

Final Degree Project
Biomedical Engineering Degree

“Da Vinci robot at Hospital Clínic. Haptic
technology in robotic surgery“

Barcelona, June 2022
Author: Sergio Venteo Benavente

Director: Dr. Manel Puig i Vidal

 2

Abstract
Minimally invasive surgery is growing and displacing traditional surgery. Despite
the multiple benefits it presents for the surgeon and for the patients, the surgical
robots used in these scenarios (mainly the Da Vinci robot) do not have a haptic
feedback system.
This project it is created with the main objective of equipping and providing tactile
sensitivity to an UR5e based robotic arm prototype and to adjust it as much as
possible to the operation of the DaVinci minimally invasive surgical system, using
an original EndoWrist tool too.
The project is divided into three main components: the pen user interface, the
EndoWrist maneuverability executed by the robotic arm and the servomotors;
and the communication and supervision module performed by a computer.
Obtaining the current obtained by the servomotors and applying different
formulas and filters, the force exerted on the tissue is acquired. Which is used in
the pen user interface to display the applied strength.
Finally, with several cheap components and with good communication between
the different interfaces, the UR5e robot is intended to simulate the user's
movements while giving it tactile sensitivity.
Keywords:
Minimally invasive surgery, Da Vinic, Haptic feedback, Robotic arms, Hardware
and software platform.

 3

Acknowledgments
First and foremost, I would like to express my sincere gratitude to Dr. Manel Puig
for his involvement and advise on this project. He has been a great director
following my Final Degree Project and helping me in some problems that I have
been encountering during the project.
What’s more, I could not have carried out this project if I had not been allowed to
use the laboratories and resources of the Department of Electronics and
Biomedical Engineering of the University of Barcelona.
I would like to thank Estela Barrio, student of Electronic Engineering, for the
mutual support and help throughout the project.
Finally, and on a more personal note, I would like to thank my family for their
patience and support during this journey.

 4

Table	de	Contents	
1. INTRODUCTION ... 6

1.1. INTRODUCTION TO MINIMALLY INVASIVE SURGERY .. 6
1.2. SURGICAL ROBOTS ... 6
1.3. OBJECTIVES .. 7
1.4. SCOPE AND LIMITATIONS .. 8
1.5. OUTLINE .. 8

2. BACKGROUND ... 10
2.1. STATE OF THE ART OF SURGICAL ROBOTS .. 10
2.2. DA VINCI SURGICAL SYSTEM ... 11
2.3. HAPTIC TECHNOLOGY ... 12
2.4. STATE OF THE SITUATION ... 13

3. MARKET ANALYSIS ... 14
3.1. EVOLUTION OF THE MARKET ... 14

3.1.1. First generation – Stereotaxic robots .. 14
3.1.2. Second generation – Endoscopic robots .. 14
3.1.3. Third generation – Bioinspired robots ... 15
3.1.4. Fourth generation – Microrobots ... 15
3.1.5. Fifth generation – Autonomous systems .. 15

3.2. CURRENT SITUATION ... 15
3.3. FUTURE PERSPECTIVES .. 17

4. CONCEPTUAL ENGINEERING ... 18
4.1. SOFTWARE .. 19

4.1.1. Programming software ... 19
4.1.2. Designing software ... 20

4.2. HARDWARE ... 21
4.2.1. Robotic arms ... 21

4.2.1.1. UR5e ... 21
4.2.1.2. Mover 4 ... 22
4.2.1.3. Kuka Robot Arm .. 23

4.2.2. EndoWrist Da Vinci ... 23
4.2.3. Servomotors .. 24
4.2.4. IMU Sensors .. 24
4.2.5. Haptic stimulus ... 25
4.2.6. Microcontroller ... 26
4.2.7. Push buttons ... 26

4.3. FINAL SELECTION .. 26
5. DETAILED ENGINEERING ... 29

5.1. PROTOTYPE IMPLEMENTATION ... 29
5.1.1. Wireless communication ... 29
5.1.2. Pen and dimensions of movement ... 30
5.1.3. Reading torque ... 31
5.1.4. Simulation in RoboDK .. 33

5.2. FINAL MODEL ... 33
5.2.1. 3D pieces .. 34
5.2.2. Slave on PCB board and torque limit ... 35

5.2.2.1. Implementations slave software ... 35
5.2.2.2. Threshold current .. 36

5.2.3. Master and haptic feedback .. 37
5.2.3.1. Haptic feedback .. 37
5.2.3.2. Modes of action ... 38

5.2.4. RoboDK simulation implementations .. 39
6. EXPERIMENTAL VALIDATION ... 42

6.1. INSTANTANEOUS CURRENT MEASUREMENT IN SERVOMOTORS ... 42

 5

6.2. AVERAGE CURRENT MEASUREMENT .. 44
7. EXECUTION PLAN ... 46

7.1. WORK BREAKDOWN STRUCTURE (WBS) ... 46
7.2. PROGRAM EVALUATION AND REVIEW TECHNIQUES (PERT) ... 46
7.3. GANTT DIAGRAM ... 47

8. TECHNICAL VIABILITY .. 49
8.1. SWOT ANALYSIS .. 49

9. ECONOMIC FEASIBILITY .. 51
10. REGULATIONS AND LEGAL ASPECTS .. 53

10.1. HARDWARE OF MEDICAL DEVICES ... 53
10.2. SOFTWARE OF MEDICAL DEVICES .. 54

11. CONCLUSIONS .. 55
11.1. OBJECTIVES FULFILLMENT ... 55
11.2. FUTURE IMPROVEMENTS .. 56
11.3. PERSONAL CONCLUSIONS .. 56

12. REFERENCES .. 57
13. APPENDIXES .. 61

13.1. CODE OF THE PEN USER INTERFACE .. 61
13.2. CODE OF THE SLAVE SERVOMOTORS ... 68
13.3. CODE OF THE COMPUTER ... 75
13.4. CODE FOR THE ASSEMBLY ... 77
13.5. CODE FOR ROBODK .. 79

 6

1. INTRODUCTION
1.1. Introduction to minimally invasive surgery

Traditional surgery has been a technique that for many years has dealt with the
diagnosis and treatment of diseases through surgical procedures. However,
currently, minimally invasive surgery has become an alternative for these
interventions. Minimally invasive surgery, also known as laparoscopic surgery, is
a surgical technique that is performed through small incisions, inserting slender
instruments and a tiny video camera so that the surgeon can see inside the
patient and perform the intervention [1].

Usually, to enter on the patient body, the surgeon will make some small incisions,
which are known as ports. Although the size of the ports depends on the
procedure, they are not the same size as open surgery. That means, there won’t
be done extensive cuts in the skin, muscle, tissue, and nerves.

All the procedure is performed through the ports, where the surgeon inserts short,
narrow tubes called trochars. Once these are placed, surgical instruments are
placed along with a video camera equipment. Depending on the action that the
surgeon needs to perform, the instruments are changed.

The patient isn’t open as in traditional surgery, this condition provides several
benefits for the patients and for the ease and comfort of the surgeon in the
intervention. However, the procedure is more complex and longer.

What’s more, advantages predominate over traditional surgery. As surgeon
doesn’t cut important regions of muscles, nerves, or other tissues, it is a less
invasive and trauma operation [2]. This entails into a shorter hospital stays and a
quicker recovery. If we compare the duration of recoveries traditional and
minimally invasive surgery, we can pass from weeks to days. Furthermore, an
important factor such as psychological may appear. If they tell us that they are
going to have to open us in two, it is more frightening than if they are going to
make a small hole in us. This fact gives us more security and what is certain is
that after all it is safer because we lose less blood, and it is reduced the risk of
infection. If we do a global comparison, minimally invasive surgery offers fewer
complications.

After all, it is an invasive surgery, even there are less risks it can appear
complications that can be rare and it is important to know the risks that can occur
in each operation.

1.2. Surgical robots
During the last decade, surgical robots have got a revolutionary impact in the
medicine. Giving a new version of diagnosis and treatment for doctors, as we
have said, is known as minimally invasive surgery. To carry out this kind of
procedures, robotic systems are necessary. In a robotic surgical procedure, three

 7

or four robotic arms are inserted into the patient through small incisions [4]. The
DaVinci Robotic System is the latest and greatest innovation and evolution in
minimally invasive surgery. It is a system born in Silicon Valley, from military
patents and developed by the Californian company Intuitive Surgical Inc., the da
Vinci robot was launched on the market in 1999. Since then, it has revolutionized
robotic surgery in the United States and the rest of the world, and over the years
it is offering better results with the development of new robotic platforms.

The system is endowed with a 3D vision, equipped with Endowrist articulated
instrumentation, and is equipped with a simple and intuitive control system that
makes it easy for the surgeon to carry out complex operations through a minimally
invasive approach [5]. This surgical robot is especially involved in prostate
operations, heart valve repairs, gynecological surgical procedures cardiothoracic
surgery, general surgery oncology and resolve congenital heart diseases.

This robot provides the surgeon with a very wide and clear field of vision, which
offers the possibility of treating anatomical areas that are difficult to access. With
the precision, minimal invasion, and safety that it offers, it becomes an advantage
both for the doctor when carrying out the intervention, and for the patient and his
safety.

The use of the DaVinci robot offers many benefits during the surgical intervention,
such as reduced incisions, minimal bleeding, less painful post-operative
recovery, among others. In the following sections we will go into more detail.

1.3. Objectives
The DaVinci robot, among the advantages that offers, there is a limitation that is
still unsolved, haptic feedback. When the surgeon performs the intervention and
carries out his movements on the remote to move the robot's arms, the
movements are made according to what he sees. However, he does not know
the force that he is exerting on the tissue nor the stiffness that it imparts in front
of the movement of the arm.

The main objective of this project is to provide tactile sensitivity to an UR5e based
robotic arm prototype and to adjust it as much as possible to the operation of the
DaVinci minimally invasive surgical system, for this we will use an original
EndoWrist tool. This would be a great modification that could be applied to the
DaVinci robot and that will facilitate and give the surgeon more comfort during
the operation.

The complementary objectives are:

- Development of haptic pen which as surgeon user interface, that could sense
the movements of the surgeon, including rotations and translations, and tool
openings.

- Include of electronic actuators devices to provide to the surgeon haptic sense
while he is manipulating the haptic pen.

 8

- Development of a mechanism to produce the maneuverability and imitation of
the movements of the surgeon hand in the EndoWrist tool.

- Design and fabrication of the 3D pieces that are coupled to the Endowrist to
assemble it to the UR5e robot end effector obtaining the maneuverability and
haptic feedback.

1.4. Scope and limitations
The project consists of achieving the mentioned goals. As DaVinci robot is an
expensive machine, we can’t test our modifications on it. That’s why all the
implementations will be performed on an Endowrist and on UR5e robot. The
framework of the project will be performed in the Physics laboratory of the Faculty
of Physics of the University of Barcelona. To find out how it works the DaVinci
robot, we had the opportunity to see him both in an operation and outside of it, in
one of the subjects “Aplicacions Mèdiques de l’Enginyeria”.

In addition, this project is carried out in conjunction with an electronic engineering
student, Estela Barrio. She will focus on the part of creating the PCB boards for
the servo motors and the pencil. This part will be taken into account in the project
since it is carried together, but the creation of the PCB will be done by her.

The project development has been divided on two periods. The first one, from
September 2021 to November 2021, was focused on understanding the
performance of the DaVinci and testing the different platforms to do the software
of the project. The second part, from February 2022 to June 2022, it was the
period to execute the software, hardware, measurements and drafting of the
project.

However, we need to consider some limitations as can be the time, the cost, and
the knowledge of the student. The main goal of the project that is implement
haptic feedback on DaVinci robot, it is a limitation of this robot that many
companies are trying to solve. DaVinci is a complex robot and is laborious to
implemented on the actual software and performance of the robot.

Furthermore, the time is an important restriction both to carry out the project and
the prior knowledge that we must acquire. If all the conditions are met and the
problems that appear in the project are solved in the agreed period, the
development of the project will be performed on the agreed time.

1.5. Outline
The project is divided in 3 blocks, considering the amount of information studied,
the different alternatives and solutions taken, and the results obtained.

 9

The first section encompasses all the information regarding the project. Knowing
how the DaVinci was created and how it works, why there has been a growth of
the minimally invasive surgery. This part also includes the state of art and
analysis of the market, identifying the different sectors implicated and interested
on this topic.

The conceptual engineering presents the different alternatives that could solve
the main objective of the project. Studying the different options presented, a
solution is proposed considering the pros and cons of each one.

Finally, the detail engineering shows the implementation of the solution and the
selected materials to execute the project. The different analysis and
measurements are presented along with the final results.

Theoretical
background

Conceptual
engineering

Detail
engineering

Figure 1. Project outline.

 10

2. BACKGROUND
2.1. State of the art of surgical robots

If we want to do a review of the history of surgical robots, we must mention Karel
Capek and his play R.U.R. (Rossum’s Universal Robots). Capek was a playwright
and, on his play R.U.R., it was the first time that the term ‘robot’ was described.
Its origin comes from the Slavic word robota, which refers to forced labor. Rapidly,
this term was used for any kind of machine made for repetition of the same task.
Nowadays, robots are machines that can undertake repetitive, programmed, and
precise procedures [9].

A surgical procedure refers to invasive therapies that involves incisions
performed to repair damage or arrest a disease from a living body. Although it
has been over thirty years since the first time that a non-surgical robot, PUMA
560, was used in a stereotaxic operation in 1985. And, since the first surgical
robot, Arthorobot, was used; the field of medical robotics is still growing has not
reached its peak [7].

Robotic surgery, or also known as robot-assisted surgery, allows doctors to
perform many types of complex procedures with more precision, control and
flexibility compared to conventional techniques. This area is extremely associated
with minimally invasive surgery, meaning that the procedures are performed
through tiny incisions. The use of techniques to operate with less damage to the
body than with open surgery, is associated with less pain, shorter hospital stays
and fewer complications. This may play an important role as the medicine of the
future wants to be less invasive.

As mentioned before, the modern robotic surgery started with the PUMA 560.
After that, many companies started to create their owns models as PROBOT, for
transurethral prostatectomy, and ROBODOC, for hip replacement operations;
both from Integrated Surgical Supplies. However, the first robot approved by FDA
was AESOP for abdominal surgeries. Finally, at the beginning of the 21st century,
the two best-known surgical robots appeared, Zeus System and Da Vinci Surgical
System. These two rivals have been dominating the field of robotic surgery for
over a decade. On the one hand, the three-armed ZEUS platform, it uses one
arm to hold the camera and the other two for surgical instruments. On the other
hand, the four-armed Da Vinci has a central arm for the binocular lens and the
instruments are used by a wrist of seven degrees of freedom. Noteworthy, this
rivalry has benefited this area by providing innovations that have broken
important barriers of minimally invasive surgery [8].

Currently in the surgical procedures, we found three types of robotic systems [6]:

1. Active systems have artificial intelligence, allowing the robot to perform
tasks autonomously while a surgeon is supervising.

2. Semi-active systems have an automatic and a surgeon driven component,
to complement these pre-programmed robots.

 11

3. Master-slave systems, unlike the others, it doesn’t have any pre-
programmed or autonomous component. They depend completely on the
surgeon activity, allowing him to operate directly on the robot.

2.2. Da Vinci Surgical System
The Da Vinci Surgical System is a robotic surgical system from the company
Intuitive Surgical. This system is called “Da Vinci” in honor to Leonardo Da Vinci,
a 15th-century Italian polymath, because of his work on robots and his study of
human anatomy. The company was founded in 1995 with the idea of creating
new robotic systems that could help surgeons to perform their surgical
procedures [10].

In 2000, the Da Vinci Surgical System became the first robotic surgical platform
commercially available in the United State approved by the FDA. It can be used
to treat different pathologies in these fields: gynecology, general surgery, oral and
maxillofacial surgery, pediatric surgery, thoracic or cardiac surgery. However, it
is used especially in prostate cancer and other urological conditions [11].

Sometimes the term ‘robot’ misleads people, it is the surgeon who performs the
surgery with Da Vinci by using the robot instruments that he guides. The Da Vinci
Surgical System is a master-slave robot, it obeys the surgeon movements while
it increases the ability of surgeons to operate. Offering more precision and
dexterity, reducing tremor, and providing a clear view of the patient’s anatomy.
What’s more, the surgeon operates more comfortably seated on the console
while is manipulating the robot and obtaining a 3D view of the patient’s interior.
The Da Vinci system translates the surgeon’s hand movements at the console in
real time, bending and rotating the instruments while is performing the procedure.

All these advances have favored both the patient and the surgeon. Postoperative
pain has been reduced, having a great influence on postoperative recovery, and
reducing the possibility of complications found in conventional surgery.

The Da Vinci system is a part of a much bigger picture, it is surrounded by a
dedicated care team. The complexity of this kind of technology requires that all
the personnel inside the operating room must be trained to manage the
equipment.

In the market, there have been 5 generations of Da Vinci [12]. We are going to
consider the fourth generation, Da Vinci Xi, which is the one that Hospital Clinic
has. Even though, every generation presents different improvements, they all
share the same structure [13]:

• Surgical Console: from this workstation the surgeon control and manage
the arms of the robot through the pedals and controls. This console allows
the surgeon a great vision, and at a scale of the surgeon's own hands,
allowing his maneuvers to be firmer and more precise, assuming greater
safety when performing surgery.

 12

• Surgical Cart: the patient cart rolls on wheels and it is positioned over the
patient. It is composed by 4 robotic arms designed as human shoulder,
elbow, and wrist. The four arms are fixed in space and derived to a remote
center, permitting the surgical instruments move freely.

Attach to the end of the robotic arm there are the EndoWrist, surgical
instruments that provide surgeons with natural dexterity while operating
through small incisions. On this surgical instrument you can add different
accessories such as scissors and graspers, among others. These tools
provide 7 degrees of freedom, providing ambidexterity and unparalleled
precision. Each instrument can balance 180 degrees and rotate 360
degrees.

• Vision Tower: is responsible for the elaboration and processing of the
image. It is a high-quality display system that generates 3D images with
depth of field. Its houses advanced vision and energy technologies,
provides communication across Da Vinci system components. What’s
more, includes a large HD display that shows the live procedure, and an
electrosurgical unit with a series of racks for optional auxiliary surgical
equipment.

2.3. Haptic Technology
As we have mentioned, Da Vinci provide to surgeons an incredible precision
when they are working with tissues deep inside the body. However, this system
presents some limitations as the lack of any force-feedback. This means that
during the operation, the surgeon can’t feel what’s being worked on, without
knowing the force you are applying or the tension you are exerting on the tissue
[14]. However, thanks to the experience of the surgeons and the stereoscopic

Figure 2. Da Vinci components: Surgical Cart, Surgical
Console and Vision Tower [13].

 13

vision of the tissue environment during surgery, they have been able to replace
the ability to touch.
This issue could be solved with haptic technology, or also known as kinesthetic
communication or 3D touch. This area includes any kind of technology that can
create an experience of touch by applying forces, vibrations, or motions to the
user.

One of the first applications on this field was in large aircraft using
servomechanism system to operate control surfaces. When the aircraft
approached a stall, the aerodynamic buffeting were felt in the pilot control.

Haptics are described as touch feedback, which include force (kinesthetic) and
tactile (cutaneous) feedback. Nowadays, this is a limitation on minimally invasive
surgery because the surgeon doesn’t manipulate with the instrument directly.

The main goal of haptic technology in robot-assisted minimally invasive surgery
is to is to give the surgeon the feeling that he is touching the patient with his own
hands. This needs haptic sensors on the patient-side robot to get haptic
information, and haptic displays to convey the information to the surgeon. Haptics
can be structured as kinesthetic (refers to forces and positions of the muscle and
joints) and cutaneous (tactile sense related to the skin).

Force feedback measure the forces applied to the patient by the surgical
instrument and try to resolve this force via force feedback device [15]. Using
conventional force display technology, the motors of the master manipulator will
be programmed to recreate the forces sensed by the patient-side robot. As we
have mentioned, the surgical instruments have 7 degrees of freedom and some
of them are not actuated on the master, this is the reason why it cannot provide
force feedback in all directions. In the case of tactile feedback, as the other
method, it requires a sensor and a display. The goal is to detect local mechanical
properties that indicates the health of the tissue to obtain information that can be
used directly for feedback.

2.4. State of the situation
We have observed the advantages and limitations that the Da Vinci system has.
We are going to focus on trying to provide it with a haptic feedback system.
Nowadays, there is not haptic feedback system applied for medical healthcare.
However, we can find several studies related to that.

Currently, force feedback research focuses on developing practical systems for
application in fields such as education, entertainment, medicine, and training [58].
Although researchers have been studied tactile feedback during many years,
there isn’t a commercialization solution. On this field, it has appeared an effective
application for video games using vibration feedback, giving information the video
game experience as making and breaking contact.

 14

3. MARKET ANALYSIS
On this section we will provide proof of surgical robot market. Focusing especially
on robots related to minimally invasive surgery. Furthermore, we will look for the
path that this sector wants to take and its corresponding future market prospects.

3.1. Evolution of the market
Since there was an increasing demand on improve precision and security on
surgeries, robotic surgery took place deriving into minimal invasive surgical
technologies. As we have mentioned before, the introduction of PUMA 560 in
1985 led to the first surgical robot. For the next 30 years, surgical robot have
occupied an influential role while it increased its applications in modern robotic
platform.
In the next picture we can observe the evolution of surgical robots applying the
SEBMA acronym (Stereotaxic, Endoscopic, Bioinspired, Microrobots and
Autonomous robots of the future) [16].

3.1.1. First generation – Stereotaxic robots
PUMA 560 was the first surgical robot, and it was used as the first laparoscopic
cholecystectomy (minimally invasive surgery to remove gallbladder). Puma was
utilized in stereotaxic brain biopsy by the surgeon to place the arms of the robots
in a position to perform the task. This device was a precursor to a modified brain
tumor excision device, Neuromate. The robots of this generation performed
procedures that had a mathematic and mechanic strategy well defined, and the
tissue tactility and vulnerability was limited [17].
However, robots couldn’t perform multiple sequential tasks and a master-slave
paradigm was introduced where the robot was a direct extension of the surgeon.

3.1.2. Second generation – Endoscopic robots
This generation is the greatest expansion of robotic surgery. The market needed
more accurate robotic systems that can meet the requirements for minimally

Figure 3. Evolution of surgical robots
[16].

Figure 3. Evolution of surgical robots [16].

 15

invasive surgical technology. These surgical robots could overcome the difficulty
to access to tissue places and organ systems as a result of anatomical restraints,
instruments that lack precision and struggling in visualization that traditionally
was limited to 2D [18].
In this generation are included two of the best-known surgical robots, ZEUS and
Da Vinci System. Market forces led to a competition between both companies,
Computer Motion and Intuitive Surgical Inc, respectively. Finally, Intuitive Surgical
bought Computer Motion in 2003, starting the monopoly of Da Vinci System.

3.1.3. Third generation – Bioinspired robots
The third generation included principals from biomimicry and multiple articulation
technology. In endoscopy we find NOTES (Natural Orifice Transluminal
Endoscopic Surgery) developed for scarless surgery. Another example is one-
port SPL (Single-Port Laparoscopy) that offered a platform with standard
laparoscopic equipment through enhanced ergonomics [59]. These innovations
offered to minimally invasive surgery instruments with articulated tips that allowed
to reach hard areas with minimal access.

3.1.4. Fourth generation – Microrobots
The idea on this generation is create robots at a microscopic level that could enter
in your body with minimal surgical footprint and work as a solitary robot or as a
group of robots to image and treat diseases. One example is the capsule
endoscopes that is swallowed by the patient, and the wireless camera on the
capsule takes picture of the small intestine [60].

3.1.5. Fifth generation – Autonomous systems
The concept of fully autonomous, human-level consciousness robots remains
conceptual, it is not a reality [61]. Autonomous robots will use and benefit from
enhanced machine and deep learning capability.

3.2. Current situation
Nowadays, the manufacturer of the Da Vinci Surgical System, Intuitive Surgical,
has been the market leader in robotic surgery since its creation. There are more
than 5,500 Da Vinci robots installed worldwide. The company is firmly
established, performing over seven million surgeries, that it has practically
become synonymous with the term robotic surgery. The company stock price had
grown 66% from US$312 in 2017 to $520 in 2019. Having a total revenue grow
from $3.7 billion in 2018 to $4.5 billion in 2019. On the market there are four
models: Da Vinci Si, Da Vinci X, Da Vinci Xi and Da Vinci SP.
Although it has not had great competition, in recent years, new surgical robots
have been appearing, which may end its monopoly. As we have mentioned
before, Da Vinci System is used for different pathologies but stands out in
prostate cancer and other urological situations [19][20]. The current situation of
the market is the following one:

• Hugo Medtronic: Medtronic, one of the global leaders in medical
technology; in September 2019 unveiled the surgical robot Hugo. In 2021,
it received CE (Conformité Européenne), authorizing the sale of the
system in Europe. CE Mark approval is for urologic and gynecologic
procedures, important fields to Da Vinci System [21].

 16

Hugo system involves an operating console, a central power and a cart-
based robotic arms. It is made up of pedestal-based module system and
a surgeon console that it is inside the operating room.

• Versius robot: CMR Surgical, a British MedTech firm, after raising £75m in
June 2018 from a host of investors including LGT and ABB, it has launched
Versius robot. It has raised £195m to finance the global commercialization.
It has taken a position that can threat the leading position of Da Vinci
System across Europe and Asia.
The structure is similar to Hugo and Da Vinci, it consists of individual cart-
mounted arms controlled by a surgeon who sits or stands at its 3D high-
definition control. It is really similar to Da Vinci, the handles used to operate
are linked to video game controllers. It has been performed in
gynecological, colon and renal procedures [22].
If Da Vinci System is little available, it is due to its price. Apart from being
expensive, its design does not allow much flexibility. The weight and size
of Da Vinci robot can be a limitation inside of the operating room for its
movement. On average, Da Vinci System operates once every day. These
facts explain its lack of productivity and cast doubt on investing in it.
However, Versius is cheaper and is characterized by its flexibility. What’s
more, CMR designed Versius with several separate robot arms, each one
with their own surgical instrument and pillar. This allows a faster set up
and is easier to carry from one operating room to another. These are the
reasons why Versius is a real threat to Da Vinci System.

Of surgical robots that operates in fields different from Da Vinci System, we have:

• ROSA robot: it is a system composed by a robotic arm and a sophisticated
software, that guides the surgeon during placement of joint prostheses. It
is used for knee surgeries. It uses navigation systems, demanding
anatomical reference points, ROSA can evaluate the position of the soft
tissues and indicate where the cut should be made, offering a greater
precision and a less invasive procedure. For its functionality, it uses
preoperative X-ray images and data collected during surgery [23].
Regarding to the equipment, it is composed by two towers, in one there is
the robotic arm that guides the surgeon where to perform the cutting. On
the other tower is the camera, which monitors the sensors that are placed
on the axes of the patient leg.

• MAZOR X: Medtronic created a robotic surgery to perform orthopedic and
neurological procedures for spinal surgeries. MAZOR X Stealth allows the
surgeons to perform a less invasive surgical procedure [24].
The robot-guided spine surgery system enables surgeons to create a 3D
surgical plan for each patient before starting the procedure. During the
surgery, the robotic guidance helps the surgeon to custom the plan with
high precision.

• Monarch ARES: If your physician has discovered a spot on your lung, it
has to perform a lung biopsy to know if it is cancerous or not. There are
few options to reach those small nodules in the lung and it is difficult to
perform it with manual bronchoscopes. The MONARCH® Platform is a

 17

robotic assisted bronchoscopy introduced in 2018 to help reaching these
nodules for biopsy [25].

3.3. Future perspectives
Robotics systems have been advancing quickly. Interdisciplinary collaboration is
essential to develop surgical robots. It requires knowledge from different areas,
as medicine, mechanical engineering, robotics, optics, and automatic control.
Innovations are made to improve the clinical safety and effectiveness.
One of the objectives to improve these robots, focus as on this work, to equip
them with haptic feedback. The lack of force feedback presents a challenge for a
surgeon to control the amount of force that is exercising on the tissue [26].
Then, artificial intelligence can have an important role using algorithms to give
machines human-like abilities to make decisions and perform the surgery
autonomously. Machine learning enable robots to make predictions by the
patterns that the recognize.
The idea of minimally invasive surgery is minimizing the level of invasiveness.
What’s more, improving visualization capacities would lead to many advantages.
Many companies are pushing themselves to reduce the trauma and impact on
the tissue. These would lead into a faster recovery, reducing the risk of infection
and reduce postoperative time.

 18

4. CONCEPTUAL ENGINEERING
This section outlines the different options for the hardware and software solutions.
About software, we will focus on the different interfaces that would help us
synchronize the distinct modules and connect them to the robot to test the
program and to the computer, to perform the simulations. Regarding to the
hardware, we will consider the robotic arms and the components to create the
haptic pen.

The main objective is creating haptic feedback in a robotic arm. However, it is
impossible to use the DaVinci robot due to its cost you cannot test projects on it.
We will need a robotic arm to simulate the functioning of the DaVinci, an haptic
pen which will reproduce the movements of the surgeon, and a software that will
allow the control of the position and orientation.

The project is structured by three big components:

- Pen user interface that will offer and define the rotation of the surgeon hand,
and that will generate the haptic feedback.

- The EndoWrist maneuverability, needing a robotic arm, an EndoWrist and an
intermediary that would rotate the gears of the EndoWrist according to the
rotation of the surgeon's hand. In addition, depending on the force that this
intermediary has to use to rotate the EndoWrist, we will obtain the values of the
force that we are applying.

Figure 4. System schematic of the Final Degree Project.

 19

-The last component, communication and supervision module which will need
different software to perform the simulation and execute the programs in the real
world.

We need to obtain the different components to meet the following specific
objectives and achieve the challenge of the project.

We will consider different options in terms of hardware and software to be used
to accomplish the project objectives.

4.1. Software

An important part is the communication of the robot with the computer and with
the haptic pen, apart from perform all the analysis on the program to calculate
the torque, among other parameters, to achieve the haptic feedback. These
objectives are fulfilled thanks to the software, and on this part, we will examine
the different programs related to that.

4.1.1. Programming software
In order to perform the software, we have need different solutions for
environments and languages of programming. On the following table we can
observe the different options for the software:
Software Arduino LabView ROS Matlab Python RoboDK

Cost
Open

Source
456

€/year
[28]

Open
Source

800
€/year
[27]

Open
Source

Open
Source

Experience 1 year 2 years 6
months

3 years 3 years 6
months

Table 1. Options for programming software.

Specific objectives:
• Understanding the performance of DaVinci robot.
• Learning about the software programs to perform the project.
• Analysis of the hardware components implemented on the haptic pen.
• Bluetooth/Wireless communication between the three main

components.
• Read the torque generated due to the movement of the EndoWrist

gears.
• Move the whole robot to change the orientation of the tool to enter

through different entrances following the rotation of the hand-surgeon.
• Move the robot up and down following the Z-axis, simulating the entry

and exit of the hole with the pen user interface.
• Move the EndoWrist following the rotations from the pen user

interface.
• Creating haptic feedback with the torque received.

 20

• Arduino is an open-source electronics platform that is able to read inputs,

as can be the values from the IMU, and turn these into outputs, for
example vibrate the vibration motor or ring the sound. What’s more, it is
free and a simple, clear programming environment really helpful for
beginners [29].

• LabView is a graphical programming environment to develop and test
systems. It is useful to build quickly automated test systems [30]. It enables
measure physical systems with sensors and actuators and validate them.

• Robot Operating System (ROS) is a robotic middleware, a collection of
frameworks for developing robot software [31]. It is an open-source
operating metasystem, and provides services such as hardware
abstraction, low-level device control, and package maintenance. All of this
makes it easier to create robotic applications. It provides different
applications as Gazebo and RViz which provide real world simulation and
3D visualization to interpret movements, respectively.

• Matlab is a programming platform created to analyze and design systems,
used mainly by engineers and scientists [32]. For this project could be
helpful for developing the algorithm to calculate the force applied on the
tissue. Matlab is designed for a quick and accessible learning, as opposed
it has a high cost.

• Python is a computer programming language used for software and data
analysis [33]. It has become very popular in the recent years because of
machine learning and software testing. It presents versatility and presents
general-purpose language which allows creating a variety of different
programs.

• RoboDK is a simulator for industrial robots [34]. It allows you to program
robots outside the production environment and perform, directly on the
computer, the programming and simulation of the movements and tasks
made by the robot.

4.1.2. Designing software

The other part of the project is the 3D modeling of the anchor piece between the
effector and servomotor. In this section, there is no previous experience, instead
of dividing the table into cost and experience, we will do it in cost and skill.
Software FreeCAD AutoCAD SolidWorks

Cost Open Source 217 €/year [36] 1.197 €/year
[35]

Skill Low High Medium

• FreeCAD [37] is an open-source to design real-life objects in 3D.
Modifications are easy, enabling going back to model history. It works on
different operating systems and reads and writes many file formats. It is a

Table 2. Options for designing software.

 21

type of modeling where the shapes of 3D objects are controlled by
disparate parameters.

• AutoCAD [38] is a software of type CAD that allows the modelling in 2D
and 3D. The modification of geometric models is almost infinite to develop
any kind of structures. However, its difficulty is due to mechanical
knowledge.

• SolidWorks [39] is a CAD program and 3D modeling software. It is used
for planning, visualization and modeling of elements. It is a solid modeler
that uses parametric feature-based approach to create models.

4.2. Hardware
On this section, we will observe the different devices considered to be part of the
hardware of the project. Mainly, robotics arms and devices to complete the haptic
feedback tool.

4.2.1. Robotic arms
The DaVinci is composed of different arms, with one of them we can perform the
project. That’s why we need a robotic arm, which is a mechanical arm that does
similar functions to the human arm. The arm is composed by links which are
connected by joints. This structure allow different movements as rotations and
translations. The links compose a kinematic chain with an end effector at its
extreme.
These robotic arms have a software behind programmed to execute a specific
task and repeat it many times accurately. They have an important role on
industrial, manufacturing and assembly sectors because they can perform heavy
and repetitive procedures during a long period of time.
However, the robotic arm on our project would work as a ‘cobot’. This term is
used for robots created to have a direct interaction with humans [40]. Their
functions are very different compared to the traditional industrial robot
applications. Having to interact with people, there are some components that are
compulsory to ensure the safety of the people around them. That’s the reason
that they are built with lightweight materials, sensors, limitation of speed and
rounded edges.
The Industrial Federation of Robotics (IFR) is an organization created to promote,
reinforce, and protect the robotics industry. This one has defined different levels
of collaboration between human and robot which are:

• Coexistence: both works alongside.
• Sequential Collaboration: both shared workspace but their functions are

sequential.
• Cooperation: work at same time and in motion.
• Responsive Collaboration: robot responds to the movement of the human.

In the following section, we are going to present different robotics arms and
different features will be consider selecting the best solution.

4.2.1.1. UR5e
UR5e is a robot from Universal Robots (UR) which is a lightweight and adaptable
collaborative industrial robot that tackles medium-duty applications with ultimate
flexibility [41].

 22

It is a great example of ‘cobot’ able to
repeat tasks. It is flexible and presents an
arm with a force torque that enables to
perform safety exercises. Its software
consists of an easy program that helps the
costumer with a very fast learning [42]. We
have to highlight the 6 degrees of freedom,
its fast movement and its lightweight (18
kg). What’s more, at the end-effector we
are able to attach a tool, as can be the
EndoWrist needed on the proyect. These
features allow to perform recurring tasks
and flexibility to automate multiple manual
tasks. The price can be the main handicap,
with a cost of 30.581€.

With the recent technological developments, we have seen these kinds of robots
in healthcare industry performing tasks supervised by a human.
In the case of UR5e, it has been involved in rehabilitation from injuries caused by
blood clot and strokes, helping patients with repetitive movements that form part
of the rehabilitation process. Doing these charges, it can support therapists
allowing them to set up training programs. Apart of this, it has been present in
some businesses as Aurolab, helping in manufacturing intra ocular lenses. Its
presence has increased affordability, regain vision at lower cost, reduce of power
consumption and a decrease of quality problems [43].

4.2.1.2. Mover 4
Mover 4 is robot from Commonplace Robotics
Mover, unlike UR5e, is not suited for industrial
production. The main objective is fulfilling the needs
of schools, universities, or research institutions
[44].
Its programming environment is really intuitive,
including graphical and textual program for ease of
use by beginners. Its little weight, its payload of 0,5
kg and his ability to equip different grippers, they
have made it an option for our project. However, it
has 5 degrees of freedom, we move away from the
freedom of movement of the DaVinci. On the other
hand, its price is more feasible and economical,
3,730.65 €.
At the end of the arm can attach different grippers,
this would allow us to assemble the EndoWrist and
perform the project. What’s more, its interface let us an easy control of the
position of robot in real time and it has a low price.

Figure 5. UR5e robot.

Figure 6. Mover4 robot.

 23

4.2.1.3. Kuka Robot Arm
KUKA is a global automation
corporation known as one of
the world’s leading suppliers
of intelligent automation
solutions, as robot arms [45].
KUKA KR 360 is an example
of many robot arm intended for
handle heavy components. It
has an arm extension of 500
mm with a repeatability of 0.08
mm providing great precision
[46]. Its 6 degrees of freedom
and large number of
applications characterize it for
being versatile and flexible.

With a price about 10.000 € and the light work of large and heavy components,
they allow to establish a low-space and low-cost solution.

4.2.2. EndoWrist Da Vinci
Intuitive Surgical has patented EndoWrist Instruments, these ones are designed
to help the doctors on the surgery. Its main function is recreating the human wrist.
However, these instruments allow more freedom of movement than a human
wrist can achieve. Specifically, it as 7 degrees of freedom, swinging 180 degrees
and rotate 360 degrees [47]. At the end that connects with the robotic arm, there
is a mechanism that controls these degrees of freedom. There are 5 gears that
control the roll, pitch and yaw of the tool.
The EndoWrist perform the movements that the surgeon is making on the surgical
console, to do the motions in real time, internal cables are needed, allowing rapid,
maximum responsiveness and precise action of the manipulation. These features
allow to the surgeon a natural dexterity while is performing the surgery through a
small incision. During a surgery, different EndoWrist tools are used, depending
on the task that is performed, some examples are graspers, needle drivers and
energy instruments.

Figure 7. KUKA KR 360 robot.

Figure 8. Mechanism
rotations EndoWrist.

Figure 9. Tweezer EndoWrist.

 24

4.2.3. Servomotors
Servomotors are a rotatory or linear actuator that can control the position, speed
or acceleration of the axis. It is an electrical device that with its rotation, can spin
a part of a machine with great efficiency and precision. Its mechanism is a closed-
loop that uses the position feedback to control its movement and the final position.
The input is a signal that can be analog or digital, which an output that represents
the position requested. The position feedback provides different parameters, as
can be current, velocity or position to the servo controller, depending on the input
[48].
The servomotor is an electromechanical device that can generate torque and
velocity depending on the current and voltage provided. These characteristics are
crucial, because these devices will be used to rotate the mechanism on the
EndoWrist and provide the different rotations. We will need four servomotors, one
for rolling, another for pitching and two for the yaw to open and close the
tweezers.
It is important the resolution, speed of rotation and torque of the servomotors.
These servomotors will have to rotate according to the movement of the surgeon,
meaning that the rotation must be very precise and rotate imitating as close as
possible the movement executed by the surgeon. Also, it needs enough strength
to be able to move the gears of the EndoWrist.
In the following table different solutions are presented:

Servomotor Operating
Voltage

Stall
Torque Weight Rotation

range
Running
Speed

Sunfounder
SF180M 4,8 V – 6 V 2,5 kg/cm 9 gr 180º 0,09 s/60 °

Longruner
KY66 4,2 V – 6 V 1 kg/cm 9 gr 180º 0.12 s/60º

Dynamixel
AX-12A 9 V – 12 V 12 kg/cm 54.6 gr 300º 0,02s/60ª

4.2.4. IMU Sensors
An inertial measurement unit (IMU) is an electronic device that measure the
orientation and angular rate of the body at which is attached. It is a combination
of accelerometers, gyroscopes and magnetometers [49].
This device will be crucial to know the rotations that the surgeon makes and that
these commands are sent to the rob arm. Using the accelerometer of the IMU,
the linear acceleration will be calculated, and the rotational rate is obtained by
gyroscopes.

IMU Degrees of
Freedom Power Weight Price

ICM-20948 9 DoF 3,6V -1,71V 0,7 gr 13,20€

Table 4. Options for servomotors.

 25

MPU 9250 9 DoF 2,4 V – 3,6 V 2,72 gr 12,99 €

MPU 6050 6 DoF 2,4 V – 3,6 V 2,1 gr 5 €

4.2.5. Haptic stimulus
One of the main objectives is the haptic feedback, giving a stimulus to the
surgeon so they know the force that are applying on the tissue. Two devices are
selected as haptic stimulus: buzzer and vibration motor [50].
Vibration motor is compact size coreless DC motor with the objective of creating
a vibration to inform the user that the signal or condition has been met [51]. This
device will be use in our project to inform the surgeon how much force is applying
on the tissue. If he is doing a lot of force, the motor will vibrate more than if you
are applying less force. This vibration has to be controlled, because if it is really
big it could affect on the precision of the surgeon.

Vibration Motor Operating
Voltage

Rotational
Speed Weight Price

Seeed Studio
105020003 3V – 5V 9000 rpm 8,8 gr 3 €

PWM Vibration
Motor Module 3V – 5,3V 9000 rpm 16 gr 5,9 €

Mini Vibration
Motor Seeed
Studio

2,5V – 3-5V 7000 rpm 2 gr 1,14 €

The second device is a buzzer, a vibrator-type electronic device. Its function is
creating a sound, that can be continuous or intermittent, used as a signal or
warning [52]. In our case, it will alert us at the moment that we are making a lot
of force on the tissue or surface in question.

Buzzer Resonance
Frequency Intensity Operating

Voltage Price

HW-508 2300 Hz 110 dB 4V – 8V 3 €

Buzzer RS PRO 2000 Hz 86 dB 3V – 5V 2,9 €

MCKPT-G1720-
3922 4000 Hz 85 dB 30V 1,14 €

Table 5. Inertial Measurement Unit comparison.

Table 6. Comparison of Vibration Motors solutions.

Table 7. Comparison of Buzzers solutions.

 26

4.2.6. Microcontroller
Our project will have different components that need to be connected wireless.
The pencil, that will simulate the surgical console imitating the movement of the
surgeon hand, needs to be connected by Bluetooth to the robotic arm, which will
execute the motion [53].
For this purpose, we will use microcontrollers but the ones that contain a set of
peripherals including WiFi and Bluetooth wireless capabilities. We should know
that a microcontroller is an integrated circuit created to perform a specific task in
an embedded system. It can do it by interpreting the information and data that
receives from the peripherals using its central processor.

Microcontroller Memory Bluetooth Operating
Voltage Price

LattePanda 4 GB Yes 7.5V – 15V 125 €

ESP32 520 KB Yes 2.2V – 3.6V 25 €

NanoPi M4 4 GB Yes 5V – 12V 47,51 €

4.2.7. Push buttons
Apart from rotate the EndoWrist, we need to translate the robotic arm to a desired
position and use the tweezers, opening and closing them. To achieve that we
need to include some push buttons, that depending on the button that we press,
it will perform one of the mentioned tasks.

Push button Company Weight Price

COM-00097 Sparkfun 270 mg 0,32 €

1301.9314.24 Schurter 250 mg 0,45 €

B3F-1022 Omron 250 mg 0,38 €

4.3. Final selection
In this section we will present the selection of the software and hardware
components. We have taken into account the features of each element, its prices
and the resources that have been presented to us. As mentioned in the first
section, our project has been developed in the Physics laboratory of the Faculty
of Physics of the University of Barcelona, there we have some components that

Table 7. Microcontrollers solutions comparison.

Table 8. Comparison push buttons solutions.

 27

can be useful for our solutions in the hardware section. And because we are
students, we are also presented with offers for different software solutions.

Starting for the hardware, UR5e is selected although it is the most expensive.
This is because this robot is already in the Department of Electronics and
Biomedicine of the Faculty of Physics of the University of Barcelona. So having
this robot within our reach and being able to use it for this project would be
affordable, if we wanted to use any of the other alternatives it would mean a
greater economic expense since we do not have any of the other alternatives.
What’s more, of the alternatives presented, UR5e is the one with more degrees
of freedom fact that has allowed its use in some clinical activity as mentioned in
the previous section. Another point in favor is that we already have a little
experience with this robot due to its use in one of the subjects of the career,
“Robotics and Control of Biomedical Systems”.

Regarding the hardware components for the haptic feedback, some of them have
been selected due to its availability and presence in the laboratory, in this way
they did not have to buy or wait for their arrival. In the case of haptic pencil, we
have selected MPU 9250 because it is the one that has more degrees of freedom,
along with ICM-20948. However, we have used it before, and it is available in the
University. Furthermore, we know how to obtain its orientation and translate this
information to the servomotors. Also, it will include an ESP32 to connect
wirelessly the pencil with the servomotors, and with the computer. In summary,
we will have an ESP32 in the pencil, to obtain the orientation and translation; in
the servomotors mechanism to rotate the EndoWrist imitating the movement of
the surgeon's hand; and in the computer to get all the necessary values and
perform the relevant calculations and analysis.

The rest of the plugins included are PWM Vibration Motor Module, HW-508 and
COM-00097. The vibration motor will change its frequency depending on the
amount of torque that we are applying. In the case of the buzzer, it will change in
the same way, but increasing the intensity of the volume.

Concerning the servomotors mechanism, we have used Sunfounder SF180M. In
first place we utilized the Longruner KY66 because they were available in the
University. However, when we try to move the EndoWrist with the servomotors,
Longruner KY66 it didn’t have enough strength to move and rotate the EndoWrist
as we wished. That’s the reason why we use Sunfounder SF180M, because they
have bigger stall torque.

With reference to the software, Arduino has been chosen to perform most part of
the project. It will connect the different ESP32, calculate the torque and carry out
the different haptic stimulus. RoboDK and python will be used for the simulation
part and the direct connection with the UR5e, to run the program on the robotic
arm. A great advantage of these programs is that they are free, except RoboDK,
However, as we are student, we can obtain a free license for this program.

 28

Finally, for the construction and design of the anchor pieces between the
EndoWrist and servomotors, FreeCAD has been selected. The reason is that it
is an open source and its learning is very simple for someone who has not had
any type of experience with this type of software.

COMPONENT SELECTION

Programming software Arduino – RoboDK - Python

Designing software FreeCAD

Robotic Arm UR5e

Servomotor Sunfounder SF 180M

Inertial Measurement Unit MPU 9250

Buzzer HW-508

Vibration Motor PWM Vibration Motor Module

Push Button COM 00097

Microcontroller ESP32

To understand better how the components are going to interact between them,
a scheme representation of the prototype conception is shown below.

Table 9. Proposed solution for each component
software and hardware.

Figure 10. Schematic representation of the own project.

 29

5. DETAILED ENGINEERING
This is the main part of the project, where all the hardware and software
implementation are explained. We will use the items defined in the conceptual
engineering and defined and specify how each process and part of the Figure 9
was performed. To get the big picture, a pen, simulating the hand of the surgeon,
will move the robot UR5e and the EndoWrist to his state, giving tactile sensation
in the surgeon's hand when applying a lot of force with the EndoWrist on some
tissue.

5.1. Prototype Implementation
First of all, to understand each main component of hardware and its relation, we
will divide the section in 3 parts, the pen user interface, the servomotors with the
EndoWrist and UR5e (EndoWrist maneuverability), and the communication and
supervision module performed by a computer. Each one of them share a
component, the ESP32. This processor will allow us to connect each module
between them, via WIFI, avoiding wiring between them that would make their use
very uncomfortable.

Otherwise, the pen provided to
us was a PCB with an IMU and
with two buttons, apart from
the ESP32. The IMU will be
used to read the dimensions of
movement from the surgeon
hand, used in the servomotors
to rotate according to them.

The EndoWrist was also
provided to us from the Hospital Clínic. An EndoWrist can be used just 10 times,
once this threshold is exceeded, they stop using it even if it works fine. For our
project it does the job, its use is adequate because it meets the requirements.

5.1.1. Wireless communication
Each ESP32 has its own MAC direction, which is like its representative. Using a
WIFI library in Arduino, we can get the address of each of the three ESP32. After
that, we will create three different Arduino files that will represent where one will
represent the pen (known as master), another the servomotors (called slave) and
the last one will receive all the information that will be sent to the computer for
the simulation.

To perform the transmission of information, each ESP32 needs to know the MAC
direction of the ESP32 to which they are going to send or receive information.
The master will need the MAC address of the slave and the computer; the slave

Figure 11. Pen provided to us with an
ESP32, two buttons and an IMU sensor.

 30

will need the direction of the master, and the computer will need the address of
the master. Apart from that, we need to define the structure of the data that we
will receive and transmit on each ESP32. Now we are going to observe which
information is going to be passed between the ESP32.

5.1.2. Pen and dimensions of movement
We needed to understand how we are going to use the information received by
the IMU. From this component we will use the roll, pitch and yaw. They are three
dimensions of movement defining how an object move. In that case, we are going
to define how is moving the surgeon its hand.

The IMU has a representation of the three axis as
shown in Figure 12. The roll is the rotation about the
x-axis, the pitch about y-axis and yaw z-axis. These
rotations will be sent to the servomotors which will
move the gears of the EndoWrist. As shown in
Figure 13, although there are 5 gears, just 4 of them
are used. For the roll (1) and pitch (2) we need just
one, however for the yaw we need two (3,4). This
two will rotate oppositely to move the two grippers
together, will rotate the same way when they want to
open the clamps. Considering that, for each
interruption of the IMU sensor we read the data that
it provides us. We will send the roll, pitch and yaw
from the master to the slave and the computer.

Figure 12. Representation of the roll, pitch and yaw in a human
hand.

Figure 13. IMU sensor.

 31

Regarding to the buttons, we are going to read their status in Arduino to,
subsequently, move the robot forward or backward.

5.1.3. Reading torque
To know which force are be applying on the tissue, we are going to consider the
torque that the servomotors are producing. In that case we will measure their
electrical power, P=I*V.

We will measure the current that is going through the servomotor because the
voltage is going to be the same. To achieve that we need a resistor in series with
the motor, measuring its voltage drop we can know the current. As the voltage
drop is practically constant because the voltage is the same, we can assume that
the electrical power is directly proportional to the current that we are measuring
and its torque. We need a small resistance, if not it will be very difficult to the
current to go through. That’s why, the resistance used is 1.6 Ohms for all the
servomotors.

In Figure 15, we can observe how the pins and the resistor are connected to be
in series. We need to connect the GND of the motor and terminal of the resistance
to a GPIO and ADC pin.

1

2
2

3

4
2

Figure 14. Rotations of the servomotors and their corresponding movement in the
gripper (1.Roll-red, 2.Pitch-blue, 3. And 4. Yaw-green).

1

2

3

4

 32

This information will be sent to the master, which later from this, will be sent to
the computer. Finally, we apply this to 4 servomotors. The hardware of the
prototype is represented in Figure 19, we can observe the 3 components, the
pen/master, the slave composed with 4 servomotors and its resistor in series,
and the ESP32 computer.

Figure 15. Servomotor connected to a ESP32 and a resistor in series.

Figure 16. Prototype hardware.

 33

5.1.4. Simulation in RoboDK
Before starting with the RoboDK, we have seen that the slave sends to the master
the information about the torque, and the master send this last information, in
addition to the RPY angles and the status of the buttons to the computer. Finally,
the ESP32 connected to the computer has all this information. In RoboDK, we
request this data to Arduino, storing the data and converting the variables to floats
or integers.

The other section is to generate the robot UR5e in the environment, downloading
it from the RoboDK library. The tool recreating the EndoWrist was provided to us.
We needed to define both variables to be able to work with them.

The idea is to recreate the
movement of the tool of the
EndoWrist. To achieve that we
create a new frame named
‘Gripper’ in the extreme of the
EndoWrist. We will create a
translation matrix achieving the
only movement on this position,
which will represent the
movement of the gripper. After
that, using the rotations
matrixes, we will apply a rotx,
roty and rotz using the roll, pitch
and yaw values obtained from
the IMU, respectively. A rotx(pi)
is needed because if not the Z-
axis is pointing down. With this
matrix that defines the new
position of the gripper, we
implement the rotation with the

function .setPose() which will move the gripper according the roll, pitch and yaw
values.

Apart from that, depending on the status of the buttons, the robot will move
forward or backwards. To achieve that we will get the position of the robot with
the function .Pose(), which is a matrix 4x4, and we will multiply a translation just
in the Z-axis of 1 mm. Depending on the button that we click, the value will be
positive or negative affecting the direction of its movement.

5.2. Final model
As we have seen, the prototype model can’t be implemented on the UR5e in real
world and doesn’t have any haptic technology. In this part we are going to

Figure 17. UR5e in RoboDK.

 34

observe the different modifications that we have performed to the previous
components, to achieve the defined objectives.

5.2.1. 3D pieces
One of the main inconvenient when carrying out the project in the UR5e, it is the
lack of some anchoring pieces between the servomotors and the EndoWrist. We
needed pieces that fixed in both parts and transmits the rotations so both parts
were in agreement. Two types of pieces in question were designed. One of them
considered the dimensions of the servomotor and the other, the dimensions of
the EndoWrist.

Both pieces were created in FreeCAD and then 3D printed. Due to the limitation
of precision in the 3D printer, the two pieces were split in half to improve printing.

Figure 18. EndoWrist disks designed in
FreeCAD.

Figure 19. Servomotor disks designed in
FreeCAD.

 35

5.2.2. Slave on PCB board and torque limit
The servomotors were in a protoboard with a lot of cables which was difficult to
put it in the UR5e. To solve this problem, we moved the 4 servomotors and the
ESP32 into a PCB board which was performed by Estela. As the idea was to
make it wireless, we have to avoid wiring and make it work by itself, that’s why a
battery was also included to be autonomous.

5.2.2.1. Implementations slave software

The idea is to simulate the use of this device in a surgical environment, meaning
that the movements of the hand of the surgeon needs to go very slow. However,
we must consider any situation that could worsen the intervention, as for
example, if the pencil falls or the surgeon shakes a lot its hand. In that case, we
don’t want the servomotors to rotate because it would make a very sharp rotation
causing internal injuries to the patient.

To avoid this problem, we have limited the rotations. If the new rotation value is
greater than 10 degrees with respect to the last value, the servomotor will not

Figure 20. Slave PCB board composed by a battery, a ESP32 module and 4
servomotors.

 36

rotate and will take the previous value as the measurement. In this way we ensure
that the procedure is carried out smoothly, increasing the precision of the
intervention and the safety of the patient.

Another aspect related to this topic, is the limitation presented by the servomotors
used. These ones only rotate 180 degrees, nevertheless, the IMU offers 360
degrees. This inconvenient provides a tremendous rotation of 180 degrees when
the servomotor gets a 0 degree and then a 360 degree. To solve that, we limit
the field of movement of the servomotor between 0 and 180 degrees. If the
degrees obtained are bigger than 180 degrees and smaller than 270 degrees,
the servomotor will stay at 180 degrees. However, if the values obtained are
between 270 and 360 degrees, the servomotor will remain at 0 degrees. In this
way we avoid any unwanted rotation.

Finally, we have applied a modification to be able to open and close the clamps.
It considers the position of the yaw because is the one that affects the gripper.
Depending the value of the yaw, it will move one gripper while the other remains
on the same position. This is done in this way because if the two grippers are
closed and are in the 180-degree position, the one at the end will not be able to
open because the servomotors only rotate 180 at most. For this reason, we will
move the gripper that is not in the end 30 degrees, in this case at 150.

5.2.2.2. Threshold current

As we have seen in the section Reading torque, there are a lot of peaks and we
are not sure if the value that is going to take is it at the peak, at the descent or at
the rise of the curve. The solution carried out was to integrate all the current to
accumulate all the values and avoid peaks.

Once we have the integration, what we really want is to observe if there has been
a big change of current between a point and its previous. In other words, we want
to know the slope of the function. Depending on the value of the slope, it means
that we are applying a lot of force and consequently, the current increases, or the
reverse situation.

So, we will derive the integration, obtaining which is the maximum force applied
in each case. Also, the maximum of the function with hindrance and without
hindrance are very different. We will use a value smaller than that of the function
where an obstacle is applied, which we will use as a threshold to know when the
pen should start to sound and vibrate, warning that the force being applied is
excessive. These new values of the current are the ones that are going to be
send to the master, to use it as the variable to active the haptic stimulus.

 37

5.2.3. Master and haptic feedback
The master prototype didn’t provide any sense of the force being applied and
there was no way to decide what kind of movement we wanted the robot UR5e
to perform.

To achieve that, another button was included apart from the other two; a battery
to allow the feeding of the entire circuit and that it is wireless; and a buzzer and
vibrator motor to perform haptic feedback.

5.2.3.1. Haptic feedback

From the slave, we receive the derivative current explained in the last section.
Considering this value, it will define the threshold from which a lot of force is being
exerted.

The hardware in charge of the haptic stimulus is the buzzer and the vibrator
motor. Once the value obtained from the derivative current is higher than the
threshold, the haptic stimulus will jump. Both the sound of the buzzer and the

Figure 21. Pen MASTER with an IMU, three buttons, a battery, a
buzzer, and a vibrator motor.

 38

vibration of the vibrator motor will increase in relation to the value of the current.
If the threshold has been slightly exceeded, it will not make as much noise as if it
has been greatly exceeded. The frequency of both components will depend on
the value of the current, meaning that if the current increase also does it the sound
and vibration.

5.2.3.2. Modes of action

With the haptic pen, we need to perform all the movements that the Da Vinci robot
can do. To achieve that, we are going to create different modes. Each mode will
perform one movement and we can change modes thanks to the third button.

- Mode 0: it will perform the
movement from the tip of
the EndoWrist, the gripper.
In that case, we need to
rotate the servomotors
according to the roll, pitch
and yaw values from the
IMU; and open and close
the gripper while we push
the first or second button.

- Mode 1: it will simulate
the entry and exit of the
EndoWrist over the
patient's orifice. In that case, we will move the EndoWrist along the Z-axis.
However, when this mode is activated, we don’t want that the EndoWrist gripper
continues to move according to the IMU values. That’s the reason why we store
and send the last values of the IMU obtained in the mode 0 to the servomotors.
Meaning, that they will remain in the position that they were in at the last moment
of mode 0. Besides, the first and second buttons will be the ones that indicate the
rise and fall of the tool. Therefore, we have to disable them for the servomotors

Figure 22. Code for the mode 0, movement of the gripper.

Figure 23. Code for the mode 1, movement of the arm in the z-axis.

 39

so that they do not open or close the clamps. The values send to the computer
from the master will be the status of the two buttons, to raise or lower the tool with
respect to the Z-axis.

- Mode 2: Correspond the
movement of the robot in all
axes. It performs the
movement to orient the tool
in one direction or another,
depending on where the
orifice through which the
patient is to be operated is
located. The end-effector
will remain fixed in one
position, and taking the
values from the IMU, the
robot will be placed in the
appropriate position to
orient the EndoWrist. This
is because during

operations the EndoWrist must be oriented to enter through a different zone or
shape in each case. With the servos it will happen the same as in mode 1
because we do not want them to move. In that case, we store and send the last
values of the IMU obtained in the mode 0 to the servomotors, so they will be
stopped. To the computer, we will send the values of the roll, pitch and yaw. The
state of the two buttons is disabled because we won't be using them for this mode.

5.2.4. RoboDK simulation implementations
First of all, the simulation in the computer, to later be executed in real-world, its
components must be as close as possible to what we have in real life. The
EndoWrist we had in RoboDK did not have the same dimensions as the one we
had. We created the EndoWrist tool and the two parts of the casing that hold it
with FreeCAD, using the same dimensions as the real ones.

Figure 24. Code for the mode 2, movement of the arm to
orientate the EndoWrist.

 40

These pieces were combined in RoboDK, using
the function Compound that joins different
figures. After that, they were defined as a tool and
were placed at the end of joint 6 as an end-
effector.

We must bear in mind that the
robot will carry out one movement
or another, depending on the
mode that we have selected. This
must be implemented so that the
simulation is done correctly and
can be performed in real life.

The mode 0 is the one that we created previously which will move only the gripper
of the EndoWrist. Switching to the mode 1, it will go up or down following the Z-
axis of the tool.

Activating the mode 2, the UR5e robot will move to change the orientation of the
tool fixing the position of the end-effector. To achieve that we need to know the
position of the robot, these values will be used in the translation matrix to move

Figure 25. Casing that holds the EndoWrist created in FreeCAD.

Figure 26. EndoWrist created in
FreeCAD.

Figure 27. UR5e with the designed
EndoWrist in RoboDK.

 41

the UR5e; and the
values of the IMU, to
rotate the UR5e
changing the values of
its position. To ensure
that the position that the
robot will take is safe,
the function
.MoveL_Test() is used.
This function calculates
if the position to which
the robot will move with
the new values is safe
and there will be no
collision between the

links of the UR5e. If it sends 0 as a result, it means that the movement is secured;
any other number means that there will be a collision between the bot's links, or
that the bot cannot reach that position. To know the axes where the rotations will
be made, a new fixed frame is placed at the tip.

Besides, the torque values generated during the EndoWrist movement process
are stored and transferred to an Excel file in case it is necessary to carry out any
type of analysis. What’s more, a live plot is generated showing the actual torque
values of each servomotor.

Figure 29. UR5e with the EndoWrist and the designed
servomotor PCB.

Figure 28. Program to perform all the movements in RoboDK.

 42

6. EXPERIMENTAL VALIDATION
6.1. Instantaneous current measurement in servomotors

In the following graphs, we can observe a representation of the intensity going
through the servomotor when we move them to a determined position. The
servomotor tries to go to this position at a maximum velocity, that’s why we have
an initial spike. Then this value is decreasing until, at the end, it tries to correct its
stationary error.

When there is an obstacle, we can observe the current is a little bit higher
because is trying to get into this position. What’s more, there are pulses because
it tries to reach the position, stops, tries again and so on periodically until it
reaches the target.

Figure 30. Current that goes through the servomotor when there is no
obstacle.

Figure 31. Current that goes through the servomotor when there is an obstacle.

 43

First, the maximum value is practically the same when there is an obstacle or not,
therefore it is difficult to differentiate both. It is quite noisy with many peaks;
therefore, we will apply a filter integrating the current with respect to time.
Because of this, we now get the electric charge, not the current.

Thanks to the integration, the magnitude is significantly different when there
is an obstacle or not. Helping us to differentiate each case.

Figure 32. Filter of the current, without obstacle.

Figure 33. Electric Charge when there is an obstacle.

 44

6.2. Average current measurement
In this part we will properly measure the average torque, according to the
previous experimental results, a possible method could be to integrate first the
measured current and then derivate to extract the slope representing a
proportional measure of the average torque.

Comparing both graphs, when integrating the current, what we are doing is
accumulating the values of the current. For this reason, as before, when there is
an obstacle, its magnitude is greater because it needs more current to overcome
the force it is facing. When there is no obstacle, it needs less current, only the
necessary to reach the desired position at maximum speed.

After that, we perform the derivative to obtain which is the maximum force applied
on the tissue or surface.

Figure 34. Integration of the current when there is no obstacle.

Figure 35. Integration of the current when there is an obstacle.

 45

When there is an obstacle, we observe the value of the slope of the integrated
function previously seen. When the value is increasing, it means that it’s
increasing its force to move the servomotor and arrive at the desired position.
Comparing the graph of the obstacle without the obstacle, the difference is
magnitude and plateau. As we have been mentioning, when there is an obstacle,
it needs more current to overcome that obstacle. Increasing its value until it
arrives to its maximum, the plateau, moment in which it is showing us that it is
applying a lot of force on the tissue or obstacle in question. These values
represent well the exerted force and will be used as threshold.

Figure 36. Derivative of the integrated current when there is no
obstacle.

Figure 37. Derivative of the integrated current when there is an
obstacle.

 46

7. EXECUTION PLAN
In this section the phases and the time of each part are presented. Including the
paths that we have followed to obtain the objectives of the project.

7.1. Work Breakdown Structure (WBS)
Work Breakdown Structure is a tool that divide the project in smaller tasks to
obtain more productivity and manageable. This WBS is created to define the
different steps and assignments to develop the project.

7.2. Program Evaluation and Review Techniques (PERT)
The PART diagram is a representation of the tasks made in a project, and the
different connection and dependencies between each one. The following table
shows the different activities defined in WBS, its duration and connection
between them.
Activity Identifier Duration

(weeks)
Previous
activities

Following
Activities

1.1 Definition of objectives A 1 - B
1.2. Background and market
analysis B 2 A C -D

2.1 Arduino codes
implementation C 2 B E

2.2. RoboDK codes
simulation and
implementation

D 2 B F

3.1 Prototype construction
of master and slave E 2 C G

3.2. 3D pieces F 3 D G
4.1 Rotation and torque
reading of the 4 servos G 2 E - F H - I

Figure 38. Work Breakdown Structure of the project.

 47

4.2. Movement and torque
reading of the EndoWrist
and UR5e according to
master

H 3 G K

4.3. Haptic feedback I 3 G J
5.1. Implementation on
UR5e J 2 I K

5.2. Results visualization
and interpretation K 2 H - J L

5.3. Conclusions L 1 K N
6.1 Drafting of the project M During all

project - -

6.2. Oral presentation N 2 L -

Considering the information on the diagram, we perform the representation of the
PERT. On each node we have on the left the ‘Early Time’, which is the minimum
time needed to reach a node, and on the right, the ‘Late Time’ that is the
maximum time it can take to reach a knot without delaying the project. The purple
lines will determine the critical path, where there is the minimum time to perform
the project.

7.3. GANTT diagram
A GANTT chart is used in a project management to represent the activities carried
out with respect to the time spent. On the first column it is shown the identifier of
each activity, which are defined on the PERT. Each activity is displayed on a row
and the bars in each row represent the duration of the activity.

Table 10. PERT diagram table.

Figure 39. PERT diagram representation.

 48

	
	 	

Figure 40. GANTT project diagram.

 49

8. TECHNICAL VIABILITY
In this section, an analysis was performed to determine the technical feasibility of
the project. To execute this analysis, we have done a SWOT, presenting the
strengths, weaknesses, opportunities, and threats.

8.1. SWOT analysis
Performing and internal and external analysis of the project, the best advantages,
opportunities and the project lacks and threats are presented on this strategic
planning and management technique.
 Helpful

to achieving the objective
Harmful

to achieving the objective

In
te

rn
al

Fa

ct
or

s Strengths
• Calculation of the force

applied
• Low-cost

Weaknesses
• Small delay
• Not knowing the direction

where it is exceeding force

E
xt

er
na

l
Fa

ct
or

s

Opportunities
• Implementation on

different robotic arms
• Increase in minimally

invasive surgeries

Threats
• Solution search by different

companies
• Emerging technology

Strengths
The positives aspects of this project are that we have implemented an haptic
feedback system with cheap components. The integral of the current and its
subsequent derivation gives us a value that represents quite accurately the force
that we are applying to it. What’s more, the UR5e robot can be controlled just by
a pen user interface that provides different types of movements.

Opportunities
This area is emerging because there is no real solution on the market for this
problem. Meaning, that different companies and sectors are interested in
obtaining a solution to this problem and would be willing to finance a real solution
to this.
What’s more, the minimally invasive surgery is being imposed on traditional
surgery, which further increases the need to find a way to solve this problem.

Weaknesses
The transmission of data between the different components means that there is
a small delay between the moment we execute the movement with the pen, and
the subsequent execution in the UR5e.
Furthermore, the haptic feedback system can be improved. Although the way of
measuring the force is the correct one, the different haptic stimulus on the pen
doesn’t provide a sense of the direction where we apply the force. The sound and
vibration are proportional to the applied force, but if we closed our eyes we would
not know in which area is where we are damaging the tissue.

Table 11. SWOT table.

 50

Threats
We have commented that the need to find a solution is increasing. Although this
is an opportunity, it also increases the risk of threat as different companies are
also looking for ways to solve this problem. So, there is quite a bit of direct
competition.

 51

9. ECONOMIC FEASIBILITY
In this section we are going to calculate the total cost of the project. Considering
the software programs, this has not involved any cost because many of them
were free or we obtained a free license thanks to being university students.
However, an important part of the budget has been allocated to hardware
components and the hours dedicated from the student and the director of the
project. Regarding this topic, in the ‘Boletín Oficial del Estado – Ministerio de
Trabajo, migraciones y seguridad social’ [54], it is defined the minimum salary for
a junior and senior biomedical engineer, 20€/h and 30€/h, respectively. As it is
defined on the teaching level, the student must devote about 300 hours to the
project, and about 100 hours have been considered for the director. What’s more,
PCB boards made by my partner are also considered in the budget.

Concept Units Unit Price Total Cost
SOFTWARE

Arduino 1 Free 0€
RoboDK 1 Free 0€
Python 1 Free 0€

FreeCAD 1 Free 0€
HARDWARE

UR5e robot 1 30.851€ 30.851€
EndoWrist 1 4500€ 4.500€

IMU MPU-9250 1 12,22€ 12,22€
ESP32 board 3 25€ 75€
Servomotors

Sunfounder SF
180M

4 13€ 52€

Buzzer HW-508 1 3€ 3€
Vibration Motor
PWM Vibration
Motor Module

1 5,9 € 5,9 €

Push Button
COM 00097 3 0,32 € 0,96€

Computer 1 1000€ 1000€
PCB

SERVOMOTORS 1 12,01€ 12,01€

PCB IMU 1 13,69€ 13,69€
PROJECT DEVELOPMENT

Student 1 20€/h 6.000€
Director 1 30€/h 3.000€

 52

TOTAL 45.525,78€

In the table above, we can observe the total cost of the project. Around 75% of
the budget is destined to the robotic arm and EndoWrist. For this reason, this
robot is chosen since it is present in the laboratory and buying a new one would
mean an extra cost.

Table 12. Final Degree Project Cost

 53

10. REGULATIONS AND LEGAL ASPECTS
Robotics in healthcare presents an important number of potential benefits;
however, there are several risks that needs to be considered by the manufacturer
and supplier. Specific regulatory frameworks have been developed to ensure
efficacy and safety for the patient. In the regulatory framework, robot will need to
fulfill some standard to be approved by FDA and Conformité Européene.
FDA (Food and Drug Administration) regulates devices to provide reasonable
assurance of their safety and effectiveness for their intended uses. It categorizes
and classify the different medical products based on the invasiveness and risk to
the patient. We must highlight that FDA neither provide accreditation nor training
for physician. The implementation of training is responsibility of the own
physician, manufacturer, and healthcare facilities. FDA also provides another
way to categorize, regarding the software used in the medical device. If the
software is integrated on the medical device, it would be approved in the same
classification as the product. If not, it could be approved separately and have a
different classification.
In the case of European regulations, all robots will go through Conformité
Européene (CE) Mark certification under the European Medical Devices
Directive. If the products are approved, the letters “CE” will appear; meaning that
the product sold on the European Economic Area fulfill high safety, health, and
environmental protection requirements.
Standardization is the process of implementing several technical bases on the
consensus of different parties, that need to be fulfilled for the subsequent
commercialization of the product. In this section we find ISO and IEC safety
standards. ISO establish a management system to address controls on quality
and security management. On the other hand, IEC are international standards
grouping electrical, electronic, and related technologies. One of the regulations
stablished by IEC is 80601-2-77:2019. It is the standard for medical electrical
equipment that is applied to the basic safety and essential performance for
robotically assisted surgical equipment and systems. It covers the issues related
to robot movement, electrical and other functional connections; and related to the
effect of unintended collision with other objects [55].
What’s more, it is a Final Degree Project, which means that must follow the
regulations described on “Normes generals reguladores dels treballs de fi de grau
de la Universitat de Barcelona”, specifically those referred to the degree of
Biomedical Engineering.

10.1. Hardware of medical devices
Medical device is a product, as can be an instrument, machine, or implant, this is
used for diagnosis, prevention, and treatment of diseases. According to this
definition, we can include surgical robots on this group [56]. Some regulations
regarding to the safety and quality are:

• ISO 13485:2016: Manage quality throughout the life cycle of a medical
device. It involves the design, production, installation and servicing of
medical devices and related services.

• ISO 14971:2019: It specifies the process for risk management of medical
devices. This standard focuses on processes to identify and evaluate risks
associated to the medical device and implement risk controls.

• ISO 11135:2014: Required for the development, validation, and routine
control of sterilization process for medical devices. It specifies the symbols

 54

that medical device manufacturers will use to show the information based
on sterilization processes.

• ISO 10993-1:2018: Biological evaluation of medical devices. The standard
is applied for devices that have direct or indirect contact with a patient and
it defines the principles of the biological evaluation of the medical device
in a range of risk management framework.

10.2. Software of medical devices
As we have mentioned, the medical devices incorporated a software which,
indeed, also needs a regulation and be within a legal framework [57]. Some
regulations applied to the software of the medical device are the following ones:

• IEC 62304:2015: it set downs a system for the processes and activities
that can happen through the lifecycle of the medical device software. The
standard defines the lifecycle for Software as a Medical Device (SaMD).

• IEC 80002-1:2009: it offers a guidance to correctly apply the conditions of
ISO 19741. The technical report helps to understand the professionals
which requirements are needed to complete ISO 14971.

 55

11. CONCLUSIONS
The main objective of this project was created haptic feedback system using a
UR5e robot and a real EndoWrist tool. For that we divided the project on 3
components, the pen user interface, EndoWrist maneuverability and
Communication and supervision module. For the first two we have had to create
different PCB boards with the necessary components to meet the objective. For
this project, we have learned how the different robotics arms works and how to
implement haptic feedback system.

Here we will discuss the fulfillment of the initial objectives proposed and some
recommendations and improvements for future implementations.

11.1. Objectives fulfillment
We have achieved the transmission of the roll, pitch and yaw values to the
servomotor and to the UR5e robot via WIFI. The wireless communication
between the three main components has been executed correctly thanks to the
ESP32.

What’s more, we have performed the three desired movements. In the first case,
we have rotated the gears of the EndoWrist moving the servomotors according
to the motion of the surgeon-hand. However, the printed pieces were separated
in two. To join them, it has been done with double-sided adhesive, which when a
force is applied on the end-effector of the EndoWrist, makes it move a little. We
have found that many times the pieces separated or did not stay together enough
because the adhesive did not hold up as necessary. This has affected the
movement of the gripper which is not executed perfectly imitating the movements
of the surgeon.

The second one motion was the raising and lowering of the EndoWrist, mimicking
the entry and exit of the orifice on the patient. First, it didn't move very smoothly
and made very sudden stops. By lowering the range that had to move each time
the button was pressed, we have achieved a very fluid movement that is
performed perfectly.

The last movement, regarding to the motion of the UR5e change the orientation
of the tool considering the end-effector of the EndoWrist as fixed position. At the
beginning, we were unable to perform this move because the functions used were
the wrong ones. Finally, making sure that there is no collision between the
different links and knowing the reference axis on which to rotate, the movement
is carried out correctly. However, we have to move the pen very smoothly,
otherwise it will make a very sudden movement. Thanks to the collision limits,
you will never get into a very awkward position.

Another achievement has been obtained the force that is exerted on the tissue
by integrating and then deriving the current received from the servomotors. It is
a parameter that shows how much tension we are applying on the tissue, and it
increases or decreases depending on the force applied. In addition, the correct

 56

design of the anchoring pieces, both EndoWrist and of the servomotor, have been
necessary to be able to carry out this measurement. Also including the design of
the EndoWrist and its casing, so that the simulation was as close as possible to
the real world.

11.2. Future improvements
On the other hand, different implementations have not been fulfilled as expected.
The transmission of data between the different components has caused a small
delay of around 1 second when executing rotations and movements. It limits us
a little the correct operation and avoids 100% comfort when executing the
movements. However, in the future it could be reduced by changing the delay
functions present in the code by millis.

Apart from that, the printed pieces were separated in two. To join them, it has
been done with double-sided adhesive, which when a force is applied on the end-
effector of the EndoWrist, makes it move a little. Ideally, each element would be
created in 3D printing in one piece, without the need to use adhesive.

What’s more, an easier anchorage between the UR5e robot, EndoWrist and
servomotors than the current one. If one of the pieces separates, we have to
remove and separate all the devices by removing the screws that hold them. An
idea that would facilitate this would be the union of an iron in one of the ends and
separate the components by an opening that will simulate the opening of a mouth.
In this way we reduce the screws to remove and the time it takes.

Finally, the vibration exerted on the pen user interface is proportional to the
applied force but does not offer a sense of the direction in which this tension is
exerted.

11.3. Personal conclusions
Related to personal conclusions, this project has been a great opportunity for me
to improve my skills in programming and 3D design, among other features. The
chance to work with another student it helped me improve my group work and
learn about its branch, in addition to knowing firsthand that there is a lot of
interdisciplinarity in research groups.

 57

12. REFERENCES
[1] Minimally Invasive Surgery. (2019, 25 noviembre). Yale Medicine.
https://www.yalemedicine.org/conditions/minimally-invasive-surgery
https://www.yalemedicine.org/conditions/minimally-invasive-surgery
[2] Siddaiah-Subramanya, M., Tiang, K. W., & Nyandowe, M. (2017). A New Era
of Minimally Invasive Surgery: Progress and Development of Major Technical
Innovations in General Surgery Over the Last Decade. Surgery journal (New
York, N.Y.), 3(4), e163–e166. https://doi.org/10.1055/s-0037-1608651.
[3] Mohiuddin K, Swanson SJ. Maximizing the benefit of minimally invasive
surgery. J Surg Oncol. 2013 Oct;108(5):315-9. doi: 10.1002/jso.23398. Epub
2013 Aug 23. PMID: 24037974. https://pubmed.ncbi.nlm.nih.gov/24037974/
[4] Lanfranco, A. R., Castellanos, A. E., Desai, J. P., & Meyers, W. C. (2004).
Robotic surgery: a current perspective. Annals of surgery, 239(1), 14–21.
https://doi.org/10.1097/01.sla.0000103020.19595.7d
[5] Ngu, J. C., Tsang, C. B., & Koh, D. C. (2017). The da Vinci Xi: a review of its
capabilities, versatility, and potential role in robotic colorectal surgery. Robotic
surgery (Auckland), 4, 77–85. https://doi.org/10.2147/RSRR.S119317
[6] Lane T. (2018). A short history of robotic surgery. Annals of the Royal College
of Surgeons of England, 100(6_sup), 5–7.
https://doi.org/10.1308/rcsann.supp1.5
[7] C. Martínez-Ramos (2007). Cirugía robótica (I): origen y evolución.
http://www.asecma.org/Documentos/Articulos/AE%201_3.pdf
[8] Valero, R. (2011). Cirugía robótica: Historia e impacto en la enseñanza.
SciELO. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0210-
48062011000900006
[9] George, E. I., Brand, T. C., LaPorta, A., Marescaux, J., & Satava, R. M. (2018).
Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS : Journal
of the Society of Laparoendoscopic Surgeons, 22(4), e2018.00039.
https://doi.org/10.4293/JSLS.2018.00039
[10] INTUITIVE. Robotic-assisted surgery as a minimally invasive option.
https://www.davincisurgery.com
[11] Michael E. Moran (2007). The da Vinci Robot. Epochs in Endourology—
Sakti Das, M.D., Section Editor. https://doi.org/10.1089/end.2006.20.986
[12] Mahdi Azizian, May Liu, Iman Khalaji, and Simon DiMaio. “THE DA VINCI
SURGICAL SYSTEM” in Intuitive Surgical, Inc. 1020 Kifer Road, Sunnyvale,
CA, USA.
https://www.worldscientific.com/doi/pdf/10.1142/9789813232266_0001
[13] Abex. (2019). Abex. https://www.abexsl.es/en/da-vinci-robotic-system/da-

vinci-xi
[14] Kapoor, S., Arora, P., Kapoor, V., Jayachandran, M., & Tiwari, M. (2014).
Haptics - touchfeedback technology widening the horizon of medicine. Journal
of clinical and diagnostic research : JCDR, 8(3), 294–299.
https://doi.org/10.7860/JCDR/2014/7814.4191

 58

[15] Okamura A. M. (2009). Haptic feedback in robot-assisted minimally
invasive surgery. Current opinion in urology, 19(1), 102–107.
https://doi.org/10.1097/MOU.0b013e32831a478c
[16] Ashrafian H, Clancy O, Grover V, Darzi A. The evolution of robotic surgery:
surgical and anaesthetic aspects. Br J Anaesth. 2017 Dec 1;119(suppl_1):i72-
i84. doi: 10.1093/bja/aex383. PMID: 29161400.
[17] C. Faria, W. Erlhagen, M. Rito, E. De Momi, G. Ferrigno and E. Bicho,
"Review of Robotic Technology for Stereotactic Neurosurgery," in IEEE Reviews
in Biomedical Engineering, vol. 8, pp. 125-137, 2015, doi:
10.1109/RBME.2015.2428305. https://pubmed.ncbi.nlm.nih.gov/25955851/
[18] Visconti TAC, Otoch JP, Artifon ELA. Robotic endoscopy. A review of the
literature. Acta Cir Bras. 2020;35(2):e202000206. doi:10.1590/s0102-
865020200020000006 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184939/
[19] Kent, C. (2022, 3 marzo). Robotic surgery: a race to the top. Medical Device
Network. https://www.medicaldevice-network.com/analysis/da-vinci-surgical-
robot-competitors/
[20] Soler, E. (2020, 27 mayo). Global R+D trends in Surgical Robotics. I3PT
Parc Taulí. https://www.tauli.cat/institut/actualitat/vigilancia-
tecnologica/2020/05/glaboal-rd-trends-in-surgical-robotics/
[21] Sistema de Cirugía Robótica Asistida HugoTM | Medtronic (CL). (2020).
Medtronic. https://www.medtronic.com/covidien/es-cl/robotic-assisted-
surgery/hugo-ras-system.html
[22] Minimal access. Maximum gain. (2021). CMR Surgical.
https://cmrsurgical.com/versius
[23] Understanding the Benefits of the ROSA® Surgical Robot: Metro
Orthopedics & Sports Therapy: Orthopedic Surgeons. (2021). ROSA Surgical
Robot. https://www.mostsportsmedicine.com/blog/understanding-the-benefits-
of-the-rosa-surgical-robot
[24] M. (2020). Spine & Orthopaedic Products - Mazor X Steath Edition.
Medtronic. https://www.medtronic.com/us-en/healthcare-
professionals/products/spinal-orthopaedic/spine-robotics/mazor-x-stealth-
edition.html
[25] Robotic Endoscopy. (2021). Auris Health. https://www.aurishealth.com
[26] Pietrabissa, A. (2013, 1 febrero). Robotic Surgery: Current Controversies
and Future Expectations | Cirugía Española (English Edition). ElSevier.
https://www.elsevier.es/en-revista-cirugia-espanola-english-edition--436-
articulo-robotic-surgery-current-controversies-future-S2173507713000379
 [27] Pricing and Licensing. (2019). MATLAB & Simulink.
https://es.mathworks.com/pricing-licensing.html
[28] Seleccione su edición de LabVIEW. (2020). NI. https://www.ni.com/es-
es/shop/labview/select-edition.html
[29] What is Arduino? (2018). Arduino.
https://www.arduino.cc/en/Guide/Introduction/
[30] ¿Qué es LabVIEW? Programación gráfica para pruebas y medidas. (2018).
NI. https://www.ni.com/es-es/shop/labview.html

 59

[31] ROS: Home. (2018). ROS. https://www.ros.org
[32] What Is MATLAB? (2018). MATLAB & Simulink.
https://es.mathworks.com/discovery/what-is-matlab.html
[33] Welcome to. (2022, 3 junio). Python.Org. https://www.python.org
[34] RoboDK. (2019). Simulator for industrial robots and offline programming.
https://robodk.com
 [35] SolidWorks Packages. (2019). GoEngineer.
https://www.goengineer.com/error/405
 [36] AutoCAD. (2020). AutoDesk.
https://www.autodesk.com/products/autocad/overview
[37] FreeCAD: Your own 3D parametric modeler. (2019). FreeCAD.
https://www.freecadweb.org
[38] SolidWorks. (2020). SolidWorks. https://www.solidworks.com
[39] Rosamond, Z. (2020, 28 octubre). What Is SolidWorks? – Simply Explained.
All3DP. https://all3dp.com/2/what-is-solidworks-simply-explained/
[40] Pauliková A, Gyurák Babeľová Z, Ubárová M. Analysis of the Impact of
Human-Cobot Collaborative Manufacturing Implementation on the Occupational
Health and Safety and the Quality Requirements. Int J Environ Res Public
Health. 2021;18(4):1927. Published 2021 Feb 17. doi:10.3390/ijerph18041927
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922989/
[41] Escalette, G. (2020). UR5 collaborative robot arm | Flexible and lightweight
cobot. UR5e. https://www.universal-robots.com/products/ur5-robot/
[42] WiredWorkers. (2022, 31 enero). Universal Robots UR5e | Tough, flexible
collaborative robot arm. https://wiredworkers.io/universal-robots-ur5e/
[43] Cobots – A Helping Hand to the Healthcare Industry. (2020). Universal
Robots. https://www.universal-robots.com/blog/cobots-a-helping-hand-to-the-
healthcare-industry/
[44] Mover4Axis. Robot Arm Mover. https://cpr-robots.com/wp-
content/uploads/2020/11/ProductSheet_Mover4_0510-06.pdf
[45] KUKA AG. (2021, 9 junio). About KUKA. https://www.kuka.com/en-
de/company/about-kuka
[46] KUKA AG. (2020, 16 julio). KR 360. https://www.kuka.com/en-
de/products/robot-systems/industrial-robots/kr-360-fortec
[47] Intuitive (2020). Da Vinci Instruments. https://www.intuitive.com/en-
gb/products-and-services/da-vinci/instruments
[48] Gastreich, W. (2022, 14 febrero). What is a Servo Motor?’ and How it Works
| RealPars. PLC Programming Courses for Beginners | RealPars.
https://realpars.com/servo-motor/
[49] Pao, C. (2019, 13 septiembre). The importance of IMU Motion Sensors -
CEVA’s Experts blog. CEVAâs Experts Blog. https://www.ceva-
dsp.com/ourblog/what-is-an-imu-sensor/

 60

[50] S. J. LEDERMAN. Haptic perception: A tutorial. Attention, Perception, &
Psychophysics 2009, 71 (7), 1439-1459.
https://link.springer.com/content/pdf/10.3758/APP.71.7.1439.pdf
[51] Yanghi Chen. Vibrator Motor (2013).
https://www.egr.msu.edu/classes/ece480/capstone/spring13/group05/download
s/Application%20Note-yangyi.pdf
[52] G. (2020a, diciembre 22). Introduction to Buzzers: Piezo and Magnetic
buzzers. Latest Open Tech From Seeed.
https://www.seeedstudio.com/blog/2020/12/22/introduction-to-buzzers-piezo-
and-magnetic-buzzers/
[53] What Is a Microcontroller? The Defining Characteristics and Architecture of
a Common Component - Technical Articles. (2019, 4 abril). All about Circuits.
https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-
introduction-component-characteristics-component/
[54] MINISTERIO DE TRABAJO, MIGRACIONES Y SEGURIDAD SOCIAL.
Boletín Oficial del Estado. https://www.boe.es/boe/dias/2019/03/01/pdfs/BOE-A-
2019-2956.pdf
[55] Kiyoyuki Chinzei (2019). Safety of Surgical Robots and IEC 80601-2-77: The
First International Standard for Surgical Robots. http://acta.uni-
obuda.hu/Chinzei_95.pdf
[56] Ultimate List of ISO Standards for Medical Devices. (2020). ISO List.
https://www.greenlight.guru/blog/iso-standards
[57] ISO 13485 MEDICAL DEVICES (2020). International Organization for
Standarization. https://www.iso.org/iso-13485-medical-devices.html
[58] Tholey, G., Desai, J. P., & Castellanos, A. E. (2005). Force feedback plays
a significant role in minimally invasive surgery: results and analysis. Annals of
surgery, 241(1), 102–109. https://doi.org/10.1097/01.sla.0000149301.60553.1e
[59] Lehman, A. C., Rentschler, M. E., Farritor, S. M., & Oleynikov, D. (2007). The
current state of miniature in vivo laparoscopic robotics. Journal of robotic
surgery, 1(1), 45–49. https://doi.org/10.1007/s11701-007-0019-9
[60] Li F, Leighton JA, Sharma VK. Capsule endoscopy: a comprehensive review.
Minerva Gastroenterol Dietol. 2007 Sep;53(3):257-72. PMID: 17912188.
[61] Smithers T. Autonomy in robots and other agents. Brain Cogn. 1997
Jun;34(1):88-106. doi: 10.1006/brcg.1997.0908. PMID: 9209757.

 61

13. APPENDIXES
13.1. Code of the pen user interface

The following code is the one performed on the pen user interface, where mainly
the values of roll, pitch and yaw are obtained, and the haptic feedback is executed
on it.
#include "src/RoboticsUB.h"
#include <esp_now.h>
#include <WiFi.h>

// MAC address of the slave that contains the servos
uint8_t servosMacAddress[] = {0x7c, 0x9e, 0xbd, 0x61, 0xa1, 0x34};

// MAC address of the slave that communicates with the Computer
uint8_t computerMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0xe2, 0x58};

//variables for the ESP32 led
#define LED 2
int brillo = 0;
const int ledfreq = 5000;
const int ledchannel = 0;
const int ledresolution = 10;

// variables for the buzzer
const int buzzfreq = 2000; //variable for frequency
const int buzzchannel = 1; //variable that determines the channel that generates
the signal
const int buzzresolution = 8;//PWM resolution
const int BUZZER = 18;// pin connected to buzzer
//variables for the vibrator
const int vibfreq = 2000; //variable for frequency
const int vibchannel = 2; //variable that determines the channel that generates
the signal
const int vibresolution = 8;// PWM resolution
const int VIBRATOR = 12;

//Declaration variables for IMU pins and buttons
const int PIN_IMU_INT = 35;
const int PIN_S1 = 15;
const int PIN_S2 = 4;
const int PIN_S3 = 5;

IMU imu;

// button state variables
int s1Status = HIGH;
int s2Status = HIGH;
int s3Status = HIGH;

//time variables for the current

 62

const unsigned long periodMillis_roll = 10;
unsigned long currentMillis_roll = 0;
unsigned long previousMillis_roll = 0;
const unsigned long periodMillis_pitch = 10;
unsigned long currentMillis_pitch = 0;
unsigned long previousMillis_pitch = 0;
const unsigned long periodMillis_yaw1 = 10;
unsigned long currentMillis_yaw1 = 0;
unsigned long previousMillis_yaw1 = 0;
const unsigned long periodMillis_yaw2 = 10;
unsigned long currentMillis_yaw2 = 0;
unsigned long previousMillis_yaw2 = 0;

//initially we are in the mode of working with the tip of the endowrist
int modo = 0;

// variable to store roll, pitch and yaw data
float *rpw;

// data structure that the master will send to the servos
typedef struct {
 float roll;
 float pitch;
 float yaw;
 int s1_pinzas;
 int s2_pinzas;
} TxMessage;

// structure type variable for the output data to the servos
TxMessage dataToServos;

// data structure that the master will send to the computer
typedef struct {
 float roll;
 float pitch;
 float yaw;
 float current_roll;
 float current_pitch;
 float current_yaw1;
 float current_yaw2;
 int s1_status;
 int s2_status;
 int modo;
} Tx2Message;

// structure type variable for output data to the computer
Tx2Message dataToComputer;

// data structure that the master will receive from the servos
typedef struct {

 63

 float current_roll;
 float current_pitch;
 float current_yaw1;
 float current_yaw2;
} RxMessage;

// structure type variable for the input data of the streams
RxMessage dataCurrent;

/*PROGRAM SETUP*/
void setup() {
 Serial.begin(115200);
 //configure the pins of the buttons and the imu as outputs
 pinMode(PIN_IMU_INT, INPUT_PULLUP);
 pinMode(PIN_S1, INPUT);
 pinMode(PIN_S2, INPUT);
 pinMode(PIN_S3, INPUT);

 //we configure the buzzer and the vibrator to assign them a PWM
 ledcSetup(vibchannel, vibfreq, vibresolution);
 ledcAttachPin(VIBRATOR, vibchannel);

 ledcSetup(buzzchannel, buzzfreq, buzzresolution);
 ledcAttachPin(BUZZER, buzzchannel);

 imu.Install();

 // We enable WiFi in station mode
 WiFi.mode(WIFI_STA);

 // check that the master is initialized correctly
 if (esp_now_init() != ESP_OK) {
 //Serial.println("Error initializing ESP-NOW (master)");
 return;
 }

 // We register the slave of the servos
 esp_now_peer_info_t peerInfo = {};
 memcpy(peerInfo.peer_addr, servosMacAddress, 6);
 peerInfo.channel = 0;
 peerInfo.encrypt = false;

 //we check that the slave of the servos has been added correctly
 if (esp_now_add_peer(&peerInfo) != ESP_OK) {
 //Serial.println("Failed to add servo slave");
 return;
 }

 //We configure the function to use each time a message is received

 64

 esp_now_register_recv_cb(OnDataRecv);

 // We register the slave computer
 esp_now_peer_info_t peerInfo_computer = {};
 memcpy(peerInfo_computer.peer_addr, computerMacAddress, 6);
 peerInfo_computer.channel = 1;
 peerInfo_computer.encrypt = false;

// check that the computer slave has been added correctly
 if (esp_now_add_peer(&peerInfo_computer) != ESP_OK) {
 //Serial.println("Failed to add computer slave");
 return;
 }

//initialize the led of ESP32
 pinMode(LED,OUTPUT);
 ledcSetup(ledchannel, ledfreq, ledresolution);
 ledcAttachPin(LED, ledchannel);
}

/*LOOP CONTINUOUS PLAY*/
void loop() {
 /*
 * READING IMU AND BUTTONS DATA
 */
 if (digitalRead(PIN_IMU_INT) == HIGH)
 {
 imu.ReadSensor(); //for each interruption of the imu we read the data it
provides us
 rpw = imu.GetRPW(); // store this data in our variable
 }

 //we read the states of the buttons (which we have initially forced to HIGH)
 s1Status = digitalRead(PIN_S1);
 s2Status = digitalRead(PIN_S2);
 s3Status = digitalRead(PIN_S3);
 delay(50);
 if (s3Status == LOW) {
 //initially we start moving the gripper (modo = 0)
 modo = modo + 1; //this variable controls if we want to move the gripper, the
z axis of the arm (1) or the entire arm (2)
 }else if (modo > 2){
 modo = 0;
 }

 /*
 * STORAGE OF DATA TO THE SLAVES
 */

 // data from the imu and streams to the computer

 65

 dataToComputer.current_roll = dataCurrent.current_roll;
 dataToComputer.current_pitch = dataCurrent.current_pitch;
 dataToComputer.current_yaw1 = dataCurrent.current_yaw1;
 dataToComputer.current_yaw2 = dataCurrent.current_yaw2;

//use of the buzzer and the vibrator according to the current that comes from the
slave
//Each one has its threshold
 if (dataCurrent.current_pitch > 70) { // current threshold by which the haptic
interface is activated
 currentMillis_pitch = millis();
 if (currentMillis_pitch - previousMillis_pitch >= 10) {
 ledcWriteTone(buzzchannel, 2000);
 ledcWriteTone(vibchannel, 125);
 //according to the measured current the vibrator and the buzzer will be
activated with more or less force
 // a multiplying factor is used to be able to activate them at the hardware level
ledcWrite(buzzchannel,dataCurrent.current_pitch*4);
 ledcWrite(vibchannel,dataCurrent.current_pitch*5);
 previousMillis_pitch = currentMillis_pitch;
 }
 if (dataCurrent.current_roll > 70) { // current threshold by which the haptic
interface is activated
 currentMillis_pitch = millis();
 if (currentMillis_roll - previousMillis_roll >= 10) {
 ledcWriteTone(buzzchannel, 2000);
 ledcWriteTone(vibchannel, 125);
 //according to the measured current the vibrator and the buzzer will be
activated with more or less force
 // a multiplying factor is used to be able to activate them at the hardware level
 ledcWrite(buzzchannel,dataCurrent.current_roll*4);
 ledcWrite(vibchannel,dataCurrent.current_roll*100);
 previousMillis_roll = currentMillis_roll;
 }
 else if (dataCurrent.current_pitch < 70 && dataCurrent.current_roll < 6 &&
dataCurrent.current_yaw1 < 15 && dataCurrent.current_yaw2 < 15){
 ledcWriteTone(vibchannel,0);
 ledcWriteTone(buzzchannel,0);
 }
 haptic_interface(currentMillis_yaw1, previousMillis_yaw1,
dataCurrent.current_yaw1);
 haptic_interface(currentMillis_yaw2, previousMillis_yaw2,
dataCurrent.current_yaw2);

 Serial.print("Roll: ");
 Serial.println(dataCurrent.current_roll);
 Serial.print("Pitch: ");
 Serial.println(dataCurrent.current_pitch);
 Serial.print("Yaw: ");

 66

 Serial.println(dataCurrent.current_yaw1);
 Serial.print("Yaw2 current: ");
 Serial.println(dataCurrent.current_yaw2);

 // work mode decision algorithm
 if (modo == 0) {
 //if mode = 0 we move the gripper
 //we send the imu data (roll, pitch and yaw) and the real state of the buttons
to open or close to the servos
 // we send the mode to the computer and the buttons don't matter to me
because they won't do anything
 ledcWrite(ledchannel, 0);// esp32 led to visualize the change of mode

 dataToServos.roll = rpw[0];
 dataToServos.pitch = rpw[1];
 dataToServos.yaw = rpw[2];
 dataToServos.s1_pinzas = s1Status;
 dataToServos.s2_pinzas = s2Status;

 dataToComputer.roll = rpw[0];
 dataToComputer.pitch = rpw[1];
 dataToComputer.yaw = rpw[2];
 dataToComputer.s1_status = s1Status;
 dataToComputer.s2_status = s2Status;
 dataToComputer.modo = 0;

 } else if (modo == 1) {
 //if modo = 1 we move the arm in z axis
 //we send the data of the previous imu to the servos so that they remain still
and the buttons as if they were not pressed
 // to the computer we send the mode and the real state of the buttons to raise
or lower the position
 ledcWrite(ledchannel,102);// esp32 led to visualize the change of mode

 dataToServos.roll = dataToServos.roll;// we send the last stored data so that
the servos do not move
 dataToServos.pitch = dataToServos.pitch;
 dataToServos.yaw = dataToServos.yaw;
 dataToServos.s1_pinzas = HIGH; //we send high to the gripper servos so they
don't open or close
 dataToServos.s2_pinzas = HIGH;

 dataToComputer.roll = dataToComputer.roll;
 dataToComputer.pitch = dataToComputer.pitch;
 dataToComputer.yaw = dataToComputer.yaw;
 dataToComputer.s1_status = s1Status;
 dataToComputer.s2_status = s2Status;
 dataToComputer.modo = 1;

 } else if (modo == 2){

 67

 //if mode = 2 we move the arm in all axes
 //we send the data of the previous imu to the servos so that they remain still
and the buttons as if they were not pressed
 // we send the mode and the state of the buttons to the computer we don't
care
 ledcWrite(ledchannel,1024);

 dataToServos.roll = dataToServos.roll;// we send the last stored data so that
the servos do not move
 dataToServos.pitch = dataToServos.pitch;
 dataToServos.yaw = dataToServos.yaw;
 dataToServos.s1_pinzas = HIGH; // we send high to the gripper servos so that
they do not open or close
 dataToServos.s2_pinzas = HIGH;

 dataToComputer.roll = rpw[0];
 dataToComputer.pitch = rpw[1];
 dataToComputer.yaw = rpw[2];
 dataToComputer.s1_status = HIGH;
 dataToComputer.s2_status = HIGH;
 dataToComputer.modo = 2;
 }

 /*
 * SENDING DATA TO THE SLAVES
 */
 // we will send the data of the imu and the buttons to the slave of the servos
 esp_err_t data_servos = esp_now_send(servosMacAddress, (uint8_t *)
&dataToServos, sizeof(dataToServos));
 delay(10);

 // We also send the data to the computer
 esp_err_t data_computer = esp_now_send(computerMacAddress, (uint8_t *)
&dataToComputer, sizeof(dataToComputer));
 delay(10);

 /*Serial.print("Roll: ");
 Serial.println(dataToServos.roll);
 Serial.print("Roll current: ");
 Serial.println(dataCurrent.current_roll);
 Serial.print("Pitch: ");
 Serial.println(dataToServos.pitch);
 Serial.print("Pitch current: ");
 Serial.println(dataCurrent.current_pitch);
 Serial.print("Yaw: ");
 Serial.println(dataToServos.yaw);
 Serial.print("Yaw1 current: ");
 Serial.println(dataCurrent.current_yaw1);
 Serial.print("Yaw2 current: ");
 Serial.println(dataCurrent.current_yaw2);

 68

 Serial.print("MODO: ");
 Serial.println(modo);
 delay (10);*/

}

/* DECLARATION OF FUNCTIONS WE WILL USE*/
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
 /*
 We receive the data from the slave of the servos and we copy them in the
master
 */
 memcpy(&dataCurrent, incomingData, sizeof(dataCurrent));
 //memcpy(destination, source, size)
}

 void haptic_interface(unsigned long currentMillis, unsigned long previousMillis,
float current){
 if (current > 15) { // current threshold by which the haptic interface is activated
 currentMillis = millis();
 if (currentMillis - previousMillis >= 10) {
 ledcWriteTone(buzzchannel, 2000);
 ledcWriteTone(vibchannel, 125);
//according to the measured current the vibrator and the buzzer will be activated
with more or less force
 // a multiplying factor is used to be able to activate them at the hardware level
 ledcWrite(buzzchannel,current*4);
 ledcWrite(vibchannel,current*20);
 previousMillis = currentMillis;
 }
 }else if (dataCurrent.current_pitch < 15 && dataCurrent.current_roll < 15 &&
dataCurrent.current_yaw1 < 15 && dataCurrent.current_yaw2 < 15){
 ledcWriteTone(vibchannel,0);
 ledcWriteTone(buzzchannel,0);
 }
}

13.2. Code of the slave servomotors
The following code is the one performed on the EndoWrist maneuverability,
where mainly the servomotors are rotated while the force applied is calculated.
 #include <esp_now.h>
#include <WiFi.h>
#include "src/RoboticsUB.h"
#include <ESP32Servo.h>

// MAC address of the master

 69

uint8_t masterMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0x7e, 0x60};

// identification variables for servos
Servo servo_roll;
Servo servo_pitch;
Servo servo_yaw1;
Servo servo_yaw2;

// variable to store the read value
float NewValueRoll = 0; // variable to store the read value
float OldValueRoll = 0;
float roll=0;

float NewValuePitch=0;
float OldValuePitch=0;
float pitch=0;

float NewValueYaw=0;
float OldValueYaw=0;
float yaw=0;

//pin identification variables
/*ROLL*/
const int PIN_ANALOG_ROLL =36;
const int PIN_SIGNAL_ROLL =32;
/*PITCH*/
const int PIN_ANALOG_PITCH =39;
const int PIN_SIGNAL_PITCH =33;
/*YAW*/
const int PIN_ANALOG_YAW1 = 34;
const int PIN_SIGNAL_YAW1 = 25;
/*GRIPPER*/
const int PIN_ANALOG_YAW2 = 35;
const int PIN_SIGNAL_YAW2 = 27;

// constants for shunt resistors (they are all the same)
const float Rshunt = 1.6;

// variables to store the read data corresponding to the torque of the servos
float derivativeCurrent_roll=0;
float derivativeCurrent_pitch=0;
float derivativeCurrent_yaw1=0;
float derivativeCurrent_yaw2=0;

float previousfinal_roll=0;
float previousfinal_pitch=0;
float previousfinal_yaw1=0;
float previousfinal_yaw2=0;

float final_torque_roll=0;

 70

float final_torque_pitch=0;
float final_torque_yaw1=0;
float final_torque_yaw2=0;

// button state variables
int s1_status;
int s2_status;

// data structure to be sent by this slave
typedef struct {
 float current_roll;
 float current_pitch;
 float current_yaw1;
 float current_yaw2;
} TxMessage;

// structure type variable to send data
TxMessage dataServos;

// data structure that we will receive from the master
typedef struct {
 float roll;
 float pitch;
 float yaw;
 int s1_pinzas;
 int s2_pinzas;
} RxMessage;

// structure type variable to receive data
RxMessage dataPencil;

/*PROGRAM SETUP*/
void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);

 // we check that our slave is initialized well
 if (esp_now_init() != ESP_OK) {
 Serial.println("Error initializing ESP-NOW (slave)");
 return;
 }

 // We register the master
 esp_now_peer_info_t peerInfo = {};
 memcpy(peerInfo.peer_addr, masterMacAddress, 6);
 peerInfo.channel = 0;
 peerInfo.encrypt = false;

 // we check if the master could be added

 71

 if (esp_now_add_peer(&peerInfo) != ESP_OK) {
 Serial.println("Failed to add master");
 return;
 }

 esp_now_register_recv_cb(OnDataRecv);

 // we configure the PWM that feed the servos
 ESP32PWM::allocateTimer(0);
 ESP32PWM::allocateTimer(1);
 ESP32PWM::allocateTimer(2);
 ESP32PWM::allocateTimer(3);

 // we designate a frequency to the servos
 servo_roll.setPeriodHertz(50);
 servo_pitch.setPeriodHertz(50);
 servo_yaw1.setPeriodHertz(50);
 servo_yaw2.setPeriodHertz(50);

 // we assign the pins to each servo
 servo_roll.attach(PIN_SIGNAL_ROLL);
 servo_pitch.attach(PIN_SIGNAL_PITCH);
 servo_yaw1.attach(PIN_SIGNAL_YAW1);
 servo_yaw2.attach(PIN_SIGNAL_YAW2);

 // configure the analog pins of the servos as inputs
 pinMode(PIN_ANALOG_ROLL, INPUT);
 pinMode(PIN_ANALOG_PITCH, INPUT);
 pinMode(PIN_ANALOG_YAW1, INPUT);
 pinMode(PIN_ANALOG_YAW2, INPUT);

 // we start the servos in the central position (0º)
 servo_roll.write(90);
 servo_pitch.write(90);
 servo_yaw1.write(90);
 servo_yaw2.write(90);
 delay(2000);

}

/* LOOP CONTINUOUS PLAY*/
void loop() {
 // we start by sending the current data of the servos
 esp_err_t result = esp_now_send(masterMacAddress, (uint8_t *) &dataServos,
sizeof(dataServos));

 // We check that the data has been sent correctly
 if (result == ESP_OK) {
 //Serial.println("Sent with success");
 }

 72

 else {
 Serial.println("Error sending the data");
 }
 /*
 * we define the limits so that it does not move outside its range of movement
 * In addition, a protection is added to avoid sudden movements
 */
 NewValueRoll=dataPencil.roll;
 if (abs(NewValueRoll-OldValueRoll)>10 && abs(NewValueRoll-
OldValueRoll)<350) {
 roll=OldValueRoll;
 }else{
 roll=NewValueRoll;
 }
 OldValueRoll=roll;
 if (roll > 180 && roll < 270) {
 servo_roll.write(180);
 } else if (roll > 270 && roll < 360) {
 servo_roll.write(0);
 }else{
 servo_roll.write(roll);
 }

 NewValuePitch=dataPencil.pitch;
 if (abs(NewValuePitch-OldValuePitch)>10 && abs(NewValuePitch-
OldValuePitch)<350) {
 pitch=OldValuePitch;
 }else{
 pitch=NewValuePitch;
 }
 OldValuePitch=pitch;
 if (pitch > 0 && pitch < 90) {
 servo_pitch.write(pitch + 90);
 } else if (pitch > 270 && pitch < 360) {
 servo_pitch.write(pitch - 270);
 }else{
 servo_pitch.write(pitch);
 }

 NewValueYaw=dataPencil.yaw;
 if (abs(NewValueYaw-OldValueYaw)>10 && abs(NewValueYaw-
OldValueYaw)<350) {
 yaw=OldValueYaw;
 }else{
 yaw=NewValueYaw;
 }
 OldValueYaw=yaw;
 if (yaw > 180 && yaw < 270) {
 servo_yaw1.write(180);
 servo_yaw2.write(0);

 73

 } else if (yaw > 270 && yaw < 360) {
 servo_yaw1.write(0);
 servo_yaw2.write(180);
 }else{
 servo_yaw1.write(yaw);
 servo_yaw2.write(180 - yaw);
 }
 /*Serial.print("Roll:");
 Serial.println(roll);
 Serial.println(dataPencil.roll);
 Serial.print("pitch:");
 Serial.println(pitch);
 Serial.println(dataPencil.pitch);
 Serial.print("yaw:");
 Serial.println(yaw);
 Serial.println(dataPencil.yaw);*/

 // open and close clamps
 if (dataPencil.s1_pinzas == LOW || dataPencil.s2_pinzas == LOW) {
 if(yaw < 90){
 servo_yaw2.write(180 - yaw-30);
 delay(500);
 servo_yaw2.write(180 - yaw);
 }
 }
 if (dataPencil.s1_pinzas == LOW || dataPencil.s1_pinzas == LOW) {
 if(yaw > 90){
 servo_yaw1.write(yaw-30);
 delay(500);
 servo_yaw1.write(yaw);
 }
 }

/*
 * It is calculated by means of the shunt resistance and the derivative of the
current consumed by each servo
 * this way you can have the idea of the force that is being done at the moment
 */
 derivativeCurrent_roll = getDerivative(final_torque_roll, PIN_ANALOG_ROLL,
previousfinal_roll);
 derivativeCurrent_pitch = getDerivative(final_torque_pitch,
PIN_ANALOG_PITCH, previousfinal_pitch);
 derivativeCurrent_yaw1 = getDerivative(final_torque_yaw1,
PIN_ANALOG_YAW1, previousfinal_yaw1);
 derivativeCurrent_yaw2 = getDerivative(final_torque_yaw2,
PIN_ANALOG_YAW2, previousfinal_yaw2);

 Serial.println(dataPencil.roll);
 Serial.println(roll);
 Serial.println(pitch);

 74

 Serial.println(yaw);
 // we send the current data to the master
 dataServos.current_roll = derivativeCurrent_roll;
 dataServos.current_pitch = derivativeCurrent_pitch;
 dataServos.current_yaw1 = derivativeCurrent_yaw1;
 dataServos.current_yaw2 = derivativeCurrent_yaw2;

 //Serial.println(torque_roll,DEC);
 //Serial.println(final_torque_roll,DEC);
 //Serial.println(derivativeCurrent_roll,DEC);

 delay(10);
}

/*
*DECLARATION OF RECURSIVE FUNCTIONS
 */
void OnDataRecv(const uint8_t *mac, const uint8_t *incomingData, int len) {
 // We get the data from the master and we copy it to the slave
 memcpy(&dataPencil, incomingData, sizeof(dataPencil));
 //memcpy(destination, source, size)
}

float getDerivative(float final_torque, int analog, float previous){
 float torque;
 float derivative;
 torque = getCurrent(20, analog);
 final_torque = final_torque + torque;
 derivative = abs(final_torque - previous);
 previous = final_torque;

 return derivative;
}

float getCurrent(uint32_t integrationTimeMs, int servo) {
 // we read the ADC where the shunt is connected to obtain the current
 //once we have the reading, we convert the ADC data to be able to apply V/R
 uint32_t startTime = millis();
 float integratedCurrent = 0;

 // We are adding the current measurement during the fixed time ->
integrationTimeMs (in milliseconds)
 while (millis() < startTime + integrationTimeMs) {
 uint16_t adcValue = analogRead(servo);
 integratedCurrent = integratedCurrent + ((float)adcValue / 4095.0 * 3.3) /
Rshunt;
 }
 return integratedCurrent;

 75

}

13.3. Code of the computer
The following code is that the take all the data generated in the master and
servomotors, used in the simulation.

#include <esp_now.h>
#include <WiFi.h>
#include "src/RoboticsUB.h"
#include <ESP32Servo.h>

enum class Command : byte
{
 GET_RPW = 1
};

Command command = Command::GET_RPW;

// MAC address of the master
uint8_t masterMacAddress[] = {0x7c, 0x9e, 0xbd, 0x66, 0x7e, 0x60};

// data structure received from the master
typedef struct {
 float roll;
 float pitch;
 float yaw;
 float current_roll;
 float current_pitch;
 float current_yaw1;
 float current_yaw2;
 int s1_status;
 int s2_status;
 int modo;
} RxMessage;

// structure type variable to store what comes from the master
RxMessage dataFromMaster;

/* PROGRAM SETUP*/
void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);

 if (esp_now_init() != ESP_OK) {
 Serial.println("Error initializing ESP-NOW (computer slave)");
 return;

 76

 }

 // We register the master
 esp_now_peer_info_t peerInfo = {};
 memcpy(peerInfo.peer_addr, masterMacAddress, 6);
 peerInfo.channel = 1;
 peerInfo.encrypt = false;

 // we check that the master has been registered correctly
 if (esp_now_add_peer(&peerInfo) != ESP_OK) {
 Serial.println("Failed to add master");
 return;
 }

 esp_now_register_recv_cb(OnDataRecv);

}

/* LOOP CONTINUOUS PLAY*/
void loop() {
 if (Serial.available() > 0)
 {
 command = (Command)Serial.read();
 switch (command)
 {
 case Command::GET_RPW:
 Serial.println(dataFromMaster.roll, DEC);
 Serial.println(dataFromMaster.pitch, DEC);
 Serial.println(dataFromMaster.yaw, DEC);
 Serial.println(dataFromMaster.current_roll, DEC);
 Serial.println(dataFromMaster.current_pitch, DEC);
 Serial.println(dataFromMaster.current_yaw1, DEC);
 Serial.println(dataFromMaster.current_yaw2, DEC);
 Serial.println(dataFromMaster.s1_status, DEC);
 Serial.println(dataFromMaster.s2_status, DEC);
 Serial.println(dataFromMaster.modo, DEC);
 break;
 }
 }

delay(10);
}

/*
 * DECLARATION OF RECURSIVE USE VARIABLES
 */
void OnDataRecv(const uint8_t * mac, const uint8_t *incomingData, int len) {
 /*
 We get the data from the master and we copy it to the slave
 */

 77

 memcpy(&dataFromMaster, incomingData, sizeof(dataFromMaster));
 //memcpy(destination, source, size)
}

13.4. Code for the assembly
The following code is to set up the EndoWrist with the servomotors, so that they
start and end in the same position, and thus the placement and assembly of these
each time they want to be used is easier.
#include <esp_now.h>
#include <WiFi.h>
#include "src/RoboticsUB.h"
#include <ESP32Servo.h>

// identification variables for servos
Servo servo_roll;
Servo servo_pitch;
Servo servo_yaw;
Servo servo_gripper;

// pin identification variables

/*ROLL*/
const int PIN_ANALOG_ROLL = 36;
const int PIN_SIGNAL_ROLL = 32;
/*PITCH*/
const int PIN_ANALOG_PITCH = 39;
const int PIN_SIGNAL_PITCH = 33;
/*YAW*/
const int PIN_ANALOG_YAW = 34;
const int PIN_SIGNAL_YAW = 25;
/*GRIPPER*/
const int PIN_ANALOG_GRIPPER = 35;
const int PIN_SIGNAL_GRIPPER = 27;
/*SHUNT*/
float Rshunt = 1.6;

/* DECLARATION OF THE FUNCTIONS TO BE USED*/
float getCurrent(uint32_t integrationTimeMs, int servo) {
 /*
 * we read the ADC where the shunt is connected to obtain the current
 * once we have the reading, we convert the ADC data to be able to apply V/R
 */ uint32_t startTime = millis();
 float integratedCurrent = 0;

 // We are adding the current measurement during the fixed time ->
integrationTimeMs (in milliseconds)
 while(millis()< startTime + integrationTimeMs) {
 uint16_t adcValue = analogRead(servo);
 integratedCurrent = integratedCurrent + ((float)adcValue/4095.0 * 3.3)/Rshunt;
 }

 78

 return integratedCurrent;
}

/*PROGRAM SETUP*/
void setup(){
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);

 // we check that our slave is initialized well
 if (esp_now_init() != ESP_OK) {
 Serial.println("Error initializing ESP-NOW (slave)");
 return;
 }

 // we configure the PWM that feed the servos
 ESP32PWM::allocateTimer(0);
 ESP32PWM::allocateTimer(1);
 ESP32PWM::allocateTimer(2);
 ESP32PWM::allocateTimer(3);

 // we designate a frequency to the servos
 servo_roll.setPeriodHertz(50);
 servo_pitch.setPeriodHertz(50);
 servo_yaw.setPeriodHertz(50);
 servo_gripper.setPeriodHertz(50);

 // we assign the pins to each servo
 servo_roll.attach(PIN_SIGNAL_ROLL);
 servo_pitch.attach(PIN_SIGNAL_PITCH);
 servo_yaw.attach(PIN_SIGNAL_YAW);
 servo_gripper.attach(PIN_SIGNAL_GRIPPER);

 // we start the servos to a fixed position
 servo_roll.write(90);
 delay(500);
 servo_pitch.write(90);
 delay(500);
 servo_yaw.write(90);
 delay(500);
 servo_gripper.write(90);
 delay(1000);

}

/*BUCLE DE REPRODUCCION CONTINUA*/
void loop(){

}

 79

13.5. Code for RoboDK
The following code is in charge of taking all the data that comes from the
computer and simulating the movements. Apart from sending and executing
these ones in the UR5e in real life.

import serial
import time
import math
from enum import Enum
import csv
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np

RoboDK API: import the robolink library (bridge with RoboDK)
from robolink import *
Robot toolbox: import the robodk library (robotics toolbox)
from robodk import *

--
Connection
--

Establish the connection on a specific port
arduino = serial.Serial('COM5', 115200, timeout=1)

Lets bring some time to the system to stablish the connetction
time.sleep(2)

Establish a link with the simulator
RDK = Robolink()

--
Simulator setup
--

Retrieve all items (object in the robodk tree)
Define the "robot" variable with our robot (UR5e)
robot = RDK.Item('UR5e')

Define the "tcp" variable with the TCP of Endowrist needle
tcp_tool = RDK.Item('endowrist-Compound')
gripper = RDK.Item('Gripper')

Performs a quick check to validate items defined
if robot.Valid():
 print('Robot selected: ' + robot.Name())
if tcp_tool.Valid():
 print('Tool selected: ' + tcp_tool.Name())

 80

Robot Flange with respect to UR5e base Frame
print('Robot POSE is: ' + repr(robot.Pose()))
Tool frame with respect to Robot Flange
print('Robot POSE is: ' + repr(robot.PoseTool()))
Tool frame with respect to Tool frame
print('TCP pose is: ' + repr(tcp_tool.Pose()))

robot.setSpeed(5)
Connection of the program with the UR5e
"""
RUN_ON_ROBOT = True

if RDK.RunMode() != RUNMODE_SIMULATE:
 RUN_ON_ROBOT = False
 print("Mode inici: " + str(RDK.RunMode()))

if RUN_ON_ROBOT:
 robot.setConnectionParams('192.168.1.5',30000,'/', 'anonymous','')# Update
connection parameters if required:

 success = robot.Connect('192.168.1.5') # Try to connect once
 status, status_msg = robot.ConnectedState()
 if status != ROBOTCOM_READY: # Stop if the connection did not succeed
 print(status_msg)
 raise Exception("Failed to connect: " + status_msg)

 # This will set to run the API programs on the robot and the simulator (online
programming)
 RDK.setRunMode(RUNMODE_RUN_ROBOT)

else:

 RDK.setRunMode(RUNMODE_SIMULATE) # This will run the API program
on the simulator (offline programming)

#print("Mode: " + str(RDK.RunMode()))

joints_ref = robot.Joints() #Get the current joint position of the robot (updates the
position on the robot simulator)
#print("Joints: " + str(joints_ref))
 """
--
Reference frame is fixed to TCP

Data comunication
--
#frame = RDK.ItemUserPick('Frame 2', ITEM_TYPE_FRAME)

class Command(Enum):

 81

 GET_RPW = b'\x01'

data_torque_roll = []
data_torque_pitch = []
data_torque_yaw1 = []
data_torque_yaw2 = []
point = 0
fig, ax = plt.subplots()
plt.ion()
maxlen = 400
x_lista = []
y_roll=[]
y_pitch=[]
y_yaw1 = []
y_yaw2 = []
try:

 # Discard initial ESP32 message
 arduino.reset_input_buffer()

 while True:

 # Requesting data to Ardino
 arduino.write(Command.GET_RPW.value)
 # Storing received data
 roll_str = arduino.readline().strip()
 pitch_str = arduino.readline().strip()
 yaw_str = arduino.readline().strip()
 torque0_str = arduino.readline().strip()
 torque1_str = arduino.readline().strip()
 torque2_str = arduino.readline().strip()
 torque3_str = arduino.readline().strip()
 s1_str = arduino.readline().strip()
 s2_str = arduino.readline().strip()
 modo_str = arduino.readline().strip()
 # Convert variable values from string to float/itn
 roll = float(roll_str)
 pitch = float(pitch_str)
 yaw = float(yaw_str)
 torque_roll = float(torque0_str)
 torque_pitch = float(torque1_str)
 torque_yaw1 = float(torque2_str)
 torque_yaw2 = float(torque3_str)
 s1_status = bool(int(s1_str))
 s2_status = bool(int(s2_str))
 modo = int(modo_str)

 # printing data on screen
 print(roll, pitch, yaw, torque_roll, torque_pitch, torque_yaw1, torque_yaw2,
s1_status, s2_status, modo)

 82

 # Take the values of the tool position
 tcp_tool_pose = tcp_tool.Pose()
 x, y, z, r, p, w = Pose_2_TxyzRxyz(tcp_tool_pose)

 # Take the values of the gripper position
 gripper_pose = gripper.Pose()
 xg, yg, zg, rg, pg, wg = Pose_2_TxyzRxyz(gripper_pose)

 # Take the values of the robot position
 robot_pose=robot.Pose()
 xr, yr, zr, rr, pr, wr = Pose_2_TxyzRxyz(robot_pose)

 # Convert from degrees to radians R,P,Y angles
 R = math.radians(roll)
 P = math.radians(pitch)
 W = math.radians(yaw)
 X = int(xg)
 Y = int(yg)
 Z = int(zg)
 Xr=int(xr)
 Yr=int(yr)
 Zr=int(zr)

 if modo == 0: #moving the gripper
 gripper_pose = transl(X,Y,Z) * rotx(pi) * rotz(W) * roty(P) * rotx(R) * roty(0)
 #tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix)
 gripper.setPose(gripper_pose)

 elif modo == 1: #moving through Z axis the robot
 #pose_matrix = transl(X,Y,Z) * rotz(-W) * roty(P) * rotx(-R)
 #tcp_tool_pose = tcp_tool.setPoseTool(pose_matrix)

 position=robot.Pose()
 xyzabc = Pose_2_KUKA(position)
 if not s1_status: #s1 button pressed, going up
 if ((float(xyzabc[2]) >50) & (float(xyzabc[2]) <500)): #upper limit
 approach = robot.Pose() * transl(0,0,1)
 robot.MoveL(approach, False)
 if (float(xyzabc[2]) <50): #lower limit
 (xyzabc[2])=51
 target=KUKA_2_Pose(xyzabc)
 robot.MoveL(target, False)
 elif not s2_status: #s2 button pressed, going down
 if ((float(xyzabc[2]) >50) & (float(xyzabc[2]) <500)): #upper limit
 approach = robot.Pose() * transl(0,0,-1)
 robot.MoveL(approach, False)
 if ((float(xyzabc[2]) >500)): #lower limit
 (xyzabc[2])=499
 target=KUKA_2_Pose(xyzabc)

 83

 robot.MoveL(target, False)

 elif modo == 2: #positioning the robot
 tcp_pose = transl(Xr,Yr,Zr) * rotz(W) * roty(P) * rotx (R)
 if robot.MoveL_Test(robot.Joints(),tcp_pose) == 0:
 robot.MoveL(tcp_pose)
 else:
 print('The robot cannot reach target because it is out of reach or causes
collision.')

 # exporting torques to an excel sheet
 data_r = [torque_roll]
 data_torque_roll = data_torque_roll + data_r
 data_p = [torque_pitch]
 data_torque_pitch = data_torque_pitch + data_p
 data_y1 = [torque_yaw1]
 data_torque_yaw1 = data_torque_yaw1 + data_y1
 data_y2 = [torque_yaw2]
 data_torque_yaw2 = data_torque_yaw2 + data_y2

 #Generating a real world plot of the torque values
 if torque_roll:
 data_roll = int(torque_roll)
 x_lista.append(point)
 y_roll.append(data_roll)
 data_pitch=int(torque_pitch)
 y_pitch.append(data_pitch)
 data_yaw1=int(torque_yaw1)
 y_yaw1.append(data_yaw1)
 data_yaw2=int(torque_yaw2)
 y_yaw2.append(data_yaw2)
 if len(x_lista) > maxlen:
 x_lista = x_lista[1:]
 y_roll = y_roll[1:]
 y_pitch = y_pitch[1:]
 y_yaw = y_yaw[1:]
 plt.plot(x_lista, y_roll, color='r')
 plt.plot(x_lista, y_pitch, color='b')
 plt.plot(x_lista, y_yaw1, color='g')
 plt.plot(x_lista, y_yaw2, color='y')
 point += 1
 plt.pause(0.05)

 ax.clear()
 fig.legend(["Roll",'Pitch','Yaw1','Yaw2'],loc = "upper left")
 plt.show()

 #Generate the excel with all the torque values generated
 with open('torque.csv', 'w') as csvfile:
 header = ['torque roll','torque pitch', 'torque yaw1', 'torque yaw2']

 84

 writer = csv.DictWriter(csvfile,fieldnames=header)
 writer.writeheader()
 for i in range(0,len(data_torque_pitch)):
 writer.writerow({'torque roll': data_torque_roll[i],
 'torque pitch': data_torque_pitch[i],
 'torque yaw1': data_torque_yaw1[i],
 'torque yaw2': data_torque_yaw2[i]})

except KeyboardInterrupt:
 print("Communication stopped.")
 pass

--
Disconnect Arduino
--
print("Disconnecting Arduino...")
arduino.close()

