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Abstract 

Infantile Epileptic Spasms Syndrome (IESS) is a severe infantile epilepsy that can progress into Lennox-Gastaut 
Syndrome (LGS), associated with intellectual problems, and psychiatric disorders. Early diagnosis and treatment 
of LGS may improve prognosis [1]. There is a need for biomarkers to monitor the progression of these children. 
Based on prior work [2], [3], we hypothesize that functional connectivity strength is a robust biomarker for the 
presence of these epilepsies. 

Five children diagnosed with IESS who progressed to LGS were included in this study. Functional connectivity 
networks were obtained by performing the statistical analysis of cross-correlation between electrode pairs [2]. 
The number of strong connections and the mean strength of the top 10% of connections were correlated to the 
disease state progression, response to treatment, and the child’s age at the time of the EEG.  

The number of strong connections and the mean connection strength gave approximately equivalent results. 
The connectivity strength was high at the time of IS and LGS diagnosis. Positive treatment outcome was 
associated with a decrease in strength, while an increase in strength reflected a worsening of the disease. 
Further, connectivity strength was not correlated to age, suggesting that these network changes are not due to 
age-related physiological changes. 

Functional connectivity strength reflected the presence of IS and LGS, as well as positive or negative response 
to treatment. Computational EEG analysis of functional connectivity could be applied in clinical practice to 
improve the prognosis of LGS patients. However, it is critical to extend this analysis to a larger cohort of subjects 
to increase its power and validate these results. 

Keywords: 

Electroencephalography, epilepsy, infantile spasms, Lennox-Gastaut syndrome, functional connectivity, brain-
mapping, resting-state network. 
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1. INTRODUCTION 

1.1. PROJECT SCOPE 

This research aims to evaluate the EEG-based functional connectivity of subjects during the 
progression from Infantile Epileptic Spasms Syndrome (IESS) to Lennox Gastaut Syndrome (LGS).  
 

From previous knowledge (which will be presented in the following sections of the project), we 
hypothesize that the diagnosis of LGS will be directly related to an increase in functional connectivity, 
which will decrease after the resolution of epileptic encephalopathy with treatment.  
 

This project has been carried out in the Laboratory of Computational and Translational 
Neuroscience of the Biomedical Engineering Department at the University of California Irvine, under 
the supervision of Dr. Lopour - associate professor at the Biomedical Engineering Department.  
 

The main two limitations of this project are time and data availability. On one hand, the time 
span for the development of the project is six months, which limits the scope of the project. Further, the 
data used for this research project was provided by the Children’s Hospital of Orange Country (CHOC). 
This data consists of ten patients which were diagnosed with IS and progressed to LGS. If we look at 
the demographic data of these pathologies, we can see that the incidence of ISs is around 0,035% for 
newborns [4], and this value decreases to 0,026% for LGS [5]. This explains the difficulty to gather data 
with the requirements needed for this research, which can difficult the process of drawing conclusions. 
 

Finally, it is important to remark that this project does not aim to develop a commercial 
automatized system based on a microprocessor able to analyze EEG signals as a point of care device. 
This project will only focus on the processing and understanding of EEG data outside of the daily clinical 
context.  
 

1.2. OBJECTIVES 

The final objective of this research project is to: 
 
 

 
 

 
 
To achieve the final goal, it is essential to accomplish several intermediate goals which are: 

o Preprocessing of the EEG data. Re-referencing, filtering, and artifact removal from EEG 
signals to increase the signal-to-noise ratio and ensure a correct interpretation of the data.  

o Computational analysis of the EEG data. Calculation of the neuronal network and 
measurement of the functional connectivity of each EEG signal.  

Evaluate the EEG-based functional connectivity of subjects during the progression from 
Infantile Spasms (IS) to Lennox Gastaut Syndrome (LGS). 
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o Determine the significance of the results. Application of statistical testing to estimate the 
significance of the results obtained. 

o Answer the initial question and test the hypothesis. Find a characteristic connectivity 
behavior potentially related to the progression from IS to LGS. 
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2. BACKGROUND 

2.1. CLINICAL BACKGROUND 

2.1.1. INFANTILE SPASMS SYNDROME 

Infantile spasms (IS) refer to a type of epileptic encephalopathy that can be detected in children 
younger than 1-year-old. This syndrome is associated with epileptic spasms occurring in clusters 
whose most characteristic EEG finding is hypsarrhythmia. The spasms are usually associated with 
neurodegenerative symptoms such as developmental arrest or regression. The incidence of ISs is 
around 2-5/10.000 newborns; the prevalence is approximately 1-2/10.000 children at the age of 10 
years; and the onset occurs at one year of life in 90% of cases with a male to female ratio of 6:4  [4].  
 

Infantile spasms are characterized by brief muscle contractions, which involve the neck, the 
trunk, and the extremities in a symmetric bilateral manner. Individual spasms usually last between 1 
and 5 seconds and are shown in clusters of 3-20 spasms which occur several times per day. Three 
different types of spasms can be differentiated using EEG video analysis: flexor, which results in jack-
knifing at the waist and a self-hugging motion from adduction of the arms; extensor, an extension of 
the neck, trunk, and extremities; and mixed flexor-extensor, which involves a combination of neck, 
trunk, arm flexion and leg extension, or leg flexion and arm extension [6]. 
 

Infantile spasms are characterized by an interictal EEG pattern called hypsarrhythmia (Figure 
1), which can be clearly differentiated from a normal EEG pattern in a healthy patient (Figure 3).  
Hypsarrhythmia was first defined by Gibbs and Gibbs [7] as asynchronous, non-rhythmic, and variable 
in duration and topography waves with a very high amplitude. The spikes consist of independent 
epileptiform discharges, which alternate between focal, multifocal, and generalized discharges at 
different points in time with a brief duration. Even though hypsarrhythmia assessment is the classic 
pattern used to diagnose this syndrome, it exhibits low interrater reliability for visually identifying the 
pattern and predicting future outcomes [8]. 

 

Figure 1: Hypsarrhythmia in a 4-month-old female infant with cryptogenic infantile spams. [6] 
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Due to the poor prognosis of infantile spasms, patients are usually treated aggressively after 
diagnosis, leading to serious side effects. There exists abundant literature about the treatment of 
infantile spasms. However, it is difficult for clinical trials to be reliable due to the ethical issues of 
performing placebo-controlled studies in kids and the uncontrolled clinical record of the disease. Some 
of the therapies that have been efficacious for infantile spasms are vigabatrin, adrenocorticotrophic 
hormone, prednisone, pyridoxine, or valproate [6]. 
 

Overall, patients with infantile spasms suffer from a poor outcome concerning chronic epilepsy, 
mental retardation, and other neurodevelopmental disabilities [6]. Around 70-90% of the patients suffer 
from mental retardation [9]. There is also a strong correlation between infantile spasms and Lennox-
Gastaut syndrome (LGS). Some patients with infantile spasms in early infancy later develop LGS [10]. 
Approximately 20-50% of patients with infantile spasms evolve into LGS [11]. 
 

2.1.2. LENNOX GASTAUT SYNDROME 

Lennox Gastaut Syndrome (LGS) is a severe childhood disorder characterized by 
encephalopathy and multiple seizure types [12]. LGS is defined by a triad of multiple drug-resistant 
seizure types, a specific electroencephalographic pattern with bursts of slow spike-wave (SSW) 
complexes or generalized paroxysmal fast activity (GPFA), and intellectual disability [13]. LGS 
prevalence is between 1 and 10% in patients with childhood epilepsies. For the diagnosis of LGS, the 
criteria are that the patient had onset of multiple seizure types before 11-year-old, with at least one 
seizure type resulting in falls, and an EEG with SSW complexes. LGS prevalence is estimated to be 
0.26/1000 at 10 years old. Finally, 91% of patients with LGS suffer from intellectual disabilities [13], 
[14]. Furthermore, 80-90% of onsets are around 8 years of life, and the male to female ratio is around 
1.55 [5], [15]. 
 

LGS patients are characterized for having profound deleterious effects on intellectual and 
psychosocial functions. About 20-60% of the patients show cognitive impairments at the time of 
diagnosis, which becomes more apparent over time. After 5 years of onset, 75-90% of patients have 
severe intellectual problems. Furthermore, many patients develop behavioral and psychiatric disorders 
such as attentional problems, aggression, and autistic features. Regarding seizures, the most abundant 
types in LGS are tonic and atypical absence seizures [16]. The second most abundant seizure type is 
atypical absences; epileptic drop attacks are particularly hazardous and occur in more than half of the 
patients, which could be the result of tonic, atonic, or even myoclonic seizures; about two-thirds of 
patients have episodes of nonconvulsive status epilepticus, prolonged atypical absences with varying 
degrees of altered consciousness periodically interrupted by brief tonic seizures [13].  
 

Lennox Gastaut is characterized by slow (<2.5 Hz) spike-and-wave (SSW) complexes with an 
abnormally slow background activity (Figure 2). The spikes are usually broad and around 70-200 
milliseconds [16]. Not every slow wave is preceded by a spike or sharp wave, and the bursts of SSW 
complexes may be remarkably irregular without an apparent onset and offset. During sleep, diffuse or 
bilateral fast (10-25 Hz) rhythm patterns can be recorded, which are called generalized paroxysmal 
fast activity (GPFA) (Figure 2). They last for a few seconds and are composed of brief identical and 
shorter intervals [13]. 
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Figure 2: Slow spike-waves (arrow) and generalized paroxysmal fast activity (box) in Lennox-Gastaut syndrome. [13] 

Usually, LGS patients suffer from seizures resistant to antiepileptic drugs. Therefore, the 
primary objective is to reduce in frequency the most incapacitating and injurious seizures like drop 
attacks and tonic-clonic seizures. Valproate is the first treatment of choice in patients with LGS, 
followed by topiramate, lamotrigine, or clobazam. There are other alternative agents such as 
cannabidiol, steroids, or intravenous immunoglobulin. Furthermore, the ketogenic diet is effective in 
children with LGS. It consists of a high-fat, low-protein, and low-carbohydrate diet which is thought to 
alter the fundamental biochemistry of neurons, reducing neuronal excitability. As previously mentioned, 
LGS is drug-resistant for most patients, which results in a poor prognosis despite the ongoing 
investigation into drug treatments. Therefore, brain surgery is the only option to control seizures, where 
seizure foci are removed successfully. This procedure is only possible when the epileptiform discharges 
come from the same brain area and are removable. However, resective brain surgery is rarely an option 
in patients with LGS, who often have a diffuse or multifocal brain abnormality [13]. 
 

For LGS patients, the long-term outcome is generally poor, and complete seizure freedom is 
usually not achieved. LGS is generally associated with long-term adverse effects on intellectual 
development, social functioning, and independent living, impacting facility members and caregivers. 
Timely diagnosis and appropriate treatments might result in improved outcomes and less costly 
management in patients affected with LGS. 
 

2.1.3. EEG SIGNAL 

2.1.3.1. EEG SIGNAL CHARACTERISTICS 

To study the encephalopathies described above, clinicians usually use the 
electroencephalography (EEG) signal. Therefore, it is essential to understand its meaning and the 
correlations with the behavior of the brain. 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
6 

 
The human brain has about 100 billion neurons, each of which has about 10,000 connections 

with other neurons. This active neuronal network can be divided into many subnetworks with ionic 
currents, which cause local extracellular potential changes. The superposition of these differences in 
potentials is named local field potential (LFP). The primary sources of LFP are synaptic transmissions 
and action potentials (APs), having a broad frequency spectrum up to several hundred Hertz. Synaptic 
transmissions are the source of low-frequency components, and APs the source of high-frequency 
components. If ohmic impedances and electric dipole sources are assumed, the contribution of a single 
source to the LFP decays with the square of the distance. Therefore, nearby sources contribute most, 
and contributions from distant sources are subject to strong attenuation. 
 

The electroencephalogram (EEG) (Figure 3) is the most common noninvasive method for 
recording brain activity, which measures the brain potentials using different types of electrodes located 
on the scalp of the patients. The signal recorded using scalp electrodes is a modified version of LFPs 
for two main reasons. First, as previously mentioned, since the electric field decays with the square of 
the distance from the source, the LFP is significantly attenuated when it reaches the scalp. In the 
second place, the volume conductance of the different tissues (brain, cerebral fluid, skull, and scalp) 
causes spatial smoothing of the signal. Due to this, scalp recording will only acquire signals from 
synchronous brain activity. The larger the synchronously active cell population, the higher the amplitude 
in the EEG. Therefore, it is crucial to consider that EEG oscillations recorded at the scalp only represent 
a subset of the electrical brain activity at a particular point in time [17]. 
 

 

Figure 3: Normal EEG for an awake 4 month old subject [18].  

2.1.3.2. SPONTANEOUS EEG 

The spontaneous EEG is the measurable part of brain activity that goes on permanently in the living 
individual. In a healthy waking brain, the peak-to-peak amplitude of the signal is under 75µV. 
Furthermore, an important portion of the signal power comes from rhythmic oscillations in a frequency 
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bandwidth from 1Hz to 40Hz. This wide frequency range is divided into different functional ranges 
associated to names [17] (Figure 4). 
 

o Gamma oscillations (30-100Hz): Associated with arousal and perceptual binding 
mechanisms. For instance, integration of various aspects of a stimulus into a coherent overall 
perception. 

o Beta oscillations (13-30 Hz): Related to different mental states like active concentration, task 
engagement, excitement, anxiety, attention, or vigilance, as well as sensorimotor activity. The 
amplitude is usually in the µV. 

o Alpha oscillations (8-13 Hz): Indicate state of relaxed wakefulness, they are also common 
during resting periods in which people have their eyes closed. The amplitude of these 
oscillations is typically large, up to several tens of µV. 

o Theta oscillations (4-8 Hz): associated with specific sleep states, or meditation. Also, it can 
be related to directed attention towards a specific stimulus.  

o Delta oscillations (below 1-4 Hz): deep and unconscious sleep in healthy humans.  

 

Figure 4: The five frequency bands of an EEG signal: gamma, beta, alpha, theta, and delta. [19]    

2.2. STATE OF THE ART 

2.2.1. COMPUTATIONAL ANALYSIS ON INFANTILE SPASMS 

To date, the diagnosis of infantile spasms (IS) is based on evaluating clinical events correlated 
to ictal EEG hypsarrhythmia pattern and spike quantification. A correct and early diagnosis of IS 
enables the prescription of first-line treatments, which is associated with a better prognosis of the 
disease [20]. Therefore, it is essential to rely on techniques that ensure a quantifiable and reliable IS 
diagnosis.  
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It has been shown that the hypsarrhythmia pattern may not be a reliable marker for diagnosis 

since it is not always present in IS patients and it has a low inter rater reliability (IRR) [8]. Two new 
approaches have been presented for IS diagnosis based on visual inspection (Appendix 1, Table 1). 
First, paroxysmal fast activity (PFAs) – events in the beta and gamma frequency bands that last 
between 200ms and 8s and occur around 1 to >100 times in a 20min interictal non-REM sleep period 
- has been shown to indicate high risk for epilepsy when detected in EEG signals, but they are not 
always present and they are not IS specific [21]. Secondly, BASED score – an interictal EEG grading 
scale to identify children with IS - has shown to have a higher IRR than any other hypsarrhythmia 
quantification method [22], [23]. On the other hand, several quantitative methods (Appendix 1, Table 
2) like functional connectivity [2], [3], [24]–[30], power spectrum [2], [28], [31]  or HFOs [32]–[38] have 
been developed to assess IS diagnosis. Most of these tools have shown to correlate with clinicians- 
diagnostic assessments, but further studies are needed to solve some existing inconsistencies.  
 

Clinically, treatment outcome of IS is assessed based on the cessation of clinical spasms and 
resolution of hypsarrhythmia [39]. Treatment outcome assessment describes the changes in a patient's 
condition after treatments. Therefore, determining the effects of a therapy on a patient is essential to 
realign the treatment path when necessary. Further, it has been seen that using hypsarrhythmia to 
assess it has a low IRR [20]. Therefore, the BASED score has been presented as an alternative for the 
evaluation of responders with a higher IR [23]. Further, computational techniques (Appendix 1, Table 
2)) like functional connectivity [40], power spectrum [41], and HFOs [35]–[37], [42] have been testes as 
potential markers of treatment outcome, showing differentiative traits between responders and 
non/responders but with still some inconsistencies. Therefore, further studies are needed to develop 
more reliable and objective measures.  
 

Finally, treatment prediction allows clinicians to make decisions about therapy objectively, 
accounting for the variability between IS patients. Further, long-term prognosis and relapse 
assessment would enable a faster treatment change in the patients who require it. The hypsarrhythmia 
EEG pattern has shown not to be a tool to predict treatment outcome, and no alternative visual 
inspection methods have been presented. On the other hand, the BASED score has been proposed 
as a tool for assessing long-term prognosis and relapse [43], as well as identifying epileptic discharges 
in the EEG signal[44], [45]. Also, very few computational analysis methods (Appendix 1, Table 2)) have 
been developed for treatment prediction, long-term outcome, and relapse. Functional connectivity [40], 
power spectrum [41], HFOs [37], [42], [46] and entropy [47], within others, have shown to be potential 
markers for treatment prediction. 

 

2.2.2. STUDIES ABOUT THE TRANSITION FROM IS TO LGS 

 
There exist very few studies that analyze the evolution of Infantile Spasms (or West Syndrome) 

to Lennox-Gastaut Syndrome. In these studies, they report that 30-60% of IS patients evolve to LGS 
[48]–[51].  
 

In 2009, a study published by You et al. reported that ketogenic diet, prednisolone or 
adrenocorticotropic hormone treatments could be related with a decrease in the evolution of IS to LGS 
[50]. Further, in 2018 a study stated that vigabatrin could also be related to a lower rate of LGS in IS 
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patients [51]. However, a study published in 2021 has declined the two hypothesis mentioned above 
stating that no significant difference was found between patients under different treatments. However, 
this study found some significant results. They state that some risk factors for the development of LGS 
are developmental delay and seizures prior to the onset of IS, as well as a poor response to the first IS 
treatment. Further, no significant results were obtained concerning different IS treatments, response to 
subsequent treatments for IS, or etiology [48].  
 

Additionally, the electroclinical pattern of patients transitioning from IS to LGS has been divided 
into four well-defined groups: the first group refers to subjects with multiple seizure types, including 
epileptic spasms associated with multifocal paroxysm; the second group includes patients with mainly 
focal seizures associated with focal discharges; the third group describes subjects with predominance 
of epileptic spasms and myoclonic seizures associated with diffuse spike-and=wave and polyspike-
and-wave paroxysms; finally, group four englobes electroclinical patterns that are a mix of the three 
previous groups [49].  
 

As it can be seen, the studies mentioned above study the evolution from IS to LGS in a 
subjective manner. They try to correlate etiology, therapies or treatment outcome with the evolution 
from one disease to the other. However, there are no studies computationally analyzing this evolution, 
or obtaining a quantifiable marker to predict or assess the onset of LGS in IS patients. As it has been 
stated in this project, LGS is a severe encephalopathy, and patients rarely achieve a seizure-free 
outcome. Therefore, an early diagnosis of LGS or a prediction of this IS-LGS evolution would imply an 
earlier prescription of treatment, which has been shown to be related with a better long-term outcome 
and prognosis.  
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3. CONCEPT ENGINEERING 

3.1. DATA ACQUISITION TECHNIQUES 

The data coming from the brain can be acquired using different techniques, which differ in 
resolution, invasiveness, and precision, within others. Some of these tools are presented as follows.  

3.1.1. ELECTROENCEPHALOGRAPHY (EEG) 

Electroencephalography (EEG) is a non-invasive technique that provides direct real-time 
information about the electrical activity of the brain. EEG uses scalp electrodes to record brain signals. 
The amplitude of these signals is between 5-300 µV, with a frequency lower than 100 Hz. EEG signals 
have a low spatial resolution and a medium temporal resolution, compared to other techniques [52]. 
One of the main downfalls of this technique is that it is not able to capture signals from deep structures 
of the brain, and it suffers from the volume conduction effect [53].  
 

 

Figure 5 Scheme of the location of the electrodes on the scalp with a 10-5 electrode system [52]. 

3.1.2. INTRACRANIAL ELECTROENCEPHALOGRAPHY (iEEG) 

Intracranial EEG (iEEG) – which is also known as electrocorticography (ECoG) when using 
subdural grid electrodes or stereotactic EEG (sEEG) when using depth electrodes – is an invasive 
direct measurement of brain electrical activity with electrodes located in the brain tissue. It provides 
anatomically precise (high spatial resolution) information of neuron activity with a relatively high 
temporal scale. This technique requires a surgical procedure to locate the electrodes in the target 
region [54].  

 

Figure 6 Schematic drawing of the implantation of subdural and depth electrodes [55].  
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3.1.3 MAGNETOENCEPHALOGRAPHY (MEG) 

Magnetoencephalography (MEG) is a non-invasive test that measures the magnetic field 
generated by the electrical activity of the neurons. The fields that are being measured are in the range 
of femto- to pico-tesla. Referring to resolution, MEG offers a very high temporal resolution and good 
spatial resolution.  The MEG recording machine has high dimensions and the infrastructures needed 
to use a MEG are very complex - to attenuate the magnetic noise of the environment it is located inside 
of a shielded room [56].  

 

Figure 7 Magnetoencephalogram machine [56]. 

3.1.4 FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique that indirectly 
measures the brain activity. Specifically, the Blood Oxygen Level Development (BOLD) technique 
studies the changes in deoxyhemoglobin concentration, which depends on the metabolism of neurons 
and therefore it is related to its electrical activity. This technique allows to obtain a good spatial 
resolution but has a low temporal resolution – which can be desired in some experiments. The fMRI 
machine has large dimensions and requires a complex infrastructure and isolation from external 
magnetic fields [57].   
 

 

Figure 8 Magnetic Resonance Machine [58]. 
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3.1.4 TECHNIQUES’ COMPARISON 

The table fellow summarizes the relevant features of the four recording techniques explained 
above. The characteristics studied will be decisive to further chose the technique that better suits this 
project. 

 EEG iEEG MEG fMRI 
Invasive No Yes No No 
Temporal resolution Medium Medium High Low 
Spatial resolution Low Medium Low Medium 
Cost Low High High High 
Accessibility High Low Low Medium 

Table 1 Recording techniques comparative table. 

Now, we are going to analyze each of the features to choose the best fitting technique. First, it is 
relevant to consider that we are studying a very specific and rare disease. Therefore, the number of 
patients available are limited. For this, it is important that the recording technique is accessible and 
non-invasive, so that we can acquire as much data as possible. If we look at the non-technical features 
– invasiveness, cost, and accessibility- we can note that the EEG is the one that better suits is 
requirements. However, the electroencephalogram has a relatively low temporal and spatial resolution. 
These characteristics will not affect our study for the two following reasons: 

o Temporal resolution: we want to study resting EEG. Therefore, the subjects will not be doing 
any activities, or processing any stimuli, which decreases the importance of a high temporal 
resolution. 

o Spatial resolution: we want to characterize the overall functional connectivity of the brain, 
how different regions of the brain are connected to each other. Therefore, a high spatial 
resolution is not needed either. 

3.2. EEG FILTERING 

EEG signals are recorded using amplifiers, which measure the electrical activity at one 
electrode relative to another, eliminating a significant amount of the common activity between the 
electrodes. If we think of artifacts, biological and technical, they are usually similar around the head. 
Therefore, it will often be eliminated using differential amplifiers. This method reduces the noise, 
increasing the signal-to-noise ratio in the recording. Also, the amplifier increases the voltage difference 
of the signal to increase the detection range and improve detection. Finally, the EEG recording machine 
converts the analog signal is converted into a digital signal so we can further work with it.  
 

Further, filters are used to select the information of interest. For this, filters usually allow to 
keep the frequency bands of interest.   We can define four ways of using filters to highlight frequencies 
of interest: bandpass, band-stop, high-pass, and low-pass. Bandpass filters allow to keep activity 
between two specified frequencies, while band-stop filters remove the activity between two frequency 
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values. On the other hand, high-pass and low pass retain active above or below a frequency value, 
respectively.  
 

Overall, the filters used for EEG signals can be classified in two groups: finite impulse response 
(FIR) filters and infinite impulse response (IIR) filters [59]. 

3.2.1. FINITE IMPULSE RESPONSE (FIR) FILTERS  

Finite impulse response (FIR) filters offer a response to an impulse that will be a finite response 
in time. Equation 1 shows the structure of an FIR filter, a finite summation of the input signal with a 
finite delay in time ( x (n-k) ) weighted with specific coefficients (b).  
 

y(n) = 	'b!x(n − k)
"

!#$

 

 
Therefore, the output of an FIR filter is a simple weighted average of a certain number of past 

input samples only. In opposition to the infinite response filters (IIR)FIR filters do not implement 
feedback loops. Regardless of the type of signal input to the filter or for how long we apply a signal to 
the filter, FIR filters never become unstable [59].  

3.2.2. INFINITE IMPULSE RESPONSE (IIR) FILTERS  

Infinite impulse response (IIR) filters include a feedback component to the FIR structure. They 
are considered recursive filters since, in addition to current and previous input values, they also use 
previous output values to generate the result. IIR filters use many numbers of previous outputs, 
generating an infinite response to an impulse.  

 
 

 

Figure 9 Impulse response of a Finite Impulse Response (FIR) filter vs. an Infinite Impulse Response (IIR) filter [60]. 

 

Eq. 1 
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Mathematically, they can be written equivalently to FIR filters, but the summation over time is 
infinite (equation 2). Furthermore, this dependence on previous outputs avoids IIR filters from having a 
linear phase. The main difference between an FIR and an IIR filter is that FIR can be designed with a 
linear phase, while IIRs cannot. Therefore, IIRs will suffer from a phase distortion which can affect the 
data.  Additionally, in the IIR filter design, attention must be paid to the value of the coefficients to 
prevent instabilities, otherwise, the output will cause oscillations that increase exponentially [59]. 
 

' a%y(n − m)
&

%#'

=	'b!x(n − k)
"

!#'

 

 
 

3.3. EEG ARTIFACT DETECTION 

When working with EEG, it is essential to preprocess the data to obtain a clean signal. Despite 
this, there can always be some artifacts remaining that need to be considered. Artifacts can be divided 
into two groups: biological and technical. 
 

Physiological artifacts mainly consist of muscle – electromyogram (EMG) – activities (e.g., 
neck, face), eye blinks, and eye movements (Figure 10 ) – electrooculogram (EOG). Furthermore, 
sweating can produce a drift of the zero line of the signal. EMG occurs between 20 and 1500 Hz, while 
EOG covers the low frequencies from DC to 10Hz. Artifacts must be detected and indicated in an online 
system, and they can then be marked or removed.  

 

Figure 10 Examples of physiological artifacts. (A) Eye blink. (B) Eye movement. (C) Muscle artifacts.  

 
On the other hand, technical artifacts (Figure 11) are external electrical and electromagnetic 

noise coming from power lines, electric lights, or other fields. Furthermore, poor contact between the 
electrodes and the patients' skin produces high impedances, increasing the artifacts. Finally, when 

Eq. 2 
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choosing the electrodes, if the material used is not adequate, it can act as a high pass filter, hiding the 
signals of interest. To overcome technical artifacts, several techniques like shielding the recording 
system, using filters (e.g., notch filters to remove the power line noise), and high-quality amplifiers [17]. 
 

 

Figure 11 Examples of technical artifacts. (A) Electrode movement. (B) Power line artifact. 

3.3.1. VISUAL INSPECTION 

One way of detecting fragments of data with artifacts is by visual inspection. In this scenario, 
board-certified pediatric epileptologists (DS) review the EEG data and mark artifacts manually. These 
artifacts can be due to eye blinks, movement, poor electrode contact, or muscle activity. Afterwards, 
segments of data with artifacts are usually removed [40], [61]–[63]. 

3.3.2. AUTOMATED ARTIFACT DETECTION 

Marking artifacts manually is a very time-consuming task, and it is tied to a high level of 
subjection, increasing variability within different professionals and studies. For this, there have been 
developed some tools so automatically detect these artifacts by using objective mathematical 
calculations.  

 
In 2003, Durka et al. [64] presented a tool to detect EEG artifacts in polysomnographic 

recordings. For this artifact detector, they selected different types of artifacts for which a relevant 
parameter was calculated for a given epoch. From here, if any of the parameters exceeded a 
predefined threshold, the epoch was marked as an artifact. Three examples of artifacts considered, 
and their parameters are the following: 

o Eyeblinks: Correlations between bipolar derivations Fp1-F3 and F3-C3 (left hemisphere) and 
between Fp2-F4 and F4-C4 (right hemisphere) were computed in 1.5 seconds epochs, with 
overlapping windows moved by 1 second. The largest of these correlations was taken as 
parameter representing eyeblinks. If any of the correlations exceeded the threshold (default 
0.875), the window was marked as artifact. 
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o Power Supply: Spectral power from 48 to 52 Hz (Europe), calculated in 1-second epochs, 
was divided by the total power of the corresponding epoch. If this value exceeded a threshold 
of 0.325 (default value), the 4 seconds epoch was marked as an artifact. 

o Muscle activity: For each EEG channel, spectral power from 40 Hz to the Nyquist frequency 
was normalized to the total power with the exclusion of the power around 50 Hz (ac frequency 
in Europe). The allowed range for the threshold is (m0.5 + 1.5σ, m0.5 + 6 σ) with default in the 
middle of this range. m0.5 and σ denote median and variance estimated separately for each 
channel. If the value of this parameter exceeded the threshold for any 1-second epoch, all the 
4 seconds window was an artifact. 

There exist other automatic artifact detectors, like the software package presented by Kramer 
et al. in 2003. This software selects EEG data from EOG, EMG, and EEG artifacts in event-related 
potentials [65]. 

 

3.4. NETWORK CONSTRUCTION: EEG-BASED FUNCTIONAL CONNECTIVITY 

A network can be defined as a collection of nodes and edges. A node represents a participant 
or actor in the network, while an edge represents a link or association between two nodes. In a neural 
network, the node represents individual neurons or regions of the brain, and the edges consist of the 
connections between neurons or brain regions. The linking between two nodes can be determined by 
a physical connection or can represent less obvious connections. In some cases, the interaction 
between nodes may only be observed through dynamic activity at individual nodes, which need to be 
calculated by applying coupling measures to multivariate time series data, aiming to infer these 
associations.  
 

From a statistical perspective, the two main difficulties of this kind of studies is to correctly 
interpret the coupling results in declaring network edges and, also, the accurate quantification of the 
uncertainty associated with the resulting networks. One of the simplest ways of studying coupling 
consists of comparing coupling strengths to a threshold value. When the coupling strength between 
two nodes exceeds a predefined threshold, the two nodes are then connected with an edge. The figure 
below (Figure 12) clearly represents the different results that can be obtained from the same data 
depending on the threshold value [66]. 
 

 

Figure 12 Each grey circle represents a node (a spatial location), and each line represents an edge. Each figure represents the number 
of connections (edges) over the corresponding threshold [66].  

There exist different coupling measures based on diverse concepts. Different options will be 
presented as follows. 
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3.4.1. PHASE LAG INDEX (PLI) 

Phase Lag Index (PLI) is a measure of phase synchronization exploiting the asymmetry of the 
distribution of instantaneous phase differences between two signals [67].  Therefore, PLI (Eq. 3) is 
used to measure synchronization between the recording electrodes.  
 

PLI	 = 	 &
1
𝑁
)𝑠𝑖𝑔𝑛(∆𝜑(𝑡!)
"

!#$

&	 

 
The Hilbert transform of the filtered EEG is computed foreach channel and epoch to calculate 

the instantaneous phase in the alpha band. For each channel pair in a time window, PLI calculates the 
mean signum of the instantaneous phase difference between the two channels at time n, which is 
denoted ∆φ(tn). The PLI values go from zero - symmetrical phase difference between the two signals 
-, to one – asymmetrical phase difference between the two signals. 
 

When calculating the PLI for each channel, we obtain a N-by-N adjacency matrix, where N is 
the number of electrodes, where each element represents the phase synchronization between the 
respective channel pair. Then, the adjacency matrices over all epochs are averaged to calculate the 
functional connectivity of a subject.  
 

At the same time, surrogate data analysis is performed to determine the significant connection 
pairs in the mean adjacency matrix. To generate the surrogate data, the Fourier transform is performed 
for each electrode in each epoch, and the data was permuted in the frequency domain to shuffle the 
phases while retaining the original amplitude profile of the EEG signal. Then, the signal is converted 
back to the time domain by using the inverse Fourier transform, and the PLI is calculated using this 
new signal. All this process is done 100 times creating a null distribution of PLI values for each electrode 
pair, in which the pairs have no phase-based relationship.  
 

Finally, the mean adjacency matrix is compared to the 95th percentile of the surrogate data, 
discarding any insignificant connections [68].  
 

The following figure (Figure 13) summarizes the procedure explained above for the calculation 
of functional connectivity using PLI for a 31-electrodes recording. 
 

Eq. 3 
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Figure 13 Summary figure of the functional connectivity calculations with PLI. (A) Raw EEG data is separated into time epochs. (B) PLI 
results for each epoch. (C) Mean of the PLI matrices. (D) 100 iterations of shuffled data for significance calculations, (E) PLI 

calculation, and (F) average. (G) The critical values are compared to the original mean PLI matrix to obtain final connections [68].  

3.4.2. CROSS CORRELATION 

Cross correlation consists of a linear coupling measure in which, for a pair of time series xi[t] 
and xj[t] of lengths n, the sample cross correlation at lag τ is defined as (Eq. 4): 
 

𝐶()[𝜏] =
1

𝜎(𝜎)(𝑛 − 2𝜏)	
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− 𝑥.8)(𝑥)[𝑡 + 𝜏] − 𝑥/8) 

 
Where  and  are the averages and , and  are the standard deviations of xi[t] and 

xj[t], respectively, estimated from the data. More precisely, what needs to be computed is the maximal 
cross correlation (Eq. 5), the maximum of the absolute value of Cij[τ] over τ. This measure serves as 
the statistic for testing whether to assign an edge between nodes i and j, for each pair of nodes. 
 

𝑠() = 𝑚𝑎𝑥,=𝐶()[𝜏]= 
 

After obtaining the value of the maximum cross correlation for each pair of nodes, it is crucial 
to perform a significance test to decide if the network edge is included. We use sij to test the null 
hypothesis that xi[t] and xj[t] are uncorrelated against the alternative hypothesis that they are correlated. 
Then, the p-value can be computed using two different methods: an analytic method and a frequency 
domain bootstrap method [66].  
 

Referring to EEG functional connectivity, we aim to identify the maximum cross correlation 
within each one second window of data, with a certain maximum time lag. After the cross correlation 
calculation, we define the connection strength for each electrode pair of the data. The strength is 
defined as the fraction of one second epochs that were significant, ranging from zero (never significant) 
to one (always significant) [40]. This information can be represented in cross correlation matrices or 
using a connectivity plot (Figure 14).  
 

Eq. 4 

Eq. 5 
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Figure 14 Cross-correlation heat map (left) and connectivity plot (right) [40]. 

3.4.3. MINIMUM SPANNING TREE (MST) 

Minimum Spanning Tree (MST) consists of a unique acyclic subnetwork that contains most of 
the strongest connections of an original, weighted network. For instance, we first calculate the PLI of 
the EEG data. Then, Kruskal’s algorithm is used to compute the MST, which orders the weights of all 
edges, starting the construction of an MST from there. A series of events are performed as many times 
as possible: adding the edge with the highest PLI until all nodes N are connected in a loopless network 
consisting of N-1 edges. It is important to consider that if adding one edge results in the formation of a 
cycle within the network, this edge will not be considered. The figure below (Figure 15) represents the 
connectivity network generated using the PLI method (middle) and the correspondent MST network 
(right). The MST keeps the connections with higher strength and ensure that all nodes have a maximum 
of two edges and that the overall connectivity is not cyclic.  
 

 

Figure 15 Schematics of the creation of a functional network. (A) Raw EEG data. (B) Mean PLI matrix and (D) connectivity plot from PLI 
matrix. (C) Minimum spanning tree derived from the PLI matrix and (E) minimum spanning tree connectivity plot (dark lines) [26].  

Further, two parameters are calculated. First, the leaf number consists of the number of nodes 
in the tree with degree = 1 – electrodes connected by only one edge to the network. The leaf number 
refers to an upper bound to the diameter of the spanning tree that is the largest distance between any 
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possible pair of nodes of the tree. On the other hand, we also define the upper limit of the diameter. 
The largest possible diameter will decrease with increasing leaf number [26].  
 

3.5. SOFTWARE 

To undergo the preprocessing methods and connectivity calculation explained above, different 
software can be used. The most common options are the ones presented as follows. 

3.5.1. R 

The R software is an open-source environment designed for statistical computing and graphics. 
It is usually used by data miners and statisticians to undergo data analysis and develop complex 
statistical algorithms in fields ranging from computational biology to political science. The exist several 
R packages that contain numerous functions in the R language [69]. 

3.5.2. MATLAB 

MATLAB is a programming language and numeric computing environment which allows a wide 
range of processes such as manipulation of matrices, plotting of functions and data, implementation of 
algorithms or creation of user interfaces. The main objective of MATLAB is numeric computing, but it 
has additional tools that allow symbolic computing abilities and simulation of model-based designs. 
This software is used in many fields like engineering, science, and economics [70].  

3.5.3. PYTHON 

Python is a general purpose and Object-Oriented programming language that has a design 
aimed for an improvement of code readability, obtaining a clear and logical code. Python has built-in 
high level data types such as strings, lists or dictionaries. It also has multiple levels of organization with 
functions, classes, modules, and packages [71].  

 

3.6. WORKFLOW AND SOLUTION PRIORITIZATION 

 

 

Figure 16 Workflow diagram: data recording, data preprocessing, artifact detection, network construction, and results. 
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The scheme above (Figure 16) represents the workflow needed for the development of the 
project. All the processes will be done using MATLAB software. This is the standard software used in 
the Laboratory of Computational and Translational Neuroscience at UCI, and all the existing code is 
already in this language. Therefore, switching the software would imply increasing the difficulties of the 
project without a specific purpose. Further, MATLAB already has several built-in functions and 
packages for signal processing. 
 

Secondly, as exposed in 3.1.4., the signals used will consist of electroencephalograms (EEGs). 
Afterward, a broadband filter will be applied, with automated artifact detection. Then, the network will 
be constructed using cross-correlation, determining its significance. Finally, to show the results, the 
strength of the connections will be computed, also, the similarity of the different functional networks will 
be analyzed. The reasoning behind the selection of this preprocessing tools will be discussed in section 
4.2. 
 

Data acquisition Filtering Artifact detection Network construction 
1. EEG 
2. iEEG 
*MEG 
*fMRI 

1. Broadband 1. Automated 
2. Visual Inspection 

1. Cross-correlation 
2. Phase Lag Index 
3. Minimum Spanning Tree  

Table 2 Solution prioritization. The first option is to acquire EEG data, broadband filter it, remove the artifacts automatically, and 
calculate the connectivity network using cross-correlation. 

Referring to solution prioritization, we can arrange the tools described in concept engineering 
(Table 2). For data acquisition, the data used will be EEG. In case this data was not available, we could 
also use iEEG signals, but it is an invasive method and more difficult to obtain. Further, MEG and fMRI 
data are not considered for this project. With respect to the filter, we are going to apply a broadband 
filter from 1 to 55 Hz, which is the frequency range we are interested in when wanting to calculate 
functional networks. Further, the filter will be a finite impulse response (FIR) filter, since they are more 
stable (they also require more computational power, but this is not an impediment for nowadays 
computers). To detect artifacts, an automated detector will be used. In case the detector doesn’t work 
properly, artifacts could be selected by visual inspection. Finally, for constructing the network, cross-
correlation is the first option to apply. In case we don’t obtain significant results using this tool, PLI and 
MST could be applied. 
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4. DETAIL ENGINEERING 

With respect to the programming language, the project will be developed using MATLAB, which 
is the language of preference of the Laboratory of Computational and Translational Neuroscience of 
the University of California Irvine. All the code already existing has been developed using MATLAB 
language. Therefore, switching the programming language would considerably increase the difficulty 
of the project. Further, the MATLAB software toolchain includes various built-in functions and packages 
for signal processing. 
 

4.1. EEG ACQUISITION  

EEG data collection is done through scalp EEG electrodes using the International 10-20 
system of electrode placement (Figure 17). This technique is non-invasive, decreasing the risks to 
which the patients are exposed. Further, all epilepsy patients undergo one or several EEGs during their 
follow-up, increasing the availability of this type of data. 
 

 

Figure 17 International 10-20 system of electrode placement. 

The data used consists of awake data and the recording minimum time is around 15 minutes.   
 

The electrodes are placed at intervals of 10 or 20 percent of the total length of lines created 
from a system of distances between bony landmarks on the head. This proportional system of 
positioning electrodes ensures that the relative position of the electrodes on the scalp will be consistent 
regardless of head size.  
 

For this acquisition, the number of electrodes is 19. Each electrode has a specific notation in 
which the letters indicate the position of the electrodes on the head: Fp (frontopolar), F (frontal), C 
(central), T (temporal), P (parietal), O (occipital); while the numbers indicated the hemisphere, odd 
numbers for the left hemisphere and even numbers over the right hemisphere [72]. 
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4.2. EEG PREPROCESSING AND ARTIFACT DETECTION 

Before doing any calculations, EEG data needs to be pre-processed (Figure 18) (Appendix 2). 
Once the EEG data is uploaded into the MATLAB software, we first need to make sure that we are only 
working with the data from the 19 scalp electrodes, which are the channels of interest. In some cases, 
there are more channels that correspond to amplitude testing or the electrocardiogram (ECG) signal, 
within others. For this, we need to select the rows corresponding to the channels of interest (Figure 
19).  

 

Figure 18 Schematics of the procedures to pre-process EEG data. 

Then, the data is filtered using a broadband (1-55 Hz) FIR filter (Figure 19). Although the 
computational cost of FIR filters is higher compared to IIRs, FIR filters are preferable since they are 
stable, can be designed with linear phase, avoiding non-linear phase distortions, and are not too 
computationally expensive for nowadays computers (Appendix 3).   
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Figure 19 Example case. (A) Plot of raw EEG signal (19 channels) from Subject 01. (B) Plot of re/referenced and filtered EEG signal 
(19 electrodes) from Subject 01. 

Furthermore, time periods of EEG data containing artifacts were identified using an automatic 
extreme value detection algorithm (Appendix 4) previously described by Smith et al. [2] based on other 
methods previously published [64], [65]. The inputs of the function are the signal, the sampling 
frequency (200Hz), a threshold for the standard deviation (7.5), a time buffer (0.9s), and the number of 
channels involved (1). First, the data is filtered using a broadband bandpass filter. Specifically, a 
bandpass filter between 1.5 and 40 Hz. Then the mean is subtracted from each channel and the 
standard deviation is calculated using the entire zero-mean time series. In the cases where the value 
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of voltage exceeded a threshold of 7.5 standard deviations above the mean value in any of the 
channels, the time point was marked as an artifact. Furthermore, a buffer of 0.9s is added before and 
after an extreme amplitude to make sure that the artifacts are fully marked. The output of the automated 
artifact detector consists of a table in which each row corresponds to one artifact, the first column is 
the start time of each artifact, and the second column represents the ending time of the corresponding 
artifact (Figure 20). 

 

Figure 20 Example case. (A) Plot of 19 electrodes of EEG signal from Subject 01 filtered and re/referenced. Colored squares indicated 
regions where artifacts have been detected. (B) Output of the automated artifact detector. First column representing the start time of an 
artifact, and the second column representing the corresponding ending time. Colors match the artifacts detected with the corresponding 

region in the EEG signal. 

4.3. CONNECTIVITY CALCULATION AND NETWORK CONSTRUCTION 

Functional connectivity networks have been shown to reveal key high-dimensional features of 
normal and abnormal nervous system physiology. For this reason, they are widely studied in the 
neuroscience field. Functional connectivity reflects the coupling between regions of the brain that can 
be anatomically or functionally connected. For this project, we are going to use cross-correlation as the 
coupling measure. The method used is based on a paper published by Chu et al. in 2012 [61].  

 

 

Figure 21 Calculation of the cross-correlation for each 1sec interval for each electrode pair. Example of signals recorded from 
electrodes T5 and O1 (left) and corresponding maximum absolute values of the correlation (blue dot) [61].  
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The preprocessed EEG data needs to be divided into 1s windows without artifacts. The data 
of each window is normalized to have zero mean and unit variance. To calculate cross-correlation, the 
maximal cross-correlation between all electrode pairs is calculated (Figure 21), allowing a time lag of 
+/- 200 milliseconds.  

 
For each 1 s window, an undirected binary adjacency matrix M represents the connectivity of 

the corresponding EEG data. The binary networks generated from each 1 s window is averaged across 
time to generate weighted functional networks which represent varied epoch lengths. Averaged 
networks are also created for the entire available recording period for each subject and in each state 
and frequency band. The value on the connectivity matrix represents the percentage of times each pair 
had a significant connection in the binary adjacency matrices (Figure 22) (Appendix 5). 
 

For visualization, a connectivity plot is generated where each node represents and electrode, 
and each edge is weighted according to the values in the total adjacency matrix. To simplify the 
visualization of the connectivity plot, only the 90th percentile of connections from the connectivity matrix 
are represented (Figure 22). 

 

 

Figure 22 Example of connectivity calculation. (A) Averaged connectivity matrix over all time epochs for subject 01 (Appendix 6). (B) 
Connectivity plot for the 90th percentile of the connectivity matrix (Appendix 7).  

4.4. NETWORK STRENGTH CALCULATION 

Two different methodologies will be used to calculate network strength: number of connections 
above a threshold and mean strength above a percentile.  
 

First, number of connections above a threshold (Figure 23) is performed. For this, we start from 
the adjacent matrix (19x19) previously obtained. Then, we threshold the matrix, turning into zeros the 
values of the matrix that are below this threshold, and the values above one will correspond to ones in 
the new matrix. Then, we will count the number of ones, which will correspond to the number of 
connections above the threshold. This number corresponds to double the number of strong 
connections. This is because our matrix is symmetrical. Therefore, we are counting O1-O2 and O2-O1 
as two different connections. To solve this problem, we will divide by two the result (Appendix 8). 
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Figure 23 Example plot of the number of strong connections for the 5 EEGs corresponding to Subject 01. Each line corresponds to a 
different threshold, which are specified in the legend (0.10, 0.15, 0.20, and 0.25). 

 

Figure 24 Example plot of mean strength of connections above a percentile threshold for all five EEGs corresponding to Subject 01. 
Each line corresponds to a different percentile value, which are indicated in the legend (95th, 90th, 85th, and 80th).  

Secondly, the mean strength of connections above a percentile (Figure 24) is computed by first finding 
the percentile threshold and thresholding the matrix. All the values of the adjacency matrix that are 
below the threshold will be equaled to zero. Then, we will calculate the main of the rest of values (the 
ones above the threshold (Appendix 9). 
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5. RESULTS 

5.1. FUNCTIONAL CONNECTIVITY TOPOGRAPHIC PLOTS 

The main result of this project consists of the functional connectivity plots for each EEG. Each of 
the patients has a different number of EEGs two of which correspond to the IS and LGS diagnosis 
times, respectively. Figure 25 corresponds to the EEGs from the first subject. Each EEG corresponds 
to a recording of the same patient at different points in time. The plots are organized from left to right 
and from top to bottom. Each EEG was clipped by a neurologist from Children’s Hospital of Orange 
County and a diagnosis was performed. This diagnosis refers to the existence or not of both IS and 
LGS, and it is written at the top of each connectivity plot, and the different diagnostic options are stated 
as follows: 

o IS diagnosis: Infantile Spasms diagnosis. 

o S-/S+: Infantile Spasms negative/positive. 

o LGS diagnosis: Lennox-Gastaut Syndrome diagnosis. 

o LGS-/LGS+: Lennox-Gastaut Syndrome negative/positive. 

 

Figure 25 EEG functional connectivity topographic maps or subject 01, who was diagnosed with IS (EEG1), successfully treated 
(EEG2), and further diagnosed with LGS (EEG3, EEG4), but also successfully treated (EEG5). 

In these connectivity plots, we see the representation of the 90th percentile strongest connections. 
So, as explained before in the project, each line connects to different electrodes and the color is 
weighted by the strength of the connections. Warmer colors refer to stronger connections, while cooler 
colors are associated with weaker connections. This connection is mathematically explained as the 
percentage of one-second windows of the data in which each connection was significant. Therefore, a 
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connection with a strength value of 1 would mean that this connection was significant in all one-second 
windows of the data.  

If we take a closer look at Figure 25, we can qualitatively analyze subject 1. The first EEG was 
recorded at the time of IS diagnosis (6 months old), afterwards, the patient was treated, and the spasms 
were resolved (7 months old).  Three months later (10 months old), the child was diagnosed with LGS, 
which persisted during the following EEG recording (13 months old) but was finally resolved with 
treatment at 30 months old. By doing a quick look at the plots above, we can notice differences in the 
connectivity plots. Visually, we can see that in those plots corresponding to IS or LGS state, the 
connections are stronger. It is important to notice that the number of connections doesn’t change, but 
this is because we are only representing the 10% of stronger connections, so the number of 
connections will be constant. The connectivity patterns are coherent with the clinicians’ diagnosis.  

Figure 26 and Figure 27 correspond to subjects 2 and 4, who have similar behavior to subject 
1, showing IS diagnosis, followed by positive treatment outcome, LGS diagnosis, and LGS resolution.  

 

Figure 26 EEG functional connectivity topographic maps or subject 02, who was diagnosed with IS (EEG1), successfully treated 
(EEG2, EEG3), and further diagnosed with LGS (EEG4), but also successfully treated (EEG5, EEG6). 
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Figure 27 EEG functional connectivity topographic maps or subject 04, who was diagnosed with IS (EEG1), successfully treated 
(EEG2, EEG3, EEG4), and further diagnosed with LGS (EEG5), but also successfully treated (EEG6). 

As another example, we can visually analyze subject 3 (Figure 28). In this case, the child was 
also diagnosed with IS in the first recording (9 months old), and the following two EEGs showed 
successful treatment outcomes (9 and 10 months old). Later, the patient was diagnosed with LGS (18 
months old), and the last EEG shows a worsening of the disease (22 months old). By looking at these 
topographic plots, it can be noted how the strength of the connections is still higher during spasms and 
LGS, while they get lower during IS resolution, which is consistent with what we have seen in subject 
1. The main difference between these two subjects is found in the last EEG, where the strength of the 
connections is still high due to the persistence of LGS. 

 

Figure 28 EEG functional connectivity topographic maps or subject 03, who was diagnosed with IS (EEG1), successfully treated 
(EEG2, EEG 3), and further diagnosed with LGS (EEG4) with a worsening of the disease (EEG5). 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
31 

Finally, subject 5 (Figure 29) follows a different pattern from the one explained before. After IS 
diagnosis (32 months), the child has a positive treatment outcome (34 months), but still with a relatively 
high network, which leads to LGS diagnosis (45 months) and a progressive worsening of the disease 
(49 and 51 months old). One of the main differences between these subjects and the others is age. 
This child is much older than the others, and a late diagnosis leads to a poor prognosis.   
 

 

Figure 29 EEG functional connectivity topographic maps or subject 05, who was diagnosed with IS (EEG1), successfully treated 
(EEG2), and further diagnosed with LGS (EEG3) with a worsening of the disease (EEG4, EEG5). 

 

5.2. CONNECTIVITY VS. DIAGNOSIS 

The number of strong connections above a threshold of 0.1 was calculated for each EEG to 
quantify the overall strength of the networks. Figure 30 shows the evolution of this parameter for each 
EEG of the patients. Therefore, each patient corresponds to a line plot (identified by colors in the 
legend). Further, the markers represent the diagnosis where the circles refer to IS and the starts to 
LGS. Further, when a marker is filled, it means that the diagnosis (IS or LGS) was positive, while a 
non-filled marker refers to a negative diagnosis, therefore an improvement of the subject.  
 

If we analyze the plot of our case study (Figure 30), we can identify several trends. The first 
plot corresponds to the time of IS diagnosis (filled circle marker) for all the patients. Then, the second 
time point is a non-filled circle for all the subjects, which indicates a positive treatment outcome and IS 
recovery. In this transition, we can clearly identify a decreasing trend of number of strong connections 
above a threshold of 0.1. From here, subjects have a different amount of ‘normal’ EEG recording that 
tend to have a low number of strong connections.  
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Figure 30 Number of strong connections with threshold 0.1 in IS patients that progressed to LGS. The time-points are normalized at the 
times of IS and LGS diagnosis. The markers refer to IS (circle) and LGS (star) where a filled marker corresponds to a positive diagnosis 

and a non-filled marker to a negative diagnosis. 

Afterward, all subjects are diagnosed with LGS (filled star marker), and the number of strong 
connections shows an increasing trend. After LGS diagnosis, we could divide the subjects in two 
groups: 
 

o Subjects 2 and 4 show a positive treatment outcome, therefore, LGS remission. This diagnosis 
is accompanied by a decrease in the number of strong connections.  

o Subjects 1, 3, and 5 show continuing LGS diagnosis and a worsening of the disease. This is 
demonstrated by an increase of the number of strong connections. Subject number 1 has a 
third EEG recording in which clinicians declare a remission of LGS, which is accompanied by 
a decrease in the number of strong connections.  

Further, the mean strength of connections above the 90th percentile is computed. We 
hypothesized that this result would be equivalent to the number of strong connections, and Figure 31 
proves this hypothesis was true. The results obtained are not exactly equal to Figure 31, but they are 
strongly equivalent. Again, we find an increasing trend at the time of a diagnosis, a decrease after 
positive treatment outcome and/or epilepsy resolution, and an increase of mean strength associated 
with a worsening of the disease.  
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Figure 31 Mean strength of connections above the 90th percentile in IS patients that progressed to LGS. The time-points are normalized 
at the times of IS and LGS diagnosis. The markers refer to IS (circle) and LGS (star) where a filled marker corresponds to a positive 

diagnosis and a non-filled marker to a negative diagnosis. 

 

5.3. CONNECTIVITY VS. AGE 

During physiological growth, the brain of children undergoes a series of normal changes to 
allow is correct development. Therefore, it could be stated that the changes seen in the previous results 
could be caused by the aging of the subjects. To prove this wrong, we plotted both the number of strong 
connections above a 0.1 threshold and the mean strength of connections above the 90th percentile as 
a function of the children’s age. Figure 32 and Figure 33 show the distribution of the two variables 
previously studied as a function of the subjects’ age, respectively. Both plots show that there is no 
correlation between the two variables and age, which demonstrates that the evolution of the functional 
connectivity of the subjects’ brains is due to the progression of the epilepsies. 
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Figure 32 Number of strong connections above a percentile of 0.1 in IS patients that progressed to LGS as a function of the children’s 
age. Each color represents a subject and the markers correspond to the diagnosis (explained in more detail in the legend). 

 

Figure 33 Mean strength of connections above the 90th percentile in IS patients that progressed to LGS as a function of the children’s 
age. Each color represents a subject and the markers correspond to the diagnosis (explained in more detail in the legend). 
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6. TIMELINE & BUDGET 

A GANTT diagram (Figure 34). was used to keep track of the timeline of the project. The total 
real-time invested in this project was for months, from February to June. All the tasks reflected by the 
GANTT were done by one person and they are organized similarly to the index of this thesis.  
 

 

Figure 34 GANTT of the Project. The column on the left shows the tasks performed, and the time at which they were done is highlighted 
in different colors on the right. 

 The first task consisted of acquiring knowledge about the field. The field of this project is very 
specific, and it was very unknown to me before starting. Therefore, the first step was to do research on 
the two pathologies I was going to study: Infantile Spasms, and Lennox-Gastaut Syndrome. Also, 
exhaustive research was done on the computational analysis that had been done by other research 
groups to characterize the features and biomarkers of both epilepsies and, also, the progression of IS 
to LGS. All this research allowed us to understand the state of the art and the needs in the field, being 
able to define the objectives and scope of the research project.  
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 Parallel to the background research, we started to analyze the different options available to 
acquire the data, pre-process the signals, and build the networks of interest. Once we decide all the 
tools that were going to be needed, the Children’s Hospital of Orange County had already sent us the 
data. Before working with it, it was important to be aware the specific case of each subject, to further 
understand the results. For this, we met with the neurologists from CHOC Hospital.  
 
 The last step was to work with the data. The steps followed, in order, were the pre-processing 
– with both the filtering and the artifacts detection, the network construction, and the strength 
calculations. Once we had all the results it was necessary to make figures that would show our results 
in a coherent and efficient way. The writing of the thesis was done is parallel with all the tasks 
performed.  
 

 

 
For the budget, we need to differentiate between material and personal expenses. For this 

project, the only material needed is a full workstation – including a tower, two monitors, a keyboard, 
and a mouse –, and a license for the software MATLAB for 6 months. The MATLAB licenses can only 
be purchased perpetual or annual. The University of California Irvine has a perpetual license, but for 

 Name of product Cost (per 
unit) Units Total cost (per 

product) 

 

Precision 5820 Tower 
Workstation [73] 

 

$2,529.00 
 1 

$2,529.00 
 

 

 
 

Dell 24 Monitor - S2421HSX 
[74]   

 

$209.99 
 

2 $419.98 

 

 
 

Dell Pro Wireless Keyboard 
and Mouse – KM5221W [75] 

 

$47.99 
 

1 
$47.99 

 

 

 
 

MATLAB annual license [76] $880 / 1-year 6 months $440 

Total cost $3436.97 

Table 3 Budget of the material costs, which include a full Workstation and the MATLAB license for 6 months. 
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the sake of this budget, we will calculate the price of having the license for 6 months, dividing by two 
the annual price. We could consider adding the EEG recording system, but it is important to note that 
the signals are not obtained for research. Contrarily, these EEG recordings are obtained as a routine 
procedure for epileptic infants, and some of them are sent later to our research group to study them. 
An approximate budget for the workstation is shown in Table 3.  
 
Secondly, we need to consider the budget for personal resources. In this case, it was just me working 
in the project for 6 months. I was considered a Step 5 research student (see Figure 35), and the typical 
appointment is at 49% of the total salary. The annual salary at Step 5 is $60,599, so a 6-month 
appointment at 49% would be 60,599*0.5*0.49 = $14,846.76. Further, the tuition and fees for two 
quarters need to be included. Right now, tuition and fees for students that are non-California residents 
are $11,046.32 per quarter. These sums up to a total of $36,939.40 for personal resources.  
 
Considering both material and personal costs, the project needed a budget of $40,376.37, which 
translate to 37,550.02€ - considering a conversion factor of 0.93. It is important to remark that the 
workstation was not purchased exclusively for this project, as well as the MATLAB license. Further, as 
a researcher, I was working on more than one project, not only this one. So, realistically, the costs of 
the project would be lower. 
 

 

Figure 35 Graduates student researcher fiscal year rates. Salary Admin Plan: T022. 
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7. CONCLUSIONS 

Throughout this project, we have been able to meet all the goals we set in the beginning. The 
main aim of the study was to evaluate the EEG-based functional connectivity of subjects during the 
progression from Infantile Spasms (IS) to Lennox-Gastaut Syndrome (LGS). But before, we needed to 
reach smaller targets.  

Firstly, we preprocessed the scalp EEG data by using a broadband FIR filter from 1 to 55 Hz. 
Also, we detected the artifacts by using an amplitude-based automatic artifact detector to increase the 
signal-to-noise ratio and ensure a correct interpretation of the data. 

Secondly, we built the functional networks by using a computational tool called cross-
correlation in which the correlation between electrode pairs is assessed in 1-second windows. Further, 
the significance of the results was determined by applying permutation resampling to the cross-
correlation calculations. 

Finally, we have been able to answer our initial question and prove our hypothesis. Overall, 
functional connectivity strength reflected the presence of IS, as well as a positive response to treatment. 
IS diagnosis was associated with high strength, while a resolution of spasms after treatment produced 
a decrease in the connectivity strength. Further, LGS diagnosis was also linked to an increase in 
strength. After LGS treatment, children could be divided into two groups. On one hand, subjects 
exhibited a decrease in the connectivity strength after a positive treatment outcome, while worsening 
of the disease was associated with maintenance or increase of the connectivity. Therefore, functional 
connectivity could be used as a biomarker to improve LGS diagnosis in patients with an IS history, 
improving their prognosis.  

As future work, it is critical to extend this analysis to a larger cohort of subjects to increase the 
power of the study and validate these results. The subjects we are working with need to fulfill a specific 
series of characteristics. Therefore, the number of patients under study is usually a limitation. However, 
it is important to increase the number of subjects to avoid variations in the results due to the specific 
etiology of each child.  

 

 

 

 

 

 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
39 

8. BIBLIOGRAPHY 

[1] J. E. Piña-Garza et al., “Assessment of treatment patterns and healthcare costs associated with probable Lennox–
Gastaut syndrome,” Epilepsy and Behavior, vol. 73, pp. 46–50, 2017, doi: 10.1016/j.yebeh.2017.05.021. 

[2] R. J. Smith, D. K. Hu, D. W. Shrey, R. Rajaraman, S. A. Hussain, and B. A. Lopour, “Computational characteristics 
of interictal EEG as objective markers of epileptic spasms,” Epilepsy Research, vol. 176, no. January, p. 106704, 
2021, doi: 10.1016/j.eplepsyres.2021.106704. 

[3] W. Stacey et al., “Emerging roles of network analysis for epilepsy,” Epilepsy Research, vol. 159, no. December 
2019, p. 106255, 2020, doi: 10.1016/j.eplepsyres.2019.106255. 

[4] P. Pavone, P. Striano, R. Falsaperla, L. Pavone, and M. Ruggieri, “Infantile spasms syndrome, West syndrome 
and related phenotypes: What we know in 2013,” Brain and Development, vol. 36, no. 9, pp. 739–751, 2014, doi: 
10.1016/j.braindev.2013.10.008. 

[5] I. L. Goldsmith, M. L. Zupanc, and J. R. Buchhalter, “Long-term seizure outcome in 74 patients with Lennox-
Gastaut syndrome: Effects of incorporating MRI head imaging in defining the cryptogenic subgroup,” Epilepsia, 
vol. 41, no. 4, pp. 395–399, 2000, doi: 10.1111/j.1528-1157.2000.tb00179.x. 

[6] M. Wong and E. Trevathan, “Infantile spasms,” Pediatric Neurology, vol. 24, no. 2, pp. 89–98, 2001, doi: 
10.1016/S0887-8994(00)00238-1. 

[7] F. A. Gibbs and E. L. Gibbs, Atlas of Electroencephalography, Vol.2, Epilepsy, Addison-Wesley, Cambridge, MA. 
1952. 

[8] S. A. Hussain et al., “Hypsarrhythmia assessment exhibits poor interrater reliability: A threat to clinical trial validity,” 
Epilepsia, vol. 56, no. 1, pp. 77–81, 2015, doi: 10.1111/epi.12861. 

[9] E. Trevathan, C. C. Murphy, and M. Yeargin-Allsopp, “The descriptive epidemiology of infantile spasms among 
Atlanta children,” Epilepsia, vol. 40, no. 6, pp. 748–751, 1999, doi: 10.1111/j.1528-1157.1999.tb00773.x. 

[10] J. F. Donat and F. S. Wright, “Seizures in Series: Similarities Between Seizures of the West and Lennox-Gastaut 
Syndromes,” Epilepsia, vol. 32, no. 4, pp. 504–509, 1991, doi: 10.1111/j.1528-1157.1991.tb04684.x. 

[11] H. Rantala and T. Putkonen, “Occurrence, outcome, and prognostic factors of infantile spasms and Lennox-
Gastaut syndrome,” Epilepsia, vol. 40, no. 3, pp. 286–289, 1999, doi: 10.1111/j.1528-1157.1999.tb00705.x. 

[12] J. S. Archer, A. E. L. Warren, G. D. Jackson, and D. F. Abbott, “Conceptualizing Lennox-Gastaut Syndrome as a 
Secondary Network Epilepsy,” Frontiers in Neurology, vol. 5, no. October, pp. 1–11, 2014, doi: 
10.3389/fneur.2014.00225. 

[13] A. A. Asadi-pooya, “LGS a comprehensive review vv.pdf,” pp. 403–414, 2018. 

[14] E. Trevathan, C. C. Murphy, and M. Yeargin-Allsopp, “Prevalence and descriptive epidemiology of Lennox-Gastaut 
syndrome among Atlanta children,” Epilepsia, vol. 38, no. 12, pp. 1283–1288, 1997, doi: 10.1111/j.1528-
1157.1997.tb00065.x. 

[15] A. A. Asadi-Pooya and M. Sharifzade, “Lennox-Gastaut syndrome in south Iran: Electro-clinical manifestations,” 
Seizure, vol. 21, no. 10, pp. 760–763, 2012, doi: 10.1016/j.seizure.2012.08.003. 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
40 

[16] P. R. Camfield, “Definition and natural history of Lennox-Gastaut syndrome,” Epilepsia, vol. 52, no. SUPPL. 5, pp. 
3–9, 2011, doi: 10.1111/j.1528-1167.2011.03177.x. 

[17] G. R. Müller-Putz, “Electroencephalography,” Handbook of Clinical Neurology, vol. 168, no. 2007, pp. 249–262, 
2020, doi: 10.1016/B978-0-444-63934-9.00018-4. 

[18] “The Pediatric EEG.” https://www.learningeeg.com/pediatric (accessed Jun. 05, 2022). 

[19] M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, “A New EEG Acquisition Protocol for Biometric Identification 
Using Eye Blinking Signals,” International Journal of Intelligent Systems and Applications, vol. 7, no. 6, pp. 48–54, 
May 2015, doi: 10.5815/ijisa.2015.06.05. 

[20] S. T. Demarest et al., “The impact of hypsarrhythmia on infantile spasms treatment response: Observational cohort 
study from the National Infantile Spasms Consortium,” Physiol Behav, vol. 176, no. 5, pp. 139–148, 2017, doi: 
10.1111/epi.13937.The. 

[21] J. Y. Wu, S. Koh, R. Sankar, and G. W. Mathern, “Paroxysmal fast activity: An interictal scalp EEG marker of 
epileptogenesis in children,” Epilepsy Research, vol. 82, no. 1, pp. 99–106, 2008, doi: 
10.1016/j.eplepsyres.2008.07.010. 

[22] J. R. Mytinger et al., “Improving the inter-rater agreement of hypsarrhythmia using a simplified EEG grading scale 
for children with infantile spasms,” Epilepsy Research, vol. 116, pp. 93–98, 2015, doi: 
10.1016/j.eplepsyres.2015.07.008. 

[23] J. R. Mytinger, J. Vidaurre, M. Moore-Clingenpeel, J. R. Stanek, and D. V. F. Albert, “A reliable interictal EEG 
grading scale for children with infantile spasms – The 2021 BASED score,” Epilepsy Research, vol. 173, p. 106631, 
2021, doi: 10.1016/j.eplepsyres.2021.106631. 

[24] D. K. Hu, A. Mower, D. W. Shrey, and B. A. Lopour, “Effect of interictal epileptiform discharges on EEG-based 
functional connectivity networks,” Clinical Neurophysiology, vol. 131, no. 5, pp. 1087–1098, 2020, doi: 
10.1016/j.clinph.2020.02.014. 

[25] P. E. Davis et al., “Increased electroencephalography connectivity precedes epileptic spasm onset in infants with 
tuberous sclerosis complex,” Natural Products as Platforms To Overcome Antibiotic Resistance Sean, vol. 176, 
no. 3, pp. 139–148, 2017, doi: 10.1111/epi.16284.Increased. 

[26] E. van Diessen, W. M. Otte, C. J. Stam, K. P. J. Braun, and F. E. Jansen, “Electroencephalography based 
functional networks in newly diagnosed childhood epilepsies,” Clinical Neurophysiology, vol. 127, no. 6, pp. 2325–
2332, 2016, doi: 10.1016/j.clinph.2016.03.015. 

[27] H. Suzuki et al., “Epileptogenic modulation index and synchronization in hypsarrhythmia of West syndrome 
secondary to perinatal arterial ischemic stroke,” Clinical Neurophysiology, vol. 132, no. 5, pp. 1185–1193, 2021, 
doi: 10.1016/j.clinph.2020.12.028. 

[28] S. A. Burroughs, R. P. Morse, S. H. Mott, and G. L. Holmes, “Brain connectivity in West syndrome,” Seizure, vol. 
23, no. 7, pp. 576–579, 2014, doi: 10.1016/j.seizure.2014.03.016. 

[29] N. Japaridze et al., “Neuronal networks in west syndrome as revealed by source analysis and renormalized partial 
directed coherence,” Brain Topography, vol. 26, no. 1, pp. 157–170, 2013, doi: 10.1007/s10548-012-0245-y. 

[30] V. Nenadovic, R. Whitney, J. Boulet, and M. A. Cortez, “Hypsarrhythmia in epileptic spasms: Synchrony in chaos,” 
Seizure, vol. 58, pp. 55–61, 2018, doi: 10.1016/j.seizure.2018.03.026. 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
41 

[31] R. J. Smith, D. W. Shrey, S. A. Hussain, and B. A. Lopour, “Quantitative Characteristics of Hypsarrhythmia in 
Infantile Spasms,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society, EMBS, vol. 2018-July, pp. 538–541, 2018, doi: 10.1109/EMBC.2018.8512348. 

[32] K. Kobayashi et al., “Complex observation of scalp fast (40–150 Hz) oscillations in West syndrome and related 
disorders with structural brain pathology,” Epilepsia Open, vol. 2, no. 2, pp. 260–266, 2017, doi: 
10.1002/epi4.12043. 

[33] K. Kobayashi, T. Akiyama, M. Oka, F. Endoh, and H. Yoshinaga, “A storm of fast (40-150Hz) oscillations 
hypsarrhythmia in West syndrome,” Annals of Neurology, vol. 77, no. 1, pp. 58–67, 2015, doi: 10.1002/ana.24299. 

[34] H. Tsuchiya, F. Endoh, T. Akiyama, M. Matsuhashi, and K. Kobayashi, “Longitudinal correspondence of epilepsy 
and scalp EEG fast (40–200 Hz) oscillations in pediatric patients with tuberous sclerosis complex,” Brain and 
Development, vol. 42, no. 9, pp. 663–674, 2020, doi: 10.1016/j.braindev.2020.06.001. 

[35] C. M. McCrimmon et al., “Automated detection of ripple oscillations in long-term scalp EEG from patients with 
infantile spasms,” Journal of Neural Engineering, vol. 18, no. 1, 2021, doi: 10.1088/1741-2552/abcc7e. 

[36] H. Nariai et al., “Scalp EEG interictal high frequency oscillations as an objective biomarker of infantile spasms,” 
Clinical Neurophysiology, vol. 131, no. 11, pp. 2527–2536, 2020, doi: 10.1016/j.clinph.2020.08.013. 

[37] L. Yan, L. Li, J. Chen, L. Wang, L. Jiang, and Y. Hu, “Application of High-Frequency Oscillations on Scalp EEG in 
Infant Spasm: A Prospective Controlled Study,” Frontiers in Human Neuroscience, vol. 15, no. June, pp. 1–10, 
2021, doi: 10.3389/fnhum.2021.682011. 

[38] Y. Iwatani et al., “Ictal high-frequency oscillations on scalp EEG recordings in symptomatic West syndrome,” 
Epilepsy Research, vol. 102, no. 1–2, pp. 60–70, 2012, doi: 10.1016/j.eplepsyres.2012.04.020. 

[39] A. L. Lux and J. P. Osborne, “A proposal for case definitions and outcome measures in studies of infantile spasms 
and West syndrome: Consensus statement of the West Delphi Group,” Epilepsia, vol. 45, no. 11, pp. 1416–1428, 
2004, doi: 10.1111/j.0013-9580.2004.02404.x. 

[40] D. W. Shrey, O. Kim McManus, R. Rajaraman, H. Ombao, S. A. Hussain, and B. A. Lopour, “Strength and stability 
of EEG functional connectivity predict treatment response in infants with epileptic spasms,” Clinical 
Neurophysiology, vol. 129, no. 10, pp. 2137–2148, 2018, doi: 10.1016/j.clinph.2018.07.017. 

[41] A. Tanritanir, S. Vieluf, S. Jafarpour, X. Wang, and T. Loddenkemper, “EEG Biomarkers of Repository Corticotropin 
Injection Treatment,” Journal of Clinical Neurophysiology, vol. Publish Ah, no. 00, pp. 1–8, 2021, doi: 
10.1097/wnp.0000000000000886. 

[42] W. Wang et al., “Automatic detection of interictal ripples on scalp EEG to evaluate the effect and prognosis of 
ACTH therapy in patients with infantile spasms,” Epilepsia, vol. 62, no. 9, pp. 2240–2251, 2021, doi: 
10.1111/epi.17018. 

[43] L. Wan et al., “Assessing Risk for Relapse among Children with Infantile Spasms Using the Based Score after 
ACTH Treatment: A Retrospective Study,” Neurology and Therapy, 2022, doi: 10.1007/s40120-022-00347-7. 

[44] K. Yamada et al., “Predictive value of EEG findings at control of epileptic spasms for seizure relapse in patients 
with West syndrome,” Seizure, vol. 23, no. 9, pp. 703–707, 2014, doi: 10.1016/j.seizure.2014.05.010. 

[45] J. G. Millichap and J. J. Millichap, “Prediction of Infantile Spasms Recurrence after ACTH Therapy,” Pediatric 
Neurology Briefs, vol. 29, no. 12, p. 93, 2015, doi: 10.15844/pedneurbriefs-29-12-4. 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
42 

[46] D. Bernardo, H. Nariai, S. A. Hussain, R. Sankar, and J. Y. Wu, “Interictal scalp fast ripple occurrence and high 
frequency oscillation slow wave coupling in epileptic spasms,” Clinical Neurophysiology, vol. 131, no. 7, pp. 1433–
1443, 2020, doi: 10.1016/j.clinph.2020.03.025. 

[47] Y. J. Chu, C. F. Chang, W. C. Weng, P. C. Fan, J. S. Shieh, and W. T. Lee, “Electroencephalography complexity 
in infantile spasms and its association with treatment response,” Clinical Neurophysiology, vol. 132, no. 2, pp. 480–
486, 2020, doi: 10.1016/j.clinph.2020.12.006. 

[48] J. A. Nelson, S. Demarest, J. Thomas, E. Juarez-Colunga, and K. G. Knupp, “Evolution of Infantile Spasms to 
Lennox-Gastaut Syndrome: What Is There to Know?,” Journal of Child Neurology, vol. 36, no. 9, pp. 752–759, 
Aug. 2021, doi: 10.1177/08830738211000514. 

[49] A. Calvo, M. C. Buompadre, A. Gallo, R. Gutiérrez, G. R. Valenzuela, and R. Caraballo, “Electroclinical pattern in 
the transition from West to Lennox-Gastaut syndrome,” Epilepsy Research, vol. 167, Nov. 2020, doi: 
10.1016/j.eplepsyres.2020.106446. 

[50] S. J. You, H. D. Kim, and H. C. Kang, “Factors Influencing the Evolution of West Syndrome to Lennox-Gastaut 
Syndrome,” Pediatric Neurology, vol. 41, no. 2, pp. 111–113, Aug. 2009, doi: 10.1016/j.pediatrneurol.2009.03.006. 

[51] Jorge Malagon Valdez, “• Risk factors for development of LGS were developmental delay and seizures prior to the 
onset of IS and poor response to first treatment for IS.”. 

[52] G. R. Müller-Putz, “Electroencephalography,” Handbook of Clinical Neurology, vol. 168, no. 2007, pp. 249–262, 
2020, doi: 10.1016/B978-0-444-63934-9.00018-4. 

[53] T. Mima and M. Hallett, “Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume 
conduction and generator mechanism,” Clinical Neurophysiology, vol. 110, no. 11, pp. 1892–1899, 1999, doi: 
10.1016/S1388-2457(99)00238-2. 

[54]  and S. K. Josef Parvizi, “Human Intracranial EEG: Promises and Limitations,” Physiol Behav, vol. 176, no. 5, pp. 
139–148, 2017, doi: 10.1038/s41593-018-0108-2.Human. 

[55] W. Surbeck et al., “The combination of subdural and depth electrodes for intracranial EEG investigation of 
suspected insular (perisylvian) epilepsy,” Epilepsia, vol. 52, no. 3, pp. 458–466, 2011, doi: 10.1111/j.1528-
1167.2010.02910.x. 

[56] S. P. Singh, “Magnetoencephalography: Basic principles,” Ann Indian Acad Neurol, vol. 17, no. SUPPL. 1, 2014, 
doi: 10.4103/0972-2327.128676. 

[57] G. H. Glover, “Overview of functional magnetic resonance imaging,” Neurosurgery Clinics of North America, vol. 
22, no. 2, pp. 133–139, 2011, doi: 10.1016/j.nec.2010.11.001. 

[58] “Bergen fMRI Group | University of Bergen.” https://www.uib.no/en/rg/fmri (accessed Jun. 05, 2022). 

[59] P. W. K. William O. Tatum, Aatif M. Husain, Selim R. Benbadis, Handbook of EEG interpretation. 2014. 

[60] L. H. Koopmans, “Digital Filters,” The Spectral Analysis of Time Series, pp. 165–209, 1995, doi: 10.1016/B978-
012419251-5/50008-9. 

[61] C. J. Chu et al., “Emergence of stable functional networks in long-term human electroencephalography,” Journal 
of Neuroscience, vol. 32, no. 8, pp. 2703–2713, 2012, doi: 10.1523/JNEUROSCI.5669-11.2012. 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
43 

[62] A. Adebimpe, A. Aarabi, E. Bourel-Ponchel, M. Mahmoudzadeh, and F. Wallois, “EEG resting state functional 
connectivity analysis in children with benign epilepsy with centrotemporal spikes,” Frontiers in Neuroscience, vol. 
10, no. MAR, pp. 1–9, 2016, doi: 10.3389/fnins.2016.00143. 

[63] P. Goetz et al., “Scalp EEG markers of normal infant development using visual and computational approaches,” 
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 
EMBS, pp. 6528–6532, 2021, doi: 10.1109/EMBC46164.2021.9629909. 

[64] P. J. Durka, H. Klekowicz, K. J. Blinowska, and W. Szelenberger, “A Simple System for Detection of EEG Artifacts 
in Polysomnographic Recordings,” vol. 50, no. 4, pp. 2001–2003, 2003. 

[65] D. v. Moretti et al., “Computerized processing of EEG-EOG-EMG artifacts for multi-centric studies in EEG 
oscillations and event-related potentials,” International Journal of Psychophysiology, vol. 47, no. 3, pp. 199–216, 
2003, doi: 10.1016/S0167-8760(02)00153-8. 

[66] M. A. Kramer, U. T. Eden, S. S. Cash, and E. D. Kolaczyk, “Network inference with confidence from multivariate 
time series,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 79, no. 6, pp. 1–13, 2009, 
doi: 10.1103/PhysRevE.79.061916. 

[67] C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase lag index: Assessment of functional connectivity from multi 
channel EEG and MEG with diminished bias from common sources,” Human Brain Mapping, vol. 28, no. 11, pp. 
1178–1193, 2007, doi: 10.1002/hbm.20346. 

[68] D. K. Hu, L. Y. Li, B. A. Lopour, and E. A. Martin, “Schizotypy dimensions are associated with altered resting state 
alpha connectivity,” International Journal of Psychophysiology, vol. 155, no. May, pp. 175–183, 2020, doi: 
10.1016/j.ijpsycho.2020.06.012. 

[69] J. Debenham and R. R. Wagner, Lecture Notes in Computer Science: Preface, vol. 3588. 2005. 

[70] “MATLAB - MathWorks - MATLAB & Simulink.” https://www.mathworks.com/products/matlab.html (accessed Jun. 
05, 2022). 

[71] D. Kuhlman, “A Python Book,” A Python Book, pp. 1–227, 2013. 

[72] E. st. Louis et al., Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings 
in Adults, Children, and Infants. 2016. doi: 10.5698/978-0-9979756-0-4. 

[73] “Precision 5820 High Performance Tower Desktop Workstation | Dell USA.” https://www.dell.com/en-
us/work/shop/workstations-isv-certified/precision-5820-tower-workstation/spd/precision-5820-
workstation/xctopt5820us_4 (accessed Jun. 05, 2022). 

[74] “Dell 24 FHD Monitor: S2421HSX | Dell USA.” https://www.dell.com/en-us/work/shop/dell-24-monitor-
s2421hsx/apd/210-axim/monitors-monitor-accessories?gacd=9646510-1025-5761040-266794296-
0&dgc=st&ds_rl=1282786&gclid=Cj0KCQjw4uaUBhC8ARIsANUuDjUhMArKO8vUDMxu60Vpk80Ql36D5b-
dzmPuc9aJKyFlF7MTPXmiRHkaAnEPEALw_wcB&gclsrc=aw.ds&nclid=7ZQJQrGSm9qXWavktYte6mUnuLJW8
TRoSOJLCmg1ibdvjF-JUEqCTLSrcKC_rjTxWnf_QuPFE8WOd3AVhFlmV1-
WgqAgynimnd2RA61Oo2yJDVRyLfsHIONEmtyhG5KY (accessed Jun. 05, 2022). 

[75] “Dell Pro Wireless Keyboard and Mouse – KM5221W | Dell USA.” https://www.dell.com/en-us/work/shop/dell-pro-
wireless-keyboard-and-mouse-km5221w/apd/580-ajis/pc-accessories (accessed Jun. 05, 2022). 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
44 

[76] “Pricing and Licensing - MATLAB & Simulink.” https://es.mathworks.com/pricing-licensing.html (accessed Jun. 05, 
2022). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 “EEG-Based Functional Connectivity during Progression  
from Infantile Spasms to Lennox Gastaut Syndrome” 

 
45 

9. APPENDIX 

Appendix 1: State of the Art - Papers 

 
Table 1: Infantile Spasms (IS) visual inspection techniques for diagnosis, treatment outcome and long-term outcome 

prediction and relapse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Paper Authors Data Aim of study 

Hypsarrhythmia assessment exhibits poor interrater 
reliability: A threat to clinical trial validity 

Hussain et al. EEG Diagnosis 

A study of spike density on EEG in West syndrome Oka et al. EEG Diagnosis 

Paroxysmal fast activity: an interictal scalp EEG 
marker of epileptogenesis in children 

Wu et al. EEG Diagnosis 

Improving the inter-rater agreement of 
hypsarrhythmia using a simplified EEG grading scale 

for children with infantile spasms 
Mytinger et al.  EEG Diagnosis 

A reliable interictal EEG grading scale for children 
with infantile spasms - The 2021 BASED score 

Mytinger et al. EEG 
Diagnosis 

Treatment outcome 

Predictive value of EEG findings at control of epileptic 
spasms for seizure relapse in patients with West 

Syndrome 
Yamada et al. EEG Treatment outcome 

Prediction of infantile spasms recurrence after ACTH 
Therapy 

Millichap et al. EEG Long-term outcome prediction 
and relapse 

The prognostic value of sleep spindles in long-term 
outcome of West Syndrome 

Spenner et al. EEG 
Long-term outcome prediction 

and relapse 

Assessing risk of relapse among children with 
infantile spasms using the Based Score after ACTH 

treatment: a retrospective study 
Wan et al.  EEG 

Long-term outcome prediction 
and relapse 
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Paper Authors Data Technique/s Aim 
Effect of interictal epileptiform 

discharges on EEG-based 
functional connectivity networks. 

Hu et al. EEG 
Functional connectivity 

(cross-correlation) Diagnosis 

Quantitative characteristics of 
hypsarrhythmia in Infantile Spasms 

Smith et al.  EEG 
Amplitude, Spectral 

Power  
Diagnosis 

Computational characteristics of 
interictal EEG as objective markers 

of epileptic spasms 
Smith et al.  EEG 

Amplitude, Spectral 
Power, Entropy, long-

range temporal 
correlations (DFA), 

Functional connectivity 
(cross-correlation, PLI)  

Diagnosis 

Brain connectivity in West 
Syndrome 

Burroughs et al. EEG 
Functional connectivity 
(coherence), Spectral 

Power 
Diagnosis 

Electroencephalography based 
functional networks in newly 

diagnosed childhood epilepsies 
Diessen et al. EEG 

Spectral Power, 
Functional connectivity 

(PLI), Minimum spanning 
tree (MST). 

Diagnosis 

Neuronal networks in West 
Syndrome as revealed by source 
analysis and renormalized partial 

directed coherence 

Japaridze et al. EEG 
Coherence (DICS), 

Directionality analysis 
(RPDC)  

Diagnosis 

Automated preprocessing and 
phase-amplitude coupling analysis 
of scalp EEG discriminates infantile 

spasms from controls during 
wakefulness 

Miyakoshi et al. EEG 
Dellta-gamma 

modulation index (MI) Diagnosis 

Scalp EEG interictal high frequency 
oscillations as an objective 

biomarker of infantile spasms 
Nariai et al. EEG HFOs, SWA Diagnosis 

Emerging roles of network analysis 
for epilepsy 

Stacey et al. 
EEG, 

iEEG, DWI 
Functional connectivity Diagnosis 

Complex observation of scalp fast 
(40-150 Hz) oscillations in West 

syndrome and related disorders with 
structural brain pathology.  

Kobayashi et al. EEG FOs/TF analysis Diagnosis 

Fast oscillation dynamics during 
hypsarrhythmia as a localization 

biomarker 
Kim et al. EEG FOs/ERSP Diagnosis 

Ictal high-frequency oscillations on 
scalp EEG recordings in 

symptomatic West syndrome 
Iwatani et al.  EEG HFOs Diagnosis 

Longitudinal correspondence of 
epilepsy and scalp EEG fast (40-
200 Hz) oscillations in pediatric 
patients with tuberous sclerosis 

complex 

Tsuchiya et al. EEG FOs (burden) Diagnosis 

Increased electroencephalography 
connectivity precedes epileptic 

spasm onset in infants with tuberous 
sclerosis complex 

Davis et al. EEG 
Functional connectivity 

(FC): Mutual information 
(MI) 

Diagnosis 
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Developing a novel epileptic 
discharge localization algorithm for 

electroencephalogram infantile 
spasms during hypsarrhythmia 

Traitruengsakul 
et al. 

EEG TF Diagnosis 

Epileptogenic modulation index and 
synchronization in hypsarrhythmia 
of West syndrome secondary to 
perinatal arterial ischemic stroke 

Suzuki et al. EEG 
Modulation index (MI) & 

Synchronization 
likelyhood (SL) 

Diagnosis 

Hypsarrhythmia in epileptic spasms: 
Synchrony in chaos 

Nenadovic et al. EEG Mean phase coherence Diagnosis 

Automated detection of ripple 
oscillations in long-term scalp EEG 
from patients with infantile spasms 

McCrimmon et 
al. 

EEG HFOs 
Diagnosis 

Treatment outcome 

A storm of fast (40-150 Hz) 
oscillations hypsarrhythmia in West 

syndrome 
Kobayashi et al. EEG FOs/TF analysis 

Diagnosis 

Treatment outcome 

Automatic detection of interictal 
ripples on scalp EEG to evaluate the 

effect and prognosis of ACTH 
therapy in patients whith infantile 

spasms 

Wang et al. EEG HFOs 
Diagnosis 

 

Treatment outcome  

Epileptogenic modulation index and 
synchronization in hypsarrhythmia 
of West syndrome secondary to 
perinatal arterial ischemic stroke 

Tanritanir et al. EEG 
Delta power and Delta 

Coherence 

Treatment prediction  

Treatment outcome  

Electroencephalography complexity 
in infantile spasms and its 

association with treatment response 
Chu et al. EEG Multiscale entropy (MSE) Treatment prediction  

 
Table 2: Infantile Spasms (IS) computational analysis techniques for diagnosis, treatment outcome, treatment prediction, 

and long-term outcome prediction and relapse. 
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Appendix 2: Pre-processing outline code 
 
[info, EEG_raw] = edfreadUntilDone("L010.EEG7.edf"); % Loading edf file (data) 
 
EEG_data = EEG_raw(1:19,:); % Selection of 19 electrodes 
 
% Removing zeros from the end of the data 
diff_EEG = diff(EEG_data,1,2);  
diffIsZero = diff_EEG == 0; 
impChecks = double(diffIsZero); 
sumImpCheck = sum(impChecks); 
impCheckVec = sumImpCheck==19; 
impCheckArts = find(impCheckVec==1); 
diff_impCheckArts = diff(impCheckArts); 
if sum(diff_impCheckArts) == size(diff_impCheckArts,2) 
    EEG_data(:,impCheckArts(1):impCheckArts(size(impCheckArts,2)))=[]; 
end 
 
% Automatic Artifact Detection 
[autoArts] = artifact_detector_RJS_041119(EEG_data,200,7.5,0.9,1); 
 
% Filtering 
[EEG_filt,time,fs,labels,CAR_filt, allArtIndex, artifacts] = tfg_cleanData (EEG_data, 
info,'broadband','CAR',autoArts); 
artifacts_ind = artifacts * fs; 
 
% Connectivity calculation 
[all_connectMat, select_z_binary, connectMat,z_binary,z,nWin,criticalZ,lagAtMaxCC,lagAtZero,EEG_window,EEG_clean] 
= tfg_calculate_ConnectVal(EEG_filt,fs,CAR_filt, artifacts_ind, min_len); 

 
Appendix 3: Filtering function 
 
function [EEG_filt,time,fs,labels,CAR_filt, allArtIndex, artifacts] = tfg_cleanData 
(eeg_record,info,pickAFilter,reReference,autoArts) 
 
labels = info.label; 
labels(20:size(labels,2)) = []; 
 
fs = 200;  
time = (1:size(eeg_record,2))/fs; 
 
artifacts = [autoArts.times]; %start and end times 
 
% Check that all artifacts go from an earlier time to a later time 
for a=1:size(artifacts,1) 
   if artifacts(a,2)<artifacts(a,1) 
        temp = artifacts(a,2); 
        artifacts(a,2) = artifacts(a,1); 
        artifacts(a,1)=temp; 
    end  
end 
 
% Re-reference to the specified montage 
EEG = eeg_record; 
if ~isempty(reReference) 
    switch reReference 
        case 'CAR' 
            CAR = mean(EEG(1:19,:),1); 
            EEG_reref = EEG-repmat(CAR,size(EEG,1),1); 
            EEG_reref = EEG_reref(1:19,:); 
        case 'EAR' 
            ear = (EEG(20,:)+EEG(21,:))./2; 
            EEG_reref = EEG-repmat(ear,size(EEG,1),1); 
            EEG_reref = EEG_reref(1:19,:); 
    end 
else 
    EEG_reref = EEG; 
    EEG_reref = EEG_reref(1:19,:); 
end 
 
%Filtering of the data 
if ischar(pickAFilter) 
switch pickAFilter 
    case 'delta' 
        [filter] = pickFilter(pickAFilter,fs); 
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        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'theta' 
        [filter] = pickFilter(pickAFilter,fs); 
        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'alpha' 
        [filter] = pickFilter(pickAFilter,fs); 
        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'beta' 
        [filter] = pickFilter(pickAFilter,fs); 
        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'broadband' 
        [filter] = pickFilter(pickAFilter,fs); 
        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'muscle' 
        [filter] = pickFilter(pickAFilter,fs); 
        EEG_filt = filtfilt(filter,1,EEG_reref'); 
        EEG_filt = EEG_filt'; 
        if strcmp(reReference,'CAR')==1 
            CAR_filt = filtfilt(filter,1,CAR'); 
            CAR_filt = CAR_filt'; 
        end 
    case 'none' 
        EEG_filt = EEG_reref; 
%         CAR_filt = CAR; 
end 
else  
    filter = pickAFilter; 
    EEG_filt = filtfilt(filter,1,EEG_reref'); 
    EEG_filt = EEG_filt'; 
    if strcmp(reReference,'CAR')==1 
        CAR_filt = filtfilt(filter,1,CAR'); 
        CAR_filt = CAR_filt'; 
    end 
end 
 
% Get vector indices corresponding to all artifacts 
if isempty(artifacts) 
    allArtIndex=[]; 
else 
    allArtIndex=[]; 
    art = round(artifacts*fs);  % convert times to indices 
    for i=1:size(artifacts,1) 
        allArtIndex=[allArtIndex,art(i,1):art(i,2)]; 
    end 
end 
 
allArtIndex = sort(allArtIndex); 
allArtEAR = allArtIndex(2:end); 
 
%%Plot of the signal 
time_all = (1:size(eeg_record,2))/fs; %total time, needed for plotting 
color =['y', 'm','c','r','g','b','k']; 
% Plot raw data 
figure; 
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counter=1; 
for i=1:size(eeg_record,1) 
    shift=(i-1)*800; 
    yax=eeg_record(i,:)+shift; 
    plot(time_all,yax,color(counter)) 
    hold on; 
    counter=counter+1; 
    if counter>size(color,2) 
        counter=1; 
    end 
end 
%hleg1=legend('1. FP1','2. FP2','3. F3','4. F4','5. C3','6. C4','7. P3','8. P4','9. 01','10. 02','11. F7','12.F8', 
'13.T3', '14.T4', '15.T5', '16.T6', '17.Fz', '18.Cz', '19.Pz'); 
%set(hleg1,'Location','EastOutside'); 
title('L001.EEG1 - EEG - raw data','FontSize', 18); 
xlabel("Time(sec)"); 
yticks([0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600 10400 11200 12000 12800 13600 14400]) 
yticklabels({'FP1', 'FP2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 
'Fz', 'Cz', 'Pz'}) 
ylabel("Amplitude (mV)"); 
 
% Plot EEG data after removing electrodes and (artifacts) & rereferencing 
figure; hold on; 
counter=1; 
for i=1:size(EEG_filt,1) 
    shift=(i-1)*800; 
    plot(time,EEG_filt(i,:)+shift,color(counter)) 
    %plot(time,EEG_filt(i,:)+shift,'k') 
    counter=counter+1; 
    if counter>size(color,2) 
        counter=1; 
    end 
end 
%hleg1=legend('1. FP1','2. FP2','3. F3','4. F4','5. C3','6. C4','7. P3','8. P4','9. 01','10. 02','11. F7','12.F8', 
'13.T3', '14.T4', '15.T5', '16.T6', '17.Fz', '18.Cz', '19.Pz'); 
%set(hleg1,'Location','EastOutside'); 
title('L001.EEG1 - EEG - filtered and re-ref', 'FontSize', 18); 
xlabel("Time(sec)"); 
yticks([0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800 9600 10400 11200 12000 12800 13600 14400]) 
yticklabels({'FP1', 'FP2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 
'Fz', 'Cz', 'Pz'}) 
ylabel("Amplitude (mV)"); 
 
clear eeg_info eeg_record 
return 
end  
 

Appendix 4: Automated Artifact Detection 
 
function [autoArts] = artifact_detector_RJS_041119(eeg_record,fs,stdAbove,buffer,channelsInvolved) 
 
% filter data the same way they do to clinically view 
 
% Create filters - these were compared to Nihon Kohden viewer in Aug 2015 
tau = 0.1;  % time constant in Nihon Kohden 
cutoff = 1/(2*pi*tau); % cutoff frequency is a function of time constant 
[b,a] = butter(1, cutoff/(fs/2), 'high'); 
[b2,a2] = butter(3, 40/(fs/2), 'low'); 
 
% Filter the data - Nihon Kohden does not use zero-phase filters 
eeg_filt = filter(b,a,eeg_record',[],1); 
eeg_filt = -filter(b2,a2,eeg_filt,[],1); % POSITIVE DOWN 
eeg_filt = eeg_filt'; 
 
meanEEG = mean(eeg_filt,2); 
stdEEG = std(eeg_filt,0,2); 
 
% set an absolute threshold that an artifact must be over 200 uV.  
stdEEG(stdEEG<(200/stdAbove)) = 200/stdAbove; 
 
possArts = zeros(size(eeg_filt)); 
for j=1:size(eeg_filt,1) 
    possArts(j,:) = abs(eeg_filt(j,:)-meanEEG(j))>stdAbove*stdEEG(j); 
end 
 
% get logical vector for any artifacts 
sumArtsVec = sum(possArts,1); 
artsVec = sumArtsVec>channelsInvolved-1; 
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% pad around the artifact to ensure you get the entire event (buffer = # of seconds) 
indicesArts = find(artsVec); 
for k=1:size(indicesArts,2) 
    if indicesArts(k)-buffer*fs<=0 
        artsVec(1:indicesArts(k)+buffer*fs) = 1; 
    elseif indicesArts(k)+buffer*fs>=size(eeg_record,2) 
        artsVec(indicesArts(k)-buffer*fs:end) = 1; 
    else 
        artsVec(indicesArts(k)-buffer*fs:indicesArts(k)+buffer*fs) = 1; 
    end 
end 
 
% get it into times that can be read into the artifact_marking code 
% difference between indices vector will show which have a difference more 
% than 1 
fullIndArts = find(artsVec); 
diffVec = diff(fullIndArts); 
largeDiff = find(diffVec~=1); %find when the artifact sample is non-consecutive 
artTimes = []; 
if ~isempty(fullIndArts) 
    artTimes = zeros(1,2); 
    artTimes(1,1) = fullIndArts(1)./fs;  
    for m = 1:size(largeDiff,2) 
        artTimes(m,2) = fullIndArts(largeDiff(m))./fs; 
        artTimes(m+1,1) = fullIndArts(largeDiff(m)+1)./fs; 
    end 
    artTimes(size(largeDiff,2)+1,2) = fullIndArts(end)./fs; 
end 
 
% add artifacts from impedance checks 
 
diff_EEGrec = diff(eeg_record,1,2); 
diffIsZero = diff_EEGrec == 0; 
impChecks = double(diffIsZero); 
sumImpCheck = sum(impChecks); 
impCheckVec = sumImpCheck>8; 
 
impCheckArts = find(impCheckVec==1); 
 
newArts = []; 
if ~isempty(impCheckArts) 
    diffVec2 = diff(impCheckArts); 
    largeDiff2 = find(diffVec2~=1); %find when the artifact sample is non-consecutive 
 
    newArts = zeros(1,2); 
    newArts(1,1) = impCheckArts(1)./fs;  
    for p = 1:size(largeDiff2,2) 
     newArts(p,2) = impCheckArts(largeDiff2(p))./fs; 
     newArts(p+1,1) = impCheckArts(largeDiff2(p)+1)./fs; 
    end 
    newArts(size(largeDiff2,2)+1,2) = impCheckArts(end)./fs; 
end 
artTimes = [artTimes; newArts]; 
 
autoArts.times = artTimes; 
autoArts.general = ones(1,size(artTimes,1)); 
autoArts.eye = zeros(1,size(artTimes,1)); 
autoArts.ear = zeros(1,size(artTimes,1)); 
 
end 
 

Appendix 5: Connectivity calculation 
 
function [all_connectMat, select_z_binary, connectMat,z_binary,z,nWin,criticalZ,lagAtMaxCC,lagAtZero, EEG_window, 
EEG_clean] = tfg_calculate_ConnectVal(EEG_filt,fs,CAR_filt,artifacts, min_len) 
 
% ========================= CROSS CORRELATION ========================= 
% Calculate cross correlation for all 1-second windows 
maxLag=0.2*fs;  % max lags (in indices) 
nElec=size(EEG_filt,1); % number of remaining electrodes after preprocessing 
nTime=size(EEG_filt,2); % number of time points after preprocessing 
nWin = fix(nTime/fs); 
 
lagAtMaxCC=zeros(nElec,nElec,nWin); 
z=zeros(nElec,nElec,nWin); 
partialRemove = zeros(nElec,nElec,nWin); 
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% Loop over all 1-second windows, run crossCorrFn 
EEG_clean = []; %vector for EEG clean data, no artifacts 
for i=1:(nTime/fs) 
    tEnd=i*fs; 
    tStart=tEnd-fs+1; 
    artif_affected = 0; 
    for j=1:size(artifacts,1) 
        artif_start = artifacts(j,1); 
        artif_end = artifacts(j,2); 
        if ((artif_start < tEnd) && (tEnd < artif_end)) || ... 
                ((tStart < artif_start) && (artif_end < tEnd)) || ... 
                ((artif_start < tStart) && (tStart < artif_end)) || ... 
                ((artif_start < tStart) && (tEnd < artif_end)) 
            artif_affected = 1; 
            break 
        end 
    end 
    %fprintf("tStart: %i / tEnd: %i / artif: %i\n", tStart, tEnd, artif_affected); 
    if artif_affected == 1 
        continue 
    end 
    EEG_window=EEG_filt(:,tStart:tEnd); 
    CAR_window=CAR_filt(tStart:tEnd);  
    [zInWindow,lagInWindow,partial]=crossCorrFn(fs, maxLag, EEG_window, EEG_window,1, CAR_window); 
    EEG_clean=[EEG_clean EEG_window]; %EEG data with no artifacts 
     
    lagAtMaxCC(:,:,i)=lagInWindow; 
    z(:,:,i)=zInWindow; 
    partialRemove(:,:,i) = partial; 
end 
 
% ===================== PERMUTATION RESAMPLING =========================== 
% Shift the data in time and find the maximum cross correlation that can 
% occur by chance 
nIter=1000; 
threshold=0.95*nIter;  % percentile for critical z-value; needs to be an integer 
CAR_window=zeros(1,size(CAR_window,2)); 
z_shift = zeros(nElec,nElec,nIter); 
 
for i=1:nIter 
    shift=randperm(size(EEG_clean,2)-fs,2);%two random values (min separation 1 sec) 
     
    EEG_shifted=circshift(EEG_clean',shift(1))'; % shift filtered data 
    elec1=EEG_clean(:,shift(2):(shift(2)+fs)); % signal 1 - original 
    elec2=EEG_shifted(:,shift(2):(shift(2)+fs)); % signal 2 - shifted 
     
    %cross correlation for the random 1s interval 
    [z_shift(:,:,i),~,~]=crossCorrFn(fs, maxLag, elec1, elec2,0, CAR_window);  
end 
 
% Sort max cross correlation values and determine critical z value 
criticalZ = zeros(nElec); 
for i=1:nElec 
    for j=(i+1):nElec 
        allIter = sort(squeeze(z_shift(i,j,:))); 
        criticalZ(i,j) = allIter(threshold); 
    end 
end 
 
% Compare calculated z-value to threshold based on permutation resampling 
% Each window of data gets a binary value (1 if significant) 
z_binary=zeros(nElec,nElec,nWin); 
lagAtZero=zeros(nElec,nElec,nWin); 
for win=1:nWin % for each window 
    for j=1:nElec 
        for k=(j+1):nElec  % skip self-comparisons (j=k) 
            %if maximum occurs at 0 lag 
            if lagAtMaxCC(j,k,win)==0  
                lagAtZero(j,k,win)=1; % z_binary is also zero (already set to zero) 
                lagAtZero(k,j,win)=1; 
            else 
                % Compare to critical value, 1 = significant 
                z_binary(j,k,win) = (z(j,k,win)>=criticalZ(j,k)); 
                z_binary(k,j,win) = (z(j,k,win)>=criticalZ(j,k)); 
            end 
        end 
    end 
end 
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all_connectMat = zeros(19,19,(min_len/fs)); 
for m=1:1000 
    rng(13) %to get consistent results 
   % Desired number of window indices from 1 to size of data with repetition 
    nWin_rnd = randi(size(z_binary,3), 1, min_len/fs);  
    select_z_binary = z_binary(:,:,nWin_rnd); 
    all_connectMat(:,:,m) = mean(select_z_binary,3); 
end 
 
connectMat = mean(all_connectMat,3); 
% connectMat = mean(z_binary,3); 
% connectVal = sum(sum(connectMat)); 
 
end 
 

Appendix 6: Representation of cross-correlation matrix 
 
lim = [0,0.4]; %value limits 
 
figure() 
imagesc(s1eeg1) 
colormap jet; 
colorbar(); 
caxis(lim); 
title("Cross-correlation matrix (L001.EEG1 - thresh)", "FontSize", 17); 
xticks(1:19); 
xticklabels(labels) 
yticks(1:19); 
yticklabels(labels) 

 
Appendix 7: Connectivity topographic plot 
 
% Setup 
c = jet(100); 
% Percentile thresholding 
triang = triu(connectMat,1); 
nonzero_triang = nonzeros(triang); 
sort_vals = sort(nonzero_triang); 
sig = prctile(sort_vals,90,'all'); 
multiplier = 250; %this number increases the connectivity value so it matches the color scale 
 
load("chanlocs_CHOC.mat"); 
chanloc2 = chanloc; 
chanloc2_labels = cell(1,19); 
 
sigSum2 = zeros(19); 
sigSum1 = zeros(19); 
 
X = zeros(1,19); 
Y = zeros(1,19); 
Z = zeros(1,19); 
 
% Extracting chanloc locations 
for i=1:19 
    chanloc2_labels{i} = chanloc2(i).labels; 
    X(i) = chanloc2(i).X; 
    Y(i) = chanloc2(i).Y; 
    Z(i) = chanloc2(i).Z; 
end 
X = X/200 + 0.5; 
Y = Y/200 + 0.5; 
Z = Z/200 + 0.5; 
 
nChan = 19; % 19 electrodes 
sigZ = connectMat; %adjacency matrix 
percentSig(:,:) = sigZ(1:19,1:19); 
 
% Plot black dot at each electrode 
for i=1:19 
    figure(2) 
    ylim([-0.1 1.1]) 
    xlim([-0.1 1.1]) 
    title("Connectivity plot (L006.EEG3)") 
 
    % Electrode names 
    text(X(i), Y(i)-0.015, chanloc2_labels{i});      
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    camroll(-90) 
    hold on 
    plot(X(i),Y(i),'k.') 
    th = linspace(0, 2*pi, 100); 
    R = 0.5;  %or whatever radius you want 
    xh = R*cos(th)+0.5; 
    yh = R*sin(th)+0.5; 
    
   
    % For top ear 
    th = linspace(0, pi, 100); 
    R = 0.05;  %or whatever radius you want 
    xte = R*cos(th) + X(14); 
    yte = R*sin(th) + 1; 
 
    % For bottom ear 
    th = linspace(0, -pi, 100); 
    R = 0.05;  %or whatever radius you want 
    xbe = R*cos(th) + X(6); 
    ybe = R*sin(th) + 0; 
 
    % Plot head, ears 
    plot(xh,yh,'k'); %axis equal; 
    plot(xte,yte,'k'); 
    plot(xbe,ybe,'k'); 
    % Plot nose 
    plot([1 1.05], [Y(4)-0.065 mean(Y([4,12]))], 'k') 
    plot([1 1.05], [Y(12)+0.065 mean(Y([4,12]))], 'k') 
end 
 
close all 
 
% Actually plotting the network 
for i=1:19 
     
    % Plotting our electrode locations 
    hold on 
    plot(X(i),Y(i),'k*')    
    colormap jet 
    ylim([-0.1 1.1]) 
    xlim([-0.1 1.1]) 
    title('L005.EEG5') 
     
    
    camroll(-90) % rotate our head to right orientation 
    
    % Colorbar BASED ON OUR MULTIPLIER 
    blah3 = colorbar; 
    title(blah3, '') 
    caxis([0 0.4]) % color axis maximum 
     
    % Electrode names 
    text(X(i), Y(i)-0.015, labels{i});  
 
    % Face 
    plot(xh,yh,'k'); %axis equal; 
 
    % Ears 
    plot(xte,yte,'k'); 
    plot(xbe,ybe,'k'); 
 
    % Plot nose 
    plot([1 1.05], [Y(1)-0.065 mean(Y([1,2]))], 'k') 
    plot([1 1.05], [Y(2)+0.065 mean(Y([1,2]))], 'k')   
     
    for j=(i+1):19 
 
        if percentSig(i,j)>=sig 
            xvec = [X(j) X(i)]; 
            yvec = [Y(j) Y(i)]; 
 
            colorIndex = floor(percentSig(i,j)*multiplier); 
 
            % Functional connectivity map 
            plot(xvec, yvec, 'color', c(colorIndex,:),'linewidth',2) 
        end 
    end 
end 
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Appendix 8: Number of connections above threshold 
 
% Calculations for 1 patient, different thresholds 
connections = ["s1eeg1", "s1eeg2", "s1eeg3", "s1eeg4", "s1eeg5"]; 
thres = [0.1, 0.15, 0.2, 0.25]; 
val = zeros(length(thres), length(connections)); 
for i=1:length(thres) 
    limit = thres(i); 
 
    for j=1:length(connections) 
        matrix = eval(connections(j)); 
        val(i,j) = nnz(matrix>limit)/2; 
    end 
end 
 
x = 1 : length(connections); 
plot(x,val(1,:), '-or', 'MarkerFaceColor', 'r'); 
hold on 
plot(x, val(2,:), '-ok', 'MarkerFaceColor', 'k'); 
hold on 
plot(x, val(3,:), '-ob', 'MarkerFaceColor', 'b'); 
hold on 
plot(x, val(4,:), '-og', 'MarkerFaceColor', 'g'); 
hold off 
xticks(x) 
xticklabels({'EEG 1','EEG 2','EEG 3','EEG 4', 'EEG 5'}) 
ylabel('Sum of strong connections') 
title('Subject 01: Strong Connections') 
legend("> 0.10", "> 0.15", "> 0.20", "> 0.25") 
 

Appendix 9: Mean strength of connections above percentile 
 
%Calculation for 1 subjects and different percentiles 
percentile = [95, 90, 85, 80]; 
mean_mat = zeros(length(percentile), length(connections1)); 
 
for i=1:length(percentile) 
    percent_val = percentile(i); 
    for j=1:length(connections1) 
        matrix = eval(connections1(j)); 
     
        % Find percentile threshold 
        triang = triu(matrix,1); 
        nonzero_triang = nonzeros(triang); 
        sort_vals = sort(nonzero_triang); 
        threshold = prctile(sort_vals, percent_val, 'all'); 
         
        % Calculate mean of values above threshold 
        tf = matrix > threshold; 
        mean_mat(i,j) = mean(reshape(matrix(tf),1,[])); 
    end 
 
end 
 
x = 1 : length(connections1); 
 
plot(x,mean_mat(1,:), '-or', 'MarkerFaceColor', 'r'); 
hold on 
plot(x, mean_mat(2,:), '-ok', 'MarkerFaceColor', 'k'); 
hold on 
plot(x, mean_mat(3,:), '-ob', 'MarkerFaceColor', 'b'); 
hold on 
plot(x, mean_mat(4,:), '-og', 'MarkerFaceColor', 'g'); 
hold off 
xticks(x) 
%xticklabels({'IS diagnosis','','', 'LGS diagnosis', ''}) 
xticklabels({'EEG 1','EEG 2','EEG 3','EEG 4', 'EEG 5'}) 
ylabel('Mean strength above percentile') 
title('Subject 01: Mean strength') 
legend("95th percentile", "90th percentile", "85th percentile", "80th percentile") 
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