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Abstract

Group theory is quite an astonishing field of Mathematics that reminds of a big
world of puzzles, starting from the very first definition of a Group to the concept
of the Monster Group which is featured in many informational papers and videos.
In particular, one of the most interesting approaches is the Galois theory, which
was first introduced in the bachelor’s degree. We will merge this concept together
with algebras to achieve the structures that this work’s title is based on, the Hopf
Galois structures.

These structures will be the focal point of the present thesis. The goal is to
compute them using Magma (short for Magma Computational Algebra System),
a software designed for computations in algebra. For that matter, we will start
by presenting the preliminaries where we give concepts that might have not been
shown in the bachelor’s degree. Afterwards we will give the definitions of the
types of algebra to be used. It is followed by the Greither-Pareigis theory which
gives the background of the Hopf Galois structures. Sought after we have the
Byott’s Theorem, which has an immediate application that our program will be
based on. Finally, to summarize, we will show some other results and continua-
tions about this matter.
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Introduction 1

Introduction

Our journey will start from the preliminaries on a few different aspects of
Mathematics, such as regular and transitive subgroups, semidirect product, mul-
tilinear maps and tensor product.

Afterwards, on the next chapter, we will introduce the concept of algebra by
diagrams as shown in [7] and [5] which is a notion made possible, or one might
say simplified, by tensor products. This alternative definition of algebra leads to
think of a duality concept which is presented as the coalgebra. Both definitions
concatenate into what it is known as bialgebra, which is a vector space with the
maps defined in algebras and coalgebras. We also introduce left and right module
algebra and to finish the chapter, we have Hopf algebra which is a bialgebra but
with an addition of antipode map. Hopf algebras where firstly introduced by
Chase-Sweedler in [6].

Subsequently, on the third chapter, we merge the concepts from algebras with
group theory and define the group Hopf algebra. Also in this chapter we can find
the Greither-Pareigis theory [1] where we define the Hopf Galois structure on a
field extension L/K that consists of a Hopf algebra together with an action on the
field L. We will see that this action constructs a left module algebra and induces a
isomorphism. It also leads to the Greither-Pareigis Theorem.

Theorem 0.1. (Greither-Pareigis) Let L/K be a separable extension with normal closure
E, let G = Gal(E/K), G′ = Gal(E/L) and X = G/G′. Then there is a bijection between
regular subgroups N of Perm(X) normalized by λ(G) and Hopf Galois structures on L/K.

This theorem is crucial for the study of Hopf Galois structures on a field ex-
tension, but the research for these regular subgroups N might become really chal-
lenging since the amount of regular subgroups grows largely.

On the fourth chapter, we have Byott’s Theorem [4], which reverses the roles
of the groups G and N and eases permutations.

Theorem 0.2. (Byott) Let G′ ⊂ G be finite groups, let X = G/G’ and let N be an abstract
group of order |X|. Then there is a bijection between

N = {α : N → Perm(X) a 1-1 homomorphism | α(N) is regular} and
G = {β : G → Perm(N) a 1-1 homomorphism | β(G′) is the stabilitzer o f eN}

where eN is the identity of N.
Under this bijection, if α, α′ ∈ N correspond to β, β′ ∈ G, respectively, then:
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• α(N) = α′(N) iff β and β′ are conjugate by an element of Aut(N).

• α(N) is normalized by λ(G) ⊂ Perm(X) iff β(G) is contained in Hol(N), the
normalizer of N in Perm(N).

We also show a proof of this theorem, done by Childs in [3]. This theorem has
a immediate result that allows us to properly count Hopf Galois structures.

On the fifth chapter, we have the our program in Magma computation based
on the immediate result form Byott’s Theorem to compute the amount of Hopf
Galois structures for a given n = [L : K].

Lastly, on the last chapter, we have some glimpses of results from works about
Hopf algebras and Galois extensions.



Chapter 1

Preliminaries

For the sake of this work, we take into consideration that the reader knows all
the concepts introduced in the bachelor’s degree of mathematics.

In this chapter regardless the fact that the reader might already know the fol-
lowing concepts from Estructures i equacions Algebraiques, due to the variety that
the courses might have experienced, we will introduce them anyways.

1.1 Group theory

Definition 1.1. A symmetric group Sn of degree n is the group of all permutations
on n symbols.

Given a subgroup G ⊂ Sn we introduce the following definitions.

Definition 1.2. G is transitive ⇐⇒ ∀i, j ∈ {1, . . . , n}, ∃σ ∈ G : σ(i) = j.

Definition 1.3. G is regular ⇐⇒ ∀i, j ∈ {1, . . . , n}, ∃!σ ∈ G : σ(i) = j.

Proposition 1.4. G is regular if and only if G is transitive and |G| = n.

Proof. For the first implication, if G is regular then G is clearly transitive, therefore
it suffices to show that |G| = n. Clearly |G| ≥ n because if we fix i we need at
least n different elements from G to map i to all the other elements in {1, . . . , n}.
If |G| > n then by the Pigeonhole principle there must be some j ∈ {1, . . . , n} so that
there are distincts σi, τi ∈ G such that σi(i) = τi(i) = j for some i ∈ {1, . . . , n} but
that is untrue since G is regular.

For the converse, suppose on the contrary, that G is transitive but not regular
and |G| = n, therefore there is at least one pair of i, j ∈ {1, . . . , n} so there are
distincts σi, τi ∈ G such that σi(i) = τi(i) = j. Moreover, this i also needs to be
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4 Preliminaries

mapped to all the other elements in {1, . . . , n}, lets say by σk, k ∈ {1, . . . , n}, k ̸= i.
Hence, there are at least n − 1 of such permutations σk and in addition to σi, τi we
lead to a contradiction.

Definition 1.5. Let G and H be groups and ρ : H → Aut(G) be a homomorphism.
The semidirect product G ⋊ H is the group of the cartesian product G × H with a
binary operation defined as

(g, h) (g′, h′) =
(

gρ(h)(g′), hh′
)

.

The neutral element is (ϵg, ϵh) and the inverse of (g, h) is (ρ(h−1)(g−1), h−1).
One can easily verify the fact that G ⋊ H is indeed a group by checking asso-

ciativity and both neutral and inverse elements.

1.2 Multilinear maps

Recall that another trivial but important concept from Algebra Lineal is the fact
that we can extend bilinear maps over a ring R to R-n-linear maps by preserving
both conditions of linearity and product by a scalar.

Definition 1.6. Let M1, . . . , Mn be R-modules. A map f : M1 × M2 × · · ·× Mn → A
is R-n-linear if ∀i, 1 ≤ i ≤ n, and all ai, a′i ∈ Mi, r ∈ R,

(i) f (a1, a2, . . . , ai + a′i, . . . , an) = f (a1, a2, . . . , ai, . . . , an) + f (a1, a2, . . . , a′i, . . . , an)

(ii) f (a1, a2, . . . , rai, . . . , an) = r f (a1, a2, . . . , ai, . . . , an)

1.3 Tensor product

We will also introduce the tensor product, which will be one of the fundamen-
tals of future concepts.

Definition 1.7. A tensor product of M1, M2, . . . , Mn over R is an R-module
M1 ⊗ M2 ⊗ · · · ⊗ Mn together with an R-n-linear map

f : M1 × M2 × · · · × Mn → M1 ⊗ M2 ⊗ · · · ⊗ Mn

so that for every R-module A and R-n-linear map h : M1 × M2 × · · · × Mn → A
there exists a unique R-module map g : M1 ⊗ M2 ⊗ · · · ⊗ Mn → A such that g f =

h, which means that the following diagram commutes.

M1 × M2 × · · · × Mn M1 ⊗ M2 ⊗ · · · ⊗ Mn

A

f

h g
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Proposition 1.8. There is an R-module isomorphism

M1 ⊗ (M2 ⊗ M3) ∼= (M1 ⊗ M2)⊗ M3.

Proof. The proof of this proposition consists of defining two maps g and h

g : M1 × M2 × M3 −→ (M1 ⊗ M2)⊗ M3

(a1, a2, a3) 7−→ (a1 ⊗ a2)⊗ a3

h : M1 × M2 × M3 −→ M1 ⊗ (M2 ⊗ M3)

(a1, a2, a3) 7−→ a1 ⊗ (a2 ⊗ a3)

and verifying that both maps are R-3-linear. Then since M1 ⊗ M2 ⊗ M3 is a tensor
product, there exists a unique map of R-modules for both g and h

g̃ : M1 ⊗ M2 ⊗ M3 −→ (M1 ⊗ M2)⊗ M3

a1 ⊗ a2 ⊗ a3 7−→ (a1 ⊗ a2)⊗ a3

h̃ : M1 ⊗ M2 ⊗ M3 −→ M1 ⊗ (M2 ⊗ M3)

a1 ⊗ a2 ⊗ a3 7−→ a1 ⊗ (a2 ⊗ a3)

and finally ϕ := g̃ ◦ h̃−1 gives us the isomorphism of R-modules.
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Chapter 2

Types of algebras

In this chapter we will mainly introduce the definitions of all the types of
algebras that we will use subsequently. We will consider K as a field, throughout
the entire work, unless specifically stated otherwise.

The following definitions are adapted from various works such as [5], [6], and
[7].

2.1 Equivalent definitions of algebra

The traditional definition of a K-Algebra that is mainly reminded is the follow-
ing.

Definition 2.1. A K-algebra A is a ring with identity element 1A together with a
ring homomorphism I : K → A which satisfies I(r)a = aI(r) for a ∈ A, k ∈ K.
Then A is a vector space over K with scalar multiplication

ka = I(k)a = aI(k)

for k ∈ K, a ∈ A.

The previously defined tensor product, allows us to give another look at the
traditional definition of a K-Algebra.

Definition 2.2. A K-algebra A is a ring which is also a K-vector space such that
always

k(a1a2) = (ka1)a2 = a1(ka2), k ∈ K, a1, a2 ∈ A

Let 1A be the identity element of A, then I : K → A defines a ring homomor-
phism, with IK in the center of A. The product a1a2 is left and right distributive,

7



8 Types of algebras

so is a K-bilinear function. Therefore π(a1 ⊗ a2) = a1a2 describes a K-module ho-
momorphism π : A ⊗ A → A.
In these terms a K-algebra may be described as a K-module A equipped with two
homomorphisms

π : A ⊗ A → A, I : K → A

of K-modules such that the diagrams

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

π⊗1

1⊗π π

π

and

K ⊗ A A A ⊗ K

A ⊗ A A A ⊗ A

∼=

I⊗1

∼=

1⊗I

π
π

are commutative.
This is true, since the first diagram gives the associativity of the product and

the second diagram shows that I(1k) is a left and right identity element for the
product in A and that π(Ik ⊗ a) = ka = π(a ⊗ Ik).

The K-algebra A is commutative if

πτ = π

where τ denotes the twist map defined as τ(a ⊗ b) = b ⊗ a for a, b ∈ A
Let A1 and A2 be K-algebras. A K-algebra homomorphism from A1 to A2 is a

map of additive groups ϕ : A1 → A2 for which

• ϕ(1A1) = 1A2

• ϕ(π1(a ⊗ b)) = π2(ϕ(a)⊗ ϕ(b))

• ϕ(I1(r)) = I2(r)

for a, b ∈ A1, r ∈ K. In particular, for A1 to be a sub-algebra of A2 (when ϕ is an
inclusion) we require that 1A1 = 1A2
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2.2 Coalgebras

By reversing the arrows from the diagrams in Definition 2.2 we form a dual-
ization of the notion of an algebra.

Definition 2.3. A K-coalgebra C is a K-module C with two homomorphisms
ψ : C → C ⊗ C and ϵ : C → K of K-modules such that the diagrams

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

ψ

ψ 1⊗ψ

ψ⊗1

and

C ⊗ C C C ⊗ C

K ⊗ C C C ⊗ K

ϵ⊗1

ψ

ψ

1⊗ϵ

are commutative.
The first diagram gives the coassociative law of ψ and the second states that ϵ

is a counit.

The K-coalgebra C is cocommutative if

τ(ψ(c)) = ψ(c)

for all c ∈ C
Let C1 and C2 be K-coalgebras. A K-linear map ϕ : C1 → C2 is a K-coalgebra

homomorphism if

• (ϕ ⊗ ϕ)ψ1(c) = ψ2(ϕ(c))

• ϵ1(c) = ϵ2(ϕ(c))

for all c ∈ C1.
We will use Sweedler’s notation in [6] to write

ψ(c) = ∑
c

c(1) ⊗ c(2)
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2.3 Bialgebras

All together, by merging the maps defined in K-algebras and K-coalgebras, we
introduce the concept of bialgebra.

Definition 2.4. A K-bialgebra B is a K-vector space with maps π, I, ψ, ϵ that satisfy:

(i) B with multiplication map π and unit map I is a K-algebra

(ii) B with comultiplication map ψ and counit ϵ is a K-coalgebra

(iii) ψ and ϵ are homomorphisms of K-algebras

Remark 2.5. The condition that ψ : B → B ⊗ B is an algebra homomorphism im-
plies that

ψ(ab) = ∑
(ab)

(ab)(1) ⊗ (ab)(2)

= ψ(a)ψ(b)

=

(
∑
(a)

a(1) ⊗ a(2)

)(
∑
(b)

b(1) ⊗ b(2)

)
= ∑

(a,b)
a(1)b(1) ⊗ a(2)b(2)

for a, b ∈ B.

2.4 Module algebras

Definition 2.6. Let B be a bialgebra, and let A be an algebra and a left B-module
with action denoted by "·". Then A is a left B-module algebra if

b · (aa′) = ∑
(b)

(b(1) · a)(b(2) · a′)

and

b · 1A = ϵb(b)1A,

for all a, a′ ∈ A, b ∈ B.
Let A, A′ be K-algebras. A K-linear map ϕA : A → A′ is a left B-module alge-

bra homomorphism if ϕA is both an algebra and a left B-module homomorphism.
Similarly, let C be a coalgebra and a right B-module with action denoted by

"·". Then C is a right B-module coalgebra if
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ψc(c · b) = ∑
(c,b)

c(1)b(1) ⊗ c(2)b(2)

and

ϵC(c · b) = ϵC(c)ϵB(b),

for all c ∈ C, b ∈ B.
Let C, C′ be K-coalgebras. A K-linear map ϕC : C → C′ is a right B-module

coalgebra homomorphism if ϕC is both a coalgebra and a right B-module homo-
morphism.

2.5 Hopf algebras

Definition 2.7. A K-Hopf algebra H is a bialgebra with maps π, I, ψ, ϵ together
with a K-linear map σH : H → H that satisfies

π(I ⊗ σH)ψ(h) = ϵ(h)1 = π(σH ⊗ I)ψ (2.1)

for all h ∈ H. The map σH is the coinverse (or antipode) map and the property
(2.1) is the coinverse (or antipode) property.
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Chapter 3

Hopf algebras and Galois
extensions

The purpose of this chapter is show the concatenation of the previous concepts
of algebras and groups to develop the concept of Hopf-Galois structures and the
characterization of these structures by Greither and Pareigis.

3.1 Group Hopf algebra

Let G be a group and define

KG =

{
∑
g∈G

rgg

∣∣∣∣∣ rg ∈ K

}
.

Define aswell a K-bilinear map

KG × KG −→ KG(
∑
g∈G

rgg, ∑
h∈G

rhh

)
7−→

(
∑
g∈G

rgg

)(
∑

h∈G
rhh

)
= ∑

g,h∈G
rgrh(gh)

by definition of tensor product, there exists a unique K-module map πKG

πKG : KG ⊗ KG −→ KG

a ⊗ b 7−→ ab

Let IKG be the map

IKG : K −→ KG

r 7−→ r · 1G

13



14 Hopf algebras and Galois extensions

Then KG is a K-algebra with multiplication map πKG and unit map IKG.

Likewise, let ψKG be the map

ψKG : KG −→ KG ⊗ KG

∑
g∈G

rgg 7−→ ∑
g∈G

rg(g ⊗ g)

and let ϵKG be the map

ϵKG : KG −→ K

∑
g∈G

rgg 7−→ ∑
g∈G

rg

Then KG with comultiplication map ψKG and counit map ϵKG is a K-coalgebra. It
follows from Remark 2.5 that the maps ψKG and ϵKG are also homomorphisms of
K-algebras. Hence, (KG, πKG, IKG, ψKG, ϵKG) is a K-bialgebra.

Define a coinverse map σKG : KG → KG by σKG(τ) = τ−1 , for τ ∈ G. Then
KG is a K-Hopf algebra.

3.2 Greither-Pareigis theory

Let L be a finite field extension of K. Let AutK(L) denote the group of auto-
morphisms of L that fix K. Let G be a subgroup of AutK(L).

Define the group action ρ of KG on L as

ρ : KG −→ EndK(L)

∑
g∈G

rgg 7−→ (x 7→ ∑
g∈G

rgg(x))

Proposition 3.1. Let L be a finite field extension of K and let G be a subgroup of AutK(L).
Then L, with the action defined above, is a KG-module algebra.

Proof. The proof of this proposition consists in checking that L, with action ρ : KG →
EndK(L), asserts both conditions in Definition 2.6 so that L is indeed a KG-module
algebra.
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Theorem 3.2. Let L be a finite extension of K, and let G be a subgroup of AutK(L). Define
the map

φ : L ⊗K KG −→ EndK(L)

y ⊗ a 7−→ ωy ◦ ρ(a)

where ωy is the K-linear map

ωy : L −→ L

x 7−→ yx

Then φ is a bijection if and only if L is a Galois extension of K with Galois group G.

Proof. The proof of this Theorem can be found in [5] on page 137.

Therefore, L being a Galois extension of K with group G is equivalent to L
being a KG-module algebra for which the map φ is a bijection.

The action ρ defined at the beginning of this section in addition to KG being a
K-Hopf algebra as shown at the beginning of this chapter suggests the following
notion firstly introduced by Chase and Sweedler in [6].

Definition 3.3. A Hopf Galois structure on a finite extension L/K is a pair (H, ρ),
where H is a finite cocomuutative K-Hopf algebra and ρ is a Hopf action of H
on L. ρ is a K-linear map ρ : H → EndK(L) that gives L a left H-module algebra
structure and induces a K-isomorphism L ⊗K H → EndK(L).

For the next theorem we introduce the concept of translation maps and the
holomorph of a group.

Let Perm(X) denote the group of permutations of the set X.

Definition 3.4. Let L/K be a separable extension with normal closure E, let G =

Gal(E/K), G′ = Gal(E/L) and X = G/G′. The left translation map

λ : G −→ Perm(X)

defined as λ(σ)(τ̄) = στ̄.
Likewise, we also introduce right translation map

ρ : G −→ Perm(X)

defined as ρ(σ)(τ̄) = τ̄σ−1.

Definition 3.5. Let N be a finite group. The holomorph of N, Hol(N), is the
normalizer of λ(N) in Perm(N):

Hol(N) = {π ∈ Perm(N) : π normalizes λ(N)}
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Proposition 3.6.
Hol(N) = ρ(N) · Aut(N)

Proof. To see that Hol(N) ⊂ ρ(N) · Aut(N), let π ∈ Hol(N). Then for η ∈ N,
πλ(η)π−1 ∈ λ(N), hence πλ(η)π−1 = λ(γ(η)) for some γ(η) ∈ N. The map
γ : N → N can be seen as an automorphism of N. Then

π(η) = πλ(η)(e) = (λ(γ(η))π)(e)

= λ(γ(η))π(e)

= γ(η)π(e)

= (ρ(π(e)−1)γ)(η),

hence π = ρ(π(e)−1)γ ∈ ρ(N) · Aut(N).
For the opposite inclusion, view Aut(N) ⊂ Perm(N) in the obvious way. For

γ ∈ Aut(N), η, µ ∈ N we have

γλ(η)(µ) = γ(ηµ) = γ(η)γ(µ) = (λ(γ(η))γ)(µ),

hence γλ(η) = λ(γ(η))γ so γλ(η)γ−1 = λ(γ(η)) ∈ λ(N). Therefore Aut(N)

normalizes λ(N). Also, ρ(N) clearly centralizes λ(N) [by definition?], thus both
Aut(N) and ρ(N) are subsets of Hol(N).

Now Aut(N) ∩ ρ(N) = {1} ∈ Perm(N), since Aut(N) fixes eN , the identity
element of N, and ρ(N) is regular, i.e. the stabilizer in ρ(N) of any element of N
is trivial. Also, for γ ∈ Aut(N), η, µ ∈ N,

γρ(η)(µ) = γ(µη−1) = γ(µ)γ(η−1) = ρ(γ(η))γ(µ)

hence γρ(η) = ρ(γ(η))η. Thus ρ(N) · Aut(N) is a subgroup of Perm(N) which is
contained in Hol(N).

Note that we can also think that the following continued equalities, mainly
right hand side and left hand side,

(ρ(σ1σ2))(τ) = τ(σ1σ2)
−1 = τσ−1

2 σ−1
1 = ρ(σ1)(τσ−1

2 ) = ρ(σ1)(ρ(σ2)(τ))

reminds us of the definition 1.5 of semidirect product, in fact, we have the follow-
ing corollary.

Corollary 3.7. Hol(N) as an abstract group,

Hol(N) = N ⋊ Aut(N)
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Altogether, here’s Greither-Pareigis’ Theorem from [1].

Theorem 3.8. (Greither-Pareigis) Let L/K be a separable extension with normal closure
E, let G = Gal(E/K), G′ = Gal(E/L) and X = G/G′. Then there is a bijection between
regular subgroups N of Perm(X) normalized by λ(G) and Hopf Galois structures on L/K.

Proof. The proof of this theorem can be found in Chapter 2, Section 6 of [3].

Therefore instead of looking for Hopf Galois structures on L/K with normal
closure E, and G = Gal(E/K), G′ = Gal(E/L), we seek regular subgroups of
Perm(G/G′) normalized by λ(G). For relatively small groups we can specifically
find Hopf Galois extensions by finding a regular subgroup N of Perm(G/G′) nor-
malized by λ(G).

For example, using the same notation as Proposition 3.8, if L/K is not nor-
mal, L ̸= E and [L : K] = 3, we have G = S3 and G′ is cyclic of order 2 and
Perm(G/G′) ∼= S3. Therefore N = A3 is a regular subgroup normalized by λ(G).

If a Hopf Galois structure corresponds to the regular subgroup N, the isomor-
phism class of N is referred to as the type of the Hopf Galois structure.

To retrieve the Hopf algebra, we see that the Hopf algebra H corresponding to
a regular subgroup N of Perm(X) normalized by λ(G) is the sub-K-Hopf algebra
E[N]G of the group algebra E[N] fixed under the action of G, where G acts on E by
K-automorphisms and on N by conjugation through λ. The Hopf action is given
as follows: if h = ∑n∈N cnn ∈ E[N]G, then h(x) = ∑n∈N cnn−1(1̄)(x), for x ∈ L,
where 1̄ denotes the class of 1G in G/G′.
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Chapter 4

Byott’s theorem

Prior to this chapter, in Greither-Pareigis theory, we would need to find out
specifically which regular subgroups of Perm(X) are normalized by G. This task
is quite simple for lower degrees but for larger ones we encounter a much more
number of regular subgroups. Thus it’s useful to reverse the relationship between
G and N. This was already done implicitly by Greither and Pareigis, explicitly
by L. N. Childs. In this chapter we will show Byott’s work about Hopf Galois
extensions, which includes how the reversal relationship was precisely done.

Here is Byott’s Theorem [4] which is the focal point of this work.

Theorem 4.1. (Byott) Let G′ ⊂ G be finite groups, let X = G/G’ and let N be an abstract
group of order |X|. Then there is a bijection between

N = {α : N → Perm(X) a 1-1 homomorphism | α(N) is regular} and
G = {β : G → Perm(N) a 1-1 homomorphism | β(G′) is the stabilitzer o f eN}

where eN is the identity of N.
Under this bijection, if α, α′ ∈ N correspond to β, β′ ∈ G, respectively, then:

• α(N) = α′(N) iff β and β′ are conjugate by an element of Aut(N).

• α(N) is normalized by λ(G) ⊂ Perm(X) iff β(G) is contained in Hol(N), the
normalizer of N in Perm(N).

Definition 4.2. A regular embedding is a homomorphism α : N → Perm(X) so
that α(N) is regular.

Proof. (Byott) (From [3]) Let α ∈ N , i.e. α : N → Perm(X) is a regular embedding,
then X = α(N)ē where ē is the coset in X of the identity e of G. Then α induces a
bijection a : N → X by a(η) = a(η)ē. The map a in turn yields an isomorphism

C(a) : Perm(N) → Perm(X)
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by C(a)(π) = aπa−1 for π ∈ Perm(N).
Let λX : G → Perm(X) be the left transition map, then

C(a)−1λX : G → Perm(N)

is an embedding. We show it is in G: for eN the identity element of N, we have

(C(a)−1λX(σ))(eN) = eN

iff
(a−1λX(σ)a)(eN) = eN

iff
λX(σ)(a(eN)) = a(eN)

iff
λX(σ)(ē) = ē

iff
σ̄ = ē

iff
σ ∈ G′.

So C(a)−1λX ∈ G.
To seek the bijection from N to G define

Φ : N −→ G
α 7−→ C(a)−1λX

For later in the proof we note that for C(a)−1α(η) = a−1α(η)a and

(C(a)−1α(η))(µ) = (a−1α(η)a)(µ)

= (a−1α(η)(α(µ))ē)

= a−1((α(η)α(µ))ē)

= a−1(α(ηµ)ē)

= ηµ

= λN(η)µ.

Therefore we have

C(a)−1α = λN (4.1)
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About the inverse of Φ. If β : G → Perm(N) is in G then β yields a bijection
b : X → N by b(σ̄) = β(σ)eN . Then b is 1-1 and well-defined on cosets because
G′ = {σ ∈ G | β(σ)eN = eN}, hence b is onto since |X| = |N|. Then

C(b) : Perm(X) → Perm(N)

is an isomorphism, and

C(b−1)λN : N → Perm(X)

is then a regular embedding of N in Perm(X), hence in N .
Define the inverse Ψ of Φ

Ψ : G −→ N
β 7−→ C(b−1)λN

To see that Ψ and Φ are indeed inverse maps, for α ∈ N , let β = Φ(α) = C(a)−1λX,
then b : X → N is defined by

b(σ̄) = (C(a)−1λX(σ))(eN)

= (a−1λX(σ)a)(eN)

= a−1(σ̄)

hence Ψ(β) = C(b)−1λN = C(a)λN = α by (4.1). Therefore there is a bijection
between N and G and Ψ ◦ Φ is the identity on N and Φ ◦ Ψ is the identity on G.

To prove the statements under the bijection, we want to see that if α(N) is
normalized by λX(G) in Perm(X) and β = Φ(α) then β(G) normalizes λN(N) ⊂
Perm(N).

Let λX(σ)α(η)λ(σ
−1) ∈ α(N) ⊂ Perm(X) for all σ ∈ G, η ∈ N. Mapping over

to Perm(N) via C(a)−1, we have

C(a)−1(λX(σ)α(η)λX(σ
−1)) ∈ C(a)−1α(N) ⊂ Perm(N).

But again C(a)−1α(η) = a−1α(η)a = λN(η) by (4.1). Therefore

C(a)−1(λX(σ)α(η)λX(σ
−1)) = a−1λX(σ)aa−1α(η)aa−1λX(σ

−1)a

= C(a)−1(λX(σ))λN(η)C(a)−1(λX(σ
−1))

= β(σ)λN(η)β(σ−1).

So β(G) normalizes λN(N) ⊂ Perm(N).
Reversing the argument shows that if Ψ(α) = β, then α(N) is normalized by

λX(G) iff β(G) is contained in the normalizer of λN(N). Finally α(N) = α′(N) iff
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γ = α−1α′ : N → N is an automorphism of N, hence α′ = αγ. Now α yields β =

C(a)−1λX : G → Perm(N) and λ = C(a)−1α. If we replace α by αγ, γ ∈ Aut(N),
then

C(aγ)−1 = C(γ)−1C(α)−1 : Perm(X) → Perm(N),

So if Ψ(α) = C(a)−1λX = β, then

β′ = Ψ(αγ) = C(γ)−1C(a)−1λX = C(γ)−1β.

So β, β′ : G → Perm(N) are embeddings which are conjugate by an autor-
mophism of N. That completes the proof.

From the theorem we deduce the following corollary.

Corollary 4.3. Let a(N, X) be the number of regular subgroups in Perm(X) which are
normalized by G. Let b(N, X) to be the number of subgroups G* of Hol(N) such that
there is an isomorphism from G* to G taking the stabiliser in G* of eN to G’. We have

a(N, X) =
|Aut(G, G′)|
|Aut(N)| b(N, X)

where |Aut(G, G′)| is the subgroup of |Aut(G)| whose elements send G′ to G′.
We will only apply the previous formula when L/K is normal, therefore

a(N, G) =
|Aut(G)|
|Aut(N)|b(N, G)

.

Hence, we can count Hopf Galois structures by computing the right hand side
of the formula above.
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Program in Magma computation

In this chapter we will use Magma (short for the software Magma Computa-
tional Algebra System [11] ) to help us determine every factor in the later formula
of the Proposition 4.3

a(N, G) =
|Aut(G)|
|Aut(N)|b(N, G)

• a(N, G) is the number of regular subgroups in Perm(X) normalized by G.

• b(N, G) is the number of subgroups of Hol(N) isomorphic to G.

• |Aut(G)| is the order of the group of automorphisms of G.

• |Aut(N)| is the order of the group of automorphisms of N.

Notice that by Theorem 3.8, a(N, G) corresponds to the number of Hopf Galois
structures of a Galois extensions with Galois group G.

The code of the main program is the following

HGC:=function(n);
Q:=NumberOfSmallGroups(n);
"The amount of Small groups of order", n ,"is", Q;
for i in [1..Q] do;
"";
"#",i,"small group";
N:=SmallGroup(n,i);
H:=Holomorph(N);
AN:=Order(AutomorphismGroup(N));
G:=SubgroupClasses(H:IsTransitive:=true, OrderEqual:=Order(N));
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AG:=Order(AutomorphismGroup(G[1]‘subgroup));
x:=0;
l:=1;
for j in [1..#G] do;
for k in [1..Q] do;
if IsIsomorphic(G[j]‘subgroup,SmallGroup(n,k)) then ;
x:=x+1;
l:=l*G[j]‘length;
end if;
end for;
end for;
"amount of subgroups isomorphic to the small group: ",x;
"(b(N,G)): ",l;
"|Aut(G)|: ",AG;
"|Aut(N)|: ",AN;
"(a(N,G)): ",AG*l/AN;
"";
end for;
return 1;
end function;

This program takes an input n which is the order of the group N. Then calcu-
lates the amount of small groups of the same order so we can iterate later on each
small group. For every small group N we calculate Hol(N) and |Aut(N)| then,
the line

S:=SubgroupClasses(H:IsTransitive:=true, OrderEqual:=Order(N));

gives us the subgroups G of Hol(N) that are transitive and have order equal to
N, therefore regular. Afterwards, we start iterating on the subgroups and look to
find isomophisms between said subgroups and small groups of order n, each time
we find an isomorphism we concatenate their lengths and print the desired data
according to the formula above.

First we will show the number of small groups for every n up to 10:

n 1 2 3 4 5 6 7 8 9 10

Number of small groups (SG) 1 1 1 2 1 2 1 5 2 2

Here are the results for these values of n. Since there are at most 5 small groups
of order 8, every column will be representing a small group and its amount of
regular subgroups.
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HGC (Hopf-Galois counting function), a(N, G)

n SG1 SG2 SG3 SG4 SG5

1 1

2 1

3 1

4 6 4

5 1

6 8 6

7 1

8 6 588 60 28 232

9 3 9

10 12 2

Therefore we have the amount of Hopf Galois structures for n where n is the
order of a L/K normal extension. Note that even for small values of n, (n = 8)
we already start to see large numbers of structures. In fact, it’s known that Sn has
(n−1)!

φ(n) cyclic subgroups of order n.
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Chapter 6

Continuations

In the previous chapter, we have coded a program to count the amount of
Hopf Galois structures for a given n, but giving a characterization of whether a
separable extension is Hopf Galois or retrieving the Hopf algebra corresponding
to a regular subgroup might result a difficult task. In this chapter we will see some
results from distinct authors about this matter.

For instance, this first result from Byott [4] is an initial application of Theorem
4.1.

Proposition 6.1. Let L/K be a extension of prime order with normal closure E. Then
L/K is Hopf Galois iff G = Gal(E/K) is solvable.

From Byott [4] as well we have the following theorem.

Theorem 6.2. (Byott’s Uniqueness Theorem) A Galois extension L/K with galois
group G has a unique Hopf Galois structure iff G is a Burnside number.

A number g is Burnside if (g, ϕ(g)) = 1, where ϕ is Euler’s totient function.

We also have the followings results from [3] and [10].

Corollary 6.3. There are exactly pn−1 Hopf Galois structures on a Galois extension L/K
cyclic of order pn.

This corollary helps explain some results we got in our program. Every n that
is prime has only one Hopf Galois structure.
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Theorem 6.4. Let L/K be a extension of degree pn, p an odd prime. If r < n there are pr

Hopf Galois structures on L/K.

Another interesting result is the following proposition from [9]. This result
characterizes the type of the structures that we counted in the previous chapter.

Proposition 6.5. Let L/K be a separable extension of degree pn, p an odd prime, n ≥ 2,
E its normal closure and G = Gal(E/K). If L/K has a Hopf Galois structure of type Cpn ,
then it has no structure of noncyclic type.

Undoubtedly, these results are only a glimpse of the wild amount of other
works related to Hopf algebras and Galois extensions...
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Postface

One of the things that the bachelor’s degree has taught me is the rigor of
mathematics. This was made really clear to me while working on this thesis, due
to how well written all the academical papers are, how every single detail is taken
into account and how every author cite each other for their work purposes.

Another interesting fact that I noticed is about the Journal of Algebra. How
fascinating is the fact that the paper from Cornelius Greither and Rodo Pareigis is
still present nowadays with related works from non other than my thesis advisor,
Teresa Crespo, and Marta Salguero.

Furthermore, I also learned how vigorous computation might become with
proper mathematical background. I only thought about this matter in the Aritmet-
ica subject from the bachelor’s where we studied about encryption, but it clearly
there’s a whole new world behind scientific computation.

Finally I really appreciate how the bachelor’s degree helped me grow both
intellectually and personally.
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