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Abstract

Conformal geometry is the branch of mathematics that studies the transfor-
mations on manifolds that preserve the angles. It has a myriad of applications,
both in mathematics and in physics. In this work we present an introduction to
conformal geometry and describe its relation to Penrose diagrams, which are rep-
resentations of spacetimes that preserve their causal structure. To this end, we
start by providing the necessary tools for doing this work from semi-Riemannian
geometry and conclude by giving examples of these diagrams.

Resum

La geometria conforme és la branca de les matemàtiques que estudia les trans-
formacions sobre varietats que conserven els angles. Té una infinitat d’aplicacions,
tant en matemàtiques com en física. En aquest treball presentem una introducció
a la geometria conforme i descrivim la seva relació amb els diagrames de Penrose,
que són representacions d’espaitemps que conserven l’estructura causal d’aquests.
Per a això, comencem proporcionant-nos les eines necessàries per fer aquest treball
a partir de la geometria semi-Riemanniana i acabem posant exemples d’aquests
diagrames.
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1 Introduction
Both mathematicians and physicists use pictures and diagrams as a way of

representing ideas. These are powerful tools that facilitate their conceptual work.
Not only are these representations useful for them to clarify their research but also
to help them disseminate their ideas to the community.

Among all these ideas to represent, in this work we focus on the transforma-
tions that preserve angles, the conformal transformations. By way of illustration,
the Mercator projection, which represents the nearly spherical surface of the Earth
on a perfectly cylindrical surface is a conformal transformation. In the Mercator
projection, angles between pieces of land are an accurate representation of the real
surface of Earth. Nevertheless, the closer you get to the poles, the more magnified
everything looks, which distorts reality. The distortion is so important in the Mer-
cator projection that poles, which are points on the globe, turn into lines as big as
the Equator.

The branch of mathematics which studies this kind of transformations is con-
formal geometry. Conformal geometry can be thought as a generalisation of semi-
Riemannian geometry. That is in the sense that semi-Riemannian geometry studies
the properties of semi-Riemannian manifolds (M, g), which consist of a differen-
tiable manifold with a non-degenerate metric tensor, whereas conformal geometry
studies conformal manifolds (M, [g]), which consist of a differentiable manifold
with an equivalence class of metric tensors. This equivalence class of metric ten-
sors is called conformal class or conformal metric.

One feature that differentiates conformal geometry from semi-Riemannian ge-
ometry is that for the latter, at every point of a manifold one has a well defined
metric with which angles and lengths of vectors in the respective tangent space
can be calculated. On the other hand, given a point in a conformal manifold, one
only has a class of metrics defined at that point. Although this class of metrics
does not allow the calculation of distances, it is still possible to compute angles
between vectors. Physicists have something to say here. Albert Einstein’s theo-
ries of relativity, which are well described in the books [Wal84, HE73, Sch80] use
Lorentzian manifolds to describe spacetime. Lorentzian manifolds are a specific
case of semi-Riemannian manifold. This, together with the fact that conformal
geometry is a generalisation of semi-Riemannian geometry, was what motivated
our study of semi-Riemannian geometry. Moreover, it turns out that conformal
transformations of a Lorentzian manifold preserve the causal structure of such
manifold.

The causal structure of a Lorentzian manifold classifies, for every point of the
manifold, all the other points in three categories: the points that can be influenced
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by a this given point, the ones that could have been influenced by this given point
and those points that can not have any causal relation with the given point. The
latter group exists because any kind of information can travel faster than the speed
of light. After applying a conformal transformation to a Lorentzian manifold this
classification does not change. If one point can influence another, the image of
the first point through a conformal transformation can influence the image of the
second through the same transformation.

The power that physicist could extract from conformal transformations was
very significant. Concerning problems such as the ones in electromagnetism, they
need to do assumptions about how would the electromagnetic field magnitude
surrounding a charge be at infinity, for example. Since it decreases inversely pro-
portional to the square of the distance, they normally assume it is zero at infinity.
However, considering "the infinity" normally has little physical meaning. As con-
formal transformations allow the distortion of distances without changing the an-
gles, Roger Penrose stated that considering the conformal structure of spacetime,
"points at infinity can be treated at the same basis as finite points" [Pen64b]. His
work lead to what we know today as Penrose diagrams.

Penrose diagrams were developed by Roger Penrose between 1962 and 1966,
shortly after he finished his PhD at Cambridge University. Some of the earliest
hand-drawn representations of Penrose diagrams can be found in [HP70]. These
diagrams rapidly spread from the most sophisticated scientific congresses to sum-
mer school for students and pedagogical articles. For instance, less than two years
after the first apparition of Penrose diagrams, they were presented to advanced
graduate students and researchers at the 1963 Les Houches Summer School in
theoretical physics by Roger Penrose himself [Pen64a]. However, it was not only
Roger Penrose who worked on these conformal manifolds. The same year, at
the same summer school, physicist Rainer K. Sachs also presented his work with
which he also brought all Minkowski spacetime to a finite sheet of paper through
a conformal transformation [Sac64]. Brandon Carter, a physicist at Cambridge
University, also did a lot of work with Penrose diagrams. He used them to repre-
sent spacetimes much more complex than the Schwarzschild metric case [Car66].
That is why they are also known as Penrose-Carter diagrams.

These new diagrams were useful to represent the Universe and black holes,
concepts which were difficult to imagine. An important and useful feature of Pen-
rose diagrams is that on them light rays always follow paths of 45° from vertical.
Thus, Penrose diagrams helped to understand general relativity and cosmology
and were used to apply topology and conformal transformatins to general relativ-
ity. More specifically, the idea behind Penrose diagrams is to identify, by means
of a conformal transformation, the open Lorentzian manifold representing space-

2



time with the interior of a manifold with boundary. This boundary is called the
conformal infinity. The manifold with boundary is said to be unphysical in the
sense that it is not the actual spacetime. We have never seen the boundary of
our spacetime. However, these unphysical manifolds can be very convenient for
solving physical problems. The idea is to translate the problem to the unphysical
compact manifold, solve it there using the conformal infinity and then translating
the solution back to the physical spacetime.

Everything discussed above is what motivated the structure of this work. In
Section 2 give an introduction to semi-Riemannian geometry with special men-
tion to Lorentzian manifolds. This section also made us lay the foundations of
differential geometry, which have been necessary for the whole work. There, we
also had the objective of defining smooth manifolds in an accurate way, closing
the section with this discussion. Analogously, in Section 3 our main goal is to give
a well-formulated description of conformal manifolds. To do so, we start by pre-
senting the conformal transformations and their classification, for what we needed
to introduce the conformal Killing fields, which are a generalisation of the Killing
fields in semi-Riemannian geometry. For these two sections our main sources of
information were [O’N83] and [Sch08], respectively.

For the classification of the conformal transformations we have considered
manifolds embedded in the n-dimensional semi-Euclidean space Rp,q. We dis-
tinguished three cases: manifolds of dimension n > 2, the Euclidean plane and
the Minkowski plane. For the first case, we saw that any conformal transformation
can be described as a composition of a translation, an orthogonal transformation,
a dilatation and a special conformal transformation (see Case 3.3.1). Orthogonal
transformations are those that preserve the inner product. For instance, rota-
tions, reflections and their combinations are orthogonal transformations. By pre-
serving the inner product, these transformations would be an example of length-
preserving conformal transformations.

For Case 3.3.2, the Euclidean plane R2,0, it is useful to identify it with the com-
plex plane C ∼= R2,0. With that, we saw that its conformal transformations are
holomorphic or antiholomorphic functions. Dilatations and rotations would also
be examples of conformal transformations of the Euclidean plane. We also give
special mention to a group of conformal transformations named after the mathe-
matician August F. Möbius. Möbius transformations are well-known for their ap-
plications in mathematics [VB21] and physics [Oli02, Appendix B]. A nice and in-
tuitive way to think of Möbius transformations is by doing an inverse steregraphic
projection from the plane to the two-sphere, rotating this two-sphere through the
plane and finally stereographically projecting it to the plane. We refer the reader
to [AR08] for a visual and more detailed explanation of this procedure.
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Finally, for Case 3.3.3, we studied the conformal transformations one can ap-
ply on the Minkowski plane, which is the semi-Euclidean 2-dimensional space
named after the mathematician Hermann Minkowski. The Minkowski plane is an
example of Lorentzian manifold. This case has a relevant importance for physi-
cists because the theory of special relativity uses it to describe spacetime. We saw
that for the Minkowski plane the orientation-preserving conformal transforma-
tions are composed by dilatations and boosts or Lorentz transformations, which
are analogue to rotations in Euclidean space and can be thought as hyperbolic
rotations preserving the relativistic interval ds2.

We conclude in Section 4 by presenting conformal compactifications to achieve
Penrose diagrams (Figure 1), as an application of everything studied before. As an
illustration of them, we present here the most widely seen Penrose diagram, which
is the maximally extended Penrose diagram for the 4-dimensions Schwarzschild
metric

ds2 = −
(

1 − 2M
r

)
dt2 +

dr2

1 − 2M
r

+ r2dΩ2
I I ,

where dΩ2
I I = r2dθ2 + r2sin2θdφ2, in spherical coordinates. For the sake of sim-

plicity, from now on we consider the Schwarzschild radius rs := 2M, which we
will take it to be rs := 1 when representing the maximally extended Penrose di-
agram. Moreover, we can forget about the angular part to represent it in a plane
by considering that every point in the plane represents a two-sphere of radius r.
Now, following [LV19], we proceed to do the following conformal transformations

(t, r) (T, X) (u, v) (U, V) (τ, ρ)
Kruskal Rotation Rescaling Rotation

,

where Kruskal coordinates are the ones that allow us to define four regions: region
I (r > rs, exterior of the black hole), region II (0 < r < rs, interior of the black hole),
region III (r > rs, parallel universe) and region IV (0 < r < rs, interior of the white
hole). Kruskal coordinates are,

I: X =

∣∣∣∣ r
rs

− 1
∣∣∣∣1/2

exp
(

r
2rs

)
cosh

t
2rs

, T =

∣∣∣∣ r
rs

− 1
∣∣∣∣1/2

exp
(

r
2rs

)
sinh

t
2rs

,

II: X =

∣∣∣∣ r
rs

− 1
∣∣∣∣1/2

exp
(

r
2rs

)
sinh

t
2rs

, T =

∣∣∣∣ r
rs

− 1
∣∣∣∣1/2

exp
(

r
2rs

)
cosh

t
2rs

.

For region III (resp. IV) we can take the Kruskal coordinates as in region I (resp.
II) but changing the sign of X (resp. T) coordinate. Now we can rotate the axis
applying the change of coordinates

u := T − X , v := T + X .
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Now we rescale the metric to bring the infinity into a finite place with

U := arctan u , V := arctan v .

Finally, we rotate the axis back with

ρ := V − U , τ := V + U ,

obtaining Figure 1.

I

II

III

IV

Figure 1: Extended Penrose diagram for the Schwarzschild metric in the (ρ, τ)

plane. Red (resp. blue) lines represent hypersurfaces of constant t (resp. r).

With that, since light beams follow 45° trajectories in this diagram, and special
relativity tells us that no particle can travel through spacetime faster than speed
of light we can see that a particle crossing from region I to region II will never be
able to return to region I. This censorship also applies to photons, the quantum of
the electromagnetic field, which constitutes light. That is what drove its name of
black hole.

For the mathematical part we refer to [CG18] and for the Penrose diagrams to
[HE73], were a detailed and thorough explanation of different Penrose diagrams
can be found, as well as an accurate explanation of Albert Einstein’s theories of
relativity. Finally, we present two cases as exemplifications. We begin with the
simplest case which is the Minkowski spacetime and finally we present a not
so usual case obtained when modifying a two dimensional model, developed by
Roman Jackiw [Jac85] and Claudio Bunster (whose name was Claudio Teitelboim
until 2005) [Tei83], and thus known as JT gravity [Ai21].
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2 Semi-Riemannian Geometry
Semi-Riemannian geometry is the branch of differential geometry which stud-

ies semi-Riemannian manifolds. In turn, a semi-Riemannian manifold is a smooth
manifold equipped with a metric tensor. As its name suggests, semi-Riemannian
geometry is a generalisation of Riemannian geometry. For the latter, the met-
rics considered must be positive-definite. The former arises as a generalisation of
Riemannian geometry after relaxing the condition of positive-definiteness on the
metric. Thus, the only requirement for semi-Riemannian manifold’s metrics is to
be symmetric and non-degenerate.

The tangent space of a semi-Riemannian manifold is a semi-Euclidean vector
space. Therefore, in broad terms, one can think of semi-Riemannian manifolds as
being locally a semi-Euclidean space. Semi-Riemannian geometry thereby allows
to generalise well-defined concepts of semi-Euclidean spaces, such as the angle
between two vectors or the length of a curve, to semi-Riemannian manifolds, in
the same way that differential geometry does to smooth manifolds.

As mentioned in the introduction, a special case of semi-Riemannian manifolds
are Lorentzian manifolds for their applicability to describe spacetimes within A.
Einstein’s theories of relativity. We thus make special mention of them in this
section, as well as providing the necessary differential geometry and tensor calcu-
lations tools to work in a mathematically rigorous way. For this section, we have
mainly followed [O’N83] and [Sch08].

2.1 Smooth Manifolds

Definition 2.1. Let V ⊆ Rm be an open set. A function f : V → Rn is said to be
smooth if for every p ∈ V its partial derivatives for all k ≥ 0

∂k f
∂(x1)α1 . . . ∂(xm)αm

(p),

where αi are non-negative integrers such that α1 + · · · + αm = k, exist and are
continuous at p. Smooth functions are also called C∞ functions.

Definition 2.2. An n-dimensional chart (U, φ) on a topological space M is an open
set U ⊆ M together with a homeomorphism φ : U → φ(U) ⊆ Rn, where φ(U) is
an open set. If we write

φ(p) = (φ1(p), φ2(p), . . . , φn(p)) ⊆ Rn for every p ∈ M ,

the functions φ1, φ2, . . . , φn are called the coordinate functions of φ.
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Definition 2.3. Two n-dimensional coordinate systems (U, φ) and (V, ψ) are said
to overlap smoothly if the function φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V), and its inverse
ψ ◦ φ−1 : φ(U ∩ V) → ψ(U ∩ V) are both smooth.

Definition 2.4. An atlas A = {(Ui, φi)}i∈I of dimension n on a topological space
M is a collection of k = card(I) n-dimensional charts in M such that M =

⋃
i∈I Ui

and any two given charts in A overlap smoothly.
An atlas A is said to be maximal if it contains every chart on M that overlaps

smoothly with every chart in A .

Note that equivalently to the definition of maximal atlas, we have that a max-
imal atlas on M is one which is not contained in any other different atlas on M.
This will be useful for the proof of Lemma 2.6.

Definition 2.5. A smooth manifold or C∞ manifold of dimension n is a topological
space M (Hausdorff and second countable) of dimension n together with a maxi-
mal atlas.

From now on, when talking about a manifold, we will assume it is in fact a
smooth manifold, unless noted otherwise. The dimension n := dimM of a manifold
M is the dimension of its atlas and it is usually written as Mn.

Lemma 2.6. Let M be a manifold. For every atlas A = {(Ui, φi)}i∈I of M there exists a
unique maximal atlas of M containing A .

Proof. Let A = {(Ui, φi)}i∈I be an atlas of M. To prove the existence start by
considering the set A of all charts in M that overlap smoothly with every chart in
A . The set A exists by its definition. Consider (U, φ), (V, ψ) ∈ A. We want to
see that φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V) and its inverse ψ ◦ φ−1 are smooth. Take
an arbitrary p ∈ (U ∩ V). Since A is an atlas, there exists a chart (W, ϕ) ∈ A

such that p ∈ W. The charts (U, φ), (V, ψ) overlap smoothly with (W, ϕ), by
the definition of A. Therefore, we have in particular that φ ◦ ϕ−1 and ϕ ◦ ψ−1

are smooth in a neighborhood of ϕ(p) and ψ(p), respectively. Now, since the
composition of smooth maps is smooth we have that φ ◦ ϕ−1 ◦ ϕ ◦ ψ−1 = φ ◦ ψ−1

is smooth in a neighborhood of ψ(p). Analogously, we get that ψ ◦ φ−1 is also
smooth in a neighborhood of φ(p). Since we have chosen p arbitrarily, we have
that both compositions are smooth and therefore, that A is an atlas.

Now we want to see that A is a maximal atlas. Suppose that A is contained
in another atlas B. Then A is also contained in B and therefore all charts in B
overlap smoothly with all charts in A . Thus, by definition of A, we have A = B.

Finally, to see that A is unique, suppose that there exists another maximal atlas
C containing A . Then every chart in C overlaps smoothly with every chart in A

and therefore C ⊆ A. Now since C is maximal we have that C = A.
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Thanks to Lemma 2.6 a manifold can be properly determined by giving a
topological space and an atlas which may not be necessarily maximal.

Examples 2.7. Let n ≥ 1 be an natural number.

1. The space Rn with its identity map idRn as atlas is a manifold. The manifold
M = (Rn, idRn) is also called the Euclidean n-space.

2. If M is a manifold, then any open V ⊆ M is a manifold. If {(Ui, φi)}i∈I is an
atlas for M, we just need to consider {(Ui ∩ V, φi|Ui∩V)}i∈I as an atlas for V.

3. The graph of a smooth function f : U ⊆ Rn → Rm, defined as

G( f ) = {(x, f (x)) ∈ U × Rm} ,

is a manifold together with the one-chart atlas (G( f ), φ), where

φ : G( f ) −→ U

(x, f (x)) 7→ x .

4. Let us consider the n-sphere

Sn = {x = (x1, x2, . . . , xn+1) ∈ Rn+1|
n+1

∑
i=1

x2
i = 1}.

Define charts

UN = {x ∈ Sn|xn+1 ≥ 0}
φN : UN −→ Rn

(x1, x2, . . . , xn+1) 7→ (x1, x2, . . . , xn)

US = {x ∈ Sn|xn+1 ≤ 0}
φS : US −→ Rn

(x1, x2, . . . , xn+1) 7→ (x1, x2, . . . , xn).

Sn is an n-dimensional manifold with the atlas A = {(UN , φN), (US, φS)}.

5. If M and N are manifolds with {Ui, φi}i∈I and {Vj, ψj}j∈J as their respective
atlases, then the product M × N is a manifold with the atlas

{(Ui × Vj, φi × ψj : (Ui × Vj) → Rn × Rm ∼= Rn+m)}(i,j)∈I×J .

Definition 2.8. We say that a function f : Mn → R is smooth if for every chart
φ : U ⊆ Mn → Rn the function f ◦ φ−1 : φ(U) → R is smooth.

Definition 2.9. Let M and N be two manifolds. A map g : M → N is said to
be smooth if and only if for every pair of charts (U, φ) of M and (V, ψ) of N, the
function ψ ◦ g ◦ φ−1 : φ(U) → ψ(V) is smooth.
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Remark 2.10. Note that all smooth maps are continuous but not all continuous
maps are smooth. For instance, consider the map

g : R −→ R

x 7−→ g(x) =

{
3x if x ≤ 0
2x if x > 0 ,

which is continuous at all R but is not smooth at x = 0.

Since smoothness is a local property, it will be useful to note that for any two
smooth charts of a manifold M

φ : U ⊆ M → Rn and ψ : V ⊆ M → Rn ,

if φ(p) = ψ(p) for every p ∈ U ∩ V, then ϕ : U ∪ V ⊆ M → Rn is smooth.

Definition 2.11. A smooth map g : M → N is a diffeomorphism if it has a smooth
inverse map g−1 : N → M. If such g exists, M and N are said to be diffeomorphic.

Remark 2.12. Note that all diffeomorphisms are homeomorphisms but not all
homeomorphisms are diffeomorphisms. For instance, f : R → R, f (x) = x3

is a smooth homeomorphism, yet it is not a diffeomorphism, since it’s inverse
f−1(x) = x1/3 is not smooth.

2.2 Calculus on Manifolds

Definition 2.13. Given a manifold M, denote by F (M) the set of all smooth real-
valued functions on M:

F (M) := { f : M → R | f ∈ C∞}.

Remark 2.14. The set F (M) has the structure of a real vector space with the oper-
ations

( f + g)(p) := f (p) + g(p) and (λ f )(p) := λ · f (p) ,

for f , g ∈ F (M) and λ ∈ R. It is also a commutative ring with the multiplication

( f g)(p) := f (p) · g(p).

Definition 2.15. Let M be a manifold and let p ∈ M. A tangent vector to M at p is a
real-valued function v : F (M) → R such that for all a, b ∈ R and all f , g ∈ F (M):

(i) (R-linear) v(a f + bg) = av( f ) + bv(g),

(ii) (Leibniz rule) v( f g) = v( f )g(p) + f (p)v(g).
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The set of all tangent vectors of M at p is called the tangent space of M at p and it
is denoted by Tp M.

Remark 2.16. Note that Tp M also has the structure of a vector space over R, with
the operations

(v + w)( f ) := v( f ) + w( f ) and (av)( f ) := a · v( f )

for every v, w ∈ Tp M, every f ∈ F (M) and every a ∈ R.

Let φ = (x1, x2, . . . , xn) : U ⊆ Mn → Rn be a chart of Mn such that p ∈ U. Let
us consider the function ∂i|p : F (M) → R defined for every f ∈ F (M) by

∂i|p( f ) ≡ ∂ f
∂xi (p) :=

∂( f ◦ φ−1)

∂ui (φ(p)) , i ∈ {1, 2, . . . , n} ,

where {ui}n
i=1 are the natural coordinate functions of Rn. The function ∂i|p, which

sends each function f ∈ F (M) to ∂ f
∂xi (p), verifies Definition 2.15 and is therefore a

tangent vector of M at p. In fact, we have:

Theorem 2.17 (Basis Theorem, see Theorem 1.12 of [O’N83]). Let (U, φ) be a chart
on a manifold M of dimension n and p ∈ U. Then, it’s respective tangent vectors {∂i|p}n

i=1
form a basis of Tp M and dimTp M = dimM.

Once we have taken a chart at a point p, the above theorem allows to write
every vector v ∈ Tp M as

v = ∑
i

v(xi)∂i|p = v(xi)∂i|p,

where for the second identity we introduce the A. Einstein summation convention.
The same way we can approximate a smooth manifold M near each point

p ∈ M by its tangent vector space Tp M, it will be useful too to approximate
smooth maps like ϕ : M → N to linear transformations from M to N near each
point p ∈ M. To do so, we will begin defining the differential map of ϕ at p.

Definition 2.18. Let ϕ : M → N be a smooth map between two manifolds. For
every p ∈ M we define the differential map of ϕ at p by

dϕp : Tp M −→ Tϕ(p)N

v 7−→ dϕp(v) := vϕ ,

where vϕ( f ) = v( f ◦ ϕ), for every v ∈ Tp M and every f ∈ F (N).
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Remark 2.19. It follows from Definition 2.15 and Remark 2.16 that the differential
map dϕp of a smooth map ϕ at a point p ∈ M is a linear map between the vector
spaces Tp M and Tϕ(p)N.

Definition 2.20. The rank of a smooth map ϕ : M → N at a point p ∈ M is the
rank of the differential map dϕp. Since dϕp is a linear map between vector spaces,
it has a well defined rank which is the dimension of its image, and then

rankp(ϕ) := rank(dϕp) = dim(Im(dϕp).

A smooth map of maximal rank ϕ is a smooth map with rankp(ϕ) = dim(Tϕ(p)N)

for every p ∈ M.

Lemma 2.21. Let ϕ : Mm → Nn be a smooth map. Take charts (U, φ), (V, ψ) of Mm

and Nn, respectively, such that p ∈ U ⊆ Mm and ϕ(p) ∈ V ⊆ Nn, then

dϕp(∂j|p) =
n

∑
i=1

∂(yi ◦ ϕ)

∂xj ∂i|ϕ(p) , for every j ∈ {1, 2, . . . , m},

where φ = (x1, x2, . . . , xm), ψ = (y1, y2, . . . , yn), and

∂j|p =

(
∂

∂xj

)∣∣∣∣
p

, ∂i|ϕ(p) =

(
∂

∂yi

)∣∣∣∣
ϕ(p)

.

Proof. Let v := dϕp(∂j|p) ∈ Mϕ(p)Nn. By Theorem 2.17 we can write

v =
n

∑
i=1

v(yi)∂i|ϕ(p) =
n

∑
i=1

dϕp(∂j|p)(yi)∂i|ϕ(p) =
n

∑
i=1

∂(yi ◦ ϕ)

∂xj ∂i|ϕ(p),

where in the last equality we have used the definition of differential map (Defini-
tion 2.18).

Definition 2.22. Let { ∂
∂xj }m

j=1 and { ∂
∂yi }n

i=1 be the coordinate basis for Tp Mm and
Tϕ(p)Nn, respectively. The matrix of dϕp with respect to these coordinate basis,(

∂(yi ◦ ϕ)

∂xj (p)
)

1≤i≤n,1≤j≤m
,

is called the Jacobian matrix of ϕ at p relative to φ and ψ in Lemma 2.21.

Lemma 2.23. Let ϕ : M → N and ψ : N → P be smooth maps. Then,

d(ψ ◦ ϕ)|p = dψϕ(p) ◦ dϕp , for every p ∈ M.
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Proof. Given u ∈ Tp M and f ∈ F (P), we have

d(ψ ◦ ϕ)|p(u)( f ) = u( f ◦ ψ ◦ ϕ) = dϕ|p(u)( f ◦ ψ) = (dψ|ϕ(p)dϕ|p(u))( f ).

From now on, we may omit the subscript p whenever it is clear from the con-
text.

Definition 2.24. A manifold S is a submanifold of a manifold M if S is a topological
subspace of M, the inclusion map i : S → M is smooth and at each point p ∈ S its
differential map di is injective.

Example 2.25. Every open subset N ⊆ M is a submanifold of M.

Theorem 2.26. Let ϕ : M → N be a smooth map between manifolds. Then, the dif-
ferential map dϕp : Tp M → Tϕ(p)N is a linear isomorphism if and only if there is a
neighborhood U of p such that ϕ|U : U → ϕ(U) is a diffeomorphism.

Proof. Let (U, φ) be a chart on M with p ∈ U and (V, ψ) a chart on N with
ϕ(p) ∈ V. We assume φ : U → Rn and ψ : V → Rn. Then, this implication is
hold straightforward by applying the Inverse Function Theorem to the function
f := ψ ◦ ϕ ◦ φ−1 : Rn → Rn.

The converse is straightforward. Indeed, since a diffeomorphism is a smooth
map with smooth inverse, if ϕ|U is a diffeomorphism, its differential at any p ∈ U
will be in particular a linear isomorphism.

Definition 2.27. A local diffeomorphism is a smooth map ϕ : M → N such that dϕp

is a linear isomorphism for all p ∈ M.

Note that if a local diffeomorphism is also bijective, then it is a diffeomorphism.
Having now defined the basics of manifolds we can consider some specific

maps called curves. These maps play a key role in physics because they can
represent trajectories of motion.

Remark 2.28. The open interval I is also a submanifold of R with the chart (I, idI).

Definition 2.29. A curve on a manifold M is a smooth map γ : I → M where
I ⊆ R is an open interval.

Definition 2.30. Let γ : I → M be a curve. The velocity vector γ′(t) of γ at t ∈ I is
defined as

γ′(t) := dγt

(
d

du

∣∣∣∣
t

)
∈ Tγ(t)M,

where u is the coordinate function of the manifold I which, in this case, is the
identity.

12



Remark 2.31. Using Definition 2.18 we have that the tangent vector γ′(t) applied
to a function f ∈ F (M) can be written as

γ′(t) f =

(
d

du

∣∣∣∣
t

)
( f ◦ γ) =

d( f ◦ γ)

du
(t).

Letting x1, . . . , xn be a chart on M and using Theorem 2.17, we get

γ′(t) =
n

∑
i=1

d(xi ◦ γ)

du
(t) ∂i|α(t) .

Definition 2.32. Let γ : I → M be a curve and s : J → I be a smooth function,
where J ⊆ R is an open interval. Then δ := γ(s) : J → M is a curve and it is called
the reparametrisation of γ with respect to s.

Remark 2.33. Using the chain rule we get that the velocity vector of δ is:

δ′ =
ds
du

(r) · γ′(s(r)) , for every r ∈ J.

Then, considering now the map ϕ : M → N and applying again the chain rule we
get

dϕ(γ′(t)) = (ϕ ◦ γ)′(t) , for every t ∈ I.

Definition 2.34. A curve γ : I → M is said to be regular if and only if γ′(t) ̸= 0 for
all t ∈ I.

From now on, since we can always consider the parametrisation s(t) = t + c
for all c ∈ R, we will assume that γ(0) ∈ M exists and is well defined. Such
parametrisation does not change the velocity vector of the curve.

Definition 2.35. Let M be a manifold of dimension n. Define a map

TM := {(p, v)|p ∈ M, v ∈ Tp M} π−−→ M

by letting π(p, v) = p. Let us define a smooth manifold structure on TM as
follows: given a chart (U, φ) of M with coordinates φ = (x1, . . . , xn), let

ψU : π−1(U) −→ R2n

(p, v) 7−→ (p1, . . . , pn, v1, . . . , vn),

where φ(p) = (p1, . . . , pn) and v = ∑n
i=1 vi

(
∂

∂xi

)
. The topology of TM is generated

by the preimages of ψU for all open sets of R2n and all charts of M. The collection
A = {(π−1(Ui), ψUi}i∈I is an atlas of TM. With these definitions, the map π is
smooth and is called the tangent bundle of M.
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Definition 2.36. A vector field X on a manifold M is a smooth map

X : M −→ TM

p 7−→ (p, Xp).

The set X (M) of all smooth vector fields on M is a module over the ring F (M)

by considering the operations, for every V, W ∈ X (M) and every f ∈ F (M),

X (M)×X (M) → X (M) ;

F (M)×X (M) → X (M) ;

(V + W)p := Vp + Wp and

( f V)p := f (p)Vp .

Definition 2.37. Let φ = (x1, x2, . . . , xn) be a chart on U ⊆ M. Then, for every
i ∈ {1, 2, . . . , n}, the vector field ∂i : U → TM sending each p ∈ M to ∂i|p is called
the coordinate vector field of φ. Since ∂i( f ) = ∂ f

∂xi and f is smooth, we see that these
coordinate vector fields are smooth.

From Theorem 2.17 we directly obtain that every vector field V ∈ X (M) can
be written as

V = ∑
i

V(xi)∂i.

Example 2.38. Let f : Rn → R be a real-valued smooth function. Consider Rn as
a manifold. The gradient of f at a point p ∈ Rn

∇ f : Rn −→ Rn

p 7−→
(

∂ f
∂x1 (p), . . . ,

∂ f
∂xn (p)

)
is a vector field on Rn.

Definition 2.39. The Lie bracket [X, Y] of two vector fields X, Y : M → TM is the
only vector field such that

[X, Y]( f ) = X(Y f )− Y(X f ).

If we take for instance a chart (U, φ) with φ = (x1, . . . , xn) so that, using again
the A. Einstein summation convention,

X = Xi∂i , Y = Yi∂i ,

where Xi and Yi are both smooth functions, we finally get

[X, Y] =
(

X j∂jYi − Y j∂jXi
)

∂i.
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2.3 Tensor Fields

To explain the basic concepts of semi-Riemannian manifolds, we need to intro-
duce first the concept of tensor.

Definition 2.40. Let V be a module over a ring K. For integers r, s ≥ 0. A tensor of
type (r, s) over V is a K-multilinear function

A :

r)︷ ︸︸ ︷
V∗ × . . . × V∗ ×

s)︷ ︸︸ ︷
V × . . . × V −→ K,

where V∗ is the dual module of V.

Remark 2.41. As the elements of V give an element of K when applied to elements
of V∗, a tensor of type (r, s) can also be thought as a K-multilinear function

A :

s)︷ ︸︸ ︷
V × . . . × V −→

r)︷ ︸︸ ︷
V × . . . × V .

From now on we will denote by I r
s (M) the set of all tensor fields of type (r, s)

on M. For instance, when r = s = 0, we have I0
0 (M) = F (M).

Example 2.42. The differential d f of a smooth function f : R → R is a one-form ,
and therefore is a (0, 1) tensor too.

Definition 2.43. A tensor field A on a manifold M is a tensor over the F (M)-
module X (M). If A is of type (r, s), it is an F (M)-multilinear function

A : X ∗(M)r ×X (M)s −→ F (M).

Then, A is a mathematical object that after being given r one-forms and s vector
fields returns a real-valued function f ∈ F (M). We say that A has r contravariant
slots and s covariant slots.

Remark 2.44. A tensor A ∈ I r
s (M) is said to transform as a tensor if its components

satisfy

Ai′1,...,i′r
j′1,...,j′s

= Λi′1
i1

. . . Λi′r
ir Λ

j1
j′1

. . . Λjs
j′s

Ai1,...,ir
j1,...,js ,

where Λi
i′ are the change of basis matrices and Λi′

i are the inverse change of basis
matrices, and therefore, the transposed ones.

Considering the basis

{∂i}n
i=1 :=

{
∂

∂i

}n

i=1
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as a set of vectors, one can define its dual basis {dxi}n
i=1 as a set of one-forms such

that dxi(∂j) = ∂xi

∂xj = δi
j. With this definition, every one-form ω can be written

as ω = ωidxi and every vector v can be written as v = vi∂i. In particular, the
differential of a smooth function is d f = ∂ f

∂xi dxi, hence (d f )i =
∂ f
∂xi .

Definition 2.45. Let a, b, r, s be integers such that 1 ≤ a ≤ r and 1 ≤ b ≤ s. The
contraction Ca

b : I r
s (M) → I r−1

s−1 (M) is the operation defined as follows: given

A = Ai1,...,ir
j1,...,js ∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs ∈ I r

s (M) ,

where each index is summed from 1 to n and with components

Ai1,...,ir
j1,...,js = A(dxi1 , . . . , dxir , ∂j1 , . . . , ∂js) ,

then

Ca
b A := Ai1,...,ia−1,k,ia+1,...,ir

j1,...,jb−1,k,jb+1 ,...,js
∂i1 ⊗ · · · ⊗ ∂ia−1 ⊗ ∂ia+1 ⊗ · · · ⊗ ∂ir

⊗dxj1 ⊗ · · · ⊗ dxjb−1 ⊗ dxjb+1 ⊗ · · · ⊗ dxjs ∈ I r−1
s−1 (M) .

Example 2.46. Consider the tensor A ∈ I3
2 (M), where M is an n-dimensional

manifold. Its components would be Aijk
lm with i, j, k, l, m ranging from 1 to n.

Then the contraction C2
1 of A is given by

C2
1 A = Aiak

am∂i ⊗ ∂k ⊗ dxm ∈ I2
1 (M) .

Definition 2.47. Let r, s be integers. A tensor derivation D on a smooth manifold M
is a set of R-linear functions

D := {Dr
s : I r

s → I r
s}r,s≥0

such that, for every pair of tensors A and B:

i) D(A ⊗ B) = (DA)⊗ B + A ⊗ (DB),

ii) D(CA) = C(DA), for every contraction C.

Definition 2.48. Let X ∈ X (M). The Lie derivative LX relative to X is the tensor
derivation such that

LX( f ) = X f for all f ∈ F (M),

LX(Y) = [X, Y] for all Y ∈ X (M),

where [X, Y] denotes the Lie bracket of the vector fields X and Y.
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The Lie derivative can be also visualised as a directional derivative in the di-
rection of the vector field X. Actually, the Lie derivative can be generalised so that
it can be applied to any type of tensor, LX : I r

s → I r
s (see, for instance, [Wal84] or

[Fec06]). It is thus extremely important in theoretical physics.
Finally, let us introduce the concept of connection on M, which will be of rele-

vant importance in Section 2.4. The connection also allows to define the covariant
derivative of a vector field for this connection with respect to another vector field.

Definition 2.49. A connection D on a smooth manifold M is a function

D : X (M)×X (M) −→ X (M)

(X, Y) 7−→ DXY

such that, for every X, Y, Z ∈ X (M) and every f , g ∈ F (M),

i) (F (M)-linear in the first argument) D f X+gYZ = f DXZ + gDYZ,

ii) (R-linear in the second argument) DX(Y + Z) = DXY + DXZ,

iii) (Leibniz Rule) DX( f Y) = (X f )Y + f DXY.

DXY is called the covariant derivative of Y with respect to X for the connection D.

2.4 Semi-Riemannian Manifolds

Definition 2.50. The index ν of a symmetric bilinear form g on a real vector space
V is the largest integer which coincides with the dimension of a subspace W ⊆ V
on which g|W is negative definite.

Remark 2.51. The index ν is always 0 ≤ ν ≤ dimV and g is non-negative definite if
and only if ν = 0.

Definition 2.52. A metric tensor g on a smooth manifold M is a symmetric non-
degenerate (0, 2) tensor field on M of constant index ν.

The metric tensor g assigns to every p ∈ M a non-degenerate and symmetric
bilinear form on the tangent space Tp M:

gp : Tp M × Tp M → R.

Definition 2.53. A semi-Riemannian manifold is a pair (M, g) where M is a smooth
manifold of dimension n and g is a metric tensor.
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Consider (U, φ) as a chart on U ⊆ M with φ = (x1, . . . , xn) : U → φ(U) ⊆ Rn.
For every p ∈ U the bilinear form gp can be written as

gp(X, Y) = gij(p)XiY j.

where X = Xi∂i, Y = Y j∂j ∈ Tp M and ∂i := ∂
∂xi for every i ∈ {1, . . . , n}. Now,

for simplicity, as it happened with manifolds, we shall denote a semi-Riemannian
manifold just by M, even though different smooth tensor fields g on the same
manifold define different semi-Riemannian manifolds.

In Definition 2.52, gp being non-degenerate means that if gp(X, Y) = 0 for
every Y ∈ Tp M then X = 0, or equivalently, that the kernel of gp is 0 ∈ Tp M.
Moreover, the matrix

(gij(p))

is, by assumption, non-degenerate and symmetric, for every p ∈ U, which means
that

det(gij(p)) ̸= 0 and (gij(p))T = (gij(p)).

Even more, since g is smooth, the matrix (gij(p)) depends smoothly on p. This
means that the coefficients gij = gij(x) are smooth functions.

For Riemannian manifolds the matrix (gij(p)) is required to be positive definite,
thus gij(p)XiY j ≥ 0, whereas for the more general semi-Riemannian manifolds this
condition is not required to be fulfilled. This feature is useful to distinguish them.

Example 2.54. We denote Rp,q = (Rp,q, gp,q), for p, q ∈ N, the semi-Riemannian
manifold of dimension p + q, with

gp,q(X, Y) :=
p

∑
i=1

XiYi −
p+q

∑
i=p+1

XiYi.

Therefore,

(gij) =

(
1p 0
0 −1q

)
= diag(

p)︷ ︸︸ ︷
1, . . . , 1,

q)︷ ︸︸ ︷
−1, . . . ,−1).

With this notation, all Rp,q with p, q natural numbers are semi-Riemannian mani-
folds. For instance, we have that R2,0 is the Euclidean plane and R3,1 (or R1,3) is the
Minkowski space.

An also relevant example of semi-Riemannian manifolds are the Lorentzian
manifolds. They are interesting for they are used to describe spacetime within A.
Einstein’s theories of relativity.

Definition 2.55. Lorentzian manifolds are semi-Riemannian manifolds with ν = 1
and dimension n ≥ 2.
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Let us now introduce the Killing vector fields, whose flows are continuous
isometries of the manifold. In particular, moving each point of an object in the di-
rection of the Killing vector will not change the distances of the object. Moreover,
in general relativity, Killing vector fields allow to define invariants and conserva-
tion laws.

Definition 2.56. A vector field X ∈ X (M) on a semi-Riemannian manifold (M, g)
is a Killing vector field if the Lie derivative with respect to X of the metric g vanishes,

LXg = 0.

This equation is called the Killing equation.

The following theorem states in particular the existence of a connection for
every semi-Riemannian manifold. Specifically, it guarantees the existence and
uniqueness, for semi-Riemannian manifolds, of a specific type of connections,
which we will denote as Levi-Civita connection in Definition 2.66.

Theorem 2.57 (see Theorem 3.11 of [O’N83]). On a semi-Riemannian manifold M
there exists a unique connection D such that, for every X, Y, Z ∈ X (M),

i) [X, Y] = DXY − DYX,

ii) Xg(Y, Z) = g(DXY, Z) + g(Y, DXZ),

with the corresponding metric g of M. This connection is characterised by the Koszul
formula

2g(DYZ, X) = Yg(Z, X) + Zg(X, Y)− Xg(Y, Z)− g(Y, [Z, X])

+g(Z, [X, Y]) + g(X, [Y, Z]).

Proof. We will give a proof for Koszul formula and for the uniqueness of such a
connection. For the existence of this connection we will give a sketch of the proof.

A direct way to prove the Koszul formula from the existence of such a connec-
tion D is to apply the condition ii) of the theorem to the first three terms of the
formula and the condition i) to the last three terms. Ten of the resulting twelve
terms cancel in pairs and the only term which is left is 2g(DYZ, X), using that the
scalar product is commutative.

To prove the uniqueness of this connection we will use that for a scalar product
if g(X, Z) = g(Y, Z) for every Z ∈ X (M), then X = Y. Considering now both this
property and the proven Koszul formula we directly get that D is unique. Any
other D̄ satisfying i) and ii) would also hold Koszul formula and therefore, by the
mentioned property of the scalar product, we would have that D = D̄.
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The idea to prove the existence of this connection is to prove first that the
Koszul formula is well defined as a one-form and then check that this one-form
satisfies the three conditions of Definition 2.49 and the two conditions of Theo-
rem 2.57. Given X, Y ∈ X (M), consider the one form

F(X, Y, ·) : X (M) →R

Z 7→Yg(Z, X) + Zg(X, Y)− Xg(Y, Z)

− g(Y, [Z, X]) + g(Z, [X, Y]) + g(X, [Y, Z]).

Since F(X, Y, ·) is F (M)-linear, it is a one-form. It then follows that there exists
a unique vector field, namely DYZ, such that 2g(DYZ, X) = F(X, Y, Z) for every
X ∈ X (M) (see for instance Proposition 10 of [O’N83], which is used to prove it).
Having now seen that the Koszul formula holds, it can be applied, together with
the property [ f Z, X] = −(X f )Z + f [Z, X] [O’N83, pp. 45–46], to proove i), ii) and
iii) of Definition 2.49 and i) and ii) of Theorem 2.57.

From now on, we will let M be a semi-Riemannian manifold.

Definition 2.58. Given a coordinate basis of an open U ⊆ M, the Christoffel symbols
Γi

jl are real-valued functions on U such that

D∂i(∂j) =
n

∑
k=1

Γk
ji∂K , 1 ≤ i, j ≤ n,

where the order of the indices on Γ is not arbitrary [Sch80, p. 205].

Remark 2.59. Naming for simplicity ω̃ j := dxj the elements of the dual basis such
that ω̃ j(∂i) = δ

j
i , we get

Γk
ji = ω̃kD∂i(∂j).

Remark 2.60. Since D is not a tensor, Γk
ji do not need to obey the usual tensor

transformation rule under change of coordinates.

Even though the Christoffel symbols Γi
jk of M are not the components of any

tensor, we have the following property:

Proposition 2.61. The combination Ti
jk := 2Γi

[jk] = Γi
jk − Γi

kj is a tensor.

Proof. Let Λi
i′ be the change of basis matrices and Λi′

i be the inverse change of
basis matrices, and therefore, the transposed ones, so that ∂′j = Λj

j′∂j, for example.
Using Remark 2.59 one can write

Γi′
j′k′ = ω̃i′

(
D∂k′

∂j′
)
= Λi′

i ω̃i
(

D∂k′

(
Λj

j′∂j

))
= Λi′

i Λj
j′ω̃

i
(

D∂k′

(
∂j
))

+ Λi′
i ω̃i

((
D∂k′

Λj
j′

)
∂j

)
= Λi′

i Λj
j′Λ

k
k′Γ

i
jk + Λi′

i

(
D∂k′

Λi
j′

)
.
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Since the second term does not always vanish we conclude that the Christoffel
symbols do not transform as tensors in general. However, if we let {∂i} to be a
coordinate basis, which are the ones where all the mutual Lie derivatives of its
elements vanish and are also called holonomic basis, Λi

j′ =
∂xi

∂xj′ and the last term

Λi′
i

(
D∂k′

Λi
j′

)
= Λi′

i
∂2xi

∂xk′∂xj′

is symmetric with respect to k′, j′ due to Schwarz Theorem on the commutativity
of second partial derivatives. Therefore, we obtain that Ti

jk = Γi
jk − Γi

kj transforms
as a tensor because the last term above is cancelled and does not contribute.

Having defined the Christoffel symbols of M and a connection on M (cf. Defi-
nition 2.49), it is straightforward and useful to define the torsion tensor of a man-
ifold (see, for instance, [KF18, Sch80]).

Definition 2.62. The torsion tensor of a connection D on M is the tensor T of type
(1, 2) defined as

T : X (M)×X (M) −→ X (M)

(X, Y) 7−→ T(X, Y) = DXY − DYX − [X, Y].

Remark 2.63. When considering a coordinate basis the components of the torsion
tensor coincide with the tensor introduced in Proposition 2.61. This can be found
in [HE73].

Definition 2.64. A symmetric connection D on M is a connection where the torsion
tensor T(X, Y) equals 0 ∈ X (M) for every X, Y ∈ X (M).

For the sake of convenience, we now introduce the notation D∂i := Di.

Proposition 2.65. In a coordinate basis a connection is symmetric if and only if Γk
ij = Γk

ji.

Proof. In a coordinate basis [∂i, ∂j] = 0. If the connection is symmetric, in particular
we will have

T(∂i, ∂j) = Di∂j − Dj∂i − [∂i, ∂j] = Di∂j − Dj∂i = 0 ⇒ Di∂j = Dj∂i

and, using Remark 2.59, Γk
ij = Γk

ji. Conversely, if Γk
ij = Γk

ji, using the same remark
Di∂j = Dj∂i. Let X = Xi∂i, Y = Yi∂i be to arbitrary vector fields on M. We have

T(X, Y) = T(Xi∂i, Yi∂i) = DXY − DYX − [Xi∂i, Y j∂j]

= X jDj(Yi∂i)− Y jDj(Xi∂i)−
(

X j∂jYi − Y j∂jXi
)

∂i

= X j∂jYi∂i + X jYiDj∂i − Y j∂jXi∂i − Y jXiDj∂i − X j∂jYi∂i + Y j∂jXi∂i

= X jYi (Dj∂i − Di∂j
)
= 0,

and therefore the connection is symmetric.
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From now on we are going to consider always a coordinate basis and a sym-
metric connection.

Definition 2.66. The Levi-Civita connection on M is the only connection D on M
satisfying i) and ii) of Theorem 2.57.

Remark 2.67. The covariant derivative with respect to a vector field X can also be
denoted by ∇X. Then, Theorem 2.57 can also be interpreted as follows: for a given
semi-Riemannian manifold M, there exists a unique connection ∇ which is torsion
free, T(X, Y) = 0 for every X, Y ∈ X (M), and compatible with the metric g in the
sense that ∇Xg = 0 for every X ∈ X (M). This conection ∇ is the Levi-Civita
connection on M.

Let us introduce now the notation

f,i := ∂i f =
∂ f
∂xi , ḟ :=

d f
dt

, Xi := gijX j ,

where f is an arbitrary function, xi are the coordinate system, and Xi are the
components with respect to a coordinate system of a vector field on a manifold
with metric g. The notation "," changes to ";" when referring to the covariant
derivative. This notation is commonly used in theoretical physics.

Proposition 2.68. Let φ = (x1, . . . , xn) be a chart on U ⊆ M and W ∈ X (M). Let us
consider the Levi-Civita connection. Then

D∂iW =
(

Wk
,i + Γk

ijW j
)

∂k ,

where
Γk

ij =
1
2

gkm (gjm,i + gim,j − gij,m
)

.

Proof. Consider iii) in Definition 2.49 with X = ∂i, f = Wk and Y = ∂k, both for
every 1 ≤ k ≤ n. We get

D∂iW = D∂i

(
∑

k
Wk∂k

)
= ∑

k
D∂i

(
Wk∂k

)
= ∑

k

(
(∂iWk)∂k + WkD∂i ∂k

)
= ∑

k
(∂iWk)∂k + ∑

j
W jD∂i ∂j =

(
∂iWk + W jΓk

ij

)
∂k,

where in the second equality ii) in Definition 2.49 has been used and in the last
equality we have used A. Einstein summation convention and Definition 2.58.
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To derive the expression of the Christoffel symbols as a function of the metric,
consider the Koszul formula taking X = ∂m, Y = ∂i and Z = ∂j. Since [∂i, ∂j] = 0
for every 1 ≤ i, j ≤ n due to Schwarz Theorem, we get

2g
(

D∂i ∂j, ∂m
)
= 2g

(
Γk

ij∂k, ∂m

)
= 2Γk

ijgkm = ∂ig(∂j, ∂m) + ∂jg(∂m, ∂i)− ∂mg(∂i, ∂j)

= gjm,i + gmi,j − gij,m.

Dividing by 2, using that g is symmetric and applying gkm on both sides we obtain

Γk
ij =

1
2

gkm (gjm,i + gim,j − gij,m
)

.

Examples 2.69. We will compute the Christoffel symbols for two metrics with
importance in general relativity.

1. Consider the 2D metric in the conformal gauge gij = e2ρηij, which is widely
used for studying black holes in 2 dimensional gravity models [Str94]. We
will compute its Christoffel symbols in the so called light-cone coordinates
x± = x0 ± x1.

Using the invariance of the scalar product, we get

ds2 := gijdxidxj = e2ρ
(
−d(x0)2 + d(x1)2

)
= e2ρ(−dx+dx−)

= g+−dx+dx− + g+−dx−dx+.

From that we get g++ = g−− = 0 and g+− = − 1
2 e2ρ. Therefore,

g+−,+ = −e2ρ∂+ρ and g+−,− = −e2ρ∂−ρ .

From this, using equation Proposition 2.68, we get:

Γ+
++ =

1
2

g+l (2gl+,+) = g+−g−+,+ = (−2e−2ρ)(−e2ρ∂+ρ) = 2∂+ρ ,

Γ−
−− = g−+g+−,− = 2∂−ρ ,

Γ+
+− =

1
2

g+l (gl+,− + gl−,+ − g+−,l)

=
1
2

g+− (g−+,− + g−−,+ − g+−,−) = 0 ,

Γ+
−+ = Γ−

+− = Γ−
−+ = 0 ,

Γ+
−− = Γ−

++ =
1
2

g+l (2gl−,− − g−−,l) = 0 .
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2. To study a 2D gravity model such as JT gravity [Wit20], consider the metric

ds2 := gijdxidxj = −A(x)dt2 +
1

G(x)
dx2.

Let us compute its Christoffel symbols, using g00 = g00(x) = − 1
A(x) and

g11 = g11(x) = G(x):

Γ0
00 = Γ0

11 = Γ1
01 = Γ1

10 = 0 ,

Γ0
01 = − 1

2A(x)
(−A′(x)) =

A′(x)
2A(x)

= Γ0
10 ,

Γ1
00 =

1
2

G(x)(A′(x)) =
G(x)A′(x)

2
,

Γ1
11 =

1
2

G(x)
(

1
G(x)

)′
= − G′(x)

2G(x)
.

We have now all the necessary tools to define the Riemann or curvature tensor
and the Weyl or conformal tensor. Weyl tensor will be useful for next chapter,
since it will help us identify, for instance, if a manifold is conformally flat or not.

Definition 2.70. Consider the Levi-Civita connection on M. The Riemann curvature
tensor on M is a tensor of type (1, 3) defined as

R : X (M)3 −→ X (M)

(X, Y, Z) 7−→ RXY(Z) := D[X,Y]Z − [DX, DY]Z,

for every X, Y, Z ∈ X (M).

We refer to [O’N83] to see a proof that it is indeed a tensor.

Proposition 2.71. On a coordinate basis, the Riemann curvature tensor satisfies

R∂k∂l

(
∂j
)
= Ri

jkl∂i,

where the components of the Riemann curvature tensor have the form

Ri
jkl = Γi

kj,l − Γi
l j,k + Γi

lmΓm
kj − Γi

kmΓm
lj.

Proof. On a coordinate basis [∂j, ∂k] = 0, then

R∂k∂l

(
∂j
)
= −[D∂k , D∂l ]∂j = D∂l (D∂k ∂j)− D∂k(D∂l ∂j)

= D∂l

(
Γm

jk∂m
)
− D∂j

(
Γm

jl∂m
)

= Γm
jk,l∂m + Γm

jkΓr
ml∂j − Γm

jl,k∂m − Γm
jlΓr

mk∂r

=
(

Γi
jk,l + Γm

jkΓi
ml − Γi

jl,k − Γm
jlΓi

mk

)
∂i

=
(

Γi
kj,l − Γi

l j,k + Γi
lmΓm

kj − Γi
kmΓm

lj

)
∂i,
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where in the last equality we have used that we are assuming that we have a
coordinate basis and a symmetric connection.

Now we can define another tensor and a scalar which are relevant for general
relativity. Furthermore, we will need them to define the Weyl curvature tensor.

Definition 2.72. The Ricci curvature tensor Ric is a type (0, 2) tensor given by the
contraction

Ric = C1
2 R,

therefore, its components in a coordinate basis are Rij = Rm
imj, where

Ric = Rijdxi ⊗ dxj.

Definition 2.73. The scalar curvature S (commonly also R or Sc) is defined as the
trace of the Ricci curvature tensor with respect to the metric

S = TrgRic.

It can computed by S = gijRij.

Remark 2.74. The scalar curvature S is the simplest curvature invariant of a Rie-
mannian manifold.

Definition 2.75. An Einstein manifold is a semi-Riemannian manifold (M, g) whose
Ricci curvature tensor is porportional to its metric

Ric = kg , for some constant k ∈ R .

Remark 2.76. In local coordinates, (M, g) is an Einstein manifold if Rij = kgij for
some k ∈ R. Taking the trace of both sides we have that the constant k is related
with the scalar curvature S by S = nk, where n is the dimension of M.

Let us now introduce the notation

An1 ...np

[m1 ...mk ]mk+1...mq
:=

1
k! ∑

σ(m1...mk)

(−1)sgn σ An1 ...np

σ(m1)...σ(mk)mk+1 ...mq
,

where the sum runs over all possible permutations of the indexes between the
square brackets. It is also applicable to different tensors as in

Ai[jBk]l :=
1
2
(

AijBkl − AikBjl
)

,

for example. Finally, we conclude this section with the following definition:
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Definition 2.77. The Weyl curvature tensor W is a type (1, 3) tensor defined for
manifolds of dimension n ≥ 3 by the equations

W i
jkl = gimWmjkl and

Wijkl = gimRm
jkl +

2
n − 2

(
gj[kRl]i − gi[kRl]j

)
+

2
(n − 1)(n − 2)

ga[cgd]bR.

Remark 2.78. The Weyl curvature tensor’s behaviour under conformal transforma-
tions of the metric [Wal84, Appendix D] is the reason why it is sometimes named
conformal tensor. Actually, the Weyl curvature tensor is invariant under conformal
transformations of the metric [Wal84].

Remark 2.79. The Weyl curvature tensor is the traceless component of the Riemann
curvature tensor [d’I92]. Thus, any contraction applied on W make it vanish.

3 Conformal Geometry
As mentioned in the introduction, conformal geometry studies the conformal

transformation on manifolds. Those are transformations on manifolds that locally
preserve angles but not necessarily lengths.

Our objective here is to study conformal transformations in order to describe
conformal manifolds. Since any semi-Riemannian manifold (M, g) of dimension
n ≥ 3 can be associated to a conformal manifold (M, [g]), the latter can be thought
as a generalisation of the former. Going from a semi-Riemannian manifold to its
respective conformal manifold means losing the notions of lengths but retaining
the notion of angles. Analogously, for a Lorentzian manifold, in physics terminol-
ogy, passing to its respective conformal manifolds means dropping the spacetime
intervals, which play the role of distances between events, but keeping the light-
cone structure, and thus its causal structure.

To give a classification of conformal transformations we had to describe the
conformal Killing fields. Those are a special kind of vector fields whose flow
defines a conformal transformation. Conformal Killing fields are a generalisation
of Killing vector fields in the sense that the latter are said to preserve the metric,
satisfying the Killing equation LXg = 0, whereas the former satisfy LXg = κg,
where κ is a smooth real-valued function. More details will be provided later on.
For this chapter we have mainly used [Sch08] and [CG18].

From now on, when talking about the image of a vector field, we will consider
we are only refering to the vector of the corresponding tangent space, and not the
pair (point, vector). We do this because it is a common convention.
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3.1 Conformal Transformations

In this subsection, we aim to study the transformations we can apply to a man-
ifold in such a way that angles are preserved even though distances can change.
To do so, we must be aware that by considering the metric tensor as a smooth
scalar product in all the tangent spaces of a manifold, the metric can be used to
generalise concepts frequently used in Rn like the distance between points or the
angle between vectors.

Definition 3.1. Let (M, g) and (M′, g′) be two semi-Riemannian manifolds of the
same dimension n, and U ⊆ M, U′ ⊆ M′ be two open subsets. A conformal trans-
formation from U to U′ is a smooth map φ : U → U′ of maximal rank, in the sense
of Definition 2.20, such that

φ∗g′ = Ω2g where Ω : U → R+ is a smooth function.

When applied to X, Y ∈ TpU, the left-hand term in the expression φ∗g′ = Ω2g
means

φ∗g′(X, Y) := g′(dφp(X), dφp(Y)),

being dφp : TpU → TpV the differential map of φ at p. The function Ω is called
the conformal factor of φ.

Consider local coordinates for M and M′. Then, for every p ∈ U ⊆ M

(φ∗g′)ab(p) = g′ij(φ(p))∂a φi∂b φj.

Thus, φ is conformal if and only if, in a coordinate neighborhood of each point,

Ω2gab = (g′ij ◦ φ)∂a φi∂b φj

holds.

Remark 3.2. For a conformal transformation φ, tangent maps Tp φ : Tp M → Tφ(p)M′

are bijective. Therefore, by the Inverse Mapping Theorem, conformal transforma-
tions are always locally invertible.

Examples 3.3.

1. Local isometries are smooth maps φ with φ∗g′ = g. Then, they are conformal
transformations with conformal factor Ω = 1.

2. Consider R2 with the metric g given by the bilinear form

⟨(x, y), (x′, y′)⟩ :=
1
2
(
xy′ + yx′

)
.
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The light-cone, which for a given p = (p1, p2) ∈ R2 is

LC(p) := {(x, y) ∈ R2 : ⟨(x − p1, y − p2), (x − p1, y − p2)⟩ = 0} ,

coincides with the set of coordinate axes for p = 0 ∈ R2

LC(0) = {(a, 0), (0, b) : a, b ∈ R}.

There is an isometric isomorphism between (R2, g) and R1,1, given by

ψ : R1,1 −→ R2

(x, y) 7−→ (x + y, x − y).

3. The stereographic projection

π : S2\{(0, 0, 1)} −→ R2,0

(x, y, z) 7−→ 1
1 − z

(x, y)

is conformal with conformal factor Ω = 1
1−z . Indeed, the inverse map

φ := π−1 : R2,0 −→ S2 ⊆ R3,0

(x, y) 7−→ 1
1 + x2 + y2 (2x, 2y, x2 + y2 − 1)

is a conformal transformation with conformal factor Ω−1 = 2
1+x2+y2 .

4. Identify R(2, 0) ∼= C and consider, for every z ∈ C, z = x + iy with x, y ∈ R.
A smooth map φ = (u, v) : M ⊆ C → C, where M is connected and open
and u = Re(φ), v = Im(φ) is a conformal transformation with conformal
factor Ω ̸= 0 if an only if

u2
x + v2

x = u2
y + v2

y = Ω2 , (1)

uxuy + vxvy = 0 . (2)

Holomorphic (ux = vy, uy = −vx) and antiholomorphic (ux = −vy, uy = vx)

functions φ from M to C satisfy (1) and (2) with conformal factor |det(Dφ)| =
|φ′| =2 u2

x + v2
x = Ω2, where Dφ is the respective Jacobi matrix. Conversely,

for every conformal transformation φ, (1) and (2) imply that φ is necessarily
holomorphic or antiholomorphic.
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3.2 Conformal Killing Fields

Consider the open subsets U, U′ of the manifold Rp,q, with p + q = n ≥ 1.
Let φ : U → U′ be a conformal transformation and X : U ⊆ Rp,q → TRp,q be a
smooth vector field. For smooth curves γ = γ(t) on M, consider the autonomous
differential equation

γ̇ = X(γ).

For this differential equation, for an arbitrary p ∈ U, consider its unique max-
imal solution φX(·, p) : I ⊆ R → M, defined on the maximal interval

(
t−p , t+p

)
,

which satisfies

d
dt

(
φX(t, p)

)
= X

(
φX(t, a)

)
, φX(0, p) = p .

Let Mt := {p ∈ M|t−p < t < t+p } and φX
t (p) := φX(t, p). Then Mt ⊆ M and

φX
t : Mt → M−t is a diffeomorphism, which can be visualised as a displacement

of "duration" t along the curves φX(·, p) defined by the vector field X. With this
notation, if p ∈ Mt+s ∩ Ms = {b ∈ M|t−b < t + s, s < t+b } then φX

t ◦ φX
s (p) =

φX
t+s(p). Moreover, φX

0 = idM and M0 = M.

Definition 3.4. Within the notation introduced above we have that the local one-
parameter group (φX

t )t∈R satisfies

d
dt

(
φX

t

)
t=0

= X,

which is called the flow equation.

With this, one can understand the so called geodesic flow as the action on the
tangent bundle TM of M defined by the flow equation restricted to the unit tan-
gent bundle SM := {(p, v) ∈ TM | g(v, v) = 1} [Pat99]. Since throughout a
geodesic the speed remains constant, the diffeomorphisms φt leave SM invariant.

Definition 3.5. A vector field X on M ⊆ Rp,q is a conformal Killing field if φX
t is

conformal for every t in a neighborhood of 0.

Theorem 3.6. Let M ⊆ Rp,q be an open manifold, g = gp,q be a constant metric on M
and X = (X1, . . . , Xn) = Xi∂i be a conformal Killing field where Xi are its coordinates
with respect to the canonical Cartesian coordinates on Rn. There exists a smooth function
κ : M → R such that

Xi,j +Xj,i = κgij.
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Proof. Let (φt) be the local one-parameter group associated to a conformal Killing
field X, and Ωt : Mt → R+ its conformal factor. Consider an arbitrary p ∈ M.
Then, by Definition 3.5 and Definition 3.1,

(φ∗
t g)ij(p) = gab(φt(p))∂i φ

a
t ∂j φ

b
t = (Ωt(p))2gij(p).

Let us now differentiate with respect to t at t = 0, assuming gab do not depend
on t, obtaining

d
dt
(
Ω2

t (p)gij(p))
∣∣
t=0 =

d
dt

(
gab(φt(p))∂i φ

a
t ∂j φ

b
t )
∣∣∣
t=0

= gab(φ0(p))∂i φ̇
a
0∂j φ

b
0 + gab(φ0(p))∂i φ

a
0∂j φ̇

b
0

= gab(φ0(p))∂iXa(p)δb
j + gab(φ0(p))δa

i ∂jXb(p)

= ∂iXj(p) + ∂jXi(p) =
d
dt
(
Ω2

t (p))
∣∣
t=0 gij(p),

where ∂a φb
0 = δb

a . Therefore, we have proved the theorem taking as conformal
factor κ(p) = d

dt

(
Ω2

t (p))
∣∣
t=0.

Within semi-Riemannian geometry, Killing vector fields are those satisfying
LXg = 0. Now, conformal Killing fields satisfy LXg = κg. Therefore, conformal
Killing fields can be considered as a natural generalisation of Killing vector fields.

For the case where gij is not constant, an then it varies smoothly across the
points p ∈ M, the Lie derivative LX of g with respect to the vector field X locally
gets the form

(LXg)ij = Xi;j + Xj;i = κgij,

where the semicolon in the index denotes the covariant derivative corresponding
to the Levi-Civita connection for g.

Definition 3.7. A conformal Killing factor κ is a smooth real-valued function on a
semi-Riemannian manifold M such that, on coordinate neighborhoods,

(LXg)ij = Xi;j + Xj;i = κgij

(for the case M ⊆ Rp,q the previous condition becomes Xi,j + Xj,i = κgij).

Theorem 3.8. A smooth function κ : M → R is a conformal Killing factor if and only if

(n − 2)κ,ij + gij∆gκ = 0,

where ∆g = gab∂a∂b is the Laplace-Beltrami operator for g = gp,q and dimM = n.
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Proof. We will give a proof for the case M ⊆ R(p,q). Let κ : M → R be a conformal
Killing factor. Then we have Xi,j + Xj,i = κgij. From

∂a∂b(Xi,j) = ∂j∂a(Xi,b) ,

one can write

0 = ∂a∂b(Xi,j + Xj,i)− ∂b∂i(Xa,j + Xj,a) + ∂i∂j(Xa,b + Xb,a)− ∂j∂a(Xi,b + Xb,i).

Now, since κ is conformal, from Definition 3.7,

Xi,j + Xj,i = κgij,

and therefore

0 = ∂a∂b(κgij)− ∂b∂i(κgaj) + ∂i∂j(κgab)− ∂j∂a(κgib)

= gijκ,ab − gajκ,bi + gabκ,ij − gibκ,ja = gabgijκ,ab − gabgajκ,bi + gabgabκ,ij − gabgibκ,ja

= gabgijκ,ab − δb
j κ,bi + δa

aκ,ij − δa
i κ,ja = gijgab∂a∂bκ − κ,ji + nκ,ij − κ,ji

= (n − 2)κ,ijgij∆gκ ,

where in the second equality we have used that the derivatives of the metric vanish
and in the last equality we have used the Schwarz Theorem to say κ,ij = κ,ji, since κ

is smooth by definition. We have also used that giagaj = δi
j and that g is symmetric.

For the converse we refer to [Sch08, Chapter 1], where it is explained throughout
some cases.

This theorem also holds for a general open semi-Riemannian manifold M
changing the partial derivative ”, ” for the covariant derivative ";".

Remark 3.9. Consider the case of M ⊆ Rp,q, p + q = n. If n = 2, κ is conformal if
and only if ∆gκ = 0. If n ≥ 2, κ is conformal if and only if{

κ,ij = 0, if i ̸= j

κ,ij = ±(n − 2)−1∆gκ , if i = j .

3.3 Classification of Conformal Transformations

The main goal of this section is to determine all conformal transformations on
connected open M ⊆ Rp,q. To do so, we will first determine all conformal Killing
fields using Theorem 3.8. In all this section dimM := n = p + q. We will also need
the following definition:

Definition 3.10. Given a vector field X ∈ X (M), its respective conformal transforma-
tion φ(x), x ∈ M, is given by the solution φ̃(x, t), t ∈ R, of the flow equation

dφ̃(x, t)
dt

= X(φ̃(x, t)) , φ̃(x, 0) = x ,

after taking φ(x) := φ̃(x, 1).
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3.3.1 Case p+q=n>2

Proposition 3.11. Let n > 1. Then, for a conformal Killing factor κ we have ∆gκ = 0.

Proof. Applying gij in both sides of Theorem 3.8 we get

0 = gij(n − 2)κ,ij + gijgij∆gκ = (n − 2)gij∂i∂jκ + n∆gκ

= (n − 2)∆gκ + n∆gκ = 2(n − 1)∆gκ.

Therefore, for n > 1 we obtain that ∆gκ = 0.

Remark 3.12. The previous result for n = 2 can be obtained straightforward from
Theorem 3.8.

Let us now introduce a theorem from [Sch08, Section 1.4.1]. After stating it,
we will proceed to justify some of its results.

Theorem 3.13. For a connected and open M ⊆ R(p,q) with n = p + q > 2, every
conformal transformation φ : M → R(p,q) is a composition of

• a translation p 7→ p + c, c ∈ R(p,q),

• an orthogonal transformation p 7→ Λp, p ∈ O(p, q),

• a dilatation p 7→ eλ p, λ ∈ R, and

• a special conformal transformation

p 7→ p − g(p, p)b
1 − 2g(p, b) + g(p, p)g(b, b)

, b ∈ R(p,q).

Combining Theorem 3.8 and Proposition 3.11 we have that κ,ij = 0 holds for
n > 2 and for every 1 ≤ i, j ≤ n. Thus, there exist n constants αi ∈ R such that for
every p = (p1, . . . , pn) ∈ M

κ,i (p) = αi, i = 1, . . . , n.

It follows that for n > 2 the conformal Killing factors κ are affine linear maps
κ : M → R such that

κ(p) = λ + αi pi, λ ∈ R.

Let us begin justifying the translation. To do so, consider the case κ = 0. The
corresponding conformal Killing field X then satisfies Xi,j +Xj,i = 0 because we
have M ⊆ Rp,q, and in particular Xi,i + Xi,i = 0, thus Xi,i = 0 and therefore Xi
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does not depend on pi. Now, from Xi,j + Xj,i = 0 and the fact that the derivatives
of the metric vanish, we have

gijXi
,j = −gijX

j
,j = 0 ⇒ Xi

,j = 0.

Combining both results, Xi
,i = Xi

,j = 0, we have that Xi can be written as Xi(p) =
ci + ωi

j p
j, with ci, ωi

j ∈ R. We can write c ∈ R(p,q) and ω ∈ Rn×n.
Consider the case ω = 0, Xi(p) = ci, which can be written as X(p) = c. To

find its respective conformal transformation φc we compute

φ̃c(p, t)
dt

= c ⇒ φ̃c(p, t) = ct + p0.

Since φ̃c(p, 0) = p, we have p0 = p and therefore its respective conformal trans-
formations are the translations φc(p) = φ̃c(p, 1) = p + c.

Consider now the case Xi(p) = ωi
j p

j, which can be written as X(p) = ωp. As
above, to find its respective conformal transformation we compute

φ̃Λ(p, t)
dt

= ωp ⇒ φ̃Λ(p, t) = p0eωt, p0 ∈ R(p,q).

Since φ̃Λ(p, 0) = p, we have p0 = p and therefore its respective conformal trans-
formations are φΛ(p) = φ̃Λ(p, 1) = peω. From Theorem 3.6 we get

∂j (girωr
s ps) + ∂i

(
gjrωr

u pu) = girωr
j + gjrωr

i = ωTg + gω = 0,

which in particular means that ω is antisymmetric. By the antisymmetry of ω

we have, by a linear algebra result, the orthogonality of Λ := eω. Therefore, its
respective conformal transformations can be written as φΛ(p) = Λp, where

Λ = eω ∈ O(p, q) := {Λ ∈ GL(n, R)|ΛTgp,qΛ = gp,q}

and GL(n, R) is the general linear group of degree n over R, which is the group
of the n × n invertible matrices together with the multiplication of matrices.

Finally, assuming the most general form for a conformal Killing field for κ = 0,
Xi(p) = ci + ωi

j p
j, we have seen that its respective conformal transformations are

of the form
φ(p) = c + φΛ(p), c ∈ R(p,q), Λ ∈ O(p, q).

As we will see in more detail in the next case, for constant conformal Killing
factors κ = λ ∈ R \ {0} we have X(p) = λp as conformal Killing fields. Therefore,
its respective conformal transformations are the dilatations φ(p) = eλ p.

Finally, one could also consider the case κ = κ(p), but we will omit it for the
sake of brevity. From this latter case, one obtains the special conformal transfor-
mations of Theorem 3.13. To see this discussion we refer to [Sch08, Section 1.4].
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3.3.2 Case p=2, q=0: the Euclidean plane

Theorem 3.14. Let f = u + iv : M → R2,0 ∼= C be an holomorphic function on an open
M ⊆ R2,0 such that f ′(p) ̸= 0 for every p ∈ M. Then, f is an orientation-preserving
conformal transformation with conformal Killing factor κ = u2

x + u2
y = det D f = | f ′|2.

Conversely, every orientation-preserving and conformal transformation f : M → R2,0 ∼=
C is an holomorphic function.

Proof. We will provide an idea of the proof, which is related to the last example
of Examples 3.3. For a transformation f = u + iv, being conformal (Definition 3.1)
implies it must satisfy (1) and (2) in Section 3.1, which at the same time imply
that f is either a holomorphic or antiholomorphic function. If we also ask f to be
orientation-preserving, then it can only be holomorphic.

The objective is the same as above. We want to analyze conformal Killing fields
and conformal Killing factors in order to describe the conformal transformations
in the Euclidean plane.

Consider a conformal Killing field X = (u, v) : M → C such that for every
z = x + iy ∈ M, X(x, y) = u(x, y) + iv(x, z), where u, v ∈ F (M). Since n = 2, due
to Theorem 3.8, ∆gκ = 0. Furthermore, by Definition 3.7, we have

Xx,x + Xx,x = 2Xx,x = κgxx = κ ⇒ Xx,x = ux = κ/2,

Xy,y + Xy,y = 2Xy,y = κgy,y = κ ⇒ Xy,y = vy = κ/2,

Xx,y + Xy,x = κgx,y = 0 ⇒ Xx,y + Xy,x = uy + vx = 0.

What we have seen is that X satisfies the Cauchy-Riemann equations, ux = vy and
uy = −vx, and thus X is holomorphic.

For the case with κ = 0, using now, and from now on, the usual notation
z = x + iy ∈ C ∼= R2,0, we obtain u(x, y) = u(y) and v(x, y) = v(x) such that
uy = −vx. Its general solution can be expressed as

X(z) = z0 + iθz, z ∈ C,

where θ ∈ R and z0 ∈ C. We can now compute

dφ̃(z, t)
dt

= X(φ̃(z, t)) ⇒ dφ̃

dt
= z0 + iθφ̃ ⇒

∫ dφ̃

z0 + iθφ̃
=
∫

dt

⇒ ln (z0 + iθφ̃)

iθ
= t + C ⇒ z0 + iθφ̃ = Deiθt,

where D = eiθC ∈ C and C ∈ R is a constant of integration even though it
depends on the point z ∈ C in which we are computing the respective conformal
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transformation. We must apply now the initial condition

φ̃(z, 0) =
D
iθ

eiθ0 − z0

iθ
= z ⇒ D = z0 + iθz.

Therefore, its respective conformal transformations are

φ(z) = φ̃(z, 1) =
z0

iθ

(
eiθ − 1

)
+ zeiθ ⇒ φ(z) = z′0 + zeiθ ,

where we have redefined z′0 := z0
iθ

(
eiθ − 1

)
.

For the case κ = λ ∈ R \ {0}, we have ux = vy = λ/2 and uy = −vx, one gets

X(z) = z0 +

(
λ

2
+ iθ

)
z, z ∈ C,

where θ ∈ R. In particular, if κ = 2λ, z0 = 0, and considering θ = 0, i.e. uy = vx =

0, one gets the dilatations
X(z) = λz, z ∈ C,

and, as before,

dφ̃(z, t)
dt

= λφ̃(z, t) ⇒ dφ̃(z, t)
φ̃(z, t)

= λdt ⇒ φ̃(z, t) = Ceλt, C ∈ C.

Applying the initial condition

φ̃(z, 0) = C = z0 ⇒ φ̃(z, t) = zeλt.

Therefore, its respective conformal transformation is φ(z) = φ̃(z, 1) = eλz.
Let us now introduce one widely studied example of conformal transforma-

tion. Specifically, Möbius transformations have been studied within geometry and
complex analysis.

Definition 3.15. Let φ : C → C be an holomorphic function. The function φ is
called a Möbius transformation if there exists a matrix(

a b
c d

)
∈ SL(2, C) such that φ(z) =

az + b
cz + d

with cz + d ̸= 0,

where SL(2, C) is the special linear group of degree 2 over C, which is the group
of the 2 × 2 matrices with determinant +1 and coefficients in C together with the
multiplication of matrices.

It is worth noting that, as it is a conformal transformation, the Möbius trans-
formation preserves the angles (see Figure 2). These transformations can be also
obtained by applying an inverse stereographic projection from the plane to the
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Figure 2: Representation of the Möbius transformation (purple) φ(z) = 9
z , (cor-

responding to a = d = 0, b = 3i, c = i/3 in Definition 3.15), of the grid (blue)
{Re(z) = −10,−9, . . . , 10} ∪ {Im(z) = −10,−9, . . . , 10}.

unit two-sphere S2, rotating the sphere through the plane to a new position and
orientation and finally stereographically projecting it back to the plane. See [AR08]
for a more detailed explanation of this procedure.

Let us now refer the interested reader to [Sch08, Chapter 2], where a more
detailed explanation of the Möbius transformations can be found. Together with
that, we also want to note the result found in Chapter 1 of the same reference
which states that the linear conformal Killing factors κ describe the Möbius trans-
formations.

Generally, for κ ̸= 0, Theorem 3.6 implies that on a connected open subset
M ⊆ C, there exists a vector field X = (u, v) with uy + vx = 0 and ux = vy = κ/2.
Therefore, ux = vy and uy = −vx, and X is holomorphic.

3.3.3 Case p=q=1: the Minkowski plane

This case is very important for physicists because it is used to describe space-
time in special theory of relativity. Similarly to Theorem 3.14 here we have Theo-
rem 3.16.
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Theorem 3.16. A smooth map φ = (u, v) : M → R1,1, where M ⊆ R1,1 is connected
and open, is conformal if and only if

u2
x > v2

x and ux = vy, uy = vx or ux = −vy, uy = −vx.

Proof. Consider first the next relation. Applying Definition 3.1, to our case, φ∗g =

Ωg with g = g1,1 = diag(1,−1), we obtain

Ω2g00 = Ω2 = (gij ◦ φ)∂0φi∂0φj = u2
x − v2

x ⇒ Ω2 = u2
x − v2

x ,

Ω2g11 = −Ω2 = (gij ◦ φ)∂1φi∂1φj = u2
y − v2

y ⇒ Ω2 = v2
y − u2

y ,

0 = Ω2g01 = (gij ◦ φ)∂0φi∂1φj = uxuy − vxvy ⇒ 0 = uxuy − vxvy .

Therefore, we have that the condition φ∗g = Ωg, with g = g1,1 = diag(1,−1), is
equivalent to the three equations above.

Assume now that φ is conformal. From Ω2 = u2
x − v2

x, since φ is conformal
and therefore Ω2 > 0, we have u2

x > v2
x. Moreover, since v2

x ̸= u2
x because u2

x > v2
x,{

Ω2 = u2
x − v2

x

Ω2 = v2
y − u2

y
⇒ u2

x − v2
x = v2

y − u2
y ⇒ u2

x − v2
x = v2

y −
v2

xv2
y

u2
x

⇒ u2
x − v2

x = v2
y

(
1 − v2

x
u2

x

)
⇒ u2

x − v2
x = v2

y

(
u2

x − v2
x

u2
x

)
⇒ v2

y = u2
x ⇒ vy = ±ux.

Now, if vy = ux, 0 = ux(uy − vx) and uy = vx. Analogously, if vy = −ux,
0 = ux(uy + vx) and uy = −vx. We have used that ux ̸= 0 because otherwise
Ω = u2

x − v2
x = −v2

x ≤ 0 and we have Ω > 0.
Conversely, assume that u2

x > v2
x . Then

0 = 2uxuy − 2vxvy = (ux + uy)
2 − (vx + vy)

2

and therefore ux + uy = ±(vx + vy). For ux + uy = vx + vy,

0 = u2
x − u2

x + vxvy − uxuy = u2
x − ux(ux + uy) + vxvy

= u2
x − ux(vx + vy) + vxvy = (ux − vx)(ux − vy),

from what we get ux = vy, since ux = vx would contradict u2
x > v2

x. Therefore,
ux = vy and uy = vx for the assumption made ux + uy = vx + vy. Similarly, for
ux + uy = −(vx + vy),

0 = u2
x − u2

x + vxvy − uxuy = u2
x − ux(ux + uy) + vxvy

= u2
x + ux(vx + vy) + vxvy = (ux + vx)(ux + vy),
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from what we get ux = −vy, since ux = −vx would contradict u2
x > v2

x. Therefore,
ux = −vy and uy = −vx for the assumption made ux + uy = −(vx + vy). Since u
and v are smooth by hypothesis, defining Ω2 := u2

x − v2
x = v2

y − u2
y > 0, we have

that it is also smooth. Therefore, by the equivalence stated at the beginning, we
have that φ is conformal since we also have uxuy − vxvy = 0 in both cases.

Lemma 3.17. In 1+ 1 dimensions, the solutions of the wave equation ∆κ = κxx − κyy = 0
can be written as

κ(x, y) = f (x + y) + g(x − y), with f , g smooth real functions.

Proof. Let’s define the light-cone coordinates as x+ = x + y, x− = x − y. Applying
the chain rule on the wave equation we obtain

∆κ = 0 ⇒ ∂2κ

∂x2 =
∂2κ

∂y2 ⇒ ∂

∂x

(
∂κ

∂x−
∂x−
∂x

)
=

∂

∂y

(
∂κ

∂x−
∂x−
∂y

)
⇒ ∂2κ

∂x∂x−
= − ∂2κ

∂y∂x−

⇒ ∂2κ

∂x+∂x−
∂x+
∂x

= − ∂2κ

∂x+∂x−
∂x+
∂y

⇒ ∂2κ

∂x+∂x−
= 0,

which has the solution

κ(x+, x−) = f (x+) + g(x−), with f , g smooth real functions.

Finally, undoing the change of coordinates we get what we wanted to prove.

Thus, using Proposition 3.11, any conformal factor κ in the Minkowski plane
has the form in Lemma 3.17.

Corollary 3.18. The orientation-preserving linear and conformal maps φ : R1,1 → R1,1

have a matrix representation of the form

Aφ = et A+(s) or Aφ = et A−(s),

with (s, t) ∈ R2 and where

A+(s) =

(
cosh s sinh s
sinh s cosh s

)
and A−(s) =

(
− cosh s sinh s

sinh s − cosh s

)

Proof. Consider the standard basis of R2 and Aφ the matrix representing φ = (u, v)
with respect to this basis,

Aφ =

(
a b
c d

)
.
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Hence, u(x, y) = ax + by, v(x, y) = cx + dy and ux = a, uy = b, vx = c, vy = d.
Applying now Theorem 3.16, since φ is conformal, a2 > c2, and since

det Aφ = ad − cb > 0, i.e. φ is orientation-preserving,

we are in the case a = d, b = c, because otherwise, in the case a = −d, b = −c, the
orientation is not preserved by φ. Since det Aφ > 0, it can be expressed as det Aφ =

e2t, for some t ∈ R. The solution t ∈ R of the equation e2t = a2 − c2 = det Aφ

is unique. For a given t ∈ R, the solution s ∈ R of sinh s = ce−t is also unique.
We have c2 = e2t sinh2 s, from what a2 = c2 + e2t = e2t(sinh2 s + 1) = (et cosh s)2.
Therefore, a = et cosh s = d or a = −et cosh s and c = et sinh s = b.

Having seen that, one can now interpret the action of t as a dilatation and the
action of s as a boost or Lorentz transformation. Using the identities

sinh x + y = sinh x cosh y + sinh y cosh x and

cosh x + y = sinh x sinh y + cosh y cosh x ,

it can be seen that

Aφ(t, s) · Aφ(t′, s′) = et A±(s)et′ A±(s′) = et+t′ A±(s + s′) = Aφ(t + t′, s + s′).

Now, in order to introduce the final result of this subsection, let us introduce
some concepts within group theory.

Definition 3.19. Let (G, ∗), (H,⊙) be two groups and φ : (G, ∗) → (AutH, ◦) a
group homomorphism. Consider the action of G on H, denoted by ϕ, defined by
ϕ(g, h) := φ(g)(h), for every g ∈ G and every h ∈ H. The semidirect product of
(H,⊙) and (G, ∗) with respect to φ, denoted by (H ⋊φ G,×), is

H ⋊φ G := {(h, g)|h ∈ H, g ∈ G}, together with the operation

(h, g)× (h′, g′) := (h ⊙ ϕ(g, h′), g ∗ g′).

Let us now define two groups which are named after the distinguished Dutch
physicist H. Lorentz and French mathematician H. Poincaré. It can be seen that
Lorentz group is a subgruop of Poincaré group. A further discussion can be found
in [Pen74].

Definition 3.20. The Lorentz group can be mathematically described as the indefinite
orthogonal group O(1, 3) and is defined as the set of all linear transformations of an
4-dimensional real vector space that leave invariant a non-degenerate, symmetric
bilinear form of index ν = 1. It can be represented as

O(1, 3) = {Λ ∈ GL(4, R) | ΛTηΛ = η} , where η = diag(−1, 1, 1, 1) .
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Definition 3.21. The Poincaré group is the group of all the isometries of Minkowski
spacetime, which are the transformations that preserve the relativistic interval
between the points of Minkowski spacetime, named events. Mathematically, the
Poincaré group is a semidirect product of the translations and the Lorentz group,

P(1, 3) = R(1,3) ⋊φ O(1, 3),

where φ is the homomorphism defined by φ(α)(Λ) := Λ · α, for every α ∈ R(1,3)

and every Λ ∈ O(1, 3), as the usual multiplication of a matrix by a scalar. There-
fore, the product in the Poincaré group is:

(α, Λ) ∗P (α′, Λ′) = (α + Λ · α′, ΛΛ′).

We can now conclude with (see [Sch08, Remark 1.15]):

Proposition 3.22. The Lorentz group O(1, 1) is isomorphic to R. The corresponding
Poincaré group P(1, 1) is the semidirect product R(1,1) ⋊φ O(1, 1) ∼= R(1,1) ⋊φ R with
respect to the group homomorphism

φ : R −→ GL(2, R)

s 7−→ A+(s) :=

(
cosh (s) sinh (s)
sinh (s) cosh (s)

)
.

3.4 Conformal Manifolds

We will introduce now the concept of conformal manifolds in the context of
conformal geometry, which is analogous to the concept of semi-Riemannian man-
ifolds within semi-Riemannian geometry. For further, though still introductory,
information on conformal manifolds see [Eas96, CG18, FH20].

Definition 3.23. Consider two metrics g, g′ on a manifold M. These metrics g, g′

are conformally equivalent, g ∼ g′, if there exists a smooth function Ω : M → R

such that Ω(p) ̸= 0 for every p ∈ M and for every X, Y ∈ Tp M

g′(X, Y) = Ω2(p)g(X, Y).

Then, for every M one can define the conformal metric as the equivalence class

[g] := {metrics g′ on M | g ∼ g′}.

Example 3.24. Let M be the Riemannian manifold R2,0. The positive-definite met-
rics g, g′ defined as

(gij) =

(
2 −1
−1 3

)
and (g′ij) =

(
2e2(x+y) −e2(x+y)

−e2(x+y) 32(x+y)

)
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for every (x, y) ∈ R2,0 are conformally equivalent, since g′(X, Y) = e2(x+y)g(X, Y)
for every X, Y ∈ T(x,y)M.

Definition 3.25. Let g be a metric on M. Then the pair (M, [g]) is a conformal
manifold.

Example 3.26. For the Lorentzian (ν = 1) flat manifold, the metric can be ex-
pressed as η = diag(−1, 1, . . . , 1). Therefore, (R1,1, [g]) with

[g] = {g = ω2(p)diag(−1, 1)|ω : R−1,1 → R is smooth}

is a conformal manifold.

Definition 3.27. Let g be a metric on M. Then the pair (M, [g]) is a conformally flat
manifold if g is conformally equivalent to the flat metric η.

Example 3.28. Let
(
R1,1, [g]

)
be a conformal manifold, considering the coordinates

{t, x}, with g = e−t2+x2
diag(−1, 1). Then,

(
R1,1, [g]

)
is conformally flat.

On conformally flat manifolds, every point has a neighbourhood which can
be mapped by a conformal transformation to a flat manifold, whose Riemann
curvature tensor (Definition 2.70) is everywhere zero.

Considering these definitions, a conformal manifold can be also understood as
the equivalence class of a smooth manifold, with respect to the conformal equiv-
alence of the metrics on it. Therefore, on a conformal manifold lengths can not
be considered. However, one can still define and measure angles, between, for
instance, tangent vectors or curves, and ratios of lengths at a point p ∈ M.

An interesting discussion can be found in [d’I92, Section 6.13] or [FZ11, Section
3.6]. Let us present an interesting result in [d’I92]:

Proposition 3.29 (see Section 6.13 of [d’I92]). Every 2-dimensional semi-Riemannian
manifold is conformally flat.

Remark 3.30. For a semi-Riemannian manifolds of dimension n ≥ 4, it can be seen
[FZ11] that it is conformally flat if its Weyl tensor vanishes. For the case n = 3 the
semi-Riemannian manifold is conformally flat if and only if the so called Cotton
tensor vanishes. The components of the Cotton tensor are

Cijk = 2Ri[j;k] −
1

n − 1
gi[jR;k],

which for n = 3 get the form

Cijk = 2Ri[j;k] −
1
2

gi[jR;k] .
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Conformal Lorentzian manifolds have a notorious relevance for theoretical
physics. For these manifolds, studied within A. Einstein’s theories of relativity,
the spacetime interval, which is analogue to the concept of distance, can no longer
be considered. Yet the light-cone structure, which is closely related to the causal
structure, is preserved by conformal transformations and can still be considered.

4 Conformal Compactifications and Pen-
rose Diagrams

Penrose diagrams have been widely used both in scientific literature and in
pedagogy of mathematical physics [HP70, Wri14]. They consist of a conformal
transformation of the physical Lorentzian manifold together with the conformal
infinity, which is the boundary of this new unphysical compact manifold. That is
why they are a conformal compactification of spacetimes.

Light beams always travel at 45° within a Penrose diagram and causality is
preserved, so they allow to study the causal structure of spacetimes. The bound-
aries of these diagrams correspond either to infinity or singularities. Light must
end at some point the boundary. With that, Penrose diagrams are also useful to
study asymptotic properties of spacetimes, as well as singularities.

In this section, we provide a brief description of Penrose diagrams following
[Wri14], after defining the so called conformal compactifications [CG18, FH20].
We also provide two detailed examples.

4.1 Conformal Compactifications

Definition 4.1. Let Σ be a submanifold of M. A defining function for Σ is a smooth
real-valued function on M, r, such that r−1(0) = Σ and dr is non-vanishing at
every point of Σ.

Definition 4.2. A compact semi-Riemannian manifold (M̄, ḡ) with boundary Σ is
a conformal compactification of (M, g) if M is the interior of M̄ and there is a defining
function r of ∂M such that

ḡ|M = r2g.

The boundary (Σ, γ), where γ = ḡ|Σ is the boundary metric associated to the
compactification ḡ, is called the conformal infinity.

For a given (M, g), there are many possible conformal compatifications. That
is why only the conformal class [γ] is uniquely determined by (M, g).
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These concepts give physicists a powerful tool for solving problems related to
the asymptotics of quantities in spacetimes. They rescale their original problem
from the original physical semi-Riemannian manifold to the unphysical compact-
ified manifold where they solve the problem on conformal infinity to finally undo
the rescaling back to the physical manifold.

For a further discussion on conformal compactifications and their relation to
physics we refer to [And06, And05]. There, you may find studies regarding the
behavior of gravitational fields at infinity introduced by R. Penrose [Pen65] or the
AdS/CFT correspondence introduced by J. M. Maldacena [Mal98], respectively.

4.2 Penrose Diagrams

Representations of spacetime diagrams begun with Minkowski’s contribution
to Special Relativity, considering the real plane and representing time on the verti-
cal axis and space, as the radius from a center for example, on the horizontal axis.
For this diagram to represent the "fabric" of spacetime, both axis should have the
same units. That is why the vertical axis represents in fact the speed of light times
the time, ct, even though physicists usually take c = 1 and omit it. It explains why
light travels at 45º in this diagram, drawing the so called light-cones within which
every observer is forced to move: the fact that nothing can travel faster than the
speed of light c forces all observer’s possible world-lines to have a slope greater
than 45°.

It can be thought that every point in this diagram represents a spatial two-
sphere, S2. The angular dimensions are not represented in the diagram because
the paper has only two dimensions and we use one to represent time, so the
representation of only one spatial dimension is the clearest option.

Penrose diagrams allow to represent the infinite spacetime within a finite pa-
per sheet and which also preserved the feature that photons followed straight
trajectories at 45°. One of the most widely recognised Penrose diagram is the one
for the Schwarzschild metric

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dΩ2
I I .

As explained in the introduction, the procedure to obtain the Penrose diagram
for the Schwarzschild metric is essentially a conformal transformation and can be
also found in [LV19], where it also explains that there is an essential singularity
at r = 0. The scalar of curvature diverges at this point, where the manifold is not
smooth. It is represented in Figure 3.

We now continue with two examples of Penrose diagrams together with the
explanation of how we obtain them.
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r = 0 i+

i−

i0

I+

I−

r = 0

i+

i−

i0

I+

I−

Figure 3: Extended Penrose diagram for the Schwarzschild metric. Red (resp.
blue) lines represent hypersurfaces of constant t (resp. r). The labbels correspond
to those explained in Case 4.2.1.

4.2.1 Minkowski spacetime

As it can be seen both in [Wri14] or [Str94] or many other papers, we start with
the Minkowski spacetime metric

ds2 := gijdxidxj = −dt2 + dx2 + dy2 + d2 = −dt2 + dr2 + r2(dθ2 + sin2θdϕ2)

= −dt2 + dr2 + r2dΩ2
I I . (3)

From now on, we will follow the procedure used in [Str94]. We will focus on
the (r, t) plane. The basic idea is to start by rotating the spacetime (r, t) diagram so
that the axis represent the light trajectories, then bringing the infinity to our paper
sheet and finally rotating the diagram again so that light follows 45° straight lines
again. We begin changing (3) to light-cone coordinates (u, v){

u = t − r
v = t + r

⇒ −dudv = −(dt2 − dr2) = −dt2 + dr2 ⇒ ds2 = −dudv + r2dΩ2
I I ,

(4)

where −∞ < u, v < ∞. The conformal infinity is a disjoint union of timelike,
lightlike and spacelike infinity. These concepts are defined as follows:

• Future timelike infinity (i+): where we would get if we fix r and take t to ∞.

• Past timelike infinity (i−): where we would get if we fix r and take t to −∞.

• Spacelike infinity (io): where we would get if we fix t and take r to ∞.
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• Future null infinity (I+): where we would get if we fix u and take v to ∞.

• Past null infinity (I−): where we would get if we fix v and take u to −∞.

Note that, for Minkowski space, every photon would end at I+ and could come
from I−. Now we have settled these new light-cone coordinates expressing the
metric with them (4) and defined the conformal infinity, it is time to bring the
infinity closer. Here we have many possibilities, like the ones used by R. Sachs in
[Sac64]. Among all the possibilities we are going to use the change of coordinates
used in [Str94]

v = t + r = tan
(

1
2
(ψ + ζ)

)
, u = t − r = tan

(
1
2
(ψ − ζ)

)
, (5)

with ζ ± ψ < π, ζ > 0, since r ≥ 0, forming a half diamond (Figure 4). From (5),

dv = cos−2
(

1
2
(ψ + ζ)

)
1
2
(dψ + dζ) , du = cos−2

(
1
2
(ψ − ζ)

)
1
2
(dψ − dζ) ,

and therefore

dudv =
1
4

cos−2
(

1
2
(ψ + ζ)

)
cos−2

(
1
2
(ψ − ζ)

)
(dψ2 − dζ2) . (6)

i+

i−

i0

I+

I−

Figure 4: Penrose diagram for the Minkowski spacetime in the (ζ, ψ) plane. The
black line represents a light beam from the origin of coordinates to future null
infinity I+.
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Using (6), we can rewrite metric (4) as

ds2 = −dudv + r2dΩ2
I I

= −1
4

cos−2
(

1
2
(ψ + ζ)

)
cos−2

(
1
2
(ψ − ζ)

)
(dψ2 − dζ2) + r2dΩ2

I I

= Ω−2(ψ, ζ)(−dψ2 + dζ2) + r2dΩ2
I I ,

where Ω(ψ, ζ) = 2 cos
( 1

2 (ψ + ζ)
)

cos
( 1

2 (ψ − ζ)
)

is the conformal factor, introduc-
ing a new unphysical metric ḡij which is conformal to the physical metric,

ḡij = Ω2gij .

Equivalently we have Ω(r, t) = 2 cos (arctan (t + r)) cos (arctan (t − r)).
Since we have the combinations ψ + ζ and ψ − ζ in the new redefinition of

u and v (5), we have already done the second rotation so that the light particles
follow a straight line of 45° from vertical. At the same time, we brought the
infinities to the paper sheet by applying the tangent to 1

2 (ψ + ζ) and 1
2 (ψ − ζ),

respectively.

i+

i−

i0

I+

I−

i0

I+

I−

Figure 5: Extended Penrose diagram for the Minkowski spacetime in the (ζ, ψ)

plane. The black line represents a light beam from the past null infinity (left) I−

to the future null infinity (right) I+.
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Now, to obtain the full diamond as a representation of the 1 + 1 dimensional
Minkowski spacetime we can represent the following metric

ds2 = −dt2 + dx2 = −dx+dx− ,

where we have used x± ≡ t ± x and x± = tan
( 1

2 (ψ ± ζ)
)

as before, but with the
difference that now, since x ∈ (−∞,+∞), |ζ ± ψ| < π and we therefore get the
full diamond (Figure 5). To show that light particles follow indeed a 45° straight
line we have also plotted a light beam in Figure 4 and in Figure 5.

4.2.2 Modified JT gravity

Following [Ai21, Wit20], we present here a model which has recently returned
to the attention of physicists. The modified Jackiw-Teitelboim (JT) gravity model
bulk action is

IJT =
1

16πG

∫
d2x
√
−g [ϕS + W(ϕ)] ,

where G is the gravitational Newton constant in 2D, ϕ is a scalar field, called
dilaton, S is the scalar of curvature of the 2-dimensional spacetime and W(ϕ) is
a potential. The original JT model corresponds to W(ϕ) = 2Λϕ, where Λ is the
cosmological constant. We shall consider the modified JT model with the potential
W(ϕ) = sech2ϕ. Consider the action IJT together with the metric

ds2 = −A(x)dt2 +
1

G(x)
dx2.

Applying Hamilton’s principle, which states that the action of the system must
satisfy δIJT

δq(x) = 0 for q(x) ∈ {A(x), G(x)}, and considering the Schwarzschild-like
case A(x) = G(x), one can obtain [Ai21] the equations

ϕ′A′ − W(ϕ) = 0 , ϕ′′ = 0 ,

where the prime symbol denotes the derivative with respect to the coordinate x.
Solving these equations (after an appropriate transformation so that ϕ(x) = x),
one can rewrite the metric as

ds2 = −(tanh x + C)dt2 +
1

tanh x + C
dx2, (7)

where C ∈ R is a constant of integration. We consider C ∈ (−1, 1) in order to have
an event horizon, which requires the function A(x) = tanh x+C to vanish at some
x ∈ R. We can now compute the null geodesics, for which ds2 = 0, obtaining

t = ±Cx − log (C cosh x + sinh x)
C2 − 1

+ t0 . (8)
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t

x

Figure 6: Plot of the outgoing (black) and ingoing (red) null geodesics (8) for
C = 0.

The + (resp. −) sign of ± in (8) corresponds to outgoing (resp. ingoing) light
beams and t0 is a constant (Figure 6).

To obtain a maximally extended Penrose diagram we will consider the follow-
ing coordinate changes:

(t, x) (t, x∗) (u, v)

(T, X) (Ū, V̄) (U, V)

Tortoise Retarded
Advanced

Kruskal-like

RescalingRotation
.

Consider tortoise coordinates (t, x∗), which must satisfy

dx∗
dx

= A−1(x) =
1

C + tanh x
,

so then, after integrating,

x∗ =
Cx − log(C ∗ cosh x + sinh x)

C2 − 1
, x∗ ∈ (−∞,+∞) . (9)

Introducing retarded and advanced coordinates (u, v),

u = t − x∗ , v = t + x∗ , u, v ∈ (−∞,+∞) ,
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one can define the Kruskal-like coordinates

U = −e−(1−C2)u/2 , V = e(1−C2)v/2 .

Here, U < 0 and V > 0. Consider how we can rewrite the metric (7). From (9),

dx∗ =
dx

tanh x + C
⇒ ds2 = −(tanh x + C)dt2 +

1
tanh x + C

dx2

= −(tanh x + C)(dt2 − dx2
∗) = −(tanh x + C)dudv .

From the Kruskal-like coordinates, using that v − u = 2x∗,{
dU = − (−1+C2)

2 e(−1+C2) u
2 du

dV = − (−1+C2)
2 e−(−1+C2) v

2 dv
⇒ dUdV =

(
1 − C2)2

4
e(−1+C2) u−v

2 dudv

⇒ dudv =
4

(1 − C2)2 e(−1+C2)x∗dUdV,

so we can rewrite the metric (7) as

ds2 = −(C + tanhx)dudv = −(C + tanhx)
4

(1 − C2)2 eCx−log(C·cosh x+sinh x)dUdV

= −C · cosh x + sinh x
cosh x

4

(1 − C2)2 eCx 1
(C · cosh x + sinh x)

dUdV

= − 4eCx

(1 − C2)2 cosh x
dVdU.

Now, in order to bring the infinity into the sheet of paper, we define

Ū = arctan U , V̄ = arctan V , Ū, V̄ ∈
[
−π

2
,

π

2

]
,

with dUdV = (1 + U2)(1 + V2)dŪdV̄. After rotating the axis by changing to

T =
1
2
(V̄ + Ū) , X =

1
2
(V̄ − Ū) , T, X ∈

[
−π

2
,

π

2

]
,

with −dT2 + dX2 = −dŪdV̄, one obtains the Penrose diagram in Figure 7.
Let us now compute the final metric:

ds2 =− 4eCx

(1 − C2)2 cosh x
dVdU = − 4eCx

(1 − C2)2 cosh x
(1 + U2)(1 + V2)dŪdV̄

=− 4eCx

(1 − C2)2 cosh x

(
1 + e−(1−C2)(t−x∗)

) (
1 + e(1−C2)(t+x∗)

)
dŪdV̄

=
4eCx

(1 − C2)2 cosh x

[
1 + 2 cosh

((
1 − C2) t − Cx + log (C · cosh x + sinh x)

)
+ e−2Cx(C · cosh x + sinh x)

] (
−dT2 + dX2) .
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If we consider the case C = 0, the metric gets the form

ds2 =
4

cosh x
(1 + 2 cosh t + log sinh x + sinh x)

(
−dT2 + dX2) ,

from which we obtain the conformal factor

Ω(t, x) =
1
2

(
cosh x

1 + 2 cosh t + log sinh x + sinh x

)1/2

of a new unphysical metric ḡij which is conformal to the physical metric gij,

ḡij = Ω2gij .

I

II

III

IV

Figure 7: Extended Penrose diagram for the metric (7) with C = 0 in the (X, T)
plane. Red (resp. blue) lines represent hypersurfaces of constant t (resp. x).
Region I corresponds to x > 0 and region III is a copy of region I. Region II (resp.
IV) corresponds to x < 0 for the ingoing (resp. outgoing) case in (8). The black
line in region I is a null geodesic.
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