρ > σa the next equation holds:

an = lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT
f(s)nsds.

Proof. The proof for this proposition is similar to the one for Proposition 1.4. We claim
that

lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT
eαsds =

{
0, if α ̸= 0

1, if α = 0.
(2.21)

If α ̸= 0, ∀T > 0 we have

1

2iT

∫ ρ+iT

ρ−iT
eαsds = eαρ

sin(αT )

αT
,

and taking the limit when T → ∞ yields the result. If α = 0 then the result is trivial.

Because ρ > σa, the series converges absolutely and it does so uniformly too by Propo-
sition 2.24. In particular

cN := sup
Rs=ρ

∣∣∣∣∣f(s)−
N∑

n=1

an
ns

∣∣∣∣∣ N→∞−−−−→ 0.

For 1 ≤ m ≤ N , using equation (2.21), we have that

am = lim
T→∞

1

2iT

∫ ρ+iT

ρ−iT

N∑
n=1

an
ns

msds,

because (m/s)s = es logm/n, and logm/n = 0 ⇐⇒ m = n.

For any s ∈ C such that Rs = ρ,∣∣∣∣∣f(s)−
N∑

n=1

an
ns

∣∣∣∣∣ ≤ cN .

So we get ∣∣∣∣∣ 1

2iT

∫ ρ+iT

ρ−iT

(
f(s)ms −

N∑
n=1

an
ns

ms

)
ds

∣∣∣∣∣ ≤ cN |mρ| .

and taking limits

lim sup
T→∞

∣∣∣∣∣∣∣
1

2iT

ρ+iT∫
ρ−iT

(
f(s)ms −

N∑
n=1

an
ns

ms

)
ds

∣∣∣∣∣∣∣ = lim sup
T→∞

∣∣∣∣∣∣∣
1

2iT

ρ+iT∫
ρ−iT

f(s)msds− am

∣∣∣∣∣∣∣ ≤ cN |mρ|.

And finally, if we fix m and take the limit when N → ∞ we get the desired result.
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We have proven an integral formula to obtain the coefficients of the series, and we now
will give an expression that lets us obtain the partial sums of a series by performing an
integral. But firstly, we need the following lemma:

Lemma 2.39. Let n be a natural number, c > 0 and x ∈ R \ Z, then

1

2πi

∫ c+i∞

c−i∞

(x
n

)w dw

w
=

{
1, if n < x

0, if n > x.
(2.22)

Equivalently,
1

2πi

∫ c+i∞

c−i∞
eαw

dw

w
=

{
1, if α > 0

0, if α < 0.
(2.23)

Proof. It is easy to see that (2.22) and (2.23) are equivalent by writing log x/n = α, so
we only need to prove the second integral equation.

Suppose α > 0, we will calculate the integral using the residue theorem. Let us consider
T > 0 and −d < 0 < c. The path of integration will be the rectangle with vertices c− iT ,
c+ iT , −d+ iT and −d− iT . The only pole of the integrand is at w = 0 and has residue
limw→0we

αw/w = 1, so:∫ c+iT

c−iT
eαw

dw

w
+

∫ −d+iT

c+iT
eαw

dw

w
+

∫ −d−iT

−d+iT
eαw

dw

w
+

∫ c−iT

−d−iT
eαw

dw

w
= 2πi.

In particular∣∣∣∣∫ c+iT

c−iT
eαw

dw

w
− 2πi

∣∣∣∣ ≤ ∣∣∣∣∫ −d+iT

c+iT
eαw

dw

w

∣∣∣∣+ ∣∣∣∣∫ −d−iT

−d+iT
eαw

dw

w

∣∣∣∣+ ∣∣∣∣∫ c−iT

−d−iT
eαw

dw

w

∣∣∣∣ .
Computing the second term in the right-hand side we have∣∣∣∣∫ −d−iT

−d+iT
eαw

dw

w

∣∣∣∣ = ∣∣∣∣∫ −T

T
eα(−d+it) idt

−d+ it

∣∣∣∣ ≤ ∫ T

−T
e−αd dt

|d+ it|
≤ e−αd

d
2T

d→∞−−−→ 0.

For the other terms∣∣∣∣∫ c−iT

−d−iT
eαw

dw

w

∣∣∣∣ = ∣∣∣∣∫ c

−d
eα(t−iT ) dt

t− iT

∣∣∣∣ ≤ 1

T

∫ c

−d
eαtdt ≤ 1

T

∫ c

−∞
eαtdt =

1

T

eαc

α
,

and in a similar manner we get∣∣∣∣∫ −d+iT

c+iT
eαw

dw

w

∣∣∣∣ ≤ 1

T

eαc

α
.

So ∣∣∣∣∫ c+iT

c−iT
eαw

dw

w
− 2πi

∣∣∣∣ ≤ 2eαc

Tα

T→∞−−−−→ 0, (2.24)

and
1

2πi

∫ c+i∞

c−i∞
eαw

dw

w
= 1

as we wanted.
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Now if α < 0 we will perform a similar contour integration, but now with d > c > 0.
Now the pole of the integrand is not contained in the region and by the residue theorem∫ c+iT

c−iT
eαw

dw

w
+

∫ d+iT

c+iT
eαw

dw

w
+

∫ d−iT

d+iT
eαw

dw

w
+

∫ c−iT

d−iT
eαw

dw

w
= 0,

and thus∣∣∣∣∫ c+iT

c−iT
eαw

dw

w

∣∣∣∣ ≤ ∣∣∣∣∫ d+iT

c+iT
eαw

dw

w

∣∣∣∣+ ∣∣∣∣∫ d−iT

d+iT
eαw

dw

w

∣∣∣∣+ ∣∣∣∣∫ c−iT

d−iT
eαw

dw

w

∣∣∣∣ .
Since α < 0, for the second term on the right-hand side we now have∣∣∣∣∫ d−iT

d+iT
eαw

dw

w

∣∣∣∣ ≤ eαd

d
2T

d→∞−−−→ 0.

For the other terms∣∣∣∣∫ c−iT

d−iT
eαw

dw

w

∣∣∣∣ = ∣∣∣∣∫ d

c
eα(t−iT ) dt

t− iT

∣∣∣∣ ≤ 1

T

∫ d

c
eαtdt ≤ 1

T

∫ ∞

c
eαtdt =

1

T

eαc

|α|
,

and ∣∣∣∣∫ −d+iT

c+iT
eαw

dw

w

∣∣∣∣ ≤ 1

T

eαc

|α|
.

Adding up all the terms ∣∣∣∣∫ c+iT

c−iT
eαw

dw

w

∣∣∣∣ ≤ 2eαc

T |α|
T→∞−−−−→ 0, (2.25)

so
1

2πi

∫ c+i∞

c−i∞
eαw

dw

w
= 0

if α < 0.

Proposition 2.40 (Perron-Landau formula). Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series

with absolute convergence abscissa σa. Then for x /∈ Z, and for any c ∈ R and s such that
Rs+ c > σa: ∑

n<x

an
ns

=
1

2πi

∫ c+i∞

c−i∞
f(s+ w)

xw

w
dw.

Proof. Since Rs+c > σa, the series converges absolutely and uniformly in compact subsets
of CRs+c, so we can permute sum and integral in the following fashion for any T > 0∫ c+iT

c−iT
f(s+ w)

xw

w
dw =

∫ c+iT

c−iT

∞∑
n=1

an
ns+w

xw

w
dw =

∞∑
n=1

an
ns

∫ c+iT

c−iT

(x
n

)w dw

w

=
∑
n<x

an
ns

∫ c+iT

c−iT

(x
n

)w dw

w
+
∑
n>x

an
ns

∫ c+iT

c−iT

(x
n

)w dw

w
.

(2.26)

The first sum is a finite one, so we can simply take the limit term by term when T → ∞,
and by Lemma 2.39, given that n < x, we have that each integral is 2πi. Now we will
show that ∑

n>x

an
ns

∫ c+iT

c−iT

(x
n

)w dw

w

T→∞−−−−→ 0,
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which will complete the proof.

By Lemma 2.39, each term tends to zero, but to show that the series is convergent we
must know at which rate they tend to zero. We will use the bound in equation (2.25), and
in our case α = log(x/n). We have∣∣∣∣∫ c+iT

c−iT

(x
n

)w dw

w

∣∣∣∣ ≤ 2eαc

T |α|
=

2ec log(x/n)

T | log(x/n)|
=

2
(
x
n

)c
T log(n/x)

. (2.27)

Hence, using that n ≥ [x] + 1,∣∣∣∣∣∑
n>x

an
ns

∫ c+iT

c−iT

(x
n

)w dw

w

∣∣∣∣∣ ≤∑
n>x

|an|
nRs

2

T

(x
n

)c 1

log(n/x)
≤ 2

T

xc

log
(
[x]+1
x

) ∑
n>x

|an|
nRs+c

,

which tends to zero as T → ∞ because the series converges.

Corollary 2.41. Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series with σa < c, c > 0. Then

for x /∈ Z: ∑
n<x

an =
1

2πi

∫ c+i∞

c−i∞
f(w)

xw

w
dw.

Proof. The result follows from applying the Perron-Landau formula for s = 0.
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3 Hardy-Dirichlet spaces

This chapter is dedicated to the study of two Hardy-Dirichlet spaces: H ∞ and H 2.
We will develop a theory similar to that of the classical Hardy spaces in the disk, and
see, among other results, that the multipliers of H 2 are H ∞, which is a characterization
analogous to the one for H2(D). We will study some properties of these spaces, their
abscissas and how they relate to one another. In fact, the Hardy-Dirichlet spaces H p are
well defined for 1 ≤ p ≤ ∞, though we will only study the cases for p = 2 and p = ∞.

We will need the following definitions.

Definition 3.1. We define H∞(C0) as the set of bounded analytic functions in C0, and
we will equip it with the norm ∥f∥∞ = sups∈C0

|f(s)|.
For N ≥ 1 we define H∞(DN ) as the set of holomorphic and bounded functions in DN .

We will also equip it with the supremum norm, ∥f∥∞ = sups∈DN |f(s)|.
H ∞ is the subspace of functions in H∞(C0) that can be represented as a convergent

Dirichlet series in some subspace of C0. We will also equip it with the norm ∥f∥∞ =
sups∈C0

|f(s)|. We have H ∞ = H∞(C0) ∩ D.

H 2 is the set of Dirichlet series f(s) =
∑∞

n=1 ann
−s which have square-summable coef-

ficients, that is
∑∞

n=1 |an|2 < +∞. We will equip it with the norm ∥f∥2 =
(∑∞

n=1 |an|2
)1/2.

Observation 3.2. Both H ∞ and H 2 can be seen as the completion spaces of Dirichlet
polynomials for the respective norms ∥·∥∞ and ∥·∥2. Hence, Dirichlet polynomials are
dense in both H ∞ and H 2.

3.1 Properties of H ∞

One of the objectives of this section is to obtain global estimates for the abscissas of the
functions in H ∞. We will also see that the the space H ∞ equipped with the supremum
norm is a Banach algebra. But firstly, we need the following lemma, which in the case of
the disk H∞(D) is an immediate consequence of Cauchy’s integral formula.

Lemma 3.3. If f(s) =
∑∞

n=1 ann
−s ∈ H ∞, then for any n ≥ 1 we have that

|an| ≤ ∥f∥∞ .

Proof. Since f(s) ∈ H ∞, we have that σc < +∞. Given that σa ≤ σc + 1, there exists
ρ > 0 such that

∑∞
n=1 |an|n−ρ < +∞. Using Perron’s formula in Proposition 2.38 and

Cauchy’s integral theorem applied to a rectangle with vertices ρ ± iT and ϵ ± iT with
0 < ϵ < ρ, we have

an = lim
T→∞

1

2iT

(∫ ρ+iT

ϵ+iT
f(s)nsds+

∫ ϵ+iT

ϵ−iT
f(s)nsds+

∫ ϵ−iT

ρ−iT
f(s)nsds

)
.

The top side of the rectangle is bounded by∣∣∣∣∫ ρ+iT

ϵ+iT
f(s)nsds

∣∣∣∣ ≤ ∥f∥∞
∫ ρ

ϵ
|nt+iT |dt ≤ ∥f∥∞ nρρ,

and similarly for the bottom side∣∣∣∣∫ ϵ−iT

ρ−iT
f(s)nsds

∣∣∣∣ ≤ ∥f∥∞ nρρ.
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The left side is bounded by∣∣∣∣∫ ϵ+iT

ϵ−iT
f(s)nsds

∣∣∣∣ ≤ ∥f∥∞
∫ T

−T
nϵdt = 2T ∥f∥∞ nϵ.

Hence
|an| ≤ lim

T→∞

1

2T
(2 ∥f∥∞ nρρ+ 2T ∥f∥∞ nϵ) = ∥f∥∞ nϵ.

Letting ϵ tend to 0, we obtain the result.

We have seen in Lemma 2.14 that if the coefficients of the Dirichlet series are bounded,
then σa(f) ≤ 1. Hence, the above result gives immediately the corollary:

Corollary 3.4. If f ∈ H ∞, then σa(f) ≤ 1.

Theorem 3.5. (H ∞, ∥·∥∞) is a Banach algebra. Moreover, its invertible elements are
those functions f for which there exists δ > 0 such that |f(s)| ≥ δ, for any s ∈ C0.

Proof. We need to show that the product of functions in H ∞ is in H ∞ and that every
Cauchy sequence in H ∞ has limit function in H ∞.

Let f(s) =
∑∞

n=1 ann
−s, g(s) =

∑∞
n=1 bnn

−s ∈ H ∞. Given that both f and g are
bounded and analytic in C0, the product function h := fg is also bounded and analytic
in C0. The function h is equal to the series

∞∑
n=1

( ∑
km=n

akbm

)
1

ns
, (3.1)

wherever it converges, and given that σa(f), σa(g) ≤ 1 by the last corollary, it converges
absolutely for Rs = σ > 1 since

∞∑
n=1

( ∑
km=n

|akbm|

)
1

nσ
=

( ∞∑
k=1

|ak|
kσ

)( ∞∑
m=1

|bm|
mσ

)
< +∞.

But fg extends the series definition in equation (3.1), and hence h ∈ H ∞.

Now let (fj)j ⊂ H ∞ be a Cauchy sequence with fj(s) =
∑∞

n=1 a
j
nn−s and K :=

supj ∥fj∥∞ < +∞. We know that H ∞ is a subset of H∞(C0), which is a Banach space
with the supremum norm, thus there exists an f ∈ H∞(C0) such that limj→∞ ∥fj − f∥∞ =
0. We need to prove that f ∈ H ∞. By Lemma 3.3, for any n, k, l ≥ 1 we have that
|aln − akn| ≤ ∥fl − fk∥∞. In particular, the sequence (aln)l is Cauchy for each n, and hence
converges to liml→∞ aln = an. Again, by Lemma 3.3, we have that |aln| ≤ ∥fl∥∞ ≤ K.
Passing to the limit we obtain that every coefficient an is bounded by K, hence the series∑∞

n=1 ann
−s is absolutely convergent for Rs > 1. We must check that the function f is

equal to the series
∑∞

n=1 ann
−s in C1. From limj fj = f and limj a

j
n = an we have that

for any ϵ > 0 and any N ≥ 1 there exists a k ≥ 1 such that for any s ∈ C1, j ≥ k and
1 ≤ n ≤ N

|fj(s)− f(s)| < ϵ and |ajn − an| < ϵ.

From the fact that every fj is a convergent Dirichlet series in C1 and that the series∑∞
n=1 ann

−s is absolutely convergent for Rs > 1, we get that there exists N ≥ 1 such that∣∣∣∣∣fj(s)−
N∑

n=1

ajn
ns

∣∣∣∣∣ < ϵ and

∣∣∣∣∣
∞∑
n=1

an
ns

−
N∑

n=1

an
ns

∣∣∣∣∣ < ϵ.
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Hence if j ≥ k is fixed∣∣∣∣∣f(s)−
∞∑
n=1

an
ns

∣∣∣∣∣ ≤ |f(s)− fj(s)|+

∣∣∣∣∣fj(s)−
N∑

n=1

ajn
ns

∣∣∣∣∣+
∣∣∣∣∣
N∑

n=1

ajn
ns

−
N∑

n=1

an
ns

∣∣∣∣∣
+

∣∣∣∣∣
N∑

n=1

an
ns

−
∞∑
n=1

an
ns

∣∣∣∣∣ ≤ ϵ+ ϵ+ ϵ
∞∑
n=1

1

nRs
+ ϵ,

which tends to 0 when ϵ → 0.

Next, if f ∈ H ∞ is invertible, then there exists a g ∈ H ∞ such that for any s ∈
C0, f(s)g(s) = 1. Hence 1 = |f(s)g(s)| ≤ |f(s)| ∥g∥∞ so |f(s)| ≥ 1/ ∥g∥∞.

Reciprocally, if f(s) =
∑∞

n=1 ann
−s ∈ H ∞ with |f(s)| ≥ δ > 0, we have that 1/f ∈

H∞(C0). By Proposition 2.34, we get |a1| ≥ δ by letting Rs = σ → ∞. Hence there
exists σ > 0 such that

∑∞
n=2

|an|
|a1|n

−σ < 1. This allows us to expand the following fraction
as a geometric series:

1

1 +
∑∞

n=2
an
a1
n−s

=

∞∑
k=1

(
−

∞∑
n=2

an
a1

n−s

)k

,

which in turn can be expanded as a Dirichlet series. Indeed, the series on the right-hand

side is absolutely convergent so each
(
−
∑∞

n=2
an
a1
n−s

)k
can be rearranged, so for each

n−s there exists a unique and finite coefficient bn and we can write it as

1

1 +
∑∞

n=2
an
a1
n−s

=

∞∑
n=1

bn
ns

.

Thus we can write(
1

f

)
(s) =

1∑∞
n=1 ann

−s
=

1

a1

1

1 +
∑∞

n=2
an
a1
n−s

=
∞∑
n=1

bn
a1

n−s,

and (1/f) ∈ H ∞.

We will see that H ∞ is non-separable. But firstly we will need the following lemmas.

Lemma 3.6. If a metric space (X, d) contains an uncountable family of points {xi}i∈I
such that

δ := inf
i,j∈I
i ̸=j

d(xi, xj) > 0,

then X is not separable.

Proof. Let Y be a dense set in X, and consider for each j ∈ I the set Bj := B(xj , δ/2) =
{x ∈ X : d(x, xj) < δ/2}. Since Y is dense and Bj are open sets, there exists yj ∈ Bj ∩Y .
Given that Bj are pairwise disjoint, we have that for i ̸= j, yj ̸= yi. But if I is uncountable,
so is Y , and X is non-separable.

Corollary 3.7. The space H∞(D) is non-separable.
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Proof. By the last lemma, we just need to find an uncountable family {fζ}ζ∈T ⊂ H∞(D)
such that ∥fζ − fξ∥∞ ≥ 1 for any ζ, ξ ∈ T, ζ ̸= ξ. Consider the function

f(z) = exp
z + 1

z − 1

which is holomorphic in C \ {1}. For z ∈ D we have

|f(z)| = exp

(
−1− |z|2

|z − 1|2

)
< 1,

so f ∈ H∞(D). Its radial boundary limit at ζ ∈ T is

f∗(ζ) := lim
r→1−

f(rζ) =

{
f(ζ) ∈ T, if ζ ̸= 1

0, if ζ = 1.

Finally we define the set of functions {fζ}ζ∈T for ζ ∈ T as fζ(z) := f(ζz). Its radial
boundary values are

f∗
ζ (ξ) =

{
f∗(ζξ) ∈ T, if ξ ∈ T \ {ζ}
0, if ξ = ζ.

Now for ζ, ξ ∈ T and ζ ̸= ξ we have that

∥fζ − fξ∥∞ ≥ |f∗
ζ (ζ)− f∗

ξ (ζ)| = |f∗
ξ (ζ)| = 1.

This proves the result.

Lemma 3.8. The space H ∞ is non-separable.

Proof. We will see that there exists an isometry between (H∞(D), ∥·∥∞) and a subspace
of (H ∞, ∥·∥∞), hence H ∞ is non-separable.

If g(z) =
∑∞

n=0 bnz
n ∈ H∞(D), we define the mapping

∆:H∞(D) H ∞

g ∆g

with

∆g(s) = g(2−s) =
∞∑
n=0

bn(2
−s)n =

∞∑
n=0

bn
(2n)s

.

Indeed ∆g is an element of H ∞, since it is a Dirichlet series and it is in H∞(C0) given
that for s ∈ C0, 2−s ∈ D and g is analytic and bounded in D. It is an isometry since

∥g∥∞ = sup
z∈D

|g(z)| = sup
s∈C0

|g(2−s)| = ∥∆g∥∞ ,

where we have used that {2−s : s ∈ C0} = D.

Observation 3.9. We remark that this isometry is just a particular case of the Bohr’s
correspondence, which we will see later, for power series in one complex variable.
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We have seen that if f ∈ H ∞, then σa(f) ≤ 1. Now, we want to give global estimates
for the abscissas of convergence and of uniform convergence for the elements of H ∞. To
do so, the next result is needed.

Theorem 3.10 (Balasubramanian-Calado-Queffélec). Let f =
∑∞

n=1 ann
−s ∈ H ∞ and

SN (s) =
∑N

n=1 ann
−s for N ≥ 2. Then there exists C ≥ 0 such that

∥SN∥∞ ≤ C ∥f∥∞ logN.

Proof. We will use steps from the proof of the Perron-Landau formula (Proposition 2.40)
and Lemma 2.39. If x < n, from the deduction of equation (2.24), writing α = log(x/n)
we can get ∫ c+iT

c−iT

(x
n

)w dw

w
= 2πi+O

(
(x/n)c

T log(x/n)

)
.

And if x > n, from the deduction of equation (2.25) we get∫ c+iT

c−iT

(x
n

)w dw

w
= O

(
(x/n)c

T log(x/n)

)
.

So for x /∈ Z, c ∈ R and s ∈ C0 such that Rs + c > σa(f) we can rewrite equation
(2.26) as∫ c+iT

c−iT
f(s+ w)

xw

w
dw =

∑
n<x

an
ns

(
2πi+O

(
(x/n)c

T log(x/n)

))
+
∑
n>x

an
ns

(
O
(

(x/n)c

T log(x/n)

))

= 2πi
∑
n<x

an
ns

+
∞∑
n=1

an
ns

O
(

(x/n)c

T log(x/n)

)
and in turn, rearrange it into∣∣∣∣∣∑

n<x

an
ns

∣∣∣∣∣ ≤ 1

2π

∣∣∣∣∫ c+iT

c−iT
f(s+ w)

xw

w
dw

∣∣∣∣+O

∣∣∣∣∣
∞∑
n=1

an
ns

(x/n)c

T log(x/n)

∣∣∣∣∣ . (3.2)

We will choose c = 2 and x = N +1/2 for some N ≥ 2. Then, using that |an| ≤ ∥f∥∞
from Lemma 3.3, we get that the error term is controlled by∣∣∣∣∣

∞∑
n=1

an
ns

(x/n)c

T log(x/n)

∣∣∣∣∣ ≤ x2

T

∞∑
n=1

|an|
nRs+2| log(x/n)|

≤
x2 ∥f∥∞

T

∞∑
n=1

1

nRs+2| log(x/n)|
.

We will see that |log x/n| ≥ 1/4(N + 1/2).

We will use the following fact: if y ≥ 1, we have that (1 + 1/2y)2y ≥ e1/2. Indeed, the
inequality holds for y = 1 and (1 + 1/2y)2y is an increasing function. This is equivalent
to log(1 + 1/2y)2y ≥ 1/2 and log

(
y+1/2

y

)
≥ 1

4y . Hence, for n > x = N + 1/2 > N∣∣∣log x

n

∣∣∣ = log
n

x
≥ log

N + 1

N + 1/2
≥ 1

4(N + 1/2)
,

and for n < x we have∣∣∣log x

n

∣∣∣ = log
x

n
= log

N + 1/2

n
≥ log

N + 1/2

N
≥ 1

4N
≥ 1

4(N + 1/2)
.
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And in consequence, since x = N + 1/2∣∣∣∣∣
∞∑
n=1

an
ns

(x/n)c

T log(x/n)

∣∣∣∣∣ ≤ x2 ∥f∥∞
T

∞∑
n=1

4(N + 1/2)

nRs+2
≤ K

x3

T
∥f∥∞ ≤ K ∥f∥∞ ,

where the last inequality is achieved by choosing T = x3, and K is some positive constant.
Now to estimate the first term in the right-hand side of equation (3.2), we will use Cauchy’s
integral theorem on the rectangle with vertices 2± iT and ϵ± iT :

2+iT∫
2−iT

f(s+ w)
xw

w
dw =

ϵ+iT∫
ϵ−iT

f(s+ w)
xw

w
dw +

2+iT∫
ϵ+iT

f(s+ w)
xw

w
dw +

ϵ−iT∫
2−iT

f(s+ w)
xw

w
dw.

For the first term we have∣∣∣∣∫ ϵ+iT

ϵ−iT
f(s+ w)

xw

w
dw

∣∣∣∣ ≤ ∥f∥∞
∫ T

−T

|xϵ+it|
|ϵ+ it|

dt ≤ ∥f∥∞
∫ T

−T

xϵ√
ϵ2 + t2

dt

= 2 ∥f∥∞ xϵ
∫ T/ϵ

0

du√
u2 + 1

= 2 ∥f∥∞ xϵ log

(
T

ϵ
+

√
T 2

ϵ2
+ 1

)
.

The second term is bounded by∣∣∣∣∫ 2+iT

ϵ+iT
f(s+ w)

xw

w
dw

∣∣∣∣ ≤ ∥f∥∞
∫ 2

ϵ

|xt+iT |
|t+ iT |

dt ≤ ∥f∥∞
∫ 2

ϵ

xt

T
dt ≤

2 ∥f∥∞ x2

T
=

2 ∥f∥∞
x

,

and similarly for the third term∣∣∣∣∫ ϵ−iT

2−iT
f(s+ w)

xw

w
dw

∣∣∣∣ ≤ 2 ∥f∥∞
x

.

Substituting in (3.2) we get∣∣∣∣∣∑
n<x

an
ns

∣∣∣∣∣ ≤ 1

2π

(
4 ∥f∥∞

x
+ 2 ∥f∥∞ xϵ log

(
T

ϵ
+

√
T 2

ϵ2
+ 1

))
+K ∥f∥∞ .

Adjusting ϵ = 1/ log x so that xϵ = e and T/ϵ = x3 log x, the desired inequality is achieved,
for some constant C independent of N∣∣∣∣∣∑

n<x

an
ns

∣∣∣∣∣ ≤ 1

2π

(
4 ∥f∥∞

x
+ 2 ∥f∥∞ e log

(
x3 log x

))
+K ∥f∥∞ ≤ C ∥f∥∞ logN.

Theorem 3.11 (Bohr). Let f =
∑∞

n=1 ann
−s ∈ H ∞, then σu(f) ≤ 0 and σc(f) ≤ 0.

Proof. We will see that
∑∞

n=1 ann
−s−ϵ converges uniformly in C0 for any ϵ > 0. We will

perform an Abel transformation with SN (s) =
∑N

n=1 ann
−s where we write S0(s) ≡ 0:

N∑
n=1

an
ns+ϵ

=

N∑
n=1

Sn(s)− Sn−1(s)

nϵ
=

N∑
n=1

Sn(s)

nϵ
−

N∑
n=1

Sn−1(s)

nϵ

=
N∑

n=1

Sn(s)

nϵ
−

N−1∑
n=0

Sn(s)

(n+ 1)ϵ
=

N−1∑
n=1

Sn(s)

(
1

nϵ
− 1

(n+ 1)ϵ

)
+

SN (s)

N ϵ
.
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We will see that the right-hand side is normally convergent, that is

N−1∑
n=1

sup
s∈C0

∣∣∣∣Sn(s)

(
1

nϵ
− 1

(n+ 1)ϵ

)∣∣∣∣+ sup
s∈C0

∣∣∣∣SN (s)

N ϵ

∣∣∣∣ (3.3)

converges, which implies the uniform convergence of the Dirichlet series. Indeed, the
partial sum is bounded by

N−1∑
n=1

sup
s∈C0

∣∣∣∣Sn(s)

(
1

nϵ
− 1

(n+ 1)ϵ

)∣∣∣∣ ≤ N−1∑
n=1

Cϵ ∥f∥∞ log n

(n+ 1)1+ϵ
,

where we have used Theorem 3.10 and the mean value theorem. The remaining term is
bounded by

sup
s∈C0

∣∣∣∣SN (s)

N ϵ

∣∣∣∣ ≤ C ∥f∥∞ logN

N ϵ
.

Hence (3.3) converges for any ϵ > 0. This implies the uniform convergence of f(s+ ϵ) in
C0 for any ϵ > 0 since∣∣∣∣∣

N∑
n=1

an
ns+ϵ

− f(s+ ϵ)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

an
ns+ϵ

∣∣∣∣∣ ≤
∞∑

n=N+1

∣∣∣ an
ns+ϵ

∣∣∣ ≤ ∞∑
n=N+1

sup
s∈C0

∣∣∣ an
ns+ϵ

∣∣∣ N→∞−−−−→ 0,

and the last bound is independent of s. This means that σu(f) ≤ 0 which implies that
σc(f) ≤ 0.

Observation 3.12. This theorem could have also been proved as a consequence of Lemma
2.25 instead of a result of the control of the partial sums.

Observation 3.13. Notice that Bohr’s Theorem shows that if f ∈ H ∞, then the Dirichlet
series which it represents converges to f in C0, which is not obvious from the definition
of H ∞ since, a priori, the convergence was only for a smaller half-plane. This means
that f can be written as a Dirichlet series in the whole C0 and, in particular, ∥f∥∞ =
sups∈C0

|
∑∞

n=1 ann
−s|.

We will now see that H ∞ is a strict subset of H∞(C0), but we firstly need the following
lemma. It is similar to Perron’s formula in the sense that it lets us retrieve the coefficients
from the limit function, but it is recursive because we need the first n − 1 coefficients to
compute the n-th coefficient.

Lemma 3.14. Let f =
∑∞

n=1 ann
−s ∈ H ∞, then for any N ≥ 1

aN = lim
Rs→∞

N s

(
f(s)−

N−1∑
n=1

an
ns

)
.

Proof. Choose s ∈ C0 with Rs = σ > 2. Then, using Lemma 3.3,∣∣∣∣∣N s

(
f(s)−

N−1∑
n=1

an
ns

)
− aN

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=N+1

an

(
N

n

)s
∣∣∣∣∣ ≤ ∥f∥∞

∞∑
n=N+1

(
N

n

)σ−2(N

n

)2

.
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Now given that n ≥ N + 1 and σ > 2 we have (N/n)σ−2 ≤ ( N
N+1)

σ−2 and then∣∣∣∣∣N s

(
f(s)−

N−1∑
n=1

an
ns

)
− aN

∣∣∣∣∣ ≤ ∥f∥∞
(

N

N + 1

)σ−2 ∞∑
n=N+1

(
N

n

)2

≤ π2

6
N2

(
N

N + 1

)σ−2

∥f∥∞
σ→∞−−−→ 0,

which proves the claim.

Proposition 3.15. The set H ∞ is a strict subset of H∞(C0).

Proof. We just need to find f ∈ H∞(C0) \H ∞. Let f(s) = e−s ∈ H∞(C0), and suppose
it can be represented as a Dirichlet series so f(s) =

∑∞
n=1 ann

−s in C0. Then by Lemma
3.14, we have that

a1 = lim
Rs→∞

e−s = 0, and a2 = lim
Rs→∞

2se−s = 0,

but |a3| = limRs→∞ |3se−s| = ∞, hence f /∈ H ∞.

Observation 3.16. Note that this proposition shows an essential difference between Dirich-
let series and power series, in the sense that holomorphicity does not imply the expansion
of the function as a Dirichlet series, as it does with power series. We have seen this in the
last example, where f(s) = e−s is an entire function, but does not have a representation
as Dirichlet series in any half-plane.

3.2 Properties of H 2

Proposition 3.17. If f(s) =
∑∞

n=1 ann
−s ∈ H 2, then σa(f) ≤ 1/2.

Proof. Applying Cauchy-Schwarz’s inequality with σ = Rs,

∞∑
n=1

|an|
nσ

≤

( ∞∑
n=1

|an|2
)1/2( ∞∑

n=1

1

n2σ

)1/2

= ∥f∥2 ζ(2σ)
1/2,

which converges if σ ≥ 1/2.

Observation 3.18. This bound is sharp. For example, it is attained by the series f(s) =∑∞
n=2

1√
n logn

1
ns . Indeed, f ∈ H 2 since

∞∑
n=2

1

|
√
n log n|2

=

∞∑
n=2

1

n log2 n
< +∞.

We have σa(f) = 1/2 due to the fact that

∞∑
n=2

1√
n log n

1

nσ
=

∞∑
n=2

1

n1/2+σ log n

converges if σ > 1/2 by the comparison test with the ζ function, and diverges by Cauchy’s
condensation test for σ = 1/2.
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Proposition 3.19. The space H 2 is a Hilbert space with the scalar product

⟨f, g⟩ =
∞∑
n=1

anbn,

for f =
∑∞

n=1 ann
−s, g =

∑∞
n=1 bnn

−s ∈ H 2.

Proof. The result follows from noticing that H 2 is formally just ℓ2 with the isometry

ϕ : ℓ2 H 2

(an)n
∞∑
n=1

ann
−s

,

and that ℓ2 is a Hilbert space with the product ⟨(an)n, (bn)n⟩ =
∑∞

n=1 anbn.

Since H 2 is a Hilbert space, it is a natural question to find its reproducing kernel. The
reproducing kernel and its estimates are a key tool when studying problems in operator
theory. For H 2 we will see that it is related to the Riemann’s ζ function.

We recall that if s ∈ C0, the point evaluation functional ϕs : H 2 → C defined as
ϕs(f) = f(s) is bounded by Proposition 3.17. Then, since H 2 is a Hilbert space, by
Riesz’s representation theorem, there exists a function ks ∈ H 2 such that f(s) = ⟨f, ks⟩
for all f ∈ H 2. The reproducing kernel is then defined as K(s, a) = ks(a), and has the
reproducing property

⟨f(s),K(s, a)⟩ = f(a).

Moreover, if {en(s)}n is an orthonormal basis in H 2, then

K(s, a) =
∞∑
n=1

en(s)en(a).

Proposition 3.20. The reproducing kernel of H 2 is KH 2(s, a) = ζ(s + a) ∈ H 2, with
a ∈ C1/2.

Proof. An orthonormal basis in H 2 is given by en(s) = n−s for n ≥ 1. Hence we have
that the reproducing kernel is

KH 2(s, a) =

∞∑
n=1

n−sn−a =

∞∑
n=1

n−(s+a) = ζ(s+ a).

It is easy to see that the reproducing property is verified. If f ∈ H 2 then

⟨f(s), ζ(s+ a)⟩ =
∞∑
n=1

an
1

na
=

∞∑
n=1

an
na

= f(a).

Proposition 3.21 (Carlson’s identity). If f =
∑∞

n=1 ann
−s ∈ H 2, then

∞∑
n=1

|an|2

n2σ
= lim

T→∞

1

2T

∫ T

−T

∣∣∣∣∣
∞∑
n=1

an
nσ+it

∣∣∣∣∣
2

dt,

for any σ > σu. This identity is also valid for f ∈ H ∞ and any σ > 0.
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Proof. For σ > σu, we have that

|f(σ + it)|2 =
∞∑
n=1

an
nσ+it

∞∑
m=1

am
mσ−it

=

∞∑
n=1

|an|2

n2σ
+
∑
n̸=m

aman
nσmσ

(m
n

)it
,

and since the series is absolutely and uniformly convergent for all t, we can integrate term
by term: ∫ T

−T
|f(σ + it)|2dt =

∞∑
n=1

|an|2

n2σ
+
∑
n̸=m

aman
nσmσ

∫ T

−T

(m
n

)it
dt.

From the proof of Proposition 2.38, using equation (2.21) we know that∫ T

−T

(m
n

)it
dt =

sin(T log(m/n))

T log(m/n)
,

which is bounded for all m, n and T . Thus, the double series∑
n̸=m

aman
nσmσ

sin(T log(m/n))

T log(m/n)

converges uniformly with respect to T . Hence we can take the limit term by term and
obtain the result:

lim
T→∞

1

2T

∫ T

−T
|f(σ+it)|2dt =

∞∑
n=1

|an|2

n2σ
+
∑
n̸=m

aman
nσmσ

lim
T→∞

1

2T

sin(T log(m/n))

T log(m/n)
=

∞∑
n=1

|an|2

n2σ
.

The proof for f ∈ H ∞ follows the same steps.

Observation 3.22. The norm of a function f ∈ H 2 is computed using the coefficients
of the series, but can also expressed directly from the function itself if σu(f) < 0. Indeed,
we can use Carlson’s identity with σ = 0 and then

∥f∥22 = lim
T→∞

1

2T

∫ T

−T
|f(it)|2dt.

This is analogous to the fact that the norm of a function f(z) =
∑∞

n=1 anz
n in H2(D) can

be computed both as

∥f∥22 = lim
r→1−

1

2π

∫ π

−π
|f(reiθ)|2dθ

and

∥f∥22 =
∞∑
n=1

|an|2.

Theorem 3.23. We have the inclusion H ∞ ⊂ H 2. And in particular, if f ∈ H ∞ then

∥f∥2 ≤ ∥f∥∞ .
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Proof. Let f ∈ H ∞. Then for any σ > 0, f converges uniformly in Cσ, and then for any
ϵ > 0 there exists N0 ≥ 1 such that for any N ≥ N0

sup
Rs=σ

∣∣∣∣∣
N∑

n=1

an
ns

− f(s)

∣∣∣∣∣ < ϵ,

and in consequence

sup
Rs=σ

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ ≤ ∥f∥∞ + ϵ.

Using Carlson’s identity (Proposition 3.21):(
N∑

n=1

∣∣∣an
nσ

∣∣∣2)1/2

=

 lim
T→∞

1

2T

∫ T

−T

∣∣∣∣∣
N∑

n=1

an
nσ+it

∣∣∣∣∣
2

dt

1/2

≤
(

lim
T→∞

1

2T
(∥f∥∞ + ϵ)22T

)1/2

≤ ∥f∥∞ + ϵ.

Finally, letting σ and ϵ tend to zero, and N to infinity, the inequality is proved. Hence,
f ∈ H 2, and consequently H ∞ ⊂ H 2.

Observation 3.24. The inclusion is strict. We have seen in Observation 3.18 that the
series f(s) =

∑∞
n=2

1√
n logn

1
ns has σa(f) = 1/2. Since all its coefficients are non-negative,

using Proposition 2.28, we get that σc(f) = 1/2. Hence f cannot be in H ∞, because if it
was, by Bohr’s Theorem we would have σc(f) ≤ 0.

Observation 3.25. Notice the analogy with Hardy spaces in the unit disk, where H∞(D) ⊊
H2(D).

For the next proposition and later in the chapter, we need the following theorem that
we will assume without proof:

Theorem 3.26 (Kronecker). If p1, . . . , pN are prime numbers, then
{
(pit1 , . . . , p

it
N ) : t ∈ R

}
is dense in TN .

One of the most interesting properties of Dirichlet series that we have yet to mention is
that they are almost periodic in the vertical direction. In fact, they are uniformly almost
periodic, which is a stronger property, but as a brief insight we just prove the following
weaker version.

Proposition 3.27. If f ∈ H 2 and σu(f) < 0, then f is almost-periodic in the vertical
direction. That is, for any ϵ > 0 there exists a T > 0 such that

∥f(s+ iT )− f(s)∥2 < ϵ. (3.4)

Proof. Notice that it is enough to prove the result for Dirichlet polynomials, as we can
approximate uniformly any function g ∈ H 2 by Dirichlet polynomials. Let f(s) =∑N

n=1 ann
−s ∈ H 2 be a Dirichlet polynomial.

By Kronecker’s Theorem, we have that if p1, . . . , pπ(N) are prime numbers, then for
any ϵ > 0 there exists T > 0 such that

d(T log(pi), 2πZ) < ϵ for i = 1, . . . , π(N).
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So if n = pα1
1 · · · pαk

k , with αi ∈ N, we have

|n−iT − 1| = |e−iT logn − 1| = | exp (−iT (α1 log p1 + · · ·+ αk log pk))− 1|.

Using the Taylor expansion for the exponential and that T log pi is arbitrarily close to
2πZ, we have for any i = 1, . . . , k

|1− e−iTαi log pi | = |iαiϵ+O(ϵ2)| = αiϵ+O(ϵ2).

Hence, for each 1 ≤ n ≤ N there exists K(n) ≥ 0 such that

|n−iT − 1| = |e−iT (α1 log p1+···+αk log pk) − 1| = |e−iT (α1 log p1) · · · e(−iT (αk log pk) − 1|
= |(1 + α1ϵ+O(ϵ2)) · · · (1 + αkϵ+O(ϵ2))− 1| = (α1 + · · ·+ αk)ϵ+O(ϵ2) ≤ K(n)ϵ.

Moreover, for any 1 ≤ n ≤ N we have that |n−iT − 1| ≤ Kϵ with K = max1≤n≤N K(n).
So using Carlson’s identity, we have

∥f(s+ iT )− f(s)∥2 =

 lim
L→∞

1

2L

∫ L

−L

∣∣∣∣∣
N∑

n=1

an

ni(t+T )
−

N∑
n=1

an
nit

∣∣∣∣∣
2

dt

1/2

=

 lim
L→∞

1

2L

∫ L

−L

∣∣∣∣∣
N∑

n=1

an
nit

(
n−iT − 1

)∣∣∣∣∣
2

dt

1/2

≤ Kϵ

 lim
L→∞

1

2L

∫ L

−L

∣∣∣∣∣
N∑

n=1

an
nit

∣∣∣∣∣
2

dt

1/2

≲ ϵ,

which proves the result.

3.3 Bohr’s point of view

Now, we will describe Bohr’s transformation, that he proposed around 1913 [5, 6].
He noticed that, using the prime decomposition of natural numbers in a Dirichlet series,
each prime behaved as an independent variable. So, Bohr proposed a mapping that lets
us transform a Dirichlet series into a power series in an infinite number of variables and
vice-versa. To make this transformation explicit, we will firstly need a few definitions.

Definition 3.28. A multi-index α = (α1, . . . , αn, 0, 0, . . . ) is an element of NN, which
are the sequences of non-negative integers that are 0 except for a finite number of entries.
We will write |α| :=

∑∞
n=1 αn.

We also define the product by a scalar k ∈ N as kα := (kα1, . . . , kαn, 0, 0, . . . ), and the
addition of multi-indices α+ β := (α1 + β1, . . . , αn + βn, 0, 0, . . . ).

If z = (z1, z2, . . . ) ∈ C∞ and α is a multi-index, we write zα :=
∏∞

n=1 z
αn
n . We will

also define |z| = (|z1|, |z2|, . . . ) and |z|α =
∏∞

n=1 |zn|αn.

With a similar notation, if n ∈ N, then its factorization in prime numbers is unique
and hence there exists a multi-index α = α(n) such that

pα :=
∞∏
n=1

pαn
n = pα1

1 · · · pαπ(n)

π(n) = n,

where π(n) is the function that counts the number of primes less than or equal to n.
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Definition 3.29. A power series in infinitely many variables z = (z1, z2, . . . ) ∈ C∞

is a formal object of the form

P (z) =
∑
α∈NN

cαz
α, cα ∈ C.

We will define P as the space of power series P in an arbitrary (may be infinite) number
of variables.

Observation 3.30. Notice that since a multi-index only has a finite number of non-zero
entries, each of the terms in the power series contains a finite number of variables.

Now let P (z) =
∑

α∈NN cαz
α be a power series in infinitely many variables. Considering

the decomposition of each integer n into primes, we can associate each coefficient cα in
the power series to a unique n = pα, and in turn write cα = apα = an. Hence we can write
the correspondence, which we will call Bohr’s transformation B, as

B : P D∑
α∈NN

cαz
α

∞∑
n=1

ann
−s,

cα=apα=an

Roughly, this transformation can be seen as evaluating the polynomial in the sequence
z = (1/ps1, 1/p

s
2, 1/p

s
3, . . . ) = 1/ps ∈ C∞:

B(P )(z) = P (1/ps) =
∑
α∈NN

cα

(
1

ps

)α

=
∞∑
n=1

ann
−s = f(s).

Note that if s ∈ C0, then z = 1/ps ∈ D∞. We will refer to the inverse correspondence
as Bohr’s lift L = B−1:

L : D P
∞∑
n=1

ann
−s

∑
α∈NN

cαz
α

cα=apα=an
.

This is the main idea behind Bohr’s transformation B and lift L. Notice that we have
treated P (z) and f(s) as formal objects, without explicitly detailing where both converge
and make sense. Our aim now is to give a precise statement of this approach. We will not
study power series on their own, but the image of a Dirichlet series by Bohr’s lift, hence
we will only need to know where the image of a Dirichlet series converges.

In particular, we want to give isometric identifications for H 2 and H ∞. To do so, we
will need to define a couple of new function spaces and some propositions.

Proposition 3.31. If f ∈ H 2, then its image by Bohr’s lift Lf is well defined for z ∈
D∞ ∩ ℓ2.

Proof. Let f(s) =
∑∞

n=1 ann
−s and z ∈ D∞ ∩ ℓ2. Using Cauchy-Schwarz’s inequality, we

have that

|Lf(z)|2 =

∣∣∣∣∣ ∑
α∈NN

apαz
α

∣∣∣∣∣
2

≤

( ∑
α∈NN

|apα |2
)( ∑

α∈NN

|z|2α
)

=

( ∞∑
n=1

|an|2
)( ∑

α∈NN

|z|2α
)

= ∥f∥22

( ∑
α∈NN

|z|2α
) (3.5)
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Next, observe that, wherever the following product is inconditionally convergent, we
have the equality

∞∏
i=1

( ∞∑
n=1

|zi|2n
)

= (1 + |z1|2 + |z1|4 + . . . )(1 + |z2|2 + |z2|4 + . . . ) · · · =
∑
α∈NN

|z|2α

since, by a rearrangement of the left-hand side, we can get any product
∏

|zi|2αi = |z|2α.

Now, given that |zi| < 1, we can write explicitly the result of the geometric series, so

∞∏
i=1

( ∞∑
n=1

|zi|2n
)

=

∞∏
i=1

(1− |zi|2)−1,

and using this equality in equation (3.5)

|Lf(z)|2 ≤ ∥f∥22
∞∏
i=1

(1− |zi|2)−1

This infinite product converges since
∑∞

m=1 |zm|2 < +∞. Hence, the point evaluation of
Lf(z) is bounded if z ∈ D∞ ∩ ℓ2.

Definition 3.32. We define H2(D∞) ⊂ P as the function space of power series P in D∞

P (z) =
∑
α∈NN

apαz
α with ∥P∥2H2(D∞) :=

∞∑
n=1

|an|2 < +∞.

Observation 3.33. In fact, if Lf is finitely bounded, which we will define below, then the
point evaluation is well defined in a bigger set, namely D∞∩c0. See [12] and the references
therein for the proof.

Definition 3.34. We define the m-th section for z = (z1, z2, . . . ) ∈ D∞ as

z(m) = (z1, z2, . . . , zm, 0, . . . ).

Then we say that Lf is finitely bounded in D∞ if L(z(m)) converges absolutely on D∞

for each m ≥ 1 and there exists some constant C ≥ 0, independent of m, such that
|L(z(m))| ≤ C.

The set of functions Lf that are finitely bounded is defined as H∞(D∞), and the point
evaluation is defined as

Lf(z) = lim
m→∞

Lf(z(m)),

where the limit makes sense for z ∈ D∞ ∩ c0 (again, see [12] and the references therein).
We will also define the norm

∥Lf∥H∞(D∞) = sup
z∈D∞
m≥1

|Lf(z(m))|.

Definition 3.35. If f ∈ L2(T∞, ρ) and α ∈ ZN, then the α-th Fourier coefficient for
f is defined as

f̂(α) =

∫
T∞

f(z)z−αdρ(z).

Recall that ρ is the probability measure in T∞.
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The function f can be uniquely determined by its Fourier coefficients and its Fourier
series ∑

α∈NN

f̂(α)zα.

We define the Hardy space H2(T∞) as the subset of L2(T∞) which have null Fourier
coefficients outside the narrow cone, i.e.

H2(T∞) = {f ∈ L2(T∞) : f̂(α) = 0 if α /∈ NN},

with norm
∥f∥2H2(T∞) :=

∫
T∞

|f(z)|2dρ(z).

Similarly, we define H∞(T∞) as the subset of L∞(T∞)

H∞(T∞) = {f ∈ L∞(T∞) : f̂(α) = 0 if α /∈ NN},

with norm

∥f∥H∞(T∞) := lim
p→∞

(∫
T∞

|f(z)|pdρ(z)
)1/p

.

Now we can give the triple identification which will be useful at the end of the chapter.
Proofs of this result can be found in [11], in particular Theorem 3.8 and 5.1, and in the
paper [9, Th 11.2].

Theorem 3.36. There exist three unique isometric, linear bijections between the spaces
H 2, H2(T∞) and H2(D∞) by means of the identification of Dirichlet, Fourier and power
series coefficients, respectively:

H 2 H2(T∞) H2(D∞)

∞∑
n=1

ann
−s

∑
α∈NN

f̂(α)zα
∑

α∈NN
cαz

α

P

L

E

an=apα=f̂(α)

an=apα=cα

f̂(α)=cα

Moreover, the isometry holds for the corresponding subspaces H ∞, H∞(T∞) and
H∞(D∞), that is:

H ∞ H∞(T∞) H∞(D∞)

∞∑
n=1

ann
−s

∑
α∈NN

f̂(α)zα
∑

α∈NN
cαz

α

P

L

E

an=apα=f̂(α)

an=apα=cα

f̂(α)=cα
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Observation 3.37. The proof of this theorem is outside of the scope of this work due
to its length, but we can give some rough ideas for the proof. A known fact in harmonic
analysis is that the Hardy space H∞(D) can be identified isometrically with H∞(T) via
the identification of monomial and Fourier coefficients. This can be extended to finite
dimensions H∞(DN ) ≡ H∞(TN ) and finally to infinite dimensions as is the statement of
the theorem. Again, see [11] for details.

For the isometries H ∞ ≡ H∞(D∞) and H 2 ≡ H2(T∞), we can prove the two follow-
ing theorems which give the isometry for finite dimensions, and then the result for infinite
dimensions follows from the fact that H ∞ and H 2 are completion spaces.

Observation 3.38. Given that the isometries hold, to simplify the notation we will sim-
ply write ∥·∥H2(T∞) and ∥·∥H2(D∞) as ∥·∥2. Similarly we will also write ∥·∥H∞(T∞) and
∥·∥H∞(D∞) as ∥·∥∞.

Theorem 3.39 (Bohr’s fundamental lemma). If f(s) =
∑N

n=1 ann
−s is a Dirichlet poly-

nomial, then

∥f∥∞ = sup
s∈C0

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ = sup
z∈Dπ(N)

∣∣∣∣∣∣∣∣
∑

α∈Nπ(N)

1≤pα≤N

apαz
α

∣∣∣∣∣∣∣∣ = ∥L(f)∥∞ .

For the proof of this theorem we will firstly need a couple of previous lemmas, namely
the version of Kronecker’s theorem that we have seen in the last section (see Theorem
3.26), and the distinguished maximum principle for analytic functions in DN .

Lemma 3.40 (Distinguished maximum principle). Let f be a continuous function in DN

and holomorphic in DN . Then

sup
z∈DN

|f(z)| = sup
z∈TN

|f(z)|.

Proof. We will prove it by induction. The case for N = 1 is a result of de maximum
modulus principle for holomorphic functions in one complex variable.

Suppose the result is true for N , and that f is a continuous function in DN+1 and
holomorphic in DN+1. Fix w ∈ T and consider the function fw : DN → C defined as
fw(z) = f(z, w). Notice that the function fw is continuous in DN , but it may not be
holomorphic since w ∈ T. But since f is uniformly continuous on DN+1, then fw is the
uniform limit on DN of the sequence fN (z) = f(u, N−1

N w). Hence fw is holomorphic in
DN and continuous in DN . Applying the distinguised maximum principle to fw:

sup
z∈DN+1

|f(z)| = sup
u∈DN

(
sup

zN+1∈D
|f(u, zN+1)|

)
= sup

u∈DN

(
sup

wN+1∈T
|f(u,wN+1)|

)

= sup
wN+1∈T

(
sup
u∈DN

|f(u,wN+1)|

)
= sup

wN+1∈T

(
sup
u∈TN

|f(u,wN+1)|

)
= sup

w∈TN+1

|f(w)|.
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Proof (Bohr’s fundamental lemma). Notice that using Proposition 2.37, we have

∥f∥∞ = sup
s∈C0

∣∣∣∣∣
N∑

n=1

an
ns

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣
N∑

n=1

ann
it

∣∣∣∣∣ .
By Kronecker’s theorem (see Theorem 3.26), we have

sup
t∈R

∣∣∣∣∣
N∑

n=1

ann
it

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣∣∣∣
∑

α∈Nπ(N)

1≤pα≤N

apα(p
it
1 )

α1 · · · (pitπ(N))
απ(N)

∣∣∣∣∣∣∣∣ = sup
z∈TN

∣∣∣∣∣∣∣∣
∑

α∈Nπ(N)

1≤pα≤N

apαz
α

∣∣∣∣∣∣∣∣ .
And finally, using Lemma 3.40

sup
z∈TN

∣∣∣∣∣∣
∑

α∈NN

apαz
α

∣∣∣∣∣∣ = sup
z∈DN

∣∣∣∣∣∣
∑

α∈NN

apαz
α

∣∣∣∣∣∣ = ∥L(f)∥∞ ,

which proves the equality in the statement of the theorem.

Observation 3.41. Since H ∞ is the completion space of polynomials under the ∥·∥∞
norm, using Bohr’s fundamental lemma we get that H ∞ and H∞(D∞) are isometric.

Theorem 3.42. If f(s) =
∑N

n=1 ann
−s is a Dirichlet polynomial, then

∥f∥2 = ∥P(f)∥2 =
(∫

Tπ(N)

|P(f)(z)|2dz
)1/2

.

Proof. We have
P(f)(z) =

∑
α∈Nπ(N)

1≤pα≤N

apαz
α.

Its norm in H2(Tπ(N)) is

∥P(f)∥22 =
∫

Tπ(N)

|P(f)(z)|2dz =

∫
Tπ(N)

∣∣∣∣∣ ∑
α∈Nπ(N)

1≤pα≤N

apαz
α

∣∣∣∣∣
2

dz

=

∫
Tπ(N)

( ∑
α∈Nπ(N)

1≤pα≤N

|apα |2zαzα +
∑
α ̸=β

1≤pα,pβ≤N

apαapβz
αzβ

)
dz =

N∑
n=1

|an|2 = ∥f∥22 ,

where we have used that, by Fubini’s theorem,∫
Tπ(N)

zαzβdz =

{
1, if α = β

0, if α ̸= β.
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3.4 Multipliers of H 2

As we will see from the following theorem, the space H 2 is not a Banach algebra, that
is, the product of two functions in H 2 might not be an element of H 2. This leads to the
study of the multipliers of H 2, which are defined as follows:

Definition 3.43. We say that an analytic function m in C1/2 is a multiplier of H 2 if
mf ∈ H 2 for any f ∈ H 2. We will denote the set of all multipliers of H 2 as M (H 2).

We define the operator norm for m ∈ M (H 2) as

∥m∥M = sup
f∈H 2

{∥mf∥2 : ∥f∥2 = 1}.

The problem of characterising M (H 2) was solved in a seminal paper by Hedenmalm,
Lindqvist and Seip in 1997 in Duke Mathematical Journal [12]. This paper revived the
analytic theory of Dirichlet series and started a renaissance of this area of study. It used
heavily once again Bohr’s lift and the correspondence between Dirichlet series and power
series in an arbitrary number of variables. The result can be summed up in the following
theorem.

This result is analogous to Schur’s theorem for Hardy spaces in the unit disk, that is
M (H2(D)) = H∞(D). In fact, the proof follows similar steps but it is more complex.
Though notice the difference that in our case, the multipliers are defined in a bigger set
than the functions in H 2, namely C0 instead of C1/2.

Theorem 3.44 (Hedenmalm-Lindqvist-Seip). Let m be an analytic function in C1/2.
Then m is a multiplier of H 2 if and only if m ∈ H ∞. In other words,

M (H 2) = H ∞.

Moreover, if m ∈ M (H 2) then ∥m∥M = ∥m∥∞.

Proof. • We will firstly prove the inclusion H ∞ ⊂ M (H 2) and that ∥m∥M ≤ ∥m∥∞.

Let m(s) =
∑∞

n=1 ann
−s ∈ H ∞ and f(s) =

∑∞
n=1 bnn

−s ∈ H 2. We want to see that
the product (mf)(s) =

∑∞
n=1 cnn

−s with cn =
∑

jk=n ajbk is in H 2.

For N ≥ 1, we define the polynomial fN (s) =
∑N

n=1 bnn
−s and the product

(mfN )(s) =

∞∑
n=1

c
(N)
n

ns
with c(N)

n =
∑
jk=n
k≤N

ajbk.

Applying Carlson’s identity (see Proposition 3.21) for σ > 0 to the function mfN (s) ∈
H ∞,

∞∑
n=1

|c(N)
n |2

n2σ
= lim

T→∞

1

2T

∫ T

−T
|m(σ + it)|2|fN (σ + it)|2dt

≤ ∥m∥2∞ lim
T→∞

1

2T

∫ T

−T
|fN (σ + it)|2dt = ∥m∥2∞

N∑
n=1

|bn|2

n2σ
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and letting σ → 0, using Fatou’s lemma, we get

∞∑
n=1

|c(N)
n |2 ≤ ∥m∥2∞ ∥f∥22 . (3.6)

Now observing that

c(N)
n =

∑
jk=n
k≤N

ajbk
N→∞−−−−→

∑
jk=n

ajbk = cn.

and letting N tend to infinity in (3.6) we get, once again by Fatou’s lemma,

∥mf∥22 =
∞∑
n=1

|cn|2 ≤ ∥m∥2∞ ∥f∥22 ,

which implies that mf ∈ H 2 and ∥m∥M ≤ ∥m∥∞.

• Now we will see that M (H 2) ⊂ H ∞ and that ∥m∥∞ ≤ ∥m∥M . Recall that by
Theorem 3.36, we have the following commutative isometric diagram:

H 2 H2(T∞)

H2(D∞)

P

L E

Let m ∈ M (H 2). Since 1 ∈ H 2, we have that 1 ·m = m ∈ H 2. So m can be written
as a convergent Dirichlet series in C1/2:

m(s) =
∞∑
n=1

bnn
−s with

∞∑
n=1

|bn|2 < ∞.

We want to see that P(mj) = (Pm)j ∈ L1(T∞, ρ) for j ≥ 1. To prove it, we will show
the two following claims.

–
∥∥mj

∥∥
2
≤ ∥m∥jM : We will prove it by induction. By the definition of the operator

norm, for f ∈ H 2 we have that

∥mf∥2 ≤ ∥m∥M ∥f∥2 . (3.7)

For j = 1 we consider f = 1 in equation (3.7) and get ∥m∥2 ≤ ∥m∥M . Now suppose
that

∥∥mj
∥∥
2
≤ ∥m∥jM for some j ≥ 1, in particular we have that mj ∈ H 2. So

mmj ∈ H 2 and considering f = mj in (3.7) we get that
∥∥mj+1

∥∥
2
≤ ∥m∥M

∥∥mj
∥∥
2
≤

∥m∥j+1
M .

– P(mf) = PmPf in L1(T∞, ρ) if f ∈ H 2. Let f ∈ H 2, then Pm,Pf ∈ H2(T∞).
By the Cauchy-Schwarz inequality

∥PmPf∥1 =
∫
T∞

|PmPf |dρ ≤
(∫

T∞
|Pm|2dρ

)1/2(∫
T∞

|Pf |2dρ
)1/2

= ∥Pm∥2 ∥Pf∥2 < ∞,
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hence PmPf ∈ L1(T∞, ρ). Also, since m is a multiplier, we have that mf ∈ H 2 so
P(mf) ∈ H2(T∞) ⊂ L1(T∞, ρ).
Since P is a linear and continuous operator, we only need to prove the equality for
a multiplier and an element of a basis in H 2. A basis in H 2 is {n−s}n, so let
f(s) = k−s for some k ≥ 1. Then

(mf)(s) =

( ∞∑
n=1

bnn
−s

)
(k−s) =

∞∑
n=1

bn
(nk)s

=
∞∑
n=1

an
ns

,

where we define an = bn/k if n is divisible by k and an = 0 otherwise. Then (Pm)(z) =∑
bnz

α(n) and (Pf)(z) = zα(k). Hence

(Pm)(Pf)(z) = zα(k)
∑

bnz
α(n) =

∑
bnz

α(n)+α(k).

On the other hand, P(mf)(z) =
∑

amzα(m). We can see that P(mf) = PmPf since∑
amzα(m) =

∑
bnz

α(n)+α(k). Indeed, am = bn if and only if

m = k · n ⇐⇒ pα(m) = pα(k)pα(n) = pα(k)+α(n) ⇐⇒ α(m) = α(n) + α(k),

as we wanted. The result for an infinite Dirichlet series f is obtained by the approx-
imation of f by Dirichlet polynomials, since they are dense in H 2.

All this implies that P(mj) = (Pm)j ∈ L1(T∞, ρ), so(∫
T∞

|Pm|2jdρ
)1/2j

=
∥∥(Pm)j

∥∥1/j
H2(T∞)

=
∥∥P(mj)

∥∥1/j
H2(T∞)

=
∥∥mj

∥∥1/j
2

≤ ∥m∥M ,

where we have used the first claim in the last inequality. Since limj→∞
∥∥(Pm)j

∥∥1/j
H2(T∞)

=

∥Pm∥∞ the above inequality yields

∥Pm∥∞ ≤ ∥m∥M .

Thus, Pm ∈ H∞(T∞).
Next, by Theorem 3.36, the map

E|H∞(T∞) : H
∞(T∞) H∞(D∞) (3.8)

is an isometry for the ∥·∥∞ norm. Hence Lm = EPm ∈ H∞(D∞) and ∥Lm∥∞ =
∥Pm∥H∞(T∞). We have

Lm(z) =
∑
α∈NN

bpαz
α, z ∈ D∞ ∩ ℓ2.

For s ∈ C1/2, consider zs := (2−s, 3−s, 5−s, 7−s, . . . ) = p−s ∈ D∞. We have that
m(s) = Lm(zs). Indeed, the point evaluation is well defined as zs ∈ D∞ ∩ ℓ2 and

Lm(zs) =
∑
α∈NN

bpα(p
−s)α =

∑
α∈NN

bpα(p
α)−s =

∞∑
n=1

bnn
−s = m(s).

Since Lm is bounded and holomorphic in D∞ ∩ c0 and zs depends analytically on s and
zs ∈ D∞ ∩ c0 for s ∈ C0, we have that Lm(zs) is bounded and analytic in C0, and so is
m(s). Hence m ∈ H ∞. Moreover, ∥m∥∞ = ∥Lm∥H∞(D∞) = ∥Pm∥H∞(T∞) ≤ ∥m∥M .

This theorem can be extended to the multipliers of H p for 1 ≤ p < +∞. Indeed
M (H p) = H ∞ and if m ∈ M (H p) then ∥m∥M = ∥m∥p. See [2] for further reading.
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4 Conclusions

An extensive study of ordinary Dirichlet series has been done. Different important
results on the convergence regions of these type of series have been given. Most notably,
the Bohnenblust-Hille theorem has been proven. Classic formulas for the convergence
abscissas and the computation of the coefficients from the series are also given. We have
also studied different properties of Dirichlet series, giving uniqueness theorems, limits and
growth results.

Hardy-Dirichlet spaces have also been studied extensively, in particular H ∞ and H 2.
The global properties of the series in each space have been studied, as well as properties of
the function spaces themselves. More importantly, an overview of Bohr’s transformation
is given which connects Dirichlet series and power series in an infinite number of variables.
This tool is fundamental in the multiplier theorem, and is useful more than once in this
work. Moreover, this tool allows the proof of results for Dirichlet series using the knowledge
of power series and vice-versa. Bohr’s transformation might be useful in future work in
the research of Dirichlet series, as well as power series on the poly-disk.

On a personal note, the objectives I had for this work have been more than achieved.
At first I wanted to study Dirichlet series as a means to have an understanding on one of
the approaches used to solve the Riemann hypothesis. But as I began to read books and
articles, and thanks to my advisor, I became more interested in the functional analysis part
of the topic. So much so that I have been able to understand results that I deemed impos-
sible when I first started working on this paper, such as the Bohnenblust-Hille theorem,
and specially the multiplier theorem.
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