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Abstract 
Minimally invasive surgery is growing and displacing traditional surgery. Despite 
the multiple benefits it presents for the surgeon and for the patients, the surgical 
robots used in these scenarios (mainly the Da Vinci robot) do not have a haptic 
feedback system.  
This project it is created with the main objective of equipping and providing tactile 
sensitivity to an UR5e based robotic arm prototype and to adjust it as much as 
possible to the operation of the DaVinci minimally invasive surgical system, using 
an original EndoWrist tool too. 
The project is divided into three main components: the pen user interface, the 
EndoWrist maneuverability executed by the robotic arm and the servomotors; 
and the communication and supervision module performed by a computer.  
Obtaining the current obtained by the servomotors and applying different 
formulas and filters, the force exerted on the tissue is acquired. Which is used in 
the pen user interface to display the applied strength. 
Finally, with several cheap components and with good communication between 
the different interfaces, the UR5e robot is intended to simulate the user's 
movements while giving it tactile sensitivity. 
Keywords: 
Minimally invasive surgery, Da Vinic, Haptic feedback, Robotic arms, Hardware 
and software platform.  
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1. INTRODUCTION 
1.1. Introduction to minimally invasive surgery 

Traditional surgery has been a technique that for many years has dealt with the 
diagnosis and treatment of diseases through surgical procedures. However, 
currently, minimally invasive surgery has become an alternative for these 
interventions. Minimally invasive surgery, also known as laparoscopic surgery, is 
a surgical technique that is performed through small incisions, inserting slender 
instruments and a tiny video camera so that the surgeon can see inside the 
patient and perform the intervention [1].  

Usually, to enter on the patient body, the surgeon will make some small incisions, 
which are known as ports. Although the size of the ports depends on the 
procedure, they are not the same size as open surgery. That means, there won’t 
be done extensive cuts in the skin, muscle, tissue, and nerves.  

All the procedure is performed through the ports, where the surgeon inserts short, 
narrow tubes called trochars. Once these are placed, surgical instruments are 
placed along with a video camera equipment. Depending on the action that the 
surgeon needs to perform, the instruments are changed.  

The patient isn’t open as in traditional surgery, this condition provides several 
benefits for the patients and for the ease and comfort of the surgeon in the 
intervention. However, the procedure is more complex and longer.  

What’s more, advantages predominate over traditional surgery. As surgeon 
doesn’t cut important regions of muscles, nerves, or other tissues, it is a less 
invasive and trauma operation [2]. This entails into a shorter hospital stays and a 
quicker recovery. If we compare the duration of recoveries traditional and 
minimally invasive surgery, we can pass from weeks to days.  Furthermore, an 
important factor such as psychological may appear. If they tell us that they are 
going to have to open us in two, it is more frightening than if they are going to 
make a small hole in us. This fact gives us more security and what is certain is 
that after all it is safer because we lose less blood, and it is reduced the risk of 
infection. If we do a global comparison, minimally invasive surgery offers fewer 
complications.  

After all, it is an invasive surgery, even there are less risks it can appear 
complications that can be rare and it is important to know the risks that can occur 
in each operation.  

 

1.2. Surgical robots 
During the last decade, surgical robots have got a revolutionary impact in the 
medicine. Giving a new version of diagnosis and treatment for doctors, as we 
have said, is known as minimally invasive surgery. To carry out this kind of 
procedures, robotic systems are necessary. In a robotic surgical procedure, three 
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or four robotic arms are inserted into the patient through small incisions [4]. The 
DaVinci Robotic System is the latest and greatest innovation and evolution in 
minimally invasive surgery. It is a system born in Silicon Valley, from military 
patents and developed by the Californian company Intuitive Surgical Inc., the da 
Vinci robot was launched on the market in 1999. Since then, it has revolutionized 
robotic surgery in the United States and the rest of the world, and over the years 
it is offering better results with the development of new robotic platforms. 

The system is endowed with a 3D vision, equipped with Endowrist articulated 
instrumentation, and is equipped with a simple and intuitive control system that 
makes it easy for the surgeon to carry out complex operations through a minimally 
invasive approach [5]. This surgical robot is especially involved in prostate 
operations, heart valve repairs, gynecological surgical procedures cardiothoracic 
surgery, general surgery oncology and resolve congenital heart diseases.  

This robot provides the surgeon with a very wide and clear field of vision, which 
offers the possibility of treating anatomical areas that are difficult to access. With 
the precision, minimal invasion, and safety that it offers, it becomes an advantage 
both for the doctor when carrying out the intervention, and for the patient and his 
safety. 

The use of the DaVinci robot offers many benefits during the surgical intervention, 
such as reduced incisions, minimal bleeding, less painful post-operative 
recovery, among others. In the following sections we will go into more detail. 

 

1.3. Objectives 
The DaVinci robot, among the advantages that offers, there is a limitation that is 
still unsolved, haptic feedback. When the surgeon performs the intervention and 
carries out his movements on the remote to move the robot's arms, the 
movements are made according to what he sees. However, he does not know 
the force that he is exerting on the tissue nor the stiffness that it imparts in front 
of the movement of the arm.  

The main objective of this project is to provide tactile sensitivity to an UR5e based 
robotic arm prototype and to adjust it as much as possible to the operation of the 
DaVinci minimally invasive surgical system, for this we will use an original 
EndoWrist tool. This would be a great modification that could be applied to the 
DaVinci robot and that will facilitate and give the surgeon more comfort during 
the operation. 

The complementary objectives are:  

- Development of haptic pen which as surgeon user interface, that could sense 
the movements of the surgeon, including rotations and translations, and tool 
openings.  

- Include of electronic actuators devices to provide to the surgeon haptic sense 
while he is manipulating the haptic pen.  
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- Development of a mechanism to produce the maneuverability and imitation of 
the movements of the surgeon hand in the EndoWrist tool.  

- Design and fabrication of the 3D pieces that are coupled to the Endowrist to 
assemble it to the UR5e robot end effector obtaining the maneuverability and 
haptic feedback. 

 

1.4. Scope and limitations 
The project consists of achieving the mentioned goals. As DaVinci robot is an 
expensive machine, we can’t test our modifications on it. That’s why all the 
implementations will be performed on an Endowrist and on UR5e robot. The 
framework of the project will be performed in the Physics laboratory of the Faculty 
of Physics of the University of Barcelona. To find out how it works the DaVinci 
robot, we had the opportunity to see him both in an operation and outside of it, in 
one of the subjects “Aplicacions Mèdiques de l’Enginyeria”.  

In addition, this project is carried out in conjunction with an electronic engineering 
student, Estela Barrio. She will focus on the part of creating the PCB boards for 
the servo motors and the pencil. This part will be taken into account in the project 
since it is carried together, but the creation of the PCB will be done by her. 

The project development has been divided on two periods. The first one, from 
September 2021 to November 2021, was focused on understanding the 
performance of the DaVinci and testing the different platforms to do the software 
of the project. The second part, from February 2022 to June 2022, it was the 
period to execute the software, hardware, measurements and drafting of the 
project.  

However, we need to consider some limitations as can be the time, the cost, and 
the knowledge of the student. The main goal of the project that is implement 
haptic feedback on DaVinci robot, it is a limitation of this robot that many 
companies are trying to solve. DaVinci is a complex robot and is laborious to 
implemented on the actual software and performance of the robot.  

Furthermore, the time is an important restriction both to carry out the project and 
the prior knowledge that we must acquire. If all the conditions are met and the 
problems that appear in the project are solved in the agreed period, the 
development of the project will be performed on the agreed time.  

1.5. Outline  
The project is divided in 3 blocks, considering the amount of information studied, 
the different alternatives and solutions taken, and the results obtained.  
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The first section encompasses all the information regarding the project. Knowing 
how the DaVinci was created and how it works, why there has been a growth of 
the minimally invasive surgery. This part also includes the state of art and 
analysis of the market, identifying the different sectors implicated and interested 
on this topic.  

The conceptual engineering presents the different alternatives that could solve 
the main objective of the project. Studying the different options presented, a 
solution is proposed considering the pros and cons of each one.  

Finally, the detail engineering shows the implementation of the solution and the 
selected materials to execute the project. The different analysis and 
measurements are presented along with the final results.  

  

Theoretical 
background 

Conceptual 
engineering 

Detail 
engineering 

Figure 1. Project outline.    
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2. BACKGROUND 
2.1. State of the art of surgical robots 

If we want to do a review of the history of surgical robots, we must mention Karel 
Capek and his play R.U.R. (Rossum’s Universal Robots). Capek was a playwright 
and, on his play R.U.R., it was the first time that the term ‘robot’ was described. 
Its origin comes from the Slavic word robota, which refers to forced labor. Rapidly, 
this term was used for any kind of machine made for repetition of the same task. 
Nowadays, robots are machines that can undertake repetitive, programmed, and 
precise procedures [9].  

A surgical procedure refers to invasive therapies that involves incisions 
performed to repair damage or arrest a disease from a living body. Although it 
has been over thirty years since the first time that a non-surgical robot, PUMA 
560, was used in a stereotaxic operation in 1985. And, since the first surgical 
robot, Arthorobot, was used; the field of medical robotics is still growing has not 
reached its peak [7].  

Robotic surgery, or also known as robot-assisted surgery, allows doctors to 
perform many types of complex procedures with more precision, control and 
flexibility compared to conventional techniques. This area is extremely associated 
with minimally invasive surgery, meaning that the procedures are performed 
through tiny incisions. The use of techniques to operate with less damage to the 
body than with open surgery, is associated with less pain, shorter hospital stays 
and fewer complications. This may play an important role as the medicine of the 
future wants to be less invasive.  

As mentioned before, the modern robotic surgery started with the PUMA 560. 
After that, many companies started to create their owns models as PROBOT, for 
transurethral prostatectomy, and ROBODOC, for hip replacement operations; 
both from Integrated Surgical Supplies. However, the first robot approved by FDA 
was AESOP for abdominal surgeries. Finally, at the beginning of the 21st century, 
the two best-known surgical robots appeared, Zeus System and Da Vinci Surgical 
System. These two rivals have been dominating the field of robotic surgery for 
over a decade. On the one hand, the three-armed ZEUS platform, it uses one 
arm to hold the camera and the other two for surgical instruments. On the other 
hand, the four-armed Da Vinci has a central arm for the binocular lens and the 
instruments are used by a wrist of seven degrees of freedom. Noteworthy, this 
rivalry has benefited this area by providing innovations that have broken 
important barriers of minimally invasive surgery [8].  

Currently in the surgical procedures, we found three types of robotic systems [6]: 

1. Active systems have artificial intelligence, allowing the robot to perform 
tasks autonomously while a surgeon is supervising.  

2. Semi-active systems have an automatic and a surgeon driven component, 
to complement these pre-programmed robots.  
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3. Master-slave systems, unlike the others, it doesn’t have any pre-
programmed or autonomous component. They depend completely on the 
surgeon activity, allowing him to operate directly on the robot. 

 

2.2. Da Vinci Surgical System 
The Da Vinci Surgical System is a robotic surgical system from the company 
Intuitive Surgical. This system is called “Da Vinci” in honor to Leonardo Da Vinci, 
a 15th-century Italian polymath, because of his work on robots and his study of 
human anatomy. The company was founded in 1995 with the idea of creating 
new robotic systems that could help surgeons to perform their surgical 
procedures [10].  

In 2000, the Da Vinci Surgical System became the first robotic surgical platform 
commercially available in the United State approved by the FDA. It can be used 
to treat different pathologies in these fields: gynecology, general surgery, oral and 
maxillofacial surgery, pediatric surgery, thoracic or cardiac surgery. However, it 
is used especially in prostate cancer and other urological conditions [11].  

Sometimes the term ‘robot’ misleads people, it is the surgeon who performs the 
surgery with Da Vinci by using the robot instruments that he guides. The Da Vinci 
Surgical System is a master-slave robot, it obeys the surgeon movements while 
it increases the ability of surgeons to operate. Offering more precision and 
dexterity, reducing tremor, and providing a clear view of the patient’s anatomy.  
What’s more, the surgeon operates more comfortably seated on the console 
while is manipulating the robot and obtaining a 3D view of the patient’s interior. 
The Da Vinci system translates the surgeon’s hand movements at the console in 
real time, bending and rotating the instruments while is performing the procedure.  

All these advances have favored both the patient and the surgeon. Postoperative 
pain has been reduced, having a great influence on postoperative recovery, and 
reducing the possibility of complications found in conventional surgery. 

The Da Vinci system is a part of a much bigger picture, it is surrounded by a 
dedicated care team. The complexity of this kind of technology requires that all 
the personnel inside the operating room must be trained to manage the 
equipment.  

In the market, there have been 5 generations of Da Vinci [12]. We are going to 
consider the fourth generation, Da Vinci Xi, which is the one that Hospital Clinic 
has. Even though, every generation presents different improvements, they all 
share the same structure [13]:  

• Surgical Console: from this workstation the surgeon control and manage 
the arms of the robot through the pedals and controls. This console allows 
the surgeon a great vision, and at a scale of the surgeon's own hands, 
allowing his maneuvers to be firmer and more precise, assuming greater 
safety when performing surgery. 
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• Surgical Cart: the patient cart rolls on wheels and it is positioned over the 
patient. It is composed by 4 robotic arms designed as human shoulder, 
elbow, and wrist. The four arms are fixed in space and derived to a remote 
center, permitting the surgical instruments move freely.  

Attach to the end of the robotic arm there are the EndoWrist, surgical 
instruments that provide surgeons with natural dexterity while operating 
through small incisions. On this surgical instrument you can add different 
accessories such as scissors and graspers, among others. These tools 
provide 7 degrees of freedom, providing ambidexterity and unparalleled 
precision. Each instrument can balance 180 degrees and rotate 360 
degrees.  

• Vision Tower: is responsible for the elaboration and processing of the 
image. It is a high-quality display system that generates 3D images with 
depth of field. Its houses advanced vision and energy technologies, 
provides communication across Da Vinci system components. What’s 
more, includes a large HD display that shows the live procedure, and an 
electrosurgical unit with a series of racks for optional auxiliary surgical 
equipment.   

 

2.3. Haptic Technology 
As we have mentioned, Da Vinci provide to surgeons an incredible precision 
when they are working with tissues deep inside the body. However, this system 
presents some limitations as the lack of any force-feedback. This means that 
during the operation, the surgeon can’t feel what’s being worked on, without 
knowing the force you are applying or the tension you are exerting on the tissue 
[14]. However, thanks to the experience of the surgeons and the stereoscopic 

Figure 2. Da Vinci components: Surgical Cart, Surgical 
Console and Vision Tower [13].   
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vision of the tissue environment during surgery, they have been able to replace 
the ability to touch.  
This issue could be solved with haptic technology, or also known as kinesthetic 
communication or 3D touch. This area includes any kind of technology that can 
create an experience of touch by applying forces, vibrations, or motions to the 
user.  

One of the first applications on this field was in large aircraft using 
servomechanism system to operate control surfaces. When the aircraft 
approached a stall, the aerodynamic buffeting were felt in the pilot control.  

Haptics are described as touch feedback, which include force (kinesthetic) and 
tactile (cutaneous) feedback. Nowadays, this is a limitation on minimally invasive 
surgery because the surgeon doesn’t manipulate with the instrument directly.   

The main goal of haptic technology in robot-assisted minimally invasive surgery 
is to is to give the surgeon the feeling that he is touching the patient with his own 
hands. This needs haptic sensors on the patient-side robot to get haptic 
information, and haptic displays to convey the information to the surgeon. Haptics 
can be structured as kinesthetic (refers to forces and positions of the muscle and 
joints) and cutaneous (tactile sense related to the skin).  

Force feedback measure the forces applied to the patient by the surgical 
instrument and try to resolve this force via force feedback device [15]. Using 
conventional force display technology, the motors of the master manipulator will 
be programmed to recreate the forces sensed by the patient-side robot. As we 
have mentioned, the surgical instruments have 7 degrees of freedom and some 
of them are not actuated on the master, this is the reason why it cannot provide 
force feedback in all directions. In the case of tactile feedback, as the other 
method, it requires a sensor and a display. The goal is to detect local mechanical 
properties that indicates the health of the tissue to obtain information that can be 
used directly for feedback.  

 

2.4. State of the situation 
We have observed the advantages and limitations that the Da Vinci system has. 
We are going to focus on trying to provide it with a haptic feedback system. 
Nowadays, there is not haptic feedback system applied for medical healthcare. 
However, we can find several studies related to that.  

Currently, force feedback research focuses on developing practical systems for 
application in fields such as education, entertainment, medicine, and training [58]. 
Although researchers have been studied tactile feedback during many years, 
there isn’t a commercialization solution. On this field, it has appeared an effective 
application for video games using vibration feedback, giving information the video 
game experience as making and breaking contact.   
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3. MARKET ANALYSIS 
On this section we will provide proof of surgical robot market. Focusing especially 
on robots related to minimally invasive surgery. Furthermore, we will look for the 
path that this sector wants to take and its corresponding future market prospects. 

3.1. Evolution of the market 
Since there was an increasing demand on improve precision and security on 
surgeries, robotic surgery took place deriving into minimal invasive surgical 
technologies. As we have mentioned before, the introduction of PUMA 560 in 
1985 led to the first surgical robot. For the next 30 years, surgical robot have 
occupied an influential role while it increased its applications in modern robotic 
platform.  
In the next picture we can observe the evolution of surgical robots applying the 
SEBMA acronym (Stereotaxic, Endoscopic, Bioinspired, Microrobots and 
Autonomous robots of the future) [16].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.1. First generation – Stereotaxic robots 
PUMA 560 was the first surgical robot, and it was used as the first laparoscopic 
cholecystectomy (minimally invasive surgery to remove gallbladder). Puma was 
utilized in stereotaxic brain biopsy by the surgeon to place the arms of the robots 
in a position to perform the task. This device was a precursor to a modified brain 
tumor excision device, Neuromate. The robots of this generation performed 
procedures that had a mathematic and mechanic strategy well defined, and the 
tissue tactility and vulnerability was limited [17].  
However, robots couldn’t perform multiple sequential tasks and a master-slave 
paradigm was introduced where the robot was a direct extension of the surgeon.  

3.1.2. Second generation – Endoscopic robots 
This generation is the greatest expansion of robotic surgery. The market needed 
more accurate robotic systems that can meet the requirements for minimally 

Figure 3. Evolution of surgical robots 
[16].    

Figure 3. Evolution of surgical robots [16].   
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invasive surgical technology. These surgical robots could overcome the difficulty 
to access to tissue places and organ systems as a result of anatomical restraints, 
instruments that lack precision and struggling in visualization that traditionally 
was limited to 2D [18].  
In this generation are included two of the best-known surgical robots, ZEUS and 
Da Vinci System. Market forces led to a competition between both companies, 
Computer Motion and Intuitive Surgical Inc, respectively. Finally, Intuitive Surgical 
bought Computer Motion in 2003, starting the monopoly of Da Vinci System.  

3.1.3. Third generation – Bioinspired robots  
The third generation included principals from biomimicry and multiple articulation 
technology. In endoscopy we find NOTES (Natural Orifice Transluminal 
Endoscopic Surgery) developed for scarless surgery. Another example is one-
port SPL (Single-Port Laparoscopy) that offered a platform with standard 
laparoscopic equipment through enhanced ergonomics [59]. These innovations 
offered to minimally invasive surgery instruments with articulated tips that allowed 
to reach hard areas with minimal access.  

3.1.4. Fourth generation – Microrobots  
The idea on this generation is create robots at a microscopic level that could enter 
in your body with minimal surgical footprint and work as a solitary robot or as a 
group of robots to image and treat diseases. One example is the capsule 
endoscopes that is swallowed by the patient, and the wireless camera on the 
capsule takes picture of the small intestine [60].  

3.1.5. Fifth generation – Autonomous systems 
The concept of fully autonomous, human-level consciousness robots remains 
conceptual, it is not a reality [61]. Autonomous robots will use and benefit from 
enhanced machine and deep learning capability.  
 

3.2. Current situation 
Nowadays, the manufacturer of the Da Vinci Surgical System, Intuitive Surgical, 
has been the market leader in robotic surgery since its creation. There are more 
than 5,500 Da Vinci robots installed worldwide. The company is firmly 
established, performing over seven million surgeries, that it has practically 
become synonymous with the term robotic surgery. The company stock price had 
grown 66% from  US$312 in 2017 to $520 in 2019. Having a total revenue grow 
from $3.7 billion in 2018 to $4.5 billion in 2019. On the market there are four 
models: Da Vinci Si, Da Vinci X, Da Vinci Xi and Da Vinci SP. 
Although it has not had great competition, in recent years, new surgical robots 
have been appearing, which may end its monopoly. As we have mentioned 
before, Da Vinci System is used for different pathologies but stands out in 
prostate cancer and other urological situations [19][20]. The current situation of 
the market is the following one:  

• Hugo Medtronic: Medtronic, one of the global leaders in medical 
technology; in September 2019 unveiled the surgical robot Hugo. In 2021, 
it received CE (Conformité Européenne), authorizing the sale of the 
system in Europe. CE Mark approval is for urologic and gynecologic 
procedures, important fields to Da Vinci System [21].  
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Hugo system involves an operating console, a central power and a cart-
based robotic arms. It is made up of pedestal-based module system and 
a surgeon console that it is inside the operating room.  
 

• Versius robot: CMR Surgical, a British MedTech firm, after raising £75m in 
June 2018 from a host of investors including LGT and ABB, it has launched 
Versius robot. It has raised £195m to finance the global commercialization. 
It has taken a position that can threat the leading position of Da Vinci 
System across Europe and Asia.  
The structure is similar to Hugo and Da Vinci, it consists of individual cart-
mounted arms controlled by a surgeon who sits or stands at its 3D high-
definition control. It is really similar to Da Vinci, the handles used to operate 
are linked to video game controllers. It has been performed in 
gynecological, colon and renal procedures [22].  
If Da Vinci System is little available, it is due to its price. Apart from being 
expensive, its design does not allow much flexibility. The weight and size 
of Da Vinci robot can be a limitation inside of the operating room for its 
movement. On average, Da Vinci System operates once every day. These 
facts explain its lack of productivity and cast doubt on investing in it.   
However, Versius is cheaper and is characterized by its flexibility. What’s 
more, CMR designed Versius with several separate robot arms, each one 
with their own surgical instrument and pillar. This allows a faster set up 
and is easier to carry from one operating room to another. These are the 
reasons why Versius is a real threat to Da Vinci System.  

Of surgical robots that operates in fields different from Da Vinci System, we have:  

• ROSA robot: it is a system composed by a robotic arm and a sophisticated 
software, that guides the surgeon during placement of joint prostheses. It 
is used for knee surgeries. It uses navigation systems, demanding 
anatomical reference points, ROSA can evaluate the position of the soft 
tissues and indicate where the cut should be made, offering a greater 
precision and a less invasive procedure. For its functionality, it uses 
preoperative X-ray images and data collected during surgery [23].  
Regarding to the equipment, it is composed by two towers, in one there is 
the robotic arm that guides the surgeon where to perform the cutting. On 
the other tower is the camera, which monitors the sensors that are placed 
on the axes of the patient leg.  
 

• MAZOR X: Medtronic created a robotic surgery to perform orthopedic and 
neurological procedures for spinal surgeries. MAZOR X Stealth allows the 
surgeons to perform a less invasive surgical procedure [24].  
The robot-guided spine surgery system enables surgeons to create a 3D 
surgical plan for each patient before starting the procedure. During the 
surgery, the robotic guidance helps the surgeon to custom the plan with 
high precision.  
 

• Monarch ARES: If your physician has discovered a spot on your lung, it 
has to perform a lung biopsy to know if it is cancerous or not. There are 
few options to reach those small nodules in the lung and it is difficult to 
perform it with manual bronchoscopes. The MONARCH® Platform is a 
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robotic assisted bronchoscopy introduced in 2018 to help reaching these 
nodules for biopsy [25].  

3.3. Future perspectives 
Robotics systems have been advancing quickly. Interdisciplinary collaboration is 
essential to develop surgical robots. It requires knowledge from different areas, 
as medicine, mechanical engineering, robotics, optics, and automatic control. 
Innovations are made to improve the clinical safety and effectiveness.  
One of the objectives to improve these robots, focus as on this work, to equip 
them with haptic feedback. The lack of force feedback presents a challenge for a 
surgeon to control the amount of force that is exercising on the tissue [26]. 
Then, artificial intelligence can have an important role using algorithms to give 
machines human-like abilities to make decisions and perform the surgery 
autonomously. Machine learning enable robots to make predictions by the 
patterns that the recognize.  
The idea of minimally invasive surgery is minimizing the level of invasiveness. 
What’s more, improving visualization capacities would lead to many advantages. 
Many companies are pushing themselves to reduce the trauma and impact on 
the tissue. These would lead into a faster recovery, reducing the risk of infection 
and reduce postoperative time.  
 
  



 18 
 

4. CONCEPTUAL ENGINEERING 
This section outlines the different options for the hardware and software solutions. 
About software, we will focus on the different interfaces that would help us 
synchronize the distinct modules and connect them to the robot to test the 
program and to the computer, to perform the simulations. Regarding to the 
hardware, we will consider the robotic arms and the components to create the 
haptic pen.  

The main objective is creating haptic feedback in a robotic arm. However, it is 
impossible to use the DaVinci robot due to its cost you cannot test projects on it. 
We will need a robotic arm to simulate the functioning of the DaVinci, an haptic 
pen which will reproduce the movements of the surgeon, and a software that will 
allow the control of the position and orientation.  

The project is structured by three big components: 

- Pen user interface that will offer and define the rotation of the surgeon hand, 
and that will generate the haptic feedback.  

- The EndoWrist maneuverability, needing a robotic arm, an EndoWrist and an 
intermediary that would rotate the gears of the EndoWrist according to the 
rotation of the surgeon's hand. In addition, depending on the force that this 
intermediary has to use to rotate the EndoWrist, we will obtain the values of the 
force that we are applying.  

Figure 4. System schematic of the Final Degree Project.     
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-The last component, communication and supervision module which will need 
different software to perform the simulation and execute the programs in the real 
world.  

We need to obtain the different components to meet the following specific 
objectives and achieve the challenge of the project.  

 

We will consider different options in terms of hardware and software to be used 
to accomplish the project objectives. 

 
4.1. Software 

An important part is the communication of the robot with the computer and with 
the haptic pen, apart from perform all the analysis on the program to calculate 
the torque, among other parameters, to achieve the haptic feedback. These 
objectives are fulfilled thanks to the software, and on this part, we will examine 
the different programs related to that.  

4.1.1. Programming software 
In order to perform the software, we have need different solutions for 
environments and languages of programming. On the following table we can 
observe the different options for the software: 
Software Arduino LabView ROS Matlab Python RoboDK 

Cost 
Open 

Source 
456 

€/year 
[28] 

Open 
Source 

800 
€/year 
[27] 

Open 
Source 

Open 
Source 

Experience 1 year 2 years 6 
months 

3 years 3 years 6 
months 

 
Table 1. Options for programming software.    

Specific objectives: 
• Understanding the performance of DaVinci robot.  
• Learning about the software programs to perform the project.  
• Analysis of the hardware components implemented on the haptic pen.  
• Bluetooth/Wireless communication between the three main 

components.  
• Read the torque generated due to the movement of the EndoWrist 

gears.  
• Move the whole robot to change the orientation of the tool to enter 

through different entrances following the rotation of the hand-surgeon.  
• Move the robot up and down following the Z-axis, simulating the entry 

and exit of the hole with the pen user interface.  
• Move the EndoWrist following the rotations from the pen user 

interface.  
• Creating haptic feedback with the torque received.  
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• Arduino is an open-source electronics platform that is able to read inputs, 

as can be the values from the IMU, and turn these into outputs, for 
example vibrate the vibration motor or ring the sound. What’s more, it is 
free and a simple, clear programming environment really helpful for 
beginners [29].  

• LabView is a graphical programming environment to develop and test 
systems. It is useful to build quickly automated test systems [30]. It enables 
measure physical systems with sensors and actuators and validate them.  

• Robot Operating System (ROS) is a robotic middleware, a collection of 
frameworks for developing robot software [31]. It is an open-source 
operating metasystem, and provides services such as hardware 
abstraction, low-level device control, and package maintenance. All of this 
makes it easier to create robotic applications. It provides different 
applications as Gazebo and RViz which provide real world simulation and 
3D visualization to interpret movements, respectively.  

• Matlab is a programming platform created to analyze and design systems, 
used mainly by engineers and scientists [32]. For this project could be 
helpful for developing the algorithm to calculate the force applied on the 
tissue. Matlab is designed for a quick and accessible learning, as opposed 
it has a high cost.  

• Python is a computer programming language used for software and data 
analysis [33]. It has become very popular in the recent years because of 
machine learning and software testing. It presents versatility and presents 
general-purpose language which allows creating a variety of different 
programs.  

• RoboDK is a simulator for industrial robots [34]. It allows you to program 
robots outside the production environment and perform, directly on the 
computer, the programming and simulation of the movements and tasks 
made by the robot.  

 
4.1.2. Designing software 

The other part of the project is the 3D modeling of the anchor piece between the 
effector and servomotor. In this section, there is no previous experience, instead 
of dividing the table into cost and experience, we will do it in cost and skill.  
Software FreeCAD AutoCAD SolidWorks 

Cost Open Source 217 €/year [36] 1.197 €/year 
[35] 

Skill Low High Medium 
 

 
 

• FreeCAD [37] is an open-source to design real-life objects in 3D. 
Modifications are easy, enabling going back to model history. It works on 
different operating systems and reads and writes many file formats. It is a 

Table 2. Options for designing software.    
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type of modeling where the shapes of 3D objects are controlled by 
disparate parameters.  

• AutoCAD [38] is a software of type CAD that allows the modelling in 2D 
and 3D. The modification of geometric models is almost infinite to develop 
any kind of structures. However, its difficulty is due to mechanical 
knowledge.  

• SolidWorks [39] is a CAD program and 3D modeling software. It is used 
for planning, visualization and modeling of elements. It is a solid modeler 
that uses parametric feature-based approach to create models.  
 

4.2. Hardware 
On this section, we will observe the different devices considered to be part of the 
hardware of the project. Mainly, robotics arms and devices to complete the haptic 
feedback tool.  

4.2.1. Robotic arms 
The DaVinci is composed of different arms, with one of them we can perform the 
project. That’s why we need a robotic arm, which is a mechanical arm that does 
similar functions to the human arm. The arm is composed by links which are 
connected by joints. This structure allow different movements as rotations and 
translations. The links compose a kinematic chain with an end effector at its 
extreme.  
These robotic arms have a software behind programmed to execute a specific 
task and repeat it many times accurately. They have an important role on 
industrial, manufacturing and assembly sectors because they can perform heavy 
and repetitive procedures during a long period of time.  
However, the robotic arm on our project would work as a ‘cobot’. This term is 
used for robots created to have a direct interaction with humans [40]. Their 
functions are very different compared to the traditional industrial robot 
applications. Having to interact with people, there are some components that are 
compulsory to ensure the safety of the people around them. That’s the reason 
that they are built with lightweight materials, sensors, limitation of speed and 
rounded edges.  
The Industrial Federation of Robotics (IFR) is an organization created to promote, 
reinforce, and protect the robotics industry. This one has defined different levels 
of collaboration between human and robot which are:  

• Coexistence: both works alongside.  
• Sequential Collaboration: both shared workspace but their functions are 

sequential.  
• Cooperation: work at same time and in motion.  
• Responsive Collaboration: robot responds to the movement of the human.  

In the following section, we are going to present different robotics arms and 
different features will be consider selecting the best solution.  

4.2.1.1. UR5e 
UR5e is a robot from Universal Robots (UR) which is a lightweight and adaptable 
collaborative industrial robot that tackles medium-duty applications with ultimate 
flexibility [41].  
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It is a great example of ‘cobot’ able to 
repeat tasks. It is flexible and presents an 
arm with a force torque that enables to 
perform safety exercises. Its software 
consists of an easy program that helps the 
costumer with a very fast learning [42]. We 
have to highlight the 6 degrees of freedom, 
its fast movement and its lightweight (18 
kg). What’s more, at the end-effector we 
are able to attach a tool, as can be the 
EndoWrist needed on the proyect. These 
features allow to perform recurring tasks 
and flexibility to automate multiple manual 
tasks. The price can be the main handicap, 
with a cost of 30.581€.  

With the recent technological developments, we have seen these kinds of robots 
in healthcare industry performing tasks supervised by a human.  
In the case of UR5e, it has been involved in rehabilitation from injuries caused by 
blood clot and strokes, helping patients with repetitive movements that form part 
of the rehabilitation process. Doing these charges, it can support therapists 
allowing them to set up training programs. Apart of this, it has been present in 
some businesses as Aurolab, helping in manufacturing intra ocular lenses. Its 
presence has increased affordability, regain vision at lower cost, reduce of power 
consumption and a decrease of quality problems [43]. 

4.2.1.2. Mover 4  
Mover 4 is robot from Commonplace Robotics 
Mover, unlike UR5e, is not suited for industrial 
production. The main objective is fulfilling the needs 
of schools, universities, or research institutions 
[44].  
Its programming environment is really intuitive, 
including graphical and textual program for ease of 
use by beginners. Its little weight, its payload of 0,5 
kg and his ability to equip different grippers, they 
have made it an option for our project. However, it 
has 5 degrees of freedom, we move away from the 
freedom of movement of the DaVinci. On the other 
hand, its price is more feasible and economical, 
3,730.65 €.  
At the end of the arm can attach different grippers, 
this would allow us to assemble the EndoWrist and 
perform the project. What’s more, its interface let us an easy control of the 
position of robot in real time and it has a low price.  

Figure 5. UR5e robot.    

Figure 6. Mover4 robot.    
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4.2.1.3. Kuka Robot Arm 
KUKA is a global automation 
corporation   known as one of 
the world’s leading suppliers 
of intelligent automation 
solutions, as robot arms [45].  
KUKA KR 360 is an example 
of many robot arm intended for 
handle heavy components. It 
has an arm extension of 500 
mm with a repeatability of 0.08 
mm providing great precision 
[46]. Its 6 degrees of freedom 
and large number of 
applications characterize it for 
being versatile and flexible. 

With a price about 10.000 € and the light work of large and heavy components, 
they allow to establish a low-space and low-cost solution.  
 

4.2.2. EndoWrist Da Vinci 
Intuitive Surgical has patented EndoWrist Instruments, these ones are designed 
to help the doctors on the surgery. Its main function is recreating the human wrist. 
However, these instruments allow more freedom of movement than a human 
wrist can achieve. Specifically, it as 7 degrees of freedom, swinging 180 degrees 
and rotate 360 degrees [47]. At the end that connects with the robotic arm, there 
is a mechanism that controls these degrees of freedom. There are 5 gears that 
control the roll, pitch and yaw of the tool.  
The EndoWrist perform the movements that the surgeon is making on the surgical 
console, to do the motions in real time, internal cables are needed, allowing rapid, 
maximum responsiveness and precise action of the manipulation. These features 
allow to the surgeon a natural dexterity while is performing the surgery through a 
small incision. During a surgery, different EndoWrist tools are used, depending 
on the task that is performed, some examples are graspers, needle drivers and 
energy instruments.  

 

Figure 7. KUKA KR 360 robot.    

Figure 8. Mechanism 
rotations EndoWrist.    

Figure 9. Tweezer EndoWrist.    
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4.2.3. Servomotors 
Servomotors are a rotatory or linear actuator that can control the position, speed 
or acceleration of the axis. It is an electrical device that with its rotation, can spin 
a part of a machine with great efficiency and precision. Its mechanism is a closed-
loop that uses the position feedback to control its movement and the final position. 
The input is a signal that can be analog or digital, which an output that represents 
the position requested. The position feedback provides different parameters, as 
can be current, velocity or position to the servo controller, depending on the input 
[48]. 
The servomotor is an electromechanical device that can generate torque and 
velocity depending on the current and voltage provided. These characteristics are 
crucial, because these devices will be used to rotate the mechanism on the 
EndoWrist and provide the different rotations. We will need four servomotors, one 
for rolling, another for pitching and two for the yaw to open and close the 
tweezers.  
It is important the resolution, speed of rotation and torque of the servomotors. 
These servomotors will have to rotate according to the movement of the surgeon, 
meaning that the rotation must be very precise and rotate imitating as close as 
possible the movement executed by the surgeon. Also, it needs enough strength 
to be able to move the gears of the EndoWrist.  
In the following table different solutions are presented:  

Servomotor Operating 
Voltage 

Stall 
Torque Weight Rotation 

range 
Running 
Speed 

Sunfounder 
SF180M 4,8 V – 6 V 2,5 kg/cm 9 gr 180º 0,09 s/60 ° 

Longruner 
KY66 4,2 V – 6 V 1 kg/cm 9 gr 180º 0.12 s/60º 

Dynamixel 
AX-12A 9 V – 12 V 12 kg/cm 54.6 gr 300º 0,02s/60ª 

 
 

4.2.4. IMU Sensors 
An inertial measurement unit (IMU) is an electronic device that measure the 
orientation and angular rate of the body at which is attached. It is a combination 
of accelerometers, gyroscopes and magnetometers [49].   
This device will be crucial to know the rotations that the surgeon makes and that 
these commands are sent to the rob arm. Using the accelerometer of the IMU, 
the linear acceleration will be calculated, and the rotational rate is obtained by 
gyroscopes.  

IMU Degrees of 
Freedom Power Weight Price 

ICM-20948 9 DoF 3,6V -1,71V 0,7 gr 13,20€ 

Table 4. Options for servomotors.    
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MPU 9250 9 DoF 2,4 V – 3,6 V 2,72 gr 12,99 € 

MPU 6050 6 DoF 2,4 V – 3,6 V 2,1 gr 5 € 

 
 

4.2.5. Haptic stimulus 
One of the main objectives is the haptic feedback, giving a stimulus to the 
surgeon so they know the force that are applying on the tissue. Two devices are 
selected as haptic stimulus: buzzer and vibration motor [50].  
Vibration motor is compact size coreless DC motor with the objective of creating 
a vibration to inform the user that the signal or condition has been met [51]. This 
device will be use in our project to inform the surgeon how much force is applying 
on the tissue. If he is doing a lot of force, the motor will vibrate more than if you 
are applying less force. This vibration has to be controlled, because if it is really 
big it could affect on the precision of the surgeon.  

Vibration Motor Operating 
Voltage 

Rotational 
Speed Weight Price 

Seeed Studio 
105020003 3V – 5V 9000 rpm 8,8 gr 3 € 

PWM Vibration 
Motor Module 3V – 5,3V 9000 rpm 16 gr 5,9 € 

Mini Vibration 
Motor Seeed 
Studio 

2,5V – 3-5V 7000 rpm 2 gr 1,14 € 

 
 
 
The second device is a buzzer, a vibrator-type electronic device. Its function is 
creating a sound, that can be continuous or intermittent, used as a signal or 
warning [52]. In our case, it will alert us at the moment that we are making a lot 
of force on the tissue or surface in question. 

Buzzer Resonance 
Frequency Intensity Operating 

Voltage Price 

HW-508  2300 Hz 110 dB 4V – 8V 3 € 

Buzzer RS PRO 2000 Hz 86 dB  3V – 5V 2,9 € 

MCKPT-G1720-
3922 4000 Hz 85 dB 30V 1,14 € 

 

Table 5. Inertial Measurement Unit comparison.     

Table 6. Comparison of Vibration Motors solutions.     

Table 7. Comparison of Buzzers solutions.     
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4.2.6. Microcontroller  
Our project will have different components that need to be connected wireless. 
The pencil, that will simulate the surgical console imitating the movement of the 
surgeon hand, needs to be connected by Bluetooth to the robotic arm, which will 
execute the motion [53].  
For this purpose, we will use microcontrollers but the ones that contain a set of 
peripherals including WiFi and Bluetooth wireless capabilities. We should know 
that a microcontroller is an integrated circuit created to perform a specific task in 
an embedded system. It can do it by interpreting the information and data that 
receives from the peripherals using its central processor.  

Microcontroller Memory Bluetooth Operating 
Voltage Price 

LattePanda 4 GB Yes 7.5V – 15V 125 € 

ESP32 520 KB Yes  2.2V – 3.6V 25 € 

NanoPi M4 4 GB Yes 5V – 12V 47,51 € 

 

4.2.7. Push buttons 
Apart from rotate the EndoWrist, we need to translate the robotic arm to a desired 
position and use the tweezers, opening and closing them. To achieve that we 
need to include some push buttons, that depending on the button that we press, 
it will perform one of the mentioned tasks.  

Push button Company Weight Price 

COM-00097 Sparkfun 270 mg 0,32 € 

1301.9314.24 Schurter 250 mg 0,45 € 

B3F-1022  Omron 250 mg 0,38 € 

 
 
 

4.3. Final selection 
In this section we will present the selection of the software and hardware 
components. We have taken into account the features of each element, its prices 
and the resources that have been presented to us. As mentioned in the first 
section, our project has been developed in the Physics laboratory of the Faculty 
of Physics of the University of Barcelona, there we have some components that 

Table 7. Microcontrollers solutions comparison.     

Table 8. Comparison push buttons solutions.     
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can be useful for our solutions in the hardware section. And because we are 
students, we are also presented with offers for different software solutions. 

Starting for the hardware, UR5e is selected although it is the most expensive. 
This is because this robot is already in the Department of Electronics and 
Biomedicine of the Faculty of Physics of the University of Barcelona. So having 
this robot within our reach and being able to use it for this project would be 
affordable, if we wanted to use any of the other alternatives it would mean a 
greater economic expense since we do not have any of the other alternatives. 
What’s more, of the alternatives presented, UR5e is the one with more degrees 
of freedom fact that has allowed its use in some clinical activity as mentioned in 
the previous section. Another point in favor is that we already have a little 
experience with this robot due to its use in one of the subjects of the career, 
“Robotics and Control of Biomedical Systems”.  

Regarding the hardware components for the haptic feedback, some of them have 
been selected due to its availability and presence in the laboratory, in this way 
they did not have to buy or wait for their arrival. In the case of haptic pencil, we 
have selected MPU 9250 because it is the one that has more degrees of freedom, 
along with ICM-20948. However, we have used it before, and it is available in the 
University. Furthermore, we know how to obtain its orientation and translate this 
information to the servomotors. Also, it will include an ESP32 to connect 
wirelessly the pencil with the servomotors, and with the computer. In summary, 
we will have an ESP32 in the pencil, to obtain the orientation and translation; in 
the servomotors mechanism to rotate the EndoWrist imitating the movement of 
the surgeon's hand; and in the computer to get all the necessary values and 
perform the relevant calculations and analysis.  

The rest of the plugins included are PWM Vibration Motor Module, HW-508 and 
COM-00097. The vibration motor will change its frequency depending on the 
amount of torque that we are applying. In the case of the buzzer, it will change in 
the same way, but increasing the intensity of the volume.  

Concerning the servomotors mechanism, we have used Sunfounder SF180M. In 
first place we utilized the Longruner KY66 because they were available in the 
University. However, when we try to move the EndoWrist with the servomotors, 
Longruner KY66 it didn’t have enough strength to move and rotate the EndoWrist 
as we wished. That’s the reason why we use Sunfounder SF180M, because they 
have bigger stall torque.  

With reference to the software, Arduino has been chosen to perform most part of 
the project. It will connect the different ESP32, calculate the torque and carry out 
the different haptic stimulus. RoboDK and python will be used for the simulation 
part and the direct connection with the UR5e, to run the program on the robotic 
arm. A great advantage of these programs is that they are free, except RoboDK, 
However, as we are student, we can obtain a free license for this program.  
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Finally, for the construction and design of the anchor pieces between the 
EndoWrist and servomotors, FreeCAD has been selected. The reason is that it 
is an open source and its learning is very simple for someone who has not had 
any type of experience with this type of software.   

COMPONENT SELECTION 

Programming software Arduino – RoboDK - Python 

Designing software FreeCAD 

Robotic Arm UR5e 

Servomotor Sunfounder SF 180M 

Inertial Measurement Unit MPU 9250 

Buzzer HW-508 

Vibration Motor PWM Vibration Motor Module 

Push Button COM 00097 

Microcontroller ESP32 
 
 
 
To understand better how the components are going to interact between them, 
a scheme representation of the prototype conception is shown below. 

Table 9. Proposed solution for each component 
software and hardware. 

Figure 10. Schematic representation of the own project.     
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5. DETAILED ENGINEERING 
This is the main part of the project, where all the hardware and software 
implementation are explained. We will use the items defined in the conceptual 
engineering and defined and specify how each process and part of the Figure 9 
was performed. To get the big picture, a pen, simulating the hand of the surgeon, 
will move the robot UR5e and the EndoWrist to his state, giving tactile sensation 
in the surgeon's hand when applying a lot of force with the EndoWrist on some 
tissue. 

 

5.1. Prototype Implementation 
First of all, to understand each main component of hardware and its relation, we 
will divide the section in 3 parts, the pen user interface, the servomotors with the 
EndoWrist and UR5e (EndoWrist maneuverability), and the communication and 
supervision module performed by a computer. Each one of them share a 
component, the ESP32. This processor will allow us to connect each module 
between them, via WIFI, avoiding wiring between them that would make their use 
very uncomfortable.  

Otherwise, the pen provided to 
us was a PCB with an IMU and 
with two buttons, apart from 
the ESP32. The IMU will be 
used to read the dimensions of 
movement from the surgeon 
hand, used in the servomotors 
to rotate according to them.   

The EndoWrist was also 
provided to us from the Hospital Clínic. An EndoWrist can be used just 10 times, 
once this threshold is exceeded, they stop using it even if it works fine. For our 
project it does the job, its use is adequate because it meets the requirements. 

 

5.1.1. Wireless communication 
Each ESP32 has its own MAC direction, which is like its representative. Using a 
WIFI library in Arduino, we can get the address of each of the three ESP32. After 
that, we will create three different Arduino files that will represent where one will 
represent the pen (known as master), another the servomotors (called slave) and 
the last one will receive all the information that will be sent to the computer for 
the simulation. 

To perform the transmission of information, each ESP32 needs to know the MAC 
direction of the ESP32 to which they are going to send or receive information. 
The master will need the MAC address of the slave and the computer; the slave 

Figure 11. Pen provided to us with an 
ESP32, two buttons and an IMU sensor.       
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will need the direction of the master, and the computer will need the address of 
the master. Apart from that, we need to define the structure of the data that we 
will receive and transmit on each ESP32. Now we are going to observe which 
information is going to be passed between the ESP32.  

 

5.1.2. Pen and dimensions of movement 
We needed to understand how we are going to use the information received by 
the IMU. From this component we will use the roll, pitch and yaw. They are three 
dimensions of movement defining how an object move. In that case, we are going 
to define how is moving the surgeon its hand.  

The IMU has a representation of the three axis as 
shown in Figure 12. The roll is the rotation about the 
x-axis, the pitch about y-axis and yaw z-axis. These 
rotations will be sent to the servomotors which will 
move the gears of the EndoWrist. As shown in 
Figure 13, although there are 5 gears, just 4 of them 
are used. For the roll (1) and pitch (2) we need just 
one, however for the yaw we need two (3,4). This 
two will rotate oppositely to move the two grippers 
together, will rotate the same way when they want to 
open the clamps. Considering that, for each 
interruption of the IMU sensor we read the data that 
it provides us. We will send the roll, pitch and yaw 
from the master to the slave and the computer.  

Figure 12. Representation of the roll, pitch and yaw in a human 
hand.      

Figure 13. IMU sensor.       
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Regarding to the buttons, we are going to read their status in Arduino to, 
subsequently, move the robot forward or backward.  

5.1.3. Reading torque 
To know which force are be applying on the tissue, we are going to consider the 
torque that the servomotors are producing. In that case we will measure their 
electrical power, P=I*V.  

We will measure the current that is going through the servomotor because the 
voltage is going to be the same. To achieve that we need a resistor in series with 
the motor, measuring its voltage drop we can know the current. As the voltage 
drop is practically constant because the voltage is the same, we can assume that 
the electrical power is directly proportional to the current that we are measuring 
and its torque. We need a small resistance, if not it will be very difficult to the 
current to go through. That’s why, the resistance used is 1.6 Ohms for all the 
servomotors.  

In Figure 15, we can observe how the pins and the resistor are connected to be 
in series. We need to connect the GND of the motor and terminal of the resistance 
to a GPIO and ADC pin.    

1 

2 
2 

3
 

4 
2 

Figure 14. Rotations of the servomotors and their corresponding movement in the 
gripper (1.Roll-red, 2.Pitch-blue, 3. And 4. Yaw-green).       
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This information will be sent to the master, which later from this, will be sent to 
the computer. Finally, we apply this to 4 servomotors. The hardware of the 
prototype is represented in Figure 19, we can observe the 3 components, the 
pen/master, the slave composed with 4 servomotors and its resistor in series, 
and the ESP32 computer.  

Figure 15. Servomotor connected to a ESP32 and a resistor in series.       

Figure 16. Prototype hardware.   
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5.1.4. Simulation in RoboDK 
Before starting with the RoboDK, we have seen that the slave sends to the master 
the information about the torque, and the master send this last information, in 
addition to the RPY angles and the status of the buttons to the computer. Finally, 
the ESP32 connected to the computer has all this information. In RoboDK, we 
request this data to Arduino, storing the data and converting the variables to floats 
or integers.  

The other section is to generate the robot UR5e in the environment, downloading 
it from the RoboDK library. The tool recreating the EndoWrist was provided to us. 
We needed to define both variables to be able to work with them.  

The idea is to recreate the 
movement of the tool of the 
EndoWrist. To achieve that we 
create a new frame named 
‘Gripper’ in the extreme of the 
EndoWrist. We will create a 
translation matrix achieving the 
only movement on this position, 
which will represent the 
movement of the gripper. After 
that, using the rotations 
matrixes, we will apply a rotx, 
roty and rotz using the roll, pitch 
and yaw values obtained from 
the IMU, respectively. A rotx(pi) 
is needed because if not the Z-
axis is pointing down. With this 
matrix that defines the new 
position of the gripper, we 
implement the rotation with the 

function .setPose() which will move the gripper according the roll, pitch and yaw 
values.  

Apart from that, depending on the status of the buttons, the robot will move 
forward or backwards. To achieve that we will get the position of the robot with 
the function .Pose(), which is a matrix 4x4, and we will multiply a translation just 
in the Z-axis of 1 mm. Depending on the button that we click, the value will be 
positive or negative affecting the direction of its movement.  

 

5.2. Final model 
As we have seen, the prototype model can’t be implemented on the UR5e in real 
world and doesn’t have any haptic technology. In this part we are going to 

Figure 17. UR5e in RoboDK.   
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observe the different modifications that we have performed to the previous 
components, to achieve the defined objectives.  

 

5.2.1. 3D pieces 
One of the main inconvenient when carrying out the project in the UR5e, it is the 
lack of some anchoring pieces between the servomotors and the EndoWrist. We 
needed pieces that fixed in both parts and transmits the rotations so both parts 
were in agreement. Two types of pieces in question were designed. One of them 
considered the dimensions of the servomotor and the other, the dimensions of 
the EndoWrist.  

 

Both pieces were created in FreeCAD and then 3D printed. Due to the limitation 
of precision in the 3D printer, the two pieces were split in half to improve printing.  

Figure 18. EndoWrist disks designed in 
FreeCAD. 

Figure 19. Servomotor disks designed in 
FreeCAD. 
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5.2.2. Slave on PCB board and torque limit 
The servomotors were in a protoboard with a lot of cables which was difficult to 
put it in the UR5e. To solve this problem, we moved the 4 servomotors and the 
ESP32 into a PCB board which was performed by Estela. As the idea was to 
make it wireless, we have to avoid wiring and make it work by itself, that’s why a 
battery was also included to be autonomous.  

 

5.2.2.1. Implementations slave software 

The idea is to simulate the use of this device in a surgical environment, meaning 
that the movements of the hand of the surgeon needs to go very slow. However, 
we must consider any situation that could worsen the intervention, as for 
example, if the pencil falls or the surgeon shakes a lot its hand. In that case, we 
don’t want the servomotors to rotate because it would make a very sharp rotation 
causing internal injuries to the patient.  

To avoid this problem, we have limited the rotations. If the new rotation value is 
greater than 10 degrees with respect to the last value, the servomotor will not 

Figure 20. Slave PCB board composed by a battery, a ESP32 module and 4 
servomotors. 
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rotate and will take the previous value as the measurement. In this way we ensure 
that the procedure is carried out smoothly, increasing the precision of the 
intervention and the safety of the patient. 

Another aspect related to this topic, is the limitation presented by the servomotors 
used. These ones only rotate 180 degrees, nevertheless, the IMU offers 360 
degrees. This inconvenient provides a tremendous rotation of 180 degrees when 
the servomotor gets a 0 degree and then a 360 degree. To solve that, we limit 
the field of movement of the servomotor between 0 and 180 degrees. If the 
degrees obtained are bigger than 180 degrees and smaller than 270 degrees, 
the servomotor will stay at 180 degrees. However, if the values obtained are 
between 270 and 360 degrees, the servomotor will remain at 0 degrees. In this 
way we avoid any unwanted rotation. 

Finally, we have applied a modification to be able to open and close the clamps. 
It considers the position of the yaw because is the one that affects the gripper. 
Depending the value of the yaw, it will move one gripper while the other remains 
on the same position. This is done in this way because if the two grippers are 
closed and are in the 180-degree position, the one at the end will not be able to 
open because the servomotors only rotate 180 at most. For this reason, we will 
move the gripper that is not in the end 30 degrees, in this case at 150. 

 

5.2.2.2. Threshold current 

As we have seen in the section Reading torque, there are a lot of peaks and we 
are not sure if the value that is going to take is it at the peak, at the descent or at 
the rise of the curve. The solution carried out was to integrate all the current to 
accumulate all the values and avoid peaks.  

Once we have the integration, what we really want is to observe if there has been 
a big change of current between a point and its previous. In other words, we want 
to know the slope of the function. Depending on the value of the slope, it means 
that we are applying a lot of force and consequently, the current increases, or the 
reverse situation.  

So, we will derive the integration, obtaining which is the maximum force applied 
in each case. Also, the maximum of the function with hindrance and without 
hindrance are very different. We will use a value smaller than that of the function 
where an obstacle is applied, which we will use as a threshold to know when the 
pen should start to sound and vibrate, warning that the force being applied is 
excessive. These new values of the current are the ones that are going to be 
send to the master, to use it as the variable to active the haptic stimulus. 
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5.2.3. Master and haptic feedback 
The master prototype didn’t provide any sense of the force being applied and 
there was no way to decide what kind of movement we wanted the robot UR5e 
to perform.  

To achieve that, another button was included apart from the other two; a battery 
to allow the feeding of the entire circuit and that it is wireless; and a buzzer and 
vibrator motor to perform haptic feedback.  

 
5.2.3.1. Haptic feedback 

From the slave, we receive the derivative current explained in the last section. 
Considering this value, it will define the threshold from which a lot of force is being 
exerted.  

The hardware in charge of the haptic stimulus is the buzzer and the vibrator 
motor. Once the value obtained from the derivative current is higher than the 
threshold, the haptic stimulus will jump. Both the sound of the buzzer and the 

Figure 21. Pen MASTER with an IMU, three buttons, a battery, a 
buzzer, and a vibrator motor.  
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vibration of the vibrator motor will increase in relation to the value of the current. 
If the threshold has been slightly exceeded, it will not make as much noise as if it 
has been greatly exceeded. The frequency of both components will depend on 
the value of the current, meaning that if the current increase also does it the sound 
and vibration.  

5.2.3.2. Modes of action 

With the haptic pen, we need to perform all the movements that the Da Vinci robot 
can do. To achieve that, we are going to create different modes. Each mode will 
perform one movement and we can change modes thanks to the third button. 

- Mode 0: it will perform the 
movement from the tip of 
the EndoWrist, the gripper. 
In that case, we need to 
rotate the servomotors 
according to the roll, pitch 
and yaw values from the 
IMU; and open and close 
the gripper while we push 
the first or second button.  

- Mode 1: it will simulate 
the entry and exit of the 
EndoWrist over the 
patient's orifice. In that case, we will move the EndoWrist along the Z-axis. 
However, when this mode is activated, we don’t want that the EndoWrist gripper 
continues to move according to the IMU values. That’s the reason why we store 
and send the last values of the IMU obtained in the mode 0 to the servomotors. 
Meaning, that they will remain in the position that they were in at the last moment 
of mode 0. Besides, the first and second buttons will be the ones that indicate the 
rise and fall of the tool. Therefore, we have to disable them for the servomotors 

Figure 22. Code for the mode 0, movement of the gripper.  

Figure 23. Code for the mode 1, movement of the arm in the z-axis.  
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so that they do not open or close the clamps. The values send to the computer 
from the master will be the status of the two buttons, to raise or lower the tool with 
respect to the Z-axis.  

- Mode 2: Correspond the 
movement of the robot in all 
axes. It performs the 
movement to orient the tool 
in one direction or another, 
depending on where the 
orifice through which the 
patient is to be operated is 
located. The end-effector 
will remain fixed in one 
position, and taking the 
values from the IMU, the 
robot will be placed in the 
appropriate position to 
orient the EndoWrist. This 
is because during 

operations the EndoWrist must be oriented to enter through a different zone or 
shape in each case. With the servos it will happen the same as in mode 1 
because we do not want them to move. In that case, we store and send the last 
values of the IMU obtained in the mode 0 to the servomotors, so they will be 
stopped. To the computer, we will send the values of the roll, pitch and yaw. The 
state of the two buttons is disabled because we won't be using them for this mode.  

 

5.2.4. RoboDK simulation implementations 
First of all, the simulation in the computer, to later be executed in real-world, its 
components must be as close as possible to what we have in real life. The 
EndoWrist we had in RoboDK did not have the same dimensions as the one we 
had. We created the EndoWrist tool and the two parts of the casing that hold it 
with FreeCAD, using the same dimensions as the real ones. 

 

Figure 24. Code for the mode 2, movement of the arm to 
orientate the EndoWrist.  
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These pieces were combined in RoboDK, using 
the function Compound that joins different 
figures. After that, they were defined as a tool and 
were placed at the end of joint 6 as an end-
effector. 

We must bear in mind that the 
robot will carry out one movement 
or another, depending on the 
mode that we have selected. This 
must be implemented so that the 
simulation is done correctly and 
can be performed in real life.  

The mode 0 is the one that we created previously which will move only the gripper 
of the EndoWrist. Switching to the mode 1, it will go up or down following the Z-
axis of the tool.  

Activating the mode 2, the UR5e robot will move to change the orientation of the 
tool fixing the position of the end-effector. To achieve that we need to know the 
position of the robot, these values will be used in the translation matrix to move 

Figure 25. Casing that holds the EndoWrist created in FreeCAD.  

Figure 26. EndoWrist created in 
FreeCAD.  

Figure 27. UR5e with the designed 
EndoWrist in RoboDK.   
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the UR5e; and the 
values of the IMU, to 
rotate the UR5e 
changing the values of 
its position. To ensure 
that the position that the 
robot will take is safe, 
the function 
.MoveL_Test() is used. 
This function calculates 
if the position to which 
the robot will move with 
the new values is safe 
and there will be no 
collision between the 

links of the UR5e. If it sends 0 as a result, it means that the movement is secured; 
any other number means that there will be a collision between the bot's links, or 
that the bot cannot reach that position. To know the axes where the rotations will 
be made, a new fixed frame is placed at the tip. 

Besides, the torque values generated during the EndoWrist movement process 
are stored and transferred to an Excel file in case it is necessary to carry out any 
type of analysis. What’s more, a live plot is generated showing the actual torque 
values of each servomotor.    

Figure 29. UR5e with the EndoWrist and the designed 
servomotor PCB.   

Figure 28. Program to perform all the movements in RoboDK.    
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6. EXPERIMENTAL VALIDATION 
6.1. Instantaneous current measurement in servomotors 

In the following graphs, we can observe a representation of the intensity going 
through the servomotor when we move them to a determined position. The 
servomotor tries to go to this position at a maximum velocity, that’s why we have 
an initial spike. Then this value is decreasing until, at the end, it tries to correct its 
stationary error.  

When there is an obstacle, we can observe the current is a little bit higher 
because is trying to get into this position. What’s more, there are pulses because 
it tries to reach the position, stops, tries again and so on periodically until it 
reaches the target. 

Figure 30. Current that goes through the servomotor when there is no 
obstacle.  

Figure 31. Current that goes through the servomotor when there is an obstacle.  
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First, the maximum value is practically the same when there is an obstacle or not, 
therefore it is difficult to differentiate both. It is quite noisy with many peaks; 
therefore, we will apply a filter integrating the current with respect to time. 
Because of this, we now get the electric charge, not the current. 

 

 

 
Thanks to the integration, the magnitude is significantly different when there 
is an obstacle or not. Helping us to differentiate each case.  
 
 
 

Figure 32. Filter of the current, without obstacle.  

Figure 33. Electric Charge when there is an obstacle.   
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6.2. Average current measurement 
In this part we will properly measure the average torque, according to the 
previous experimental results, a possible method could be to integrate first the 
measured current and then derivate to extract the slope representing a 
proportional measure of the average torque. 

 
 
Comparing both graphs, when integrating the current, what we are doing is 
accumulating the values of the current. For this reason, as before, when there is 
an obstacle, its magnitude is greater because it needs more current to overcome 
the force it is facing. When there is no obstacle, it needs less current, only the 
necessary to reach the desired position at maximum speed. 

After that, we perform the derivative to obtain which is the maximum force applied 
on the tissue or surface.  

Figure 34. Integration of the current when there is no obstacle.  

Figure 35. Integration of the current when there is an obstacle.  
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When there is an obstacle, we observe the value of the slope of the integrated 
function previously seen. When the value is increasing, it means that it’s 
increasing its force to move the servomotor and arrive at the desired position. 
Comparing the graph of the obstacle without the obstacle, the difference is 
magnitude and plateau. As we have been mentioning, when there is an obstacle, 
it needs more current to overcome that obstacle. Increasing its value until it 
arrives to its maximum, the plateau, moment in which it is showing us that it is 
applying a lot of force on the tissue or obstacle in question. These values 
represent well the exerted force and will be used as threshold. 
  

Figure 36. Derivative of the integrated current when there is no 
obstacle.  

Figure 37. Derivative of the integrated current when there is an 
obstacle.  
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7. EXECUTION PLAN 
In this section the phases and the time of each part are presented. Including the 
paths that we have followed to obtain the objectives of the project.  
 

7.1. Work Breakdown Structure (WBS) 
Work Breakdown Structure is a tool that divide the project in smaller tasks to 
obtain more productivity and manageable. This WBS is created to define the 
different steps and assignments to develop the project.  

 
 
 

7.2. Program Evaluation and Review Techniques (PERT)  
The PART diagram is a representation of the tasks made in a project, and the 
different connection and dependencies between each one. The following table 
shows the different activities defined in WBS, its duration and connection 
between them.  
Activity Identifier Duration 

(weeks) 
Previous 
activities 

Following 
Activities 

1.1 Definition of objectives A 1 - B 
1.2. Background and market 
analysis B 2 A C -D 

2.1 Arduino codes 
implementation C 2 B E 

2.2. RoboDK codes 
simulation and 
implementation 

D 2 B F 

3.1 Prototype construction 
of master and slave E 2 C G 

3.2. 3D pieces F 3 D G 
4.1 Rotation and torque 
reading of the 4 servos G 2 E - F H - I 

Figure 38. Work Breakdown Structure of the project.      
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4.2. Movement and torque 
reading of the EndoWrist 
and UR5e according to 
master 

H 3 G K 

4.3. Haptic feedback I 3 G J 
5.1. Implementation on 
UR5e J 2 I K 

5.2. Results visualization 
and interpretation K 2 H - J L 

5.3. Conclusions L 1 K N 
6.1 Drafting of the project M During all 

project - - 

6.2. Oral presentation N 2 L - 
 
 
Considering the information on the diagram, we perform the representation of the 
PERT. On each node we have on the left the ‘Early Time’, which is the minimum 
time needed to reach a node, and on the right, the ‘Late Time’ that is the 
maximum time it can take to reach a knot without delaying the project. The purple 
lines will determine the critical path, where there is the minimum time to perform 
the project.  

 
 
 

7.3. GANTT diagram 
A GANTT chart is used in a project management to represent the activities carried 
out with respect to the time spent. On the first column it is shown the identifier of 
each activity, which are defined on the PERT. Each activity is displayed on a row 
and the bars in each row represent the duration of the activity.  
 
 
 

Table 10. PERT diagram table.  

Figure 39. PERT diagram representation.      
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Figure 40. GANTT project diagram.       
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8. TECHNICAL VIABILITY 
In this section, an analysis was performed to determine the technical feasibility of 
the project. To execute this analysis, we have done a SWOT, presenting the 
strengths, weaknesses, opportunities, and threats.   

8.1. SWOT analysis 
Performing and internal and external analysis of the project, the best advantages, 
opportunities and the project lacks and threats are presented on this strategic 
planning and management technique.  
 Helpful  

to achieving the objective 
Harmful 

to achieving the objective 

In
te

rn
al

 
Fa

ct
or

s  Strengths 
• Calculation of the force 

applied 
• Low-cost 

Weaknesses 
• Small delay  
• Not knowing the direction 

where it is exceeding force 

E
xt

er
na

l 
Fa

ct
or

s 

Opportunities 
• Implementation on 

different robotic arms 
• Increase in minimally 

invasive surgeries 

Threats 
• Solution search by different 

companies 
• Emerging technology 

 
Strengths 
The positives aspects of this project are that we have implemented an haptic 
feedback system with cheap components. The integral of the current and its 
subsequent derivation gives us a value that represents quite accurately the force 
that we are applying to it. What’s more, the UR5e robot can be controlled just by 
a pen user interface that provides different types of movements.  
 
Opportunities 
This area is emerging because there is no real solution on the market for this 
problem. Meaning, that different companies and sectors are interested in 
obtaining a solution to this problem and would be willing to finance a real solution 
to this. 
What’s more, the minimally invasive surgery is being imposed on traditional 
surgery, which further increases the need to find a way to solve this problem. 
 
Weaknesses 
The transmission of data between the different components means that there is 
a small delay between the moment we execute the movement with the pen, and 
the subsequent execution in the UR5e. 
Furthermore, the haptic feedback system can be improved. Although the way of 
measuring the force is the correct one, the different haptic stimulus on the pen 
doesn’t provide a sense of the direction where we apply the force. The sound and 
vibration are proportional to the applied force, but if we closed our eyes we would 
not know in which area is where we are damaging the tissue. 
 

Table 11. SWOT table.   
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Threats 
We have commented that the need to find a solution is increasing. Although this 
is an opportunity, it also increases the risk of threat as different companies are 
also looking for ways to solve this problem. So, there is quite a bit of direct 
competition. 
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9. ECONOMIC FEASIBILITY 
In this section we are going to calculate the total cost of the project. Considering 
the software programs, this has not involved any cost because many of them 
were free or we obtained a free license thanks to being university students. 
However, an important part of the budget has been allocated to hardware 
components and the hours dedicated from the student and the director of the 
project. Regarding this topic, in the ‘Boletín Oficial del Estado – Ministerio de 
Trabajo, migraciones y seguridad social’ [54], it is defined the minimum salary for 
a junior and senior biomedical engineer, 20€/h and 30€/h, respectively. As it is 
defined on the teaching level, the student must devote about 300 hours to the 
project, and about 100 hours have been considered for the director. What’s more, 
PCB boards made by my partner are also considered in the budget.  

 

Concept Units Unit Price Total Cost 
SOFTWARE 

Arduino 1 Free 0€ 
RoboDK 1 Free 0€ 
Python 1 Free 0€ 

FreeCAD 1 Free 0€ 
HARDWARE 

UR5e robot 1 30.851€ 30.851€ 
EndoWrist 1 4500€ 4.500€ 

IMU MPU-9250 1 12,22€ 12,22€ 
ESP32 board 3 25€ 75€ 
Servomotors 

Sunfounder SF 
180M 

4 13€ 52€ 

Buzzer HW-508 1 3€ 3€ 
Vibration Motor 
PWM Vibration 
Motor Module 

1 5,9 € 5,9 € 

Push Button 
COM 00097 3 0,32 € 0,96€ 

Computer 1 1000€ 1000€ 
PCB 

SERVOMOTORS 1 12,01€ 12,01€ 

PCB IMU 1 13,69€ 13,69€ 
PROJECT DEVELOPMENT 

Student 1 20€/h 6.000€ 
Director 1 30€/h 3.000€ 
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TOTAL 45.525,78€ 
 
 
In the table above, we can observe the total cost of the project. Around 75% of 
the budget is destined to the robotic arm and EndoWrist. For this reason, this 
robot is chosen since it is present in the laboratory and buying a new one would 
mean an extra cost.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 12. Final Degree Project Cost  
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10. REGULATIONS AND LEGAL ASPECTS 
Robotics in healthcare presents an important number of potential benefits; 
however, there are several risks that needs to be considered by the manufacturer 
and supplier. Specific regulatory frameworks have been developed to ensure 
efficacy and safety for the patient. In the regulatory framework, robot will need to 
fulfill some standard to be approved by FDA and Conformité Européene.  
FDA (Food and Drug Administration) regulates devices to provide reasonable 
assurance of their safety and effectiveness for their intended uses. It categorizes 
and classify the different medical products based on the invasiveness and risk to 
the patient. We must highlight that FDA neither provide accreditation nor training 
for physician. The implementation of training is responsibility of the own 
physician, manufacturer, and healthcare facilities. FDA also provides another 
way to categorize, regarding the software used in the medical device. If the 
software is integrated on the medical device, it would be approved in the same 
classification as the product. If not, it could be approved separately and have a 
different classification.  
In the case of European regulations, all robots will go through Conformité 
Européene (CE) Mark certification under the European Medical Devices 
Directive. If the products are approved, the letters “CE” will appear; meaning that 
the product sold on the European Economic Area fulfill high safety, health, and 
environmental protection requirements. 
Standardization is the process of implementing several technical bases on the 
consensus of different parties, that need to be fulfilled for the subsequent 
commercialization of the product. In this section we find ISO and IEC safety 
standards. ISO establish a management system to address controls on quality 
and security management. On the other hand, IEC are international standards 
grouping electrical, electronic, and related technologies. One of the regulations 
stablished by IEC is 80601-2-77:2019. It is the standard for medical electrical 
equipment that is applied to the basic safety and essential performance for 
robotically assisted surgical equipment and systems. It covers the issues related 
to robot movement, electrical and other functional connections; and related to the 
effect of unintended collision with other objects [55].  
What’s more, it is a Final Degree Project, which means that must follow the 
regulations described on “Normes generals reguladores dels treballs de fi de grau 
de la Universitat de Barcelona”, specifically those referred to the degree of 
Biomedical Engineering.  

10.1. Hardware of medical devices 
Medical device is a product, as can be an instrument, machine, or implant, this is 
used for diagnosis, prevention, and treatment of diseases. According to this 
definition, we can include surgical robots on this group [56]. Some regulations 
regarding to the safety and quality are:  

• ISO 13485:2016: Manage quality throughout the life cycle of a medical 
device. It involves the design, production, installation and servicing of 
medical devices and related services.  

• ISO 14971:2019: It specifies the process for risk management of medical 
devices. This standard focuses on processes to identify and evaluate risks 
associated to the medical device and implement risk controls.  

• ISO 11135:2014: Required for the development, validation, and routine 
control of sterilization process for medical devices. It specifies the symbols 
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that medical device manufacturers will use to show the information based 
on sterilization processes.  

• ISO 10993-1:2018: Biological evaluation of medical devices. The standard 
is applied for devices that have direct or indirect contact with a patient and 
it defines the principles of the biological evaluation of the medical device 
in a range of risk management framework.  

10.2. Software of medical devices 
As we have mentioned, the medical devices incorporated a software which, 
indeed, also needs a regulation and be within a legal framework [57]. Some 
regulations applied to the software of the medical device are the following ones:  

• IEC 62304:2015: it set downs a system for the processes and activities 
that can happen through the lifecycle of the medical device software. The 
standard defines the lifecycle for Software as a Medical Device (SaMD). 

• IEC 80002-1:2009:  it offers a guidance to correctly apply the conditions of 
ISO 19741. The technical report helps to understand the professionals 
which requirements are needed to complete ISO 14971.  
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11. CONCLUSIONS 
The main objective of this project was created haptic feedback system using a 
UR5e robot and a real EndoWrist tool. For that we divided the project on 3 
components, the pen user interface, EndoWrist maneuverability and 
Communication and supervision module. For the first two we have had to create 
different PCB boards with the necessary components to meet the objective. For 
this project, we have learned how the different robotics arms works and how to 
implement haptic feedback system.  

Here we will discuss the fulfillment of the initial objectives proposed and some 
recommendations and improvements for future implementations.  

11.1. Objectives fulfillment 
We have achieved the transmission of the roll, pitch and yaw values to the 
servomotor and to the UR5e robot via WIFI. The wireless communication 
between the three main components has been executed correctly thanks to the 
ESP32.  

What’s more, we have performed the three desired movements. In the first case, 
we have rotated the gears of the EndoWrist moving the servomotors according 
to the motion of the surgeon-hand. However, the printed pieces were separated 
in two. To join them, it has been done with double-sided adhesive, which when a 
force is applied on the end-effector of the EndoWrist, makes it move a little. We 
have found that many times the pieces separated or did not stay together enough 
because the adhesive did not hold up as necessary. This has affected the 
movement of the gripper which is not executed perfectly imitating the movements 
of the surgeon. 

The second one motion was the raising and lowering of the EndoWrist, mimicking 
the entry and exit of the orifice on the patient. First, it didn't move very smoothly 
and made very sudden stops. By lowering the range that had to move each time 
the button was pressed, we have achieved a very fluid movement that is 
performed perfectly. 

The last movement, regarding to the motion of the UR5e change the orientation 
of the tool considering the end-effector of the EndoWrist as fixed position. At the 
beginning, we were unable to perform this move because the functions used were 
the wrong ones. Finally, making sure that there is no collision between the 
different links and knowing the reference axis on which to rotate, the movement 
is carried out correctly. However, we have to move the pen very smoothly, 
otherwise it will make a very sudden movement. Thanks to the collision limits, 
you will never get into a very awkward position. 

Another achievement has been obtained the force that is exerted on the tissue 
by integrating and then deriving the current received from the servomotors. It is 
a parameter that shows how much tension we are applying on the tissue, and it 
increases or decreases depending on the force applied. In addition, the correct 
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design of the anchoring pieces, both EndoWrist and of the servomotor, have been 
necessary to be able to carry out this measurement. Also including the design of 
the EndoWrist and its casing, so that the simulation was as close as possible to 
the real world. 

11.2. Future improvements 
On the other hand, different implementations have not been fulfilled as expected. 
The transmission of data between the different components has caused a small 
delay of around 1 second when executing rotations and movements. It limits us 
a little the correct operation and avoids 100% comfort when executing the 
movements. However, in the future it could be reduced by changing the delay 
functions present in the code by millis. 

Apart from that, the printed pieces were separated in two. To join them, it has 
been done with double-sided adhesive, which when a force is applied on the end-
effector of the EndoWrist, makes it move a little. Ideally, each element would be 
created in 3D printing in one piece, without the need to use adhesive. 

What’s more, an easier anchorage between the UR5e robot, EndoWrist and 
servomotors than the current one. If one of the pieces separates, we have to 
remove and separate all the devices by removing the screws that hold them. An 
idea that would facilitate this would be the union of an iron in one of the ends and 
separate the components by an opening that will simulate the opening of a mouth. 
In this way we reduce the screws to remove and the time it takes. 

Finally, the vibration exerted on the pen user interface is proportional to the 
applied force but does not offer a sense of the direction in which this tension is 
exerted.  

11.3. Personal conclusions 
Related to personal conclusions, this project has been a great opportunity for me 
to improve my skills in programming and 3D design, among other features. The 
chance to work with another student it helped me improve my group work and 
learn about its branch, in addition to knowing firsthand that there is a lot of 
interdisciplinarity in research groups. 
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13. APPENDIXES 
13.1. Code of the pen user interface 

The following code is the one performed on the pen user interface, where mainly 
the values of roll, pitch and yaw are obtained, and the haptic feedback is executed 
on it.   
#include "src/RoboticsUB.h" 
#include <esp_now.h> 
#include <WiFi.h> 
 
// MAC address of the slave that contains the servos 
uint8_t servosMacAddress[] = {0x7c, 0x9e, 0xbd, 0x61, 0xa1, 0x34}; 
 
// MAC address of the slave that communicates with the Computer 
uint8_t computerMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0xe2, 0x58}; 
 
//variables for the ESP32 led 
#define LED 2 
int brillo = 0; 
const int ledfreq = 5000; 
const int ledchannel = 0; 
const int ledresolution = 10; 
 
// variables for the buzzer 
const int buzzfreq = 2000; //variable for frequency 
const int buzzchannel = 1; //variable that determines the channel that generates 
the signal 
const int buzzresolution = 8;//PWM resolution 
const int BUZZER = 18;// pin connected to buzzer 
//variables for the vibrator 
const int vibfreq = 2000; //variable for frequency 
const int vibchannel = 2; //variable that determines the channel that generates 
the signal 
const int vibresolution = 8;// PWM resolution 
const int VIBRATOR = 12; 
 
//Declaration variables for IMU pins and buttons 
const int PIN_IMU_INT = 35; 
const int PIN_S1 = 15; 
const int PIN_S2 = 4; 
const int PIN_S3 = 5; 
 
IMU imu; 
 
// button state variables 
int s1Status = HIGH; 
int s2Status = HIGH; 
int s3Status = HIGH; 
 
//time variables for the current 
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const unsigned long periodMillis_roll = 10; 
unsigned long currentMillis_roll = 0; 
unsigned long previousMillis_roll = 0; 
const unsigned long periodMillis_pitch = 10; 
unsigned long currentMillis_pitch = 0; 
unsigned long previousMillis_pitch = 0; 
const unsigned long periodMillis_yaw1 = 10; 
unsigned long currentMillis_yaw1 = 0; 
unsigned long previousMillis_yaw1 = 0; 
const unsigned long periodMillis_yaw2 = 10; 
unsigned long currentMillis_yaw2 = 0; 
unsigned long previousMillis_yaw2 = 0; 
 
//initially we are in the mode of working with the tip of the endowrist 
int modo = 0; 
 
// variable to store roll, pitch and yaw data 
float *rpw; 
 
// data structure that the master will send to the servos 
typedef struct { 
  float roll; 
  float pitch; 
  float yaw; 
  int s1_pinzas; 
  int s2_pinzas; 
} TxMessage; 
 
// structure type variable for the output data to the servos 
TxMessage dataToServos; 
 
// data structure that the master will send to the computer 
typedef struct { 
  float roll; 
  float pitch; 
  float yaw; 
  float current_roll; 
  float current_pitch; 
  float current_yaw1; 
  float current_yaw2; 
  int s1_status; 
  int s2_status; 
  int modo; 
} Tx2Message; 
 
// structure type variable for output data to the computer 
Tx2Message dataToComputer; 
 
// data structure that the master will receive from the servos 
typedef struct { 
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  float current_roll; 
  float current_pitch; 
  float current_yaw1; 
  float current_yaw2; 
} RxMessage; 
 
// structure type variable for the input data of the streams 
RxMessage dataCurrent; 
 
 
/*PROGRAM SETUP*/ 
void setup() { 
  Serial.begin(115200); 
  //configure the pins of the buttons and the imu as outputs 
  pinMode(PIN_IMU_INT, INPUT_PULLUP); 
  pinMode(PIN_S1, INPUT); 
  pinMode(PIN_S2, INPUT); 
  pinMode(PIN_S3, INPUT); 
   
  //we configure the buzzer and the vibrator to assign them a PWM 
  ledcSetup(vibchannel, vibfreq, vibresolution); 
  ledcAttachPin(VIBRATOR, vibchannel); 
   
  ledcSetup(buzzchannel, buzzfreq, buzzresolution); 
  ledcAttachPin(BUZZER, buzzchannel); 
   
  imu.Install(); 
 
  // We enable WiFi in station mode 
  WiFi.mode(WIFI_STA); 
 
  // check that the master is initialized correctly 
  if (esp_now_init() != ESP_OK) { 
    //Serial.println("Error initializing ESP-NOW (master)"); 
    return; 
  } 
 
  // We register the slave of the servos 
  esp_now_peer_info_t peerInfo = {}; 
  memcpy(peerInfo.peer_addr, servosMacAddress, 6); 
  peerInfo.channel = 0; 
  peerInfo.encrypt = false; 
 
  //we check that the slave of the servos has been added correctly 
  if (esp_now_add_peer(&peerInfo) != ESP_OK) { 
    //Serial.println("Failed to add servo slave"); 
    return; 
  } 
 
  //We configure the function to use each time a message is received 
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  esp_now_register_recv_cb(OnDataRecv); 
 
  // We register the slave computer 
  esp_now_peer_info_t peerInfo_computer = {}; 
  memcpy(peerInfo_computer.peer_addr, computerMacAddress, 6); 
  peerInfo_computer.channel = 1; 
  peerInfo_computer.encrypt = false; 
 
// check that the computer slave has been added correctly 
  if (esp_now_add_peer(&peerInfo_computer) != ESP_OK) { 
    //Serial.println("Failed to add computer slave"); 
    return; 
  } 
 
//initialize the led of ESP32 
  pinMode(LED,OUTPUT); 
  ledcSetup(ledchannel, ledfreq, ledresolution); 
  ledcAttachPin(LED, ledchannel); 
} 
 
/*LOOP CONTINUOUS PLAY*/ 
void loop() { 
  /* 
   * READING IMU AND BUTTONS DATA 
   */ 
  if (digitalRead(PIN_IMU_INT) == HIGH) 
  { 
    imu.ReadSensor();  //for each interruption of the imu we read the data it 
provides us 
    rpw = imu.GetRPW();  // store this data in our variable 
  } 
 
  //we read the states of the buttons (which we have initially forced to HIGH) 
  s1Status = digitalRead(PIN_S1); 
  s2Status = digitalRead(PIN_S2); 
  s3Status = digitalRead(PIN_S3); 
  delay(50); 
  if (s3Status == LOW) {    
                                              //initially we start moving the gripper (modo = 0) 
    modo = modo + 1;   //this variable controls if we want to move the gripper, the 
z axis of the arm (1) or the entire arm (2) 
  }else if (modo > 2){ 
    modo = 0; 
  } 
 
  /* 
   * STORAGE OF DATA TO THE SLAVES 
   */ 
 
  // data from the imu and streams to the computer 
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  dataToComputer.current_roll = dataCurrent.current_roll; 
  dataToComputer.current_pitch = dataCurrent.current_pitch; 
  dataToComputer.current_yaw1 = dataCurrent.current_yaw1; 
  dataToComputer.current_yaw2 = dataCurrent.current_yaw2; 
 
    
//use of the buzzer and the vibrator according to the current that comes from the 
slave     
//Each one has its threshold 
  if (dataCurrent.current_pitch > 70) { // current threshold by which the haptic 
interface is activated 
    currentMillis_pitch = millis(); 
    if (currentMillis_pitch - previousMillis_pitch >= 10) { 
      ledcWriteTone(buzzchannel, 2000); 
      ledcWriteTone(vibchannel, 125); 
      //according to the measured current the vibrator and the buzzer will be 
activated with more or less force 
       // a multiplying factor is used to be able to activate them at the hardware level      
ledcWrite(buzzchannel,dataCurrent.current_pitch*4); 
      ledcWrite(vibchannel,dataCurrent.current_pitch*5); 
      previousMillis_pitch = currentMillis_pitch; 
    } 
    if (dataCurrent.current_roll > 70) { // current threshold by which the haptic 
interface is activated 
    currentMillis_pitch = millis(); 
    if (currentMillis_roll - previousMillis_roll >= 10) { 
      ledcWriteTone(buzzchannel, 2000); 
      ledcWriteTone(vibchannel, 125); 
      //according to the measured current the vibrator and the buzzer will be 
activated with more or less force 
       // a multiplying factor is used to be able to activate them at the hardware level       
      ledcWrite(buzzchannel,dataCurrent.current_roll*4); 
      ledcWrite(vibchannel,dataCurrent.current_roll*100); 
      previousMillis_roll = currentMillis_roll; 
    }   
  else if (dataCurrent.current_pitch < 70 && dataCurrent.current_roll < 6 && 
dataCurrent.current_yaw1 < 15 && dataCurrent.current_yaw2 < 15){ 
    ledcWriteTone(vibchannel,0); 
    ledcWriteTone(buzzchannel,0);     
  } 
  haptic_interface(currentMillis_yaw1, previousMillis_yaw1, 
dataCurrent.current_yaw1); 
  haptic_interface(currentMillis_yaw2, previousMillis_yaw2, 
dataCurrent.current_yaw2); 
 
  Serial.print("Roll: "); 
  Serial.println(dataCurrent.current_roll); 
  Serial.print("Pitch: "); 
  Serial.println(dataCurrent.current_pitch); 
  Serial.print("Yaw: "); 
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  Serial.println(dataCurrent.current_yaw1); 
  Serial.print("Yaw2 current: "); 
  Serial.println(dataCurrent.current_yaw2); 
 
  // work mode decision algorithm 
  if (modo == 0) { 
    //if mode = 0 we move the gripper 
     //we send the imu data (roll, pitch and yaw) and the real state of the buttons 
to open or close to the servos 
     // we send the mode to the computer and the buttons don't matter to me 
because they won't do anything 
    ledcWrite(ledchannel, 0);// esp32 led to visualize the change of mode 
     
    dataToServos.roll = rpw[0]; 
    dataToServos.pitch = rpw[1]; 
    dataToServos.yaw = rpw[2]; 
    dataToServos.s1_pinzas = s1Status; 
    dataToServos.s2_pinzas = s2Status; 
 
    dataToComputer.roll = rpw[0]; 
    dataToComputer.pitch = rpw[1]; 
    dataToComputer.yaw = rpw[2]; 
    dataToComputer.s1_status = s1Status; 
    dataToComputer.s2_status = s2Status; 
    dataToComputer.modo = 0; 
          
  } else if (modo == 1) { 
    //if modo = 1 we move the arm in z axis 
     //we send the data of the previous imu to the servos so that they remain still 
and the buttons as if they were not pressed 
     // to the computer we send the mode and the real state of the buttons to raise 
or lower the position 
    ledcWrite(ledchannel,102);// esp32 led to visualize the change of mode 
     
    dataToServos.roll = dataToServos.roll;// we send the last stored data so that 
the servos do not move 
    dataToServos.pitch = dataToServos.pitch; 
    dataToServos.yaw = dataToServos.yaw; 
    dataToServos.s1_pinzas = HIGH; //we send high to the gripper servos so they 
don't open or close 
    dataToServos.s2_pinzas = HIGH; 
 
    dataToComputer.roll = dataToComputer.roll; 
    dataToComputer.pitch = dataToComputer.pitch; 
    dataToComputer.yaw = dataToComputer.yaw; 
    dataToComputer.s1_status = s1Status; 
    dataToComputer.s2_status = s2Status; 
    dataToComputer.modo = 1; 
     
  } else if (modo == 2){ 



 67 
 

    //if mode = 2 we move the arm in all axes 
     //we send the data of the previous imu to the servos so that they remain still 
and the buttons as if they were not pressed 
     // we send the mode and the state of the buttons to the computer we don't 
care 
    ledcWrite(ledchannel,1024); 
     
    dataToServos.roll = dataToServos.roll;// we send the last stored data so that 
the servos do not move 
    dataToServos.pitch = dataToServos.pitch; 
    dataToServos.yaw = dataToServos.yaw; 
    dataToServos.s1_pinzas = HIGH; // we send high to the gripper servos so that 
they do not open or close 
    dataToServos.s2_pinzas = HIGH; 
 
    dataToComputer.roll = rpw[0]; 
    dataToComputer.pitch = rpw[1]; 
    dataToComputer.yaw = rpw[2]; 
    dataToComputer.s1_status = HIGH; 
    dataToComputer.s2_status = HIGH; 
    dataToComputer.modo = 2; 
  } 
 
  /* 
   * SENDING DATA TO THE SLAVES 
   */ 
  // we will send the data of the imu and the buttons to the slave of the servos 
  esp_err_t data_servos = esp_now_send(servosMacAddress, (uint8_t *) 
&dataToServos, sizeof(dataToServos)); 
  delay(10); 
 
  // We also send the data to the computer 
  esp_err_t data_computer = esp_now_send(computerMacAddress, (uint8_t *) 
&dataToComputer, sizeof(dataToComputer)); 
  delay(10); 
   
  /*Serial.print("Roll: "); 
  Serial.println(dataToServos.roll); 
  Serial.print("Roll current: "); 
  Serial.println(dataCurrent.current_roll); 
  Serial.print("Pitch: "); 
  Serial.println(dataToServos.pitch); 
  Serial.print("Pitch current: "); 
  Serial.println(dataCurrent.current_pitch); 
  Serial.print("Yaw: "); 
  Serial.println(dataToServos.yaw); 
  Serial.print("Yaw1 current: "); 
  Serial.println(dataCurrent.current_yaw1); 
  Serial.print("Yaw2 current: "); 
  Serial.println(dataCurrent.current_yaw2); 
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  Serial.print("MODO: "); 
  Serial.println(modo); 
  delay (10);*/ 
   
} 
 
 
/* DECLARATION OF FUNCTIONS WE WILL USE*/ 
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) { 
  /* 
     We receive the data from the slave of the servos and we copy them in the 
master 
  */ 
  memcpy(&dataCurrent, incomingData, sizeof(dataCurrent)); 
  //memcpy(destination, source, size) 
} 
 
 
 void haptic_interface(unsigned long currentMillis, unsigned long previousMillis, 
float current){ 
  if (current > 15) { // current threshold by which the haptic interface is activated 
    currentMillis = millis(); 
    if (currentMillis - previousMillis >= 10) { 
      ledcWriteTone(buzzchannel, 2000); 
      ledcWriteTone(vibchannel, 125); 
//according to the measured current the vibrator and the buzzer will be activated 
with more or less force 
       // a multiplying factor is used to be able to activate them at the hardware level 
      ledcWrite(buzzchannel,current*4); 
      ledcWrite(vibchannel,current*20); 
      previousMillis = currentMillis; 
    }   
  }else if (dataCurrent.current_pitch < 15 && dataCurrent.current_roll < 15 && 
dataCurrent.current_yaw1 < 15 && dataCurrent.current_yaw2 < 15){ 
    ledcWriteTone(vibchannel,0); 
    ledcWriteTone(buzzchannel,0);     
  } 
} 
 
 
 

13.2. Code of the slave servomotors 
The following code is the one performed on the EndoWrist maneuverability, 
where mainly the servomotors are rotated while the force applied is calculated.    
  #include <esp_now.h> 
#include <WiFi.h> 
#include "src/RoboticsUB.h" 
#include <ESP32Servo.h> 
 
// MAC address of the master 
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uint8_t masterMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0x7e, 0x60}; 
 
// identification variables for servos 
Servo servo_roll; 
Servo servo_pitch; 
Servo servo_yaw1; 
Servo servo_yaw2; 
 
// variable to store the read value 
float NewValueRoll = 0;         // variable to store the read value 
float OldValueRoll = 0;  
float roll=0; 
 
float NewValuePitch=0; 
float OldValuePitch=0; 
float pitch=0; 
 
float NewValueYaw=0; 
float OldValueYaw=0; 
float yaw=0; 
 
//pin identification variables 
/*ROLL*/ 
const int PIN_ANALOG_ROLL =36; 
const int PIN_SIGNAL_ROLL =32; 
/*PITCH*/ 
const int PIN_ANALOG_PITCH =39; 
const int PIN_SIGNAL_PITCH =33; 
/*YAW*/ 
const int PIN_ANALOG_YAW1 = 34; 
const int PIN_SIGNAL_YAW1 = 25; 
/*GRIPPER*/ 
const int PIN_ANALOG_YAW2 = 35; 
const int PIN_SIGNAL_YAW2 = 27; 
 
// constants for shunt resistors (they are all the same) 
const float Rshunt = 1.6; 
 
// variables to store the read data corresponding to the torque of the servos 
float derivativeCurrent_roll=0; 
float derivativeCurrent_pitch=0; 
float derivativeCurrent_yaw1=0; 
float derivativeCurrent_yaw2=0; 
 
float previousfinal_roll=0; 
float previousfinal_pitch=0; 
float previousfinal_yaw1=0; 
float previousfinal_yaw2=0; 
 
float final_torque_roll=0; 
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float final_torque_pitch=0; 
float final_torque_yaw1=0; 
float final_torque_yaw2=0; 
 
 
// button state variables 
int s1_status; 
int s2_status; 
 
// data structure to be sent by this slave 
typedef struct { 
  float current_roll; 
  float current_pitch; 
  float current_yaw1; 
  float current_yaw2; 
} TxMessage; 
 
// structure type variable to send data 
TxMessage dataServos; 
 
// data structure that we will receive from the master 
typedef struct { 
  float roll; 
  float pitch; 
  float yaw; 
  int s1_pinzas; 
  int s2_pinzas; 
} RxMessage; 
 
// structure type variable to receive data 
RxMessage dataPencil; 
 
/*PROGRAM SETUP*/ 
void setup() { 
  Serial.begin(115200); 
  WiFi.mode(WIFI_STA); 
 
  // we check that our slave is initialized well 
  if (esp_now_init() != ESP_OK) { 
    Serial.println("Error initializing ESP-NOW (slave)"); 
    return; 
  } 
 
  // We register the master 
  esp_now_peer_info_t peerInfo = {}; 
  memcpy(peerInfo.peer_addr, masterMacAddress, 6); 
  peerInfo.channel = 0; 
  peerInfo.encrypt = false; 
 
  // we check if the master could be added 
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  if (esp_now_add_peer(&peerInfo) != ESP_OK) { 
    Serial.println("Failed to add master"); 
    return; 
  } 
 
  esp_now_register_recv_cb(OnDataRecv); 
 
  // we configure the PWM that feed the servos 
  ESP32PWM::allocateTimer(0); 
  ESP32PWM::allocateTimer(1); 
  ESP32PWM::allocateTimer(2); 
  ESP32PWM::allocateTimer(3); 
 
  // we designate a frequency to the servos 
  servo_roll.setPeriodHertz(50); 
  servo_pitch.setPeriodHertz(50); 
  servo_yaw1.setPeriodHertz(50); 
  servo_yaw2.setPeriodHertz(50); 
 
  // we assign the pins to each servo 
  servo_roll.attach(PIN_SIGNAL_ROLL); 
  servo_pitch.attach(PIN_SIGNAL_PITCH); 
  servo_yaw1.attach(PIN_SIGNAL_YAW1); 
  servo_yaw2.attach(PIN_SIGNAL_YAW2); 
 
  // configure the analog pins of the servos as inputs 
  pinMode(PIN_ANALOG_ROLL, INPUT); 
  pinMode(PIN_ANALOG_PITCH, INPUT); 
  pinMode(PIN_ANALOG_YAW1, INPUT); 
  pinMode(PIN_ANALOG_YAW2, INPUT); 
 
  // we start the servos in the central position (0º) 
  servo_roll.write(90); 
  servo_pitch.write(90); 
  servo_yaw1.write(90); 
  servo_yaw2.write(90); 
  delay(2000); 
   
} 
 
/* LOOP CONTINUOUS PLAY*/ 
void loop() { 
  // we start by sending the current data of the servos 
  esp_err_t result = esp_now_send(masterMacAddress, (uint8_t *) &dataServos, 
sizeof(dataServos)); 
 
  // We check that the data has been sent correctly 
  if (result == ESP_OK) { 
    //Serial.println("Sent with success"); 
  } 



 72 
 

  else { 
    Serial.println("Error sending the data"); 
  } 
  /* 
   * we define the limits so that it does not move outside its range of movement 
    * In addition, a protection is added to avoid sudden movements 
    */ 
  NewValueRoll=dataPencil.roll; 
  if (abs(NewValueRoll-OldValueRoll)>10 && abs(NewValueRoll-
OldValueRoll)<350) { 
    roll=OldValueRoll; 
  }else{ 
    roll=NewValueRoll; 
  } 
  OldValueRoll=roll; 
  if (roll > 180 && roll < 270) { 
    servo_roll.write(180); 
  } else if (roll > 270 && roll < 360) { 
    servo_roll.write(0); 
  }else{ 
    servo_roll.write(roll);     
  } 
 
  NewValuePitch=dataPencil.pitch; 
  if (abs(NewValuePitch-OldValuePitch)>10 && abs(NewValuePitch-
OldValuePitch)<350) { 
    pitch=OldValuePitch; 
  }else{ 
    pitch=NewValuePitch; 
  } 
  OldValuePitch=pitch; 
  if (pitch > 0 && pitch < 90) { 
    servo_pitch.write(pitch + 90); 
  } else if (pitch > 270 && pitch < 360) { 
    servo_pitch.write(pitch - 270); 
  }else{ 
    servo_pitch.write(pitch); 
  } 
   
  NewValueYaw=dataPencil.yaw; 
  if (abs(NewValueYaw-OldValueYaw)>10 && abs(NewValueYaw-
OldValueYaw)<350) { 
    yaw=OldValueYaw; 
  }else{ 
    yaw=NewValueYaw; 
  } 
  OldValueYaw=yaw; 
  if (yaw > 180 && yaw < 270) { 
    servo_yaw1.write(180); 
    servo_yaw2.write(0); 
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  } else if (yaw > 270 && yaw < 360) { 
    servo_yaw1.write(0); 
    servo_yaw2.write(180); 
  }else{ 
    servo_yaw1.write(yaw); 
    servo_yaw2.write(180 - yaw);     
  } 
  /*Serial.print("Roll:"); 
  Serial.println(roll); 
  Serial.println(dataPencil.roll); 
    Serial.print("pitch:"); 
  Serial.println(pitch); 
  Serial.println(dataPencil.pitch); 
    Serial.print("yaw:"); 
  Serial.println(yaw); 
  Serial.println(dataPencil.yaw);*/ 
 
  // open and close clamps 
  if (dataPencil.s1_pinzas == LOW || dataPencil.s2_pinzas == LOW) { 
    if(yaw < 90){ 
      servo_yaw2.write(180 - yaw-30); 
      delay(500); 
      servo_yaw2.write(180 - yaw); 
    } 
  } 
  if (dataPencil.s1_pinzas == LOW || dataPencil.s1_pinzas == LOW) { 
    if(yaw > 90){ 
      servo_yaw1.write(yaw-30); 
      delay(500); 
      servo_yaw1.write(yaw); 
   } 
  } 
   
/* 
    * It is calculated by means of the shunt resistance and the derivative of the 
current consumed by each servo 
    * this way you can have the idea of the force that is being done at the moment 
    */ 
  derivativeCurrent_roll = getDerivative(final_torque_roll, PIN_ANALOG_ROLL, 
previousfinal_roll); 
  derivativeCurrent_pitch = getDerivative(final_torque_pitch, 
PIN_ANALOG_PITCH, previousfinal_pitch); 
  derivativeCurrent_yaw1 = getDerivative(final_torque_yaw1, 
PIN_ANALOG_YAW1, previousfinal_yaw1); 
  derivativeCurrent_yaw2 = getDerivative(final_torque_yaw2, 
PIN_ANALOG_YAW2, previousfinal_yaw2); 
 
  Serial.println(dataPencil.roll); 
  Serial.println(roll); 
  Serial.println(pitch); 
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  Serial.println(yaw);   
  // we send the current data to the master 
  dataServos.current_roll = derivativeCurrent_roll; 
  dataServos.current_pitch = derivativeCurrent_pitch; 
  dataServos.current_yaw1 = derivativeCurrent_yaw1; 
  dataServos.current_yaw2 = derivativeCurrent_yaw2; 
   
 
  //Serial.println(torque_roll,DEC); 
  //Serial.println(final_torque_roll,DEC); 
  //Serial.println(derivativeCurrent_roll,DEC); 
   
  delay(10); 
} 
 
/* 
*DECLARATION OF RECURSIVE FUNCTIONS 
  */  
void OnDataRecv(const uint8_t *mac, const uint8_t *incomingData, int len) { 
  // We get the data from the master and we copy it to the slave 
  memcpy(&dataPencil, incomingData, sizeof(dataPencil)); 
  //memcpy(destination, source, size) 
} 
 
 
float getDerivative(float final_torque, int analog, float previous){ 
  float torque; 
  float derivative; 
  torque = getCurrent(20, analog); 
  final_torque = final_torque + torque; 
  derivative = abs(final_torque - previous); 
  previous = final_torque; 
 
  return derivative; 
} 
 
float getCurrent(uint32_t integrationTimeMs, int servo) { 
 // we read the ADC where the shunt is connected to obtain the current 
  //once we have the reading, we convert the ADC data to be able to apply V/R 
  uint32_t startTime = millis(); 
  float integratedCurrent = 0; 
 
  // We are adding the current measurement during the fixed time -> 
integrationTimeMs (in milliseconds) 
  while (millis() < startTime + integrationTimeMs) { 
    uint16_t adcValue = analogRead(servo); 
    integratedCurrent = integratedCurrent + ((float)adcValue / 4095.0 * 3.3) / 
Rshunt; 
  } 
  return integratedCurrent; 
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} 
 
 

13.3. Code of the computer 
The following code is that the take all the data generated in the master and 
servomotors, used in the simulation.  
 
 
 
 
#include <esp_now.h> 
#include <WiFi.h> 
#include "src/RoboticsUB.h" 
#include <ESP32Servo.h> 
 
enum class Command : byte 
{ 
  GET_RPW = 1 
}; 
 
Command command = Command::GET_RPW; 
 
// MAC address of the master 
uint8_t masterMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0x7e, 0x60}; 
 
// data structure received from the master 
typedef struct { 
  float roll; 
  float pitch; 
  float yaw; 
  float current_roll; 
  float current_pitch; 
  float current_yaw1; 
  float current_yaw2; 
  int s1_status; 
  int s2_status; 
  int modo; 
} RxMessage; 
 
// structure type variable to store what comes from the master 
RxMessage dataFromMaster; 
 
/* PROGRAM SETUP*/ 
void setup() { 
  Serial.begin(115200); 
  WiFi.mode(WIFI_STA); 
 
  if (esp_now_init() != ESP_OK) { 
    Serial.println("Error initializing ESP-NOW (computer slave)"); 
    return; 
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  } 
 
  // We register the master 
  esp_now_peer_info_t peerInfo = {}; 
  memcpy(peerInfo.peer_addr, masterMacAddress, 6); 
  peerInfo.channel = 1; 
  peerInfo.encrypt = false; 
 
  // we check that the master has been registered correctly 
  if (esp_now_add_peer(&peerInfo) != ESP_OK) { 
    Serial.println("Failed to add master"); 
    return; 
  } 
 
  esp_now_register_recv_cb(OnDataRecv); 
 
} 
 
/* LOOP CONTINUOUS PLAY*/ 
void loop() { 
  if (Serial.available() > 0) 
  { 
    command = (Command)Serial.read(); 
    switch (command) 
    { 
      case Command::GET_RPW: 
        Serial.println(dataFromMaster.roll, DEC); 
        Serial.println(dataFromMaster.pitch, DEC); 
        Serial.println(dataFromMaster.yaw, DEC); 
        Serial.println(dataFromMaster.current_roll, DEC); 
        Serial.println(dataFromMaster.current_pitch, DEC); 
        Serial.println(dataFromMaster.current_yaw1, DEC); 
        Serial.println(dataFromMaster.current_yaw2, DEC); 
        Serial.println(dataFromMaster.s1_status, DEC); 
        Serial.println(dataFromMaster.s2_status, DEC); 
        Serial.println(dataFromMaster.modo, DEC); 
        break; 
    } 
  } 
 
delay(10); 
} 
 
/* 
 * DECLARATION OF RECURSIVE USE VARIABLES 
 */ 
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) { 
  /* 
     We get the data from the master and we copy it to the slave 
  */ 
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  memcpy(&dataFromMaster, incomingData, sizeof(dataFromMaster)); 
  //memcpy(destination, source, size) 
} 
 

13.4. Code for the assembly 
The following code is to set up the EndoWrist with the servomotors, so that they 
start and end in the same position, and thus the placement and assembly of these 
each time they want to be used is easier. 
#include <esp_now.h> 
#include <WiFi.h> 
#include "src/RoboticsUB.h" 
#include <ESP32Servo.h> 
 
// identification variables for servos 
Servo servo_roll; 
Servo servo_pitch; 
Servo servo_yaw; 
Servo servo_gripper; 
 
// pin identification variables 
 
/*ROLL*/ 
const int PIN_ANALOG_ROLL = 36; 
const int PIN_SIGNAL_ROLL = 32; 
/*PITCH*/ 
const int PIN_ANALOG_PITCH = 39; 
const int PIN_SIGNAL_PITCH = 33; 
/*YAW*/ 
const int PIN_ANALOG_YAW = 34; 
const int PIN_SIGNAL_YAW = 25; 
/*GRIPPER*/ 
const int PIN_ANALOG_GRIPPER = 35; 
const int PIN_SIGNAL_GRIPPER = 27; 
/*SHUNT*/ 
float Rshunt = 1.6; 
 
/* DECLARATION OF THE FUNCTIONS TO BE USED*/ 
float getCurrent(uint32_t integrationTimeMs, int servo) { 
  /* 
    * we read the ADC where the shunt is connected to obtain the current 
    * once we have the reading, we convert the ADC data to be able to apply V/R 
    */  uint32_t startTime = millis(); 
  float integratedCurrent = 0; 
 
  // We are adding the current measurement during the fixed time -> 
integrationTimeMs (in milliseconds) 
  while(millis()< startTime + integrationTimeMs) { 
    uint16_t adcValue = analogRead(servo); 
    integratedCurrent = integratedCurrent + ((float)adcValue/4095.0 * 3.3)/Rshunt; 
  }   
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  return integratedCurrent; 
} 
 
 
/*PROGRAM SETUP*/ 
void setup(){ 
  Serial.begin(115200); 
  WiFi.mode(WIFI_STA); 
   
  // we check that our slave is initialized well 
  if (esp_now_init() != ESP_OK) { 
    Serial.println("Error initializing ESP-NOW (slave)"); 
    return; 
  } 
 
  // we configure the PWM that feed the servos 
  ESP32PWM::allocateTimer(0); 
  ESP32PWM::allocateTimer(1); 
  ESP32PWM::allocateTimer(2); 
  ESP32PWM::allocateTimer(3); 
 
  // we designate a frequency to the servos 
  servo_roll.setPeriodHertz(50); 
  servo_pitch.setPeriodHertz(50); 
  servo_yaw.setPeriodHertz(50); 
  servo_gripper.setPeriodHertz(50); 
 
  // we assign the pins to each servo 
  servo_roll.attach(PIN_SIGNAL_ROLL); 
  servo_pitch.attach(PIN_SIGNAL_PITCH); 
  servo_yaw.attach(PIN_SIGNAL_YAW); 
  servo_gripper.attach(PIN_SIGNAL_GRIPPER); 
 
  // we start the servos to a fixed position 
  servo_roll.write(90); 
  delay(500); 
  servo_pitch.write(90); 
  delay(500); 
  servo_yaw.write(90); 
  delay(500); 
  servo_gripper.write(90); 
  delay(1000); 
   
} 
 
/*BUCLE DE REPRODUCCION CONTINUA*/ 
void loop(){ 
 
} 
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13.5. Code for RoboDK 
The following code is in charge of taking all the data that comes from the 
computer and simulating the movements. Apart from sending and executing 
these ones in the UR5e in real life. 
 
import serial 
import time 
import math 
from enum import Enum 
import csv 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
import numpy as np 
 
# RoboDK API: import the robolink library (bridge with RoboDK) 
from robolink import * 
# Robot toolbox: import the robodk library (robotics toolbox) 
from robodk import * 
 
# ------------------------------------------------------------------------------ 
# Connection 
# ------------------------------------------------------------------------------ 
 
# Establish the connection on a specific port 
arduino = serial.Serial('COM5', 115200, timeout=1) 
 
# Lets bring some time to the system to stablish the connetction 
time.sleep(2) 
 
# Establish a link with the simulator 
RDK = Robolink() 
 
# ------------------------------------------------------------------------------ 
# Simulator setup 
# ------------------------------------------------------------------------------ 
 
# Retrieve all items (object in the robodk tree) 
# Define the "robot" variable with our robot (UR5e) 
robot = RDK.Item('UR5e') 
 
# Define the "tcp" variable with the TCP of Endowrist needle 
tcp_tool = RDK.Item('endowrist-Compound') 
gripper = RDK.Item('Gripper') 
 
# Performs a quick check to validate items defined 
if robot.Valid(): 
    print('Robot selected: ' + robot.Name()) 
if tcp_tool.Valid(): 
    print('Tool selected: ' + tcp_tool.Name()) 
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# Robot Flange with respect to UR5e base Frame 
print('Robot POSE is: ' + repr(robot.Pose())) 
# Tool frame with respect to Robot Flange 
print('Robot POSE is: ' + repr(robot.PoseTool())) 
# Tool frame with respect to Tool frame 
print('TCP pose is: ' + repr(tcp_tool.Pose())) 
 
 
robot.setSpeed(5) 
# Connection of the program with the UR5e 
"""  
RUN_ON_ROBOT = True 
 
if RDK.RunMode() != RUNMODE_SIMULATE: 
    RUN_ON_ROBOT = False 
    print("Mode inici: " + str(RDK.RunMode())) 
     
if RUN_ON_ROBOT: 
    robot.setConnectionParams('192.168.1.5',30000,'/', 'anonymous','')# Update 
connection parameters if required: 
     
    success = robot.Connect('192.168.1.5') # Try to connect once 
    status, status_msg = robot.ConnectedState() 
    if status != ROBOTCOM_READY: # Stop if the connection did not succeed 
        print(status_msg) 
        raise Exception("Failed to connect: " + status_msg) 
     
    # This will set to run the API programs on the robot and the simulator (online 
programming) 
    RDK.setRunMode(RUNMODE_RUN_ROBOT) 
 
else: 
    
     RDK.setRunMode(RUNMODE_SIMULATE)  # This will run the API program 
on the simulator (offline programming)   
 
#print("Mode: " + str(RDK.RunMode())) 
 
joints_ref = robot.Joints() #Get the current joint position of the robot (updates the 
position on the robot simulator) 
#print("Joints: " + str(joints_ref))  
 """ 
# ------------------------------------------------------------------------------ 
# Reference frame is fixed to TCP 
# 
# Data comunication 
# ------------------------------------------------------------------------------ 
#frame = RDK.ItemUserPick('Frame 2', ITEM_TYPE_FRAME) 
 
class Command(Enum): 
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    GET_RPW = b'\x01' 
 
data_torque_roll = [] 
data_torque_pitch = [] 
data_torque_yaw1 = [] 
data_torque_yaw2 = [] 
point = 0 
fig, ax = plt.subplots() 
plt.ion() 
maxlen = 400 
x_lista = [] 
y_roll=[] 
y_pitch=[] 
y_yaw1 = [] 
y_yaw2 = [] 
try: 
 
    # Discard initial ESP32 message 
    arduino.reset_input_buffer() 
 
    while True: 
 
        # Requesting data to Ardino 
        arduino.write(Command.GET_RPW.value) 
        # Storing received data 
        roll_str = arduino.readline().strip() 
        pitch_str = arduino.readline().strip() 
        yaw_str = arduino.readline().strip() 
        torque0_str = arduino.readline().strip() 
        torque1_str = arduino.readline().strip() 
        torque2_str = arduino.readline().strip() 
        torque3_str = arduino.readline().strip() 
        s1_str = arduino.readline().strip() 
        s2_str = arduino.readline().strip() 
        modo_str = arduino.readline().strip() 
        # Convert variable values from string to float/itn 
        roll = float(roll_str) 
        pitch = float(pitch_str) 
        yaw = float(yaw_str) 
        torque_roll = float(torque0_str) 
        torque_pitch = float(torque1_str) 
        torque_yaw1 = float(torque2_str) 
        torque_yaw2 = float(torque3_str) 
        s1_status = bool(int(s1_str)) 
        s2_status = bool(int(s2_str)) 
        modo = int(modo_str)  
 
        # printing data on screen 
        print(roll, pitch, yaw, torque_roll, torque_pitch, torque_yaw1, torque_yaw2, 
s1_status, s2_status, modo) 
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        # Take the values of the tool position 
        tcp_tool_pose = tcp_tool.Pose() 
        x, y, z, r, p, w = Pose_2_TxyzRxyz(tcp_tool_pose) 
         
        # Take the values of the gripper position  
        gripper_pose = gripper.Pose() 
        xg, yg, zg, rg, pg, wg = Pose_2_TxyzRxyz(gripper_pose) 
 
        # Take the values of the robot position 
        robot_pose=robot.Pose() 
        xr, yr, zr, rr, pr, wr = Pose_2_TxyzRxyz(robot_pose) 
         
       # Convert from degrees to radians R,P,Y angles 
        R = math.radians(roll) 
        P = math.radians(pitch) 
        W = math.radians(yaw) 
        X = int(xg) 
        Y = int(yg) 
        Z = int(zg) 
        Xr=int(xr) 
        Yr=int(yr) 
        Zr=int(zr) 
 
        if modo == 0: #moving the gripper 
            gripper_pose =  transl(X,Y,Z) * rotx(pi) * rotz(W) * roty(P) * rotx(R) * roty(0) 
            #tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix) 
            gripper.setPose(gripper_pose) 
 
        elif modo == 1: #moving through Z axis the robot 
            #pose_matrix = transl(X,Y,Z) * rotz(-W) * roty(P) * rotx(-R) 
            #tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix) 
 
            position=robot.Pose() 
            xyzabc = Pose_2_KUKA(position)  
            if not s1_status: #s1 button pressed, going up 
                if ((float(xyzabc[2]) >50) & (float(xyzabc[2]) <500)): #upper limit 
                    approach = robot.Pose() * transl(0,0,1) 
                    robot.MoveL(approach, False) 
                if (float(xyzabc[2]) <50): #lower limit 
                    (xyzabc[2])=51 
                    target=KUKA_2_Pose(xyzabc)  
                    robot.MoveL(target, False)             
            elif not s2_status: #s2 button pressed, going down 
                if ((float(xyzabc[2]) >50) & (float(xyzabc[2]) <500)): #upper limit 
                    approach = robot.Pose() * transl(0,0,-1) 
                    robot.MoveL(approach, False) 
                if ((float(xyzabc[2]) >500)): #lower limit 
                    (xyzabc[2])=499 
                    target=KUKA_2_Pose(xyzabc)  
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                    robot.MoveL(target, False)   
 
        elif modo == 2: #positioning the robot 
            tcp_pose = transl(Xr,Yr,Zr) * rotz(W) * roty(P) * rotx (R) 
            if robot.MoveL_Test(robot.Joints(),tcp_pose) == 0: 
                robot.MoveL(tcp_pose) 
            else: 
                print('The robot cannot reach target because it is out of reach or causes 
collision.') 
         
        # exporting torques to an excel sheet 
        data_r = [torque_roll] 
        data_torque_roll = data_torque_roll + data_r 
        data_p = [torque_pitch] 
        data_torque_pitch = data_torque_pitch + data_p 
        data_y1 = [torque_yaw1] 
        data_torque_yaw1 = data_torque_yaw1 + data_y1 
        data_y2 = [torque_yaw2] 
        data_torque_yaw2 = data_torque_yaw2 + data_y2 
        
        #Generating a real world plot of the torque values 
        if torque_roll: 
            data_roll = int(torque_roll) 
            x_lista.append(point) 
            y_roll.append(data_roll) 
            data_pitch=int(torque_pitch) 
            y_pitch.append(data_pitch) 
            data_yaw1=int(torque_yaw1) 
            y_yaw1.append(data_yaw1) 
            data_yaw2=int(torque_yaw2) 
            y_yaw2.append(data_yaw2) 
            if len(x_lista) > maxlen: 
                x_lista = x_lista[1:] 
                y_roll = y_roll[1:] 
                y_pitch = y_pitch[1:] 
                y_yaw = y_yaw[1:] 
            plt.plot(x_lista, y_roll, color='r') 
            plt.plot(x_lista, y_pitch, color='b') 
            plt.plot(x_lista, y_yaw1, color='g') 
            plt.plot(x_lista, y_yaw2, color='y') 
            point += 1 
            plt.pause(0.05) 
 
            ax.clear() 
            fig.legend(["Roll",'Pitch','Yaw1','Yaw2'],loc = "upper left") 
            plt.show()        
 
        #Generate the excel with all the torque values generated 
        with open('torque.csv', 'w') as csvfile: 
            header = ['torque roll','torque pitch', 'torque yaw1', 'torque yaw2'] 
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            writer = csv.DictWriter(csvfile,fieldnames=header) 
            writer.writeheader() 
            for i in range(0,len(data_torque_pitch)): 
                writer.writerow({'torque roll': data_torque_roll[i], 
                                'torque pitch': data_torque_pitch[i], 
                                'torque yaw1': data_torque_yaw1[i], 
                                'torque yaw2': data_torque_yaw2[i]})         
 
except KeyboardInterrupt: 
    print("Communication stopped.") 
    pass 
 
# ------------------------------------------------------------------------------ 
# Disconnect Arduino 
# ------------------------------------------------------------------------------ 
print("Disconnecting Arduino...") 
arduino.close() 
 


