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Huntington’s Disease (HD) is an autosomal dominant inherited neurodegenerative disorder 

characterized by motor, psychiatric, and cognitive manifestations. The disease is caused by 

an unstable expansion of the CAG trinucleotide repeat in the huntingtin gene (Htt), which 

eventually leads the HD patients to death, in a period of a few decades. Regardless the 

ubiquitous expression of mutant huntingtin (mHtt) in somatic tissues, the pathologic features 

are seemingly restricted to the brain. During the disease, the caudate and putamen (striatum 

in mice) suffers a progressive neuronal loss and atrophy. Later, other brain regions as cortex 

and hippocampus also become affected as the neuronal loss and atrophy are widely spread 

throughout the brain. As striatum is the main hub of basal ganglia circuit, which orchestrates 

the voluntary motor sequences along with cognitive and emotional responses, it is believed 

that striatum pathophysiology underlies the behavioral symptoms of the disease. 

Importantly, before neurodegeneration mHtt acts from the roots of cellular processes 

inducing the synaptic and neuronal dysfunction of the striatal neurons until death. Hence, 

we believed in the importance of deciphering the initial and triggering key mechanisms of 

the disease in prodromal stages and designing useful therapeutic strategies able to delay the 

onset of the neuropathologic changes and clinical symptoms in HD. Here, we identify a 

candidate gene named Foxp2, which has been shown to be strongly associated with basal 

ganglia circuitry in conjunction with psychiatric and motor deficits. We identified an early 

striatal downregulation of Foxp2 protein which seems to be linked to behavioral and 

molecular changes in the juvenile R6/1 mouse model. Juvenile R6/1 mice behavioral 

phenotype was characterized by an increased hyperlocomotive and impulsive-like behavior, 

less aggressive-like behavior and disrupted locomotor circadian rhythms concomitant with 

structural and functional changes as decreased dendritic spine density and dysregulation of 

striatal protein expression. Interestingly, the rescue of striatal Foxp2 levels reverted 

impulsivity-phenotype, likely by rescuing striatal protein expression dysregulation and 

synaptic plasticity impairment. We also detected a downregulation of Foxp2 protein in the 

thalamus of pre- and symptomatic R6/1 mouse. We confirmed the well-established cortico-

striatal disconection previously found in HD models, but we also demonstrated the 

functional disconnection between the thalamus and the striatum at symptomatic stages of 

R6/1 mice. Recovery of Foxp2 in the ventrolateral thalamus rescued sensory-motor 

behavioral disturbances in the symptomatic R6/1 mice, along with structural and functional 

changes, whereas knockdown of Foxp2 mimicked HD-associated phenotype. In summary, 

our study points out Foxp2 as a potential target to understand the neuropathogenesis and 

behavioral deficits in HD.   
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1. Huntington’s Disease 

Huntington’s Disease (HD) is an autosomal dominant inherited neurodegenerative disorder 

characterized by motor, behavioral, and cognitive manifestations (Walker, 2007). The first 

and thorough description of the motor symptoms was provided by the physician George 

Huntington in 1872, who decided to name the disease “chorea” (from the ancient Greek 

word choreia which means dance) based on the dancing propensities of the affected ones 

(Huntington, 1872). Through the past decades, non-motor symptoms such as psychiatric 

disturbances and cognitive impairment have been recognized and gained attention, resulting 

in a renaming of the disorder to HD (Novak & Tabrizi, 2011). Nowadays, HD treatment is 

still solely based on palliative symptomatic approaches to ameliorate motor and psychiatric 

disease symptoms. 

 

1.1. Clinical Aspects  

A systematic review and meta-analysis of HD cases around the word reveals an incidence of 

0.38 per 100,000 per year, and a prevalence of 2.71 per 100,000 (Pringsheim et al., 2012), 

whereas Europe, North America, and Australia show the highest prevalence 5-10 per 100,00. 

A more recent report estimates that European prevalence is 10 per 100,000, and corroborate 

that global prevalence is 2.7 per 100,000 without considering data from African population. 

For example, Egypt has the highest global point prevalence at 21 per 100,000, at a rate twice 

as high as Europe and 11 times higher than the United States (Brady, 2019). 

HD symptoms comprise psychiatric disturbances, motor dysfunction, and cognitive decline. 

The onset of symptoms is typically in middle age, between 30 and 50 years of age. A 10% of 

the patients develops symptoms before age 20, with increased severity as well as a faster 

disease progression. It is commonly known as a juvenile HD variant (JHD) (Conneally, 1984; 

Walker, 2007). Clinical manifestations as bradykinesia, dystonia or parkinsonian features may 

occur more frequently in juvenile HD, while chorea is commonly less present or absent. The 

juvenile HD patients particularly show unusual clinical manifestations compared with adult-

onset HD patients as seizures, school failure and occasionally autism traits (Marano et al., 

2017; Quarrell et al., 2013). 

In the early stages, adult-onset HD patients develop personality changes encompassing a 

wide range of psychiatric and emotional disturbances inside the spectrum, which can precede 

the classical motor symptoms by up to a decade (Epping et al., 2016). HD individuals 

commonly report progressive weight loss, apathy, depression, anxiety, irritability, aggression, 
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psychosis, mania, suicidal ideation, disinhibition, impulsivity, risk-taking behavior, 

obsessive/compulsive behavior, sleep disturbances and unawareness. Irritability is the most 

frequently reported and is often accompanied by aggression (Nance et al., 1996; Pflanz et al., 

1991), although undiagnosed psychiatric conditions such as depression, mania, or psychosis 

may be the underlying cause. Apathy, manifested as a loss of interest and concentration is 

also a commonly symptom experienced by both, HD individual and caregivers. In the studied 

cases, apathy appears simultaneously with the movement disorder, which spans various 

stages of the illness. Irritability and apathy form a well-recognized complex, which is the 

most typical psychological manifestation of HD (Pflanz et al., 1991). Depression is an 

important manifestation with less prevalence among HD patients, which could be mistaken 

with apathy. However, it has been shown that depression does not significantly correlate 

with apathy, on the contrary depression has been significantly correlated with anxiety and 

agitation (Slaugther et al., 2001; Levy et al., 1998). Disinhibition, impulsivity, and risk-taking 

behavior classify for symptoms of dysexecutive syndrome which are typically provided by 

informants or clinicians rather the HD patients (Anderson & Marder, 2001; Goh et al., 2018). 

In fact, unawareness or anosognosia, which is defined by the difficulty of the patient to 

recognize their deficits and their impact, can also be present and observe across the motor, 

cognitive, emotional, and physical domains of the disease (McCusker & Loy, 2014). A range 

of sleep and circadian abnormalities have been reported in HD. At middle stages, several 

HD patients frequently manifest sleep disturbances due to their movements, particularly 

before falling asleep (Kirkwood et al., 2001). Importantly, depression, anxiety, and irritability 

significantly correlate with increased likelihood of suicidal ideation (Hubers et al., 2013; Eddy 

et al., 2016; Mcgarry et al., 2019; Wetzel et al., 2011). Also, in a large cohort of HD patients 

it has been documented that a better neuropsychologic diagnose was significantly associated 

with a decrease in progressive functional decline (Marder et al., 2000). Moreover, several 

studies have consistently reported that psychiatric disturbances worsen quality of life (QOL) 

to a greater extent than motor symptoms of the disease (Helder et al., 2001; Ho et al., 2009; 

Ready et al., 2008). First signs of motor dysfunction include involuntary movements in the 

distal extremities such fingers and toes, and in facial muscles. Progressively, these signs 

become more proximal and axial abrupt involuntary movements identified as chorea 

(Cardoso, 2009; Roos, 2010). During the course of the disease, hyperkinetic movements as 

chorea progressively disappear, while hypokinetic movements become more prominent, with 

bradykinesia, akinesia, rigidity, dystonia, dysarthria (unclear articulation), and dysphagia 

(swallowing difficulty). Other motor features include gait abnormalities, abnormal saccades, 
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myoclonus and tics (Anderson, 2011; Ghosh & Tabrizi, 2018; Roos, 2010). The cognitive 

alterations usually begin with a subtle impairment of intellectual processes being detected 

decades before the onset of motor symptoms (Langbehn et al., 2007). There is a progressive 

worsening of cognitive disturbances including deficits in visuospatial memory, executive 

memory, attention, working memory and verbal learning which gradually progress into 

profound dementia at late stages of the disease (Anderson, 2011) (Figure 1). 

Figure 1. Clinical features progression in HD. Common clinical manifestations encompass a wide range of 

psychiatric, motor, and cognitive disturbances over the life span.  

Advanced HD patients with substantial dementia and severe motor dysfunction may become 

unable to walk and they have poor dietary intake. Ultimately, they become unable to selfcare 

and more vulnerable to injuries as poor nutrition, infection, choking, and inflammation 

(Ghosh & Tabrizi, 2018; Novak & Tabrizi, 2010). Most HD patients die due to aspiration 

pneumonia because of swallowing difficulties, being the common cause of death in HD, 

while suicide is the second most common cause of death (Rodrigues et al., 2017; Schoenfeld 

et al., 1984; Solberg et al., 2018). 

 

1.2. Genetics  

HD is a monogenic autosomal dominant inherited disorder. In 1983, the genetic defect was 

first mapped to the short arm of the human chromosome 4p16.3 (Gusella et al., 1983). Years 

later, the causative mutation of the disease was described as an unstable expansion in the 

trinucleotide repeat formed by cysteine, adenosine, and guanine (CAG) in a newly described 

gene IT15. The IT15 gene, later termed huntingtin HTT encodes for an undescribed protein 

of ~ 348 kDa, also named Htt (HDCRG, 1993). HTT is a large gene consist of 67 exons 
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spanning ~ 180 kb of genomic DNA (Ambrose et al., 1994), whereas (CAG)n mutation is 

in the exon 1.  

In the normal population, the CAG trinucleotide normally repeats about 20 times, varying  

from 11 to 34 CAG copies (HDCRG, 1993; Duyao et al., 1993). A normal repeat, with less 

than 27 repeats, has never been associated with confirmed cases of HD (new mutation or 

sporadic cases) (ACMG/ASHG, 1998; Benjamin et al., 1994). An intermediate repeat, with 

27 to 35 repeats, has not been associated with a HD diagnosis, but can be meiotically unstable 

in paternal transmission resulting in a risk of offspring inherited a HD allele with penetrance 

(Kremer et al., 1994; Chong et al., 1997; Goldberg et al., 1993). 36 to 39 repeats correspond 

with a reduced penetrance, that has been associated with the presence of the disease, but HD 

phenotype may not appear and occasionally individuals living beyond a normal like 

expectancy and do not develop any HD symptoms (Brinkman et al., 1997; Rubinsztein et al., 

1996). A disease repeat, with 40 or more repeats,  leads to a phenotype with full penetrance 

and HD pathology (Brinkman et al., 1997). Longer repeat sizes (>60) are usually associated 

with a juvenile HD presentation (Nance et al., 1999) (Figure 2). 

Figure 2. Diagram of HTT gene and CAG repeat length categories. Schematic representation of the 

aminoacidic (aa) sequence of HTT gene, including the polyglutamine (PolyQ), the proline-rich domain (PRD), 

and the HEAT domains. Boundaries indicate CAG repeat length which is closely related with penetrance of 

the disease in HD mutation carriers.  

The instability of trinucleotide expansion in HD might explain the highly variable clinical 

expression, as exemplified by the high variability in age of onset. There is a strong inverse 
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relationship between age at onset and number of CAG repeats meaning that HD carrier 

mutations with longer CAG repeats commonly present an earlier age of onset (Brinkman et 

al., 1997; Duyao et al., 1993; Nance et al., 1999; Rubinsztein et al., 1996). Despite this robust 

correlation, CAG repeats size has shown to be a poor predictor of onset age, since the 

contribution of CAG length to age at onset can be subtle for cases with less than 52 repeats, 

which corresponds with most cases (Duyao et al., 1993). Thus, it has been estimated that 

residual variability in the age of onset might be due to other genetic and environmental 

factors (Wexler et al., 2004). Like other trinucleotide repeats disorders, CAG instability is 

linked to genetic anticipation, a phenomenon by which successive generations develop an 

earliest age-onset and a more severe phenotype. Greater size of repeat length is associated 

with male transmission, due to a particular instability of the CAG repeat during male 

gametogenesis such as most juvenile HD cases (Duyao et al., 1993; Ranen et al., 1995; 

Telenius et al., 1993; Trottier et al., 1994). 

 

1.3. Huntingtin protein  

Htt is large protein of ~ 348 kDa containing 3144 amino acids, and is highly conserved 

among vertebrates (HDCRG, 1993; Tartari et al., 2008). Htt is expressed ubiquitously 

throughout the body, predominantly in the brain and testes (DiFiglia et al., 1995; S. H. Li et 

al., 1993). In the brain, it is found in all type of neurons, as well as glial cells (Landwehrmeyer 

et al., 1995; Gutekunst et al., 1995; Hebb et al., 1999). Within the neurons, Htt is mainly 

found in the cytoplasm and colocalize with many organelles, including the nucleus, 

endoplasmic reticulum, Golgi complex, mitochondria, microtubules, endocytic and 

phagocytic vesicles, endosomes and synaptosomes (Gutekunst et al., 1995; Hoffner et al., 

2002; Velier et al., 1998; Kegel et al., 2002; DiFiglia et al., 1995). Regarding to its structure, it 

has been described that Htt acquires the form of an elongated superhelical solenoid with a 

diameter of ~ 200 nm (Wei et al., 2006). Two important well-characterized features are the 

polyQ region, which is thought to mediate transcriptional regulation (Benn et al., 2008), and 

a series of HEAT (Huntingtin, Elongator factor3, PR65/A regulatory subunit of PP2A, 

and Tor1) repeats, which are 40-amino acid segments that mediate protein-protein 

interactions (Takano & Gusella, 2002; Andrade & Bork, 1995; Wei et al., 2006). Despite the 

gathered amount of information since the discovery, the physiological function of Htt 

protein is not entirely clear. Htt has shown to be essential for embryonic development since 

its absence resulted in embryonal death around day 8.5 (Nasir et al., 1995; Duyao et al., 1995), 

and to play an important role in preventing cellular apoptosis (Rigamonti et al., 2000; Zhang 
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et al., 2006), transcriptional regulation (Zuccato et al., 2003; Wu et al., 2010; Shimojo, 2008), 

vesicle trafficking and axonal transport (Pal et al., 2006; Caviston et al., 2007; Wu et al., 2010; 

Gauthier et al., 2004). Normal Htt seems to have a remarkable beneficial role in the brain, 

conversely in HD the presence of an aberrant expanded polyQ tract compromises cellular 

processes given place to pathological mechanism (Bates et al., 2015; Zuccato et al., 2010; 

Jiang et al., 2016; Jimenez-Sanchez et al., 2017; Ross & Tabrizi, 2011). It also seems that 

both, a gain of function of mHtt and to a lesser extent a loss of function of wild-type 

huntingtin underlie the neurobiochemical and neuropathological features of the disease 

(Zuccato et al., 2010). The deleterious effects of a gain of function of mHtt will be addressed 

in the following sections of this thesis.  

 

1.4. Neuropathology  

Regardless the ubiquitous expression of mHtt in somatic tissues, the pathologic features are 

seemingly restricted to the brain. Earliest major pathologic and biochemical changes are 

bounded to the striatum, a brain region which encompass the caudate and putamen in 

humans. Striatum along with the external segment of the globus pallidus (GPe) suffers a 

progressive neuronal loss and atrophy, in conjunction with astrogliosis that in the long-term 

results in the enlargement of the ventricular system. With the progression of the disease, the 

atrophy is widely and symmetrically spread throughout the brain showed by the 80% of HD 

brains atrophy involving mainly the frontal lobes in a rostro-caudal direction (Vonsattel et 

al., 2008, 2011). Progressive brain atrophy is already showed by premanifest and early HD 

patients, which also present progressive cortical volume loss, as well as white matter loss in 

the frontal lobe (Aylward et al., 2011; Tabrizi et al., 2011). 

To study the evolution and severity of neuropathological changes in the HD striatum, and 

the relationship with clinicopathological features, the neuropathologist Jean Paul Vonsattel 

developed a grading system in 1985. Based on the macroscopic and microscopic features of 

striatal degeneration, 5 different grades (grades 0-4) were correlated with the chronological 

and topographical evolution and severity of HD striatum degeneration. Grade 0 corresponds 

with brains macroscopically unchanged, and an 30-40% loss of neurons in the head of the 

caudate nucleus. Grade 1 defines brains which tail and body of the caudate nucleus may show 

atrophy and neuronal loss, whereas head of caudate nucleus show a 50% reduction of 

neurons. Grade 2 is assigned to brains with mild to moderated gross striatal atrophy while 

Grade 3 designates brains with severe striatal atrophy. Grade 4 is designated when the 
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striatum is substantially atrophic with a 95% of neuronal loss (Vonsattel et al., 1985, 2011, 

2008) (Figure 3). 

 

 

 

 

 

 

 

 

 

Figure 3. Neuropathological features in HD. (A) Human coronal brain sections from a control case (left) 

and an advanced HD patient (right). Dramatic atrophy of caudate (CN) and putamen (P) indicated by white 

arrows, along with cortical atrophy and enlargement of the lateral ventricle. Adapted from (Waldvogel et al., 

2014). (B) Schematic illustrations showing the progression of macroscopic degeneration of the striatum 

indicated by Vonsattel grading system. Adapted from (Reiner et al., 2011). 

 

Typically extrastriatal regions as cortex, thalamus, hippocampus, amygdala, subthalamic 

nucleus, substantia nigra, and cerebellum also show atrophy and neuronal loss. However, 

these findings are less consistent across investigations due variation of the degrees atrophy 

and neuronal loss depending on disease stage (Vonsattel et al., 2011). Regarding cortical 

changes, an important morphometric study of 81 HD prefrontal cortices reveals a loss of 

pyramidal neurons in layers III, V, and VI in grades 2–4, with the greatest loss in grade 4 

(Sotrel et al., 1991). Following studies have extensively corroborated atrophy and volume 

loss in the several areas and layers of the HD mutation carrier cerebral cortex (Rüb et al., 

2016). Degeneration of the thalamus of HD patients is described in some early 

neuropathological HD reports (Vonsattel et al., 1985; Vonsattel et al., 2008; Vonsattel and 

Difiglia, 1998; Walker, 2007). Recent studies describe those thalamic neuropathological 

changes are not only confined to cerebellar territory of the thalamus as the motor 

ventrolateral nucleus (Dom et al., 1976), but also occurs in the thalamic centromedian‐

parafascicular complex (CM-Pf), which projects to striatum, and in the mediodorsal 

nucleus which shows volume shrinkage, significant neuronal loss and astrogliosis (Heinsen 

A B 
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et al., 1999, 1996; Kasubek et al., 2005; Rüb et al., 2016). More recently, several attempts 

involving advanced neuroimaging studies of HD brains reveal changes in cerebral spinal fluid 

volumes and abnormal thinning of cortical sulci (Squiteri et al., 2009; Nopoulos et al., 2007), 

and confirmed regional cortical degeneration, whole brain atrophy, and significant loss of 

grey and white matter (Ciarmiello et al., 2006; Beglinger et al., 2005; Henley et al., 2009; 

Tabrizi et al., 2009). Neuropathological changes as progressive and region-specific atrophy 

of the brain has been recapitulated in several HD mouse models (Aggarwal et al., 2012; 

Crevier-Sorbo et al., 2020; Etxeberria-Rekalde et al., 2021; Steventon et al., 2016; Zhang et 

al., 2010), with selective striatal neuronal loss (Dodds et al., 2014; Slow et al., 2003), and 

astrogliosis to a lesser extent (Ferrante, 2009).  

Importantly, the presence of prominent nuclear and cytoplasmic inclusions has been revealed 

by immunochemical analysis of HD brains becoming a major feature of the disease. These 

inclusions can be detected long before the neuronal loss and the onset of the symptoms, 

although are more widespread in the brains of patients with juvenile onset rather than adult-

onset of symptoms (Davies et al., 1997; DiFiglia et al., 1997; Gomez-Tortosa et al., 2001; 

Sapp et al., 1999). The occurrence of nuclear inclusions and neuropil aggregates are also 

described in several HD mouse models, even though are more frequently in mice carrying 

the truncated mHtt (Reddy et al., 1998; Hodgson et al., 1999; Schilling et al., 1999; Slow et 

al., 2003). 

 

1.5. HD mouse models 

Over the years, several HD animal and cellular models have provided a great amount of 

knowledge about the key mechanisms underlying the pathophysiology of the disease and 

allowed the translation from basic research to clinical application. As the pathological 

hallmark of HD are the neuronal loss and degeneration of striatum, first animal models 

consisted of infusing excitotoxins into the rodent striatum to mimic the loss of striatal 

neurons (Beal et al., 1989). Administration of quinolinic acid  (NMDAR agonist) (Beal et 

al., 1991; Schwarcz et al., 1983; Sanberg et al., 1989), kainic acid (kainate receptor agonist) 

(Coyle & Schwarcz, 1976; Divac et al., 1978; Mason & Fibiger, 1978) or mitochondrial toxin 

3-niropropionic acid (complex II inhibitor of the mitochondrial respiratory chain) (Beal et 

al., 1993; Borlongan et al., 1997; Wüllner et al., 1994) remarkably mimic some HD 

biochemical (neuronal loss) and behavioral abnormalities (hyperkinesia). However, 

although excitotoxic models have shown to be reliable model for specific aspects of HD, 

they were unable to resemble the genetic origin of the disease and the deleterious and 
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progressive effect of mHtt widespread expression not only restricted to striatum 

(Ramaswamy et al., 2007). 

The discovery of the mutation responsible for HD in 1983 allowed the development of 

accurate genetically engineered organism as models of the disease, including yeast, fruit 

flies, zebra fish as well as a wide range of mammalian models such as mouse, rat, sheep, 

pig, and non-human primates (Lelos & Dunnett, 2018). Among them, mouse models have 

been widely accepted due its similarity with the human genome, the animal small size, as 

well as the short generation time becoming a potential cost-efficient model (Vandamme, 

2014). Genetic manipulations used in the development of genetic-modified mouse model 

of HD, first consisted of the targeted disruption of homologous HD gene (Hdh) in a 

mouse, generating a knock-out (KO) model. The null mouse model resulted in embryonic 

lethality, while heterozygotes mice for this mutation recapitulated some of the behavioral 

deficits and biochemical alterations in HD  (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et 

al., 1995). These results provide evidence of subtle consequences for a loss of function of 

Htt, suggesting that toxic function of mHtt is the major cause of the HD pathophysiology.  

Subsequent approaches have been based in the random insertion of the expanded CAG tract 

into the mouse genome generating 3 different mouse model. Fragmented transgenic mice, 

which are inserted with a truncated fragment of mHTT, full-length mice, inserted with the 

entire mHTT, and knock-in (KI) models which are created by the insertion of the  mutation 

in the mouse Htt locus. Within the fragmented models, the R6 mouse line was the first 

genetically engineered HD mouse model, created by the randomly insertion of the exon 1 of 

the human HTT gene. Two well characterized lines have been derived from these exon-1 

mice, R6/1 and R6/2, that contains ~115 and ~145 CAG repeats respectively (Mangiarini 

et al., 1996). A few years later, the N171-82Q model was generated  by the insertion of the 

first 171 amino acids of the human exon-1 with 82 CAG repeats under the prion promoter 

of the mice (Mangiarini et al., 1996). Regarding the full-length transgenic models, the 

researchers used a yeast artificial chromosome (YAC) or bacterial artificial chromosome 

(BAC) vector system to express the entire human HTT gene under control of the human Htt 

promoter. YAC128 mouse model expressing the human mHTT with 128 CAGs, is the most 

widely used among YAC mouse models (Hodgson et al., 1999). BACHD97 model expresses 

the whole human HTT with a mixture of 97 CAG/CAA repeats (Gray et al., 2008). KI 

models were created by the recombination of the human HTT gene with a chimeric 

human/mouse fragment containing different CAG repeat. HdhQ92, HdhQ111, CAG140 
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and zQ175 models are the most used (Menalled et al., 2003, 2012; Wheeler et al., 1999, 2000) 

(Table 1). 

Table 1. Main genetic mouse models used in HD. Information about genetic manipulation, 

promoter type and CAG repeat length of each mouse model is provided. 

MOUSE 

MODEL 

GENETIC MANIPULATION PROMOTER CAG 

REPEAT 

LENGHT 

Fragmented transgenic mouse 

R6/1 Human HTT exon 1 randomly 

inserted (3 copies) into genome 

Human HTT 116 

R6/2 Human HTT exon 1 randomly 

inserted into genome 

Human HTT 144 

N171-82Q Human HTT exon 1, 2, part of 3 (first 

171 amino acids) randomly inserted 

into genome 

Mouse  

prion protein 

82 

Full-length transgenic mice 

YAC128 Full-length human HTT randomly 

inserted intro genome 

Human HTT 128 

BACHD Full-length human HTT randomly 

inserted intro genome 

Human HTT 97 (CAG/CAA 

mixtured) 

Knock-in mice 

HdhQ92 Endogenous HTT exon 1 replaced  

by chimeric human/mouse exon 1 

Mouse HTT 92 

HdhQ111 Endogenous HTT exon 1 replaced  

by chimeric human/mouse exon 1 

Mouse HTT 111 

CAG140 Endogenous HTT exon 1 replaced  

by chimeric human/mouse exon 1 

Mouse HTT 140 

zQ175 Endogenous HTT exon 1 replaced  

by chimeric human/mouse exon 1 

Mouse HTT 175 
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Overall, HD mouse models recapitulate HD neuropathological, neurobiochemical and 

behavioral scenario, although fragmented transgenic models show an earlier and more severe 

phenotype due the length of the CAG repeats in the N-terminal, while KI present a delay in 

the appearance of the symptoms and pathologic features. Reduced lifespan and dramatic 

weight loss are common features in the fragmented R6/1 and R6/2, and the N171-82Q 

models (Mangiarini et al., 1996; Schilling et al., 1999). Lifespan is also shortened in full-length 

YAC128 model, but unaltered in the BACHD model, whereas both HD models have a gain 

of weight compared to WT controls (Gray et al., 2008; van Raamsdonk et al., 2005). KI 

models generally show a normal lifespan and body weight (Wheeler et al., 2000). Brain 

atrophy with substantial neuronal loss and neuronal mHtt inclusions are prominent features 

in full-length and fragmented mouse model, although R6/1 model experiences striatum 

shrinkage and BACHD shows degeneration in the absence of neuronal death (Gray et al., 

2008; Hodgson et al., 1999; Mangiarini et al., 1996; McBride et al., 2006; Slow et al., 2003; 

Stack et al., 2005; van Dellen et al., 2000; van Raamsdonk et al., 2005). Conversely, even 

when KI mouse model shows early mHtt inclusions in the nucleus, brain atrophy and 

neuronal loss is rarely observed (Hickey et al., 2008; Hölter et al., 2013; Lin et al., 2001). 

Progressive cognitive and sensorimotor abnormalities have also been extensively 

documented in HD models. HD models typically show gait abnormalities and hindlimb 

clasping behavior (Hodgson et al., 1999; Mangiarini et al., 1996; McBride et al., 2006; Naver 

et al., 2003; Slow et al., 2003; Stack et al., 2005; Wheeler et al., 1999, 2000), although  

fragmented R6/1 and R6/2 mouse models also exhibit stereotypic involuntary grooming 

movements (Clifford et al., 2002; Mangiarini et al., 1996). Early hyperactivity of the 

locomotor behavior is also common in the R6/1, R6/2 and the YAC128 which progressively 

decline resulting in hypoactivity (Bolivar et al., 2004; Hodgson et al., 1999; Lüesse et al., 2001; 

Slow et al., 2003). Progressive motor impairment is also observed, although the onset and 

severity vary according to the penetrance of the disease between models (Hodgson et al., 

1999; Lin et al., 2001; McBride et al., 2006; Menalled et al., 2003; Slow et al., 2003; Stack et 

al., 2005). Working and reference memory deficits become evident in spatial learning task as 

the Morris water maze and alternation in the T-maze, or the novel object recognition test 

(NORT) (Brito et al., 2014; Giralt et al., 2011; Harrison et al., 2013; Hickey et al., 2008; Lione 

et al., 1999; Raamsdonk et al., 2005; Suelves et al., 2017).  

Psychiatric-like behavioral spectrum is a heterogeneous feature among HD models regarding 

onset and progression during the disease. Anxiety- and depressive-like phenotypes have been 

the most extensively examined by classical behavioral test. Most HD mouse models exhibit 
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anxiety-like behavior: increased anxiety-phenotype is exhibited by the R6/2 and YAC128 in 

the open field (Chiu et al., 2011; Ciamei & Morton, 2008), whereas the 12-week-old BACHD 

mice spend longer times in the dark box (Menalled et al., 2009), and CAG140 mice displayed 

a higher latent to enter the light compartment of the dark box (Hickey et al., 2008). 

Conversely, R6/1 displays similar levels of anxiety-like behavior than WT mice, that switch 

into less anxiety-like phenotype at 24-week-old (Naver et al., 2003). Depressive-like behavior 

has also been documented in several HD models, using the forced swimming test (FST), the 

sucrose preference, or the splash test which measure traits of depression as anhedonia, 

resignation, or apathy-like behavior. Most of the HD models subjected to the FST display a 

long duration of the immobility, suggesting a depressive-like phenotype (Chiu et al., 2011; 

Grote et al., 2005; Hickey et al., 2008; Orvoen et al., 2012; Peng et al., 2008; Pouladi et al., 

2009; Renoir et al., 2011, 2012). YAC128 and R6/1 showed a lower preference for sucrose 

suggesting a depressive-like behavior, although in R6/1 mice this depressive behavior is sex-

specific and exclusively displayed by female mice (Pouladi et al., 2009; Renoir et al., 2011). 

Similarly, reduced grooming frequency after a sucrose solution is described in female, but 

not male HdhQ111 mice, that can be interpreted as a loss of motivational behavior (Orvoen 

et al., 2012). A sex-specific component related to these behaviors become evident, HD 

females are more sensitive to develop depressive-like behaviors than HD males (Orvoen et 

al., 2012; Pang et al., 2009), whereas HD males are more likely to display anxiety-like 

behaviors than HD females (Hickey et al., 2005; Menalled et al., 2009; Orvoen et al., 2012). 

Even, when other traits of the psychiatric spectrum manifested by HD patients (irritability, 

impulsivity, sleep disturbances) are less investigated in mouse models, some studies have 

reported an abnormal social interaction in HD mouse models in the resident intruder 

paradigm. Early full-length models display significantly shorter latency in initiate a fight and 

more aggressive behavior towards the intruder, while R6/2 residents show a lack of interest 

for the intruder at late stages of the disease compared to WT mice (Shelbourne et al., 1999; 

Wood & Morton, 2015). Interestingly, two HD models experience a decline in circadian 

rhythms of activity and sleep suggested by a greatly decrease in the free running rhythms 

during constant darkness in the aged zQ175 mouse, and by a progressive age-dependent 

reduction in the total amount of wake during the dark period in the R6/2 mouse model 

(Kantor et al., 2013; Loh et al., 2013). Control deficits have been reported in the R6/2 mouse 

model, and in the tgHD rat model (Balci et al., 2009; Massioui et al., 2016). Remarkably, the 

BACHD mouse and the tgHD rat model have been subjected to the earliest quantifiable 
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behavioral assays since PND10 to PND21, showing decreased anxiety, increased risk-taking 

behavior and reduced emotionality  (Siebzehnrübl et al., 2018). 

Particularly, the R6/1 mice, the animal model used in this thesis, manifest a severe 

phenotype, with a delayed age onset and slower disease progression than R6/2 mice 

(Mangiarini et al., 1996). Hyperactivity in the open field at 4-week-old shifts to decreased 

spontaneous locomotor activity as disease progresses (Bolivar et al., 2004). First signs of 

motor impairment occur around 8-week-old, whereas severity of motor deficits increase over 

the weeks (Brooks et al., 2012; Hansson et al., 2001). Sensory-discrimination learning 

impairment has been reported at 10-week-old (Mazarakis et al., 2005). Cognitive alterations 

suggested by procedural memory deficits around 12-week-old appears prior to severe motor 

deficits (Cayzac et al., 2011; Giralt et al., 2011; Guiretti et al., 2016; Puigdellívol et al., 2015). 

Hindlimb clasping phenotype typically occurs around the 14-week-old, affecting less than 

the 40% of R6/1 mice (Naver et al., 2003). However, other studies report different number 

(Clifford et al., 2002), suggesting that clasping behavior test depends on the mouse colony. 

As previously referred, R6/1 mice exhibit less anxiety-like phenotype at late ages, while 

depressive behavior is sex-dependent and exclusively displayed by female mice (Naver et al., 

2003a; Renoir et al., 2011) Histopathological findings describe striatal volume loss in the 

absence of  neuronal loss at any age. MHtt cellular inclusions are first visible in the striatum 

at 8-week-old, and then spread to other region as their numbers increase with age (Hansson 

et al., 2001; Naver et al., 2003). Also, decreased dopamine and cyclic adenosine 

monophosphate (cAMP)-regulated phosphoprotein (DARPP-32) staining in the striatum 

beginning at 5 months of age (van Dellen, Welch, et al., 2000) indicates cellular dysfunction 

(Figure 4). 

Although the R6/1 mouse model is a well-characterized HD mouse model regarding motor 

and cognitive behavioral features, the early/pre-symptomatic psychiatric spectrum has been 

poorly characterized. Therefore, in this thesis we aimed to examine the presence of early 

psychiatric traits around 4-week-old mice, since they have already been found in other HD 

rodent models.  
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Figure 4. Timeline of behavioral deficits and neuropathologic features of the R6/1 mouse model used 

in this thesis. Schematic representation of motor, psychiatric and cognitive alterations accompanied by 

neuropathologic changes presented by the R6/1 mouse model along the weeks.  
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2. Molecular and cellular mechanisms involved in basal ganglia 

dysfunction 

2.1. Basal ganglia dysfunction 

The basal ganglia are involved in the origin and control of voluntary movement, as well as 

the determination of the movement sequence (Turner & Desmurget, 2010). The symptoms 

classically related with basal ganglia alterations are involuntary movements including tremor, 

chorea, ballism, athetosis and dystonia as well as muscular rigidity; hypotonia, disturbances 

in standing equilibrium, gait, speech, and akinesia (Yanagisawa, 2018). However, growing 

evidence reveals that basal ganglia circuit is involved in cognitive, associative, and emotional 

responses, and therefore, it plays a key role in cognitive disturbances and psychiatric 

disorders (Gunaydin & Kreitzer, 2016; Becker et al., 2016). 

The striatum is the main input region of the basal ganglia. In humans, the striatum is formed 

by caudate nucleus, putamen, and ventral striatum, in which nucleus accumbens (NAcc) is 

included (Selden et al., 1994). The striatum receives massive glutamatergic and dopaminergic 

innervations. The excitatory glutamatergic input derives mainly from all regions of the 

cerebral cortex, as well as specific thalamic nuclei although to a lesser extent. The 

dopaminergic input comes from the substantia nigra pars compacta (SNpc) (Turner & 

Desmurget, 2010). Striatal neurons can be divided into medium-sized spiny projection 

neurons called medium spiny neurons (MSNs), and aspiny neurons. MSNs are GABAergic 

neurons that constitute 90-95% of the neuronal population in the striatum (Tepper et al., 

2004). There are two major subtypes of striatal MSNs: Striatonigral MSNs, which 

predominantly express dopamine D1-like receptors and substance P, send their axons to the 

internal globus pallidus (GPi) and the substantia nigra reticulata (SNr), constituting the direct 

pathway. Striatopallidal MSNs, which preferentially express adenosine A2A-like or dopamine 

D2-like receptors and enkephalin, project to GPe which in turn projects to the subthalamic 

nucleus (STN) which projects to the GPi/SNr, constitute the indirect pathway (Shepherd, 

2013). Aspiny neurons are less prone to degenerate than MSNs in HD. 

Conversely, in HD at early stages striatopallidal MSNs are selectively loss, resulting in a 

disinhibition of the thalamus, that ultimately exerts an overactivation of the cortex causing 

hyperkinetic movements. Later, progressive loss of striatonigral MSNs induces the inhibition 

of the thalamus resulting in the appearance of hypokinetic symptoms of the disease (Albin 

et al., 1991; Reiner et al., 1988; Richfield et al., 1995) (Figure 5). 
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Figure 5. Basal ganglia circuitry in normal and HD pathological conditions. (A) Components of the 

cortico-basal ganglia loop in a coronal section of the human brain.  (B) Schematic diagram of basal ganglia 

pathways in normal conditions, and in early and late stages of HD. Connectivity between regions are 

represented by arrows, weak connections (discontinued arrows) and strong connections (thicker arrows). CTX: 

cortex. THAL: Thalamus. CN: caudate nucleus. P: putamen. Gpe: external globus pallidus. Gpi: internal globus 

pallidus. STN: subthalamic nucleus. SNc: substantia nigra pars compacta. SNr: substantia nigra pars reticulata.  

 

2.1.1. Intrastriatal circuit dysfunction 

MSNs are the earliest and most severely affected neurons in HD neuropathology, displaying 

an initial and selective neurodegeneration until death (Cepeda et al., 2007). As mentioned 

above, there are two major subtypes of striatal MSNs: Striatonigral MSNs constitute the 

direct pathway and striatopallidal MSNs establish the indirect pathway (Shepherd, 2013). 

MSNs of the indirect pathway have been classically described as the most vulnerable and 

primarily affected neuronal population in the disease. At early stages of the disease, MSNs 

of indirect pathway experience a progressive and dramatic depletion of enkephalin in their 

fibber’s projections to the external globus pallidus. At later stages in the disease, also MSNs 

of direct pathway exhibit a larger absence of substance P in their fibber’s projections to 
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internal globus pallidus (Albin et al., 1991; Reiner et al., 1988; Richfield et al., 1995). Since 

these findings, it has been traditionally proposed that preferential cell loss of indirect pathway 

projecting to the external globus pallidus underlies motor symptoms of the initial clinical 

phase of HD, as hyperkinesia and loss of behavioural control. Cell loss of direct pathway 

leads to rigid-akinetic in the late clinical phase of the disease (Vonsattel & Difiglia, 1998). 

Interneurons constitute a small fraction of the striatal neuronal population and result to be 

relatively spared during the disease progression (Reiner et al., 1988) except for parvalbumin  

interneurons, which are reduced in numbers in HD patients and the R6/2 mouse model 

(Giampà et al., 2009; Reiner et al., 2013; Reiner & Deng, 2018). Post-mortem HD brain 

tissues showed that neuropeptide Y-somatostatin neurons are spared or increased (Dawbarn 

et al., 1985; Ferrante et al., 1987) calretinin-positive interneurons are spared  (Cicchetti et al., 

1996; Ferrante et al., 1987; Massouh et al., 2008) as well as neurons containing enzyme 

acetylcholinesterase AChE-positive neurons which appear to be resistant to 

neurodegeneration (Ferrante et al., 1987) . 

Electrophysiological studies in HD mouse model pinpoint that selective vulnerability of 

MSNs is due to intrinsic electrophysiological features. MSNs of R6/1 mouse model exhibit 

alterations in their membrane properties resulting in an abnormal excitability (Cepeda et al., 

2007). MSNs of indirect pathway display greater alterations when compared to MSNs of 

direct pathway (Gertler et al., 2008), as shown by the occurrence of more action potentials 

(Kreitzer & Malenka, 2008), large membrane depolarizations and a reduced threshold to 

induce action potentials (Cepeda et al., 2008). Changes on active membrane properties could 

be explained by the fact that MSNs of indirect pathway are more selectively activated by 

cortical stimulation (Berretta et al., 1997), and there is also a preferential propagation of 

epileptiform activity onto MSNs D2-receptor neurons (Cepeda et al., 2008).  

In vivo approaches using local field potential technique (LFP) propose a dysregulation of the 

neuronal activity patterns and their temporal dynamics in the striatum. Specifically, R6/1 and 

R6/2 mouse model show an increased individual neuronal firing rate, and a reduction 

coherent firing and bursting among pairs of neurons (Miller et al., 2011; Walker et al., 2008), 

suggesting that neuronal processing in striatum of symptomatic HD mouse models is 

compromised, not only at a single-neuron level, but also at a population level. Consistent 

with the previous results, electrophysiological recordings reveal that there is a significant 

decrease in synaptic connectivity between pairs of MSNs in R6/2 mice compared to WT 

littermates. These reduction in synaptic connectivity might be due to an increase of 
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GABAergic synaptic activity toward MSNs in R6/2 mice, particularly to MSNs of direct 

pathway. Both WT and R6/2 MSNs exhibit a feedback inhibition toward their pairs, but only 

R6/2 MNSs receive a strong feedforward inhibition generated by GABAergic interneurons 

(Cepeda et al., 2013). Indeed, GABAergic activity within striatum has been underlined as a 

potential source of increased inhibition and contributor of the silencing of MSNs. A 

consistent increase in the GABAergic current onto MSNs has been described in several 

mouse models. MSNs of R6/1 and R6/2 mice exhibit increased frequency of spontaneous 

GABA currents and increased IPSc. Particularly, R6/2 mice show these alterations since 

early stages and even present a particular subpopulation of MSNs that display higher 

GABAergic frequencies compared to WT controls (Cepeda et al., 2004). 

GABAergic interneurons play an important role in striatal dysfunction in HD (Picconi et al., 

2006), even when their role in the pathophysiology of the disease is not fully understood.  In 

R6/2 and BACHD mice fast-spiking (FS) and parvalbumin-negative low-threshold spiking 

interneurons (pLTS) pairs show increased connectivity and higher firing responses to 

stimulation, standing out as another source of increased GABA transmission (Cepeda et al., 

2013). Regarding glutamatergic transmission, GABAergic interneurons show reduced N-

methyl-D-aspartate (NMDA) current (Cepeda et al., 2001), reduced density of NMDA 

receptors and different subunits composition compared with MSNs (Standaert, 1999). 

Additionally, it has been described that large interneurons are less responsive to all glutamate 

receptor agonists compared with MSNs (Calabresi et al., 1998). Altogether, these findings 

lead to theorize that sparing of large interneurons might be due to hyporesponsiveness to 

glutamate-containing input compared to striatal MSNs.  

Also, electrophysiological recordings demonstrate the existence of a subset of MSNs with 

increased responsiveness to NMDA application at pre- and symptomatic stages and 

decreased responses to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors at symptomatic stages (Cepeda et al., 2001; Levine et al., 1999). The increased 

response to NMDA accompanied by large glutamatergic synaptic events and increased Ca2+ 

concentration inside the cell underlie the basis of traditional excitotoxic hypothesis, which 

postulate that excitotoxic lesions in the striatum, generally produced by a selective activation 

of NMDA receptors in animals, induce effects similar to the neuropathological and 

neurochemical disturbances of HD (Beal et al., 1991; Bonfoco et al., 1995). 

Enhancement of NMDA receptor function in MSNs have been widely reported in support 

of excitotoxicity hypothesis (Fan & Raymond, 2007). Moreover, it has been proposed a dual 

role for NMDA receptors based on the location of the receptor to synaptic or extrasynaptic 
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sites (Papadia & Hardingham, 2016). While synaptic NMDA receptors activate cellular 

survival pathways, on the contrary, extrasynaptic receptors activate pathways that lead to cell 

death (Levine et al., 2010). Additionally, electrophysiological experiments demonstrate 

increased extrasynaptic NMDA receptor-induced currents and signaling in a mouse model 

of HD providing robust evidence of a disruption in the balance between synaptic and 

extrasynaptic NMDA receptors (Milnerwood et al., 2010). 

 

2.1.2. Corticostriatal dysfunction 

Brain cortex is the main excitatory input to the striatum and plays a cardinal role in the early 

basal ganglia dysfunction in HD (Cepeda et al., 2003). Premanifest and early manifest HD 

patients have shown abnormal motor cortex excitability and synaptic plasticity (Orth et al., 

2010; Schippling et al., 2009). Also, early reductions in visual and sensory-motor cortical 

functional connectivity have been reported in both pre-HD and manifest HD patients (Pini 

et al., 2020), which are consistent with visuomotor integration deficits (Say et al., 2011) and 

motor alterations (Ross et al., 2014). Neuroimaging analysis studies also identify functional 

connectivity abnormalities in the frontostriatal network in prodromal HD patients 

(Harrington et al., 2015), aberrant connectivity of lateral prefrontal networks (Wolf et al., 

2008) and a decreased synchronous blood oxygen level-dependent (BOLD) activity between 

motor cortex and caudate nucleus confirming impaired corticostriatal functional connectivity 

since prodromal stages (Unschuld et al., 2012).  

Several electrophysiological studies in HD mouse model have demonstrated changes in 

glutamatergic neurotransmission along the corticostriatal pathway, characterized by an early 

and transient dysregulation of glutamate release and progressive disruption of spontaneous 

synaptic currents (Cepeda et al., 2003; Joshi et al., 2009). In fact, studies have extensively 

reported that an excessive glutamate release by cortical projections could underlies MSNs 

NMDA-sensitization and subsequent excitotoxicity (Fan & Raymond, 2007; Heng et al., 

2009; Shehadeh et al., 2006). Closely related to these findings, electrophysiological recordings 

show that cortical projections neurons in several HD mouse model display an elevated 

intrinsic excitability based on the changes in their membrane properties (Cummings, 2006; 

Cummings et al., 2009; Stern, 2011). Additionally, there is an increased excitatory drive to 

cortical projection neurons observed in several HD mouse models as YAC128, CAG140 and 

R6/2 mice (Cummings et al., 2009).  

In vivo electrophysiological approaches have described a dysregulation in neuronal 

information processing and temporal dynamics in the medial prefrontal cortex. Overall, HD 
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mouse model have shown increased individual firing rates and temporally altered firing 

pattern suggested by decreased bursting and reduced synchrony between simultaneously 

recorded neurons (Miller et al., 2011; Walker et al., 2008). Using in vivo calcium imaging 

resolution that allows the study of large cell population at single-cell resolution, it has been 

confirmed an increased frequency of calcium transients in cortical neurons at the premanifest 

stage and at disease onset in transgenic and knock-in HD mice (Arnoux et al., 2018; Burgold 

et al., 2019; Donzis et al., 2020).  

Looking more deeply onto the corticostriatal neurotransmission, glutamate, the excitatory 

amino acid released by cortical afferents plays a prominent, even controversial role in the 

remodeling of corticostriatal pathway in HD. First, classical excitotoxicity theories sustain 

that excessive activation of glutamate receptors lead to striatal degeneration (Fan & 

Raymond, 2007). Indeed, it has been demonstrated that excessive amounts of glutamate in 

the synapse could induce excitotoxicity and eventual neurodegeneration (Estrada-Sánchez et 

al., 2009). Also, striatal injection of glutamate-NMDA receptor agonists induces selective 

loss of striatal MSNs, accompanied with behavioral features of HD, in both rodents and 

non-human primates (Beal et al., 1991; Fan & Raymond, 2007). However, although several 

electrophysiological studies described an exacerbated glutamate release by cortical 

projections (Fan & Raymond, 2007; Heng et al., 2009; Shehadeh et al., 2006), microdialysis 

approaches provide less compelling evidence for glutamate as a contributor of excitotoxicity 

in HD. One study reported a substantial decrease of the striatal glutamate levels in 16-week-

old R6/1 in basal conditions but enhanced glutamate release upon activation, suggesting the 

presence of a higher presynaptic reservoir of releasable glutamate or dysfunctional glutamate 

transporters (NicNiocaill et al., 2001).  

More recent evidence proposes a lack of clearance or removal of glutamate from the synapse 

after its release showing a reduction of the expression of  glial glutamate transporter-1 (GLT-

1) in HD mouse model striatum compared to WT controls (Estrada-Sánchez et al., 2009; 

Estrada-Sánchez & Rebec, 2012). Similarly, excitatory amino acid transporter 2 (EAAT2) 

mRNA levels (the GLT-1 equivalent in humans) is also decreased in HD postmortem brain 

tissue (Arzberger et al., 1997) along with a deficient glutamate uptake (Hassel et al., 2008) 

(Figure 6). 

Multimodal MRI in vivo studies show reduced glutamate/glutamine ratio in the striatum of 

HD mice at late stages (Fernández-García et al., 2020) and magnetic resonance spectroscopy 

performed in HD patients reports altered glutamate/glutamine and lactate levels, suggesting 

that combination of glutamatergic dysfunction along with alterations in energy metabolism 
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might work together promoting neuropathology in HD (Koroshetz et al., 1997; Taylor-

Robinson et al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Corticostriatal dysregulation in HD at early stages. Cortical dysregulation comprises a wide 

range of presynaptic and post-synaptic alterations, together with intrastriatal disturbances are central 

mechanisms in the pathophysiology of the disease.  

 

Corticostriatal disconnection comes along with a progressive loss of brain-derived 

neurotrophic factor (Bdnf) from cortex to striatum, promoted by a decline in cortical Bdnf 

gene transcription (Zuccato et al., 2001),  and also by mHtt disruption of axonal transport of 

BDNF from cortex to striatum (Baquet et al., 2004). Absent of BDNF leads to a significant 

decrease in the number of striatal neurons compared to WT mice, decrease in soma area, 

dendrite thickness and dendritic spine density (Baquet et al., 2004). Also, disruption of 

BDNF through genetic manipulations or cortical deafferentation in mice could converge in 

reduced expression of neuronal markers in striatal neurons such as parvalbumin, calbindin, 

and the dopamine-regulated phosphoprotein DARPP-32 (Altar et al., 1997; Ivkovic et al., 

1997; Jones et al., 1994). Importantly, it has been demonstrated that decline in BDNF levels 

advances the onset and severity of behavioral motor deficits in HD, and is closely related to 

a loss of MSNs D2-receptors (Canals et al., 2004). Additionally, studies have been described 



INTRODUCTION 

24 
 

autocrine and paracrine neuroprotective effects of BDNF in the survival of MSNs (Alberch 

et al., 2002). Also, neuroprotective effects of BDNF against excitotoxicity and oxidative 

insults in HD mouse models has been reported (Melo et al., 2013; Pérez-Navarro et al., 2000). 

Moreover, the normalization of BDNF levels reduces brain pathology, slows HD disease 

progression, and promotes survival of mutant mice (Duan et al., 2003; Giralt et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Corticostriatal dysregulation in HD at middle and late stages. Progressive cortical disconection 

with the disruption of BDNF trophic support leads to degeneration of MSNs population. 

 

An imbalance between expression of BDNF receptors tropomyosin receptor kinase B and  

p75 neurotrophin receptor (TrkB/p75NTR) has been described in HD patients and mouse 

models and linked to synaptic plasticity defects (Brito et al., 2014). TrkB  mRNA and/or 

protein levels are markedly reduced in HD patients and mouse models (Simmons, 2017), 

whereas increased levels of p75NTR  have been found in humans and mouse models (Brito et 

al., 2014; Zuccato et al., 2008). Even when the most contrasted hypothesis is that BDNF 

signaling through their receptors TrkB/p75NTR, are responsible for the long survival or death 

of the entire populations of MSNs (Simmons, 2017), some studies have investigated to what 

extent downregulation or upregulation of BDNF receptors could contributing to the disease 

onset and progression. It has been reported that deletion of TrkB in MSNs of the indirect 

pathway results in hyperlocomotion, indicating that BDNF-TrkB signaling pathway in those 
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neurons controls the inhibition of motor behavior (Besusso et al., 2013). Conversely, an 

increase in the expression and signaling of the TrkB receptor has been related with an 

improvement of the symptoms in the HD (Brito et al., 2013, 2014). Moreover, normalization 

of p75NTR signaling improves HD-associated phenotypes in two HD mouse models (Brito et 

al., 2014; Simmons et al., 2016) (Figure 7). 

Altogether, these data suggest that disturbances in the BDNF levels and receptors play an 

important role in the pathophysiology of MSNs from the onset of the disease, by directly 

affecting MSNs survival and function, particularly MSNs of the indirect pathway. 

 

2.1.3. Nigrostriatal dysfunction 

Traditionally it has been postulated that behavioral abnormalities in HD as hyperkinetic 

choreic movements in the early stages result from an initial dysfunction of the D2-enriched 

indirect pathway, while hypokinesia during the late stages is a consequence of an impairment 

in D1-enriched direct pathway. This knowledge arises from evidence of the involvement of 

the dopamine nigrostriatal pathway in HD pathophysiology. Concretely, previous studies 

have demonstrated an increase of dopamine levels in postmortem brains of HD patients and 

that dopamine-depleting agents, such as tetrabenazine (TBZ), could have a therapeutic 

benefit (Bird, 1980; Spokes, 1980). 

For years biochemical studies found that the level of dopamine markers in autopsied HD 

brain striatum appear to be unchanged (Bernheimer et al., 1973; McGeer & McGeer, 1976) or 

increased (Bird, 1980; Spokes, 1980). However, later neurochemical studies of HD patients 

suggest that exacerbation of dopamine levels occurs in the early stages of the disease (Garrett 

& Soares-da-Silva, 1992) while levels of caudate dopamine and homovanillic acid, the principal 

dopaminergic metabolite are reduced in postmortem brains of late-stage HD patients (Kish 

et al., 1987). Thus, these last findings lead to conclude that dopamine levels in HD may show 

time-dependent changes associated with biphasic movement abnormalities suggesting that 

early dopaminergic increases are concomitant with chorea while late dopaminergic decreases 

occur during akinesia.  Nevertheless, in animal models this view has been less consistent. 

Recent studies carried out in the YAC128 and BACHD show that in the early hyperkinetic 

stage MSNs of the direct pathway received more excitatory inputs than control animals, while 

MSNs of indirect pathway are not affected. In contrast, in the late hypokinetic stage both 

pathways receive less excitatory inputs compared to controls (André et al., 2011; Galvan et 

al., 2012). Also, even when at late stages of the disease dopamine release has been found 

decreased, consistent with dopamine disturbances in HD patients, R6/2 and YAC128 mice 
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commonly show a progressive reduction in striatal dopamine levels associated with motor 

abnormalities (Callahan & Abercrombie, 2011; Hickey et al., 2002; Johnson et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Nigrostriatal pathway in normal and HD pathological conditions. Progressive dopamine 

denervation from substantia nigra pars compacta is accompanied with altered dopamine receptor expression, 

deficiencies in ligand binding and dopamine signaling in MSNs.  

 

Studies examining dopamine transporter (DAT) density involved in dopamine reuptake after 

release into the synapse and vesicular monoamine transporter type 2 (VMAT2), which is 

used to estimate the extent of dopaminergic innervation report that both are reduced in 

postmortem brain of HD patients  (Bäckman et al., 1997; Ginovart et al., 1997; Suzuki et al., 

2001). These data suggest that  reductions in DAT levels correlate with a loss of 

dopaminergic nigrostriatal terminals, consistent with the view that the dystonic late-stage 

symptoms of HD may arise in part from critical reductions in dopaminergic transmission.  

Other studies using positron emission tomography, autoradiography, markers for pre- and 

postsynaptic markers and imaging demonstrated that both, presymptomatic and 

symptomatic HD patients undergoes a reduction in striatal dopamine D1 and D2 receptor 

density, corroborating that dopamine signaling is disrupted early in HD (Joyce et al., 1988; 

van Oostrom et al., 2009; Richfield et al., 1991). In agreement with the findings, striatal 

dopamine D1-like and D2-like receptors levels have been also found affected in HD mouse 

models. Further, striatal D1-like and D2-like receptors binding are reduced at early stages, 

with deficiencies in dopamine signaling particularly seen in R6/2 mice (Ariano et al., 2002; 



INTRODUCTION 

 
27 

 

Bibb et al., 2000; Cha et al., 1998). Also, significant reductions have been observed in mRNA 

levels of D1-like and D2-like receptors in late stage of YAC128 mice, but not in BACHD 

mice (Pouladi et al., 2012) (Figure 8). 

 

2.1.4. Thalamostriatal dysfunction 

The thalamus constitutes the second main excitatory input to striatum, accounting for at least 

the 40% of excitatory terminals in the striatum (Deng et al., 2013; Lei et al., 2013). Classically, 

it has been described that a separate region of thalamus, the intralaminar nuclei consisted of 

the centromedian-parafascicular nuclear complex, sends glutamate input to both direct and 

indirect MSNs as well as striatal interneurons (Ding et al., 2010; Lapper & Bolam, 1992; 

Smith et al., 2014). More recently, some reports have shown that striatum receives 

glutamatergic inputs from other important thalamic nuclei as the ventral posterior nucleus 

(VP) which projects to dorsolateral striatum implicated in sensoriomotor learning 

consolidation, whereas centromedian-parafascicular nuclear complex projects to 

dorsomedial striatal which contributes to sensoriomotor learning acquisition (Díaz-

Hernández et al., 2018), the posterior thalamic nucleus (POm) also projects to dorsolateral 

striatum processing preferentially stimulus-responses associations (Pan et al., 2010; Smith et 

al., 2012) (Figure 9).  

Interestingly, the thalamostriatal pathway shows early changes in thalamostriatal afferent 

connectivity preceding MSNs neuropathology in a HD mouse model (Deng et al., 2013; 

Deng et al., 2014) suggesting that loss of thalamostriatal terminals could contribute to HD-

associated deficits. In vitro co-cultured reports reveal that thalamostriatal synapses on MSNs 

are significantly altered from early stages in the YAC128 mouse model. Specifically, 

thalamostriatal afferents show major changes in active membrane properties compared to 

corticostriatal afferents, suggesting that thalamostriatal axons are affected earlier. 

Additionally, when thalamostriatal afferents are stimulated, MSNs respond with a decrease 

in EPSC frequency suggesting a reduction in synaptic connections (Kolodziejczyk & 

Raymond, 2016). MSNs of YAC128 and R6/2 mouse models of HD showed slower rise and 

decay times stimulation, indicating an altered excitability in synaptic AMPA and NMDA 

receptor in conjunction with an enhanced activation of extrasynaptic NMDA receptor. In 

addition, when thalamostriatal projections are stimulated, they exhibit an increased 

probability of vesicular release that might emerge as compensatory mechanism for the loss 

of thalamic inputs (Parievsky et al., 2017) (Figure 10).  
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Figure 9. Main thalamic afferent pathways to striatum. Schematic representation of glutamatergic inputs 

from thalamus consisted of the centromediam-parafascicular nuclear complex (CM-Pf), the ventral posterior 

nucleus (VP) and the posterior thalamic nucleus (POm).  

 

Some of the studies in the literature do not address thalamic dysfunction alterations in HD 

patients (Harris et al., 1996), or find a subtle decreased connectivity between a small part of 

the thalamus with the executive network in early clinical conditions of HD patients (Dumas 

et al., 2013). Interestingly, by using positron emission tomography a study has described an 

enhanced thalamic activation in preclinical HD subjects during the performance of a motor 

learning task (Feigin et al., 2006, 2007), a change that possibly emerges to compensate loss 

of corticostriatal activity in the very early preclinical period. Regardless, as disease progress 

this compensatory mechanism declines and the symptoms of HD begin to appear (Feigin et 

al., 2007). A resonance magnetic study evaluating energy metabolism in the thalamus of 

preclinical HD patients, describes metabolic thalamic changes such as reduction in aspartate 

levels (van Oostrom et al., 2007) that poorly correlated with CAG repeat length. These 

thalamic metabolic abnormalities in HD patients have been also confirmed by reductions of 

aspartate, glutamate, and choline levels (Casseb et al., 2013). Importantly, another metabolic 

study has provided evidence of reduced values in the concentration of aspartate and 



INTRODUCTION 

 
29 

 

creatinine levels in the thalamus of patients with HD, which show a correlation with the 

duration of disease (Ruocco et al., 2007). 

Both, normal and pathologic function of thalamostriatal circuit have been relative neglected, 

the extent of the thalamostriatal dysregulation is still not fully understood in HD. 

Understanding thalamostriatal circuit alterations mediated by mHtt may be fundamental to 

have a broader perspective of the circuit alterations underlying the disease and decipher initial 

key mechanism of HD pathogenesis. 

Figure 10. Thalamic afferent pathway in normal and HD pathological conditions. Loss of  

thalamostriatal terminals is concomitant with increase of glutamate release from thalamic terminals and 

postsynaptic alterations in striatal MSNs.   

 

2.2. Synaptic Dysfunction  

Long-term plasticity may occur at single synapses, manifested as a long-term potentiation or 

depression of synaptic efficacy, induced by changes in the pattern of synaptic stimulation, or 

may happen at a network level understood as homeostatic neuronal activity during a large 

period (Turrigiano, 2012). It appears to be that both types of long-term plasticity synaptic 

are severely affected in HD (Smith-Dijak et al., 2019). 

Both, pre- and post-synaptic mechanisms contribute to enhanced excitatory input in HD 

mouse models (Cepeda et al., 2007; Plotkin & Surmeier, 2015; Raymond, 2017) (Figure 11). Studies 

trying to decipher HD pre-synaptic mechanisms have found that vesicular release is 

accelerated from HD cortical terminals in the striatum (Chen et al., 2018; Joshi et al., 2009) 

even when the number of functional cortical terminals is similar between the HD mouse 
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model and WT controls (Joshi et al., 2009). Likewise, vesicle release at the neuromuscular 

junction in R6/1 mice has been found to be accelerated (Valencia et al., 2013) suggesting 

that mHtt might interacts with synaptic vesicle release machinery.  In that regard, it has been 

documented that voltage-gated N-type Ca2+ channel, which are essential for presynaptic 

neurotransmitter release (Zamponi, 2003), interacts with mHtt in a stage-dependent manner 

in the BACHD mouse model. These mHtt-protein interaction might result in biphasic 

dependent changes in the N-type Ca2+ channel cell surface expression and glutamate release 

(Silva et al., 2017). Interestingly, other two studies reveal the potential underlying 

mechanisms. A first study proposes a model predicting that an interaction between mHtt 

and syntanxin1A induces enhanced activation of N-type Ca2+ channel producing an increase 

in calcium influx and glutamate release (Swayne et al., 2005). A second study conducted in a 

Drosophila model of HD reports an increase in Ca2+ dependent neurotransmitter release, 

and a recovery to basal levels through a partial loss of function of N-type Ca2+ channel 

(Romero et al., 2008).  

Likewise, induced-mHtt changes in presynaptic proteins involved in exocytosis and 

neurotransmitter release could underlie synaptic dysfunction in HD. For example, 

Complexin II that regulates membrane fusion between the synaptic vesicle and the 

presynaptic plasma membrane is reduced in HD patients (Morton et al., 2001), and in R6/2 

mouse model, which becomes progressively depleted (Morton & Edwardson, 2001). 

Moreover, the phenotype caused by reduction of complexin II in the PC12 cell model can 

be partially reversed by overexpressing complexin II, which results in the normalization of 

neurotransmitter release from the PC12 cells (Edwardson et al., 2003) . Rabphilin 3A a small 

GTPbinding protein involved in priming and docking of vesicles to the plasma membrane is 

also decreased in HD patients  (Morton et al., 2001) and in R6/1 mouse model. This decrease 

is progressive and concurs with the onset of symptoms (Smith et al., 2005). Rab3A knockout 

mice exhibit a mild phenotype, mainly characterized by impaired synaptic depression 

(Geppert et al., 1994) and long-term potentiation (Castillo et al., 1997). These last features 

resemble HD-associated synaptic deficits, which suggest that disruption in vesicle fusion 

machinery contributes to synaptic dysfunction in HD. Another relevant source that might 

be contributing to unregulated release of synaptic glutamate is the early loss of metabotropic 

glutamate receptor mGluR2 and dopamine D1-like receptors at corticostriatal synapses in 

the R6/2 mice, which activity regulates the appropriated vesicular glutamate release (Cha et 

al., 1998). Similarly early loss of presynaptic of dopamine D1-like receptors levels has been 

found in presymptomatic HD patients (Weeks et al., 1996). In both cases, this altered 
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expression of neurotransmitter receptors precedes clinical symptoms suggesting that this 

early dysregulation contributes to neuropathological changes in the disease. 

MHtt has also been associated with proteins of the post-synaptic compartment. More 

precisely, it has been suggested that in physiological conditions normal Htt binds to PSD-95  

and  sequesters  the  scaffold  protein,  resulting  in  the inhibition  of  NMDA  receptor  

activity (Parsons et al., 2014). Instead, in the presence of mHtt, the interaction between PSD-

95 scaffold protein and normal Htt is impaired. Finally, it turns in the increasing of NMDA 

receptors number and activity in the membrane surface (Sun et al., 2001) and subsequent 

aberrant activity in HD mouse models. The aberrant activity of NMDA receptors might also 

be due to an imbalance of the proportion of NMDA-R1 and NMDA-R2A/B subunits 

composition of NMDA receptors in HD mouse model striatum (Ali & Levine, 2006; Benn 

et al., 2007; Cepeda et al., 2001) predisposing striatal neurons to excitotoxic damage (Zeron 

et al., 2002). In addition, it has been widely demonstrated that trafficking of NMDA receptors 

in striatal neurons might be also affected (Fan & Raymond, 2007) resulting in the imbalance 

between synaptic (pro-survival) and extrasynaptic (detrimental) NMDA receptors 

(Milnerwood et al., 2010; Okamoto et al., 2009). Specifically, a recent study describe that 

forward trafficking of NMDA-R2B to the surface membrane is accelerated as result of the 

enhancement of calpain and Striatal Enriched protein tyrosine Phosphatase (STEP) activity 

in synaptic compartments. Ultimately, this aberrant combination destabilizes NMDA-R2B 

at synapses and promotes lateral diffusion to extrasynaptic sites, suppressing survival 

signaling and promoting cell stress pathways (Gladding et al., 2012).  Interestingly, another 

study has showed an increase of the surface expression of GluN3A-containing NMDA 

receptors in YAC128 striatal neurons, due to an altered interaction of mHtt with PACSIN, 

a trafficking chaperone for GluN3A.  Remarkably, restoration of GluN3A levels in YAC128 

striatum reverse HD-associated deficits as mHtt excitotoxity, dendritic spine loss and 

cognitive and motor dysfunction (Marco et al., 2013). 

NMDA receptor-dependent long term synaptic plasticity has been mainly investigated in the 

hippocampus and the cortex of multiple HD mouse model  (Dalbem et al., 2005; Hodgson 

et al., 1999; Picconi et al., 2006; Usdin et al., 1999). Systematically, long-term potentiation 

(LTP) is impaired at hippocampal synapses as the result of an aberrant NMDA receptor 

function, exacerbated short-term potentiation and reduction of paired pulse inhibition, 

which corroborate altered pre-synaptic transmission in HD mice (Hodgson et al., 1999; 

Usdin et al., 1999). Interestingly, a more recent report has shown that short-term synaptic 
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plasticity and LTP is impaired the R6/1 mouse model, and that the severity of this 

impairment correlates with the size of the CAG repeat. Even more, the deficits in LTP and 

short-term plasticity can be rescued with a dopamine D1-like receptor agonist (SKF38393) 

(Dallérac et al., 2011) suggesting that dopaminergic modulation of corticostriatal pathway  in 

HD plays a key role in synaptic plasticity dysfunction.   

 

 

 

 

 

 

 

 

 

Figure 11. Mechanisms involved in enhanced excitatory synaptic activity in HD. Aberrant pre- and 

post-synaptic processes underlying synaptic dysfunction in HD.    

 

In vivo electrophysiological study reports an altered Long-term depression (LTD) in the R6/1 

mice model as well (Creus-Muncunill et al., 2019). Electrophysiological recordings in slices 

also describe that LTD is altered in corticostriatal synapses (Cummings et al., 2006; Ghiglieri 

et al., 2019) indicated by a loss of depotentiation after a train of low frequency stimulation 

(LFS). However, only one of the studies shows reversion of short and long-term 

abnormalities via dopaminergic modulation of dopamine D1-like receptor (Cummings et al., 

2006). 

Other synaptic alterations are observed in relation to cell micro-architecture. It has been 

suggested that synaptic disturbed mechanisms in HD could have a high impact on dendritic 

spine number and morphology, leading to spine loss and modification on spine volume and 

length and alterations in synaptic plasticity (Murmu et al., 2013). Several studies have found 

a decrease in dendritic spine density, smaller diameters of dendritic shafts and smaller 

dendritic area in R6/2 model mice (Klapstein et al., 2001). Similarly, it has been reported a 
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reduction of spine density in basal dendrites striatal neurons, as well as apical dendrites on 

cortical pyramidal neurons. Additionally, a decrease on the spine length of cortical pyramidal 

neurons has been found in a R6/1 mice model, as well as a decreased proportion of spines 

with branched morphology (Spires et al., 2004). In this mouse model, during the 

symptomatic stage of the disease, transient spines do not develop to persistent spines and a 

decrease in persistent spines is observed, meaning that new spine stabilization is impaired in 

R6/1 mice (Spires et al., 2004). Moreover, in human postmortem tissues, degenerative 

changes include truncated dendritic arbors, focal swelling in dendrites and accused spine loss 

(Ferrante et al., 1991; Graveland et al., 1985). 

Thus, synaptic plasticity is severely altered in HD, comprising a widely range of disrupted 

mechanisms (reviewed in Smith et al., 2005), that ultimately converge into a profound lack 

of homeostatic neuronal activity and subsequent dysfunction of the whole HD network.  

2.3. Transcriptional Dysregulation  

Several cellular processes are involved in the pathogenesis of HD. For instant, mHtt affects 

the regulation of transcription factors, impairs mitochondrial energy pathways, increases the 

presence of aggregates that repress several proteins, affects vesicular organelle and 

neurotransmitter axonal trafficking, alters synaptic transmission and calcium homeostasis, 

and contributes to glial activation, endoplasmic reticulum stress, autophagy and proteosome 

activity deficits. From all these mechanisms, transcriptional dysregulation plays a 

fundamental role in the pathogenesis of HD, since occurs at early stages of the disease, and 

by affecting the expression of genes and proteins induces normal cellular processes turn into 

pathogenic mechanism as those mentioned before (Bates et al., 2015; Zuccato et al., 2010; 

Jiang et al., 2016; Jimenez-Sanchez et al., 2017; Ross & Tabrizi, 2011) (Figure 12 ).  
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Figure 12. Key cellular pathogenic mechanism in HD. Deleterious effects of mHtt encompass a variety 

of aberrant cellular processes implicated in the pathogenesis of the disease.   

 

The first evidence suggesting transcriptional dysregulation in HD has been provided from in 

situ hybridization studies on postmortem human HD brains. Specifically, expression of 

enkephalin, substance P, dopamine D1 and D2 receptor mRNAs have been found altered in 

the postmortem caudate-putamen tissue of early-grade HD patients (Augood et al., 1996, 

1997). In agreement with these findings, first gene expression studies performed in the R6/2 

mouse model corroborate a downregulation in the mRNA levels of several neurotransmitter 

receptors, in some cases, as the dopamine D1-like receptor or the metabotropic glutamate 

receptor mGluR, prior to onset of clinical symptoms (Cha et al., 1998). Later, cDNA 

microarray carried out on genetically engineered HD mouse models provided a global 

genomic view of the different groups of genes altered at different stages of the diseases. This 

analysis allowed the identification of several dysregulated mRNA associated with 

transcriptional processes, neurotransmitter receptors, synaptic transmission, cytoskeletal and 

structural proteins, intracellular signaling, and calcium homeostasis (Chan et al., 2002; Luthi-

Carter et al., 2002; Desplats et al., 2006; Sipione et al., 2002).  

Remarkably, more than 81% of striatal-enriched genes have been found decreased in the HD 

mouse model, and similar results have been observed in a subset of striatal genes in the 

caudate of HD patients (Desplats et al., 2006). Studies commonly describe a prevalence of 

downregulated transcripts over upregulated ones, particularly at early stages, corroborating 

that transcriptional dysregulation is an early and a progressive mechanism in HD (Gallardo-

Orihuela et al., 2019; Luthi-Carter et al., 2000; Sipione et al., 2002; Wyttenbach et al., 2001). 

Also, mRNA profiling analyses have shown that mutant mice expressing the longer or full-

length transgene show fewer transcriptional changes compared with those expressing the 

short N-terminal fragments, suggesting that mHtt protein length may influences the ability 

of an expanded polyglutamine domain to alter gene expression, and that short N-terminal 

fragments of mHtt, rather than full-length  mHtt,  are those contributing to transcriptional 

dysregulation (Chan et al., 2002). 

 

2.3.1. Mechanisms of transcriptional dysregulation  

Although the exact processes leading to transcriptional abnormalities in HD are not fully 

elucidated, some of the potential mechanisms underlying these alterations have been 
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proposed. These mechanisms require an abnormal interaction between mHtt and key 

components of gene expression regulation leading to epigenetic-chromatin deregulation and 

dysregulation of the activity of several transcription factors.  

First, acetylation and deacetylation of histones play a critical role in gene expression through 

the interaction of histone acetyltransferases (HATs) and histone deacetyltransferases 

(HDACs). In normal conditions, HATs activity induce an increase in gene transcription 

through the opening of chromatin architecture by adding acetyl groups. Conversely, HDACs 

remove acetyl groups leading to gene chromatin condensation (Verdin & Ott, 2014). 

Moreover, in HD there is an imbalance towards deacetylation and formation of condensed 

inactive heterochromatin that represses the transcription of different genes (Bassi et al., 2017; 

Valor & Guiretti, 2014). There are several deacetylases such as Sirtuin (SIRT) that is normally 

blocked by the normal Htt. Instead, in HD mHtt induces its overexpression, and in turn 

several transcription factors are repressed or blocked (Neo & Tang, 2018). For example, 

SIRT1 modulates transcription factors related with BDNF and mitochondrial function. 

Brain-specific KO of Sirt1 exacerbates brain pathology of HD mice whereas overexpression 

of SIRT1 improves survival, BDNF expression, significantly improves motor function, 

reduces brain atrophy, and attenuates mutant Htt-mediated metabolic abnormalities in HD 

mouse models (Jeong et al., 2011; Jiang et al., 2011). 

Traditionally it has been postulated that mHtt drived by polyQs fragments aggregates into 

insoluble forms sequestering essential proteins, such as transcription factors (Nucifora et al., 

2001; Steffan et al., 2000, 2001). However, this theory has been questioned since recent 

findings suggested that functional dysregulation of transcription factors precedes inclusion 

bodies formation (Schaffar et al., 2004; Mitra et al., 2009). Some studies have suggested that 

polyglutamine inclusions may sequester polyglutamine-containing transcription factors and 

deplete their concentration in the nucleus, leading to altered gene expression (Nucifora et al., 

2001; Perez et al., 1998). On the contrary, other studies have shown a lack of colocalization 

between Htt aggregates and polyglutamine-containing transcription factor in HD mice, 

suggesting that altered gene expression likely results from the interaction between nuclear 

transcription factors and soluble mHtt, rather than sequestration by nuclear inclusions 

(Dunah et al., 2002; Yu et al., 2002). The presence of mHtt may lead to a dysregulation of 

transcription factors by the repression of their activity (Zuccato et al., 2010), or by the 

contrary facilitating an abnormal and pathological interaction with other proteins. 

Nevertheless, dysregulation of transcription during the disease may also be a consequence of 
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the loss of function of normal huntingtin resulting in a reduced interaction between Htt and 

transcription factors (Pogoda et al., 2020) (Figure 13). 

 

 

 

 

 

 

 

 

 

Figure 13. Mechanisms of transcriptional dysregulation in HD. MHtt may disrupts normal 

transcriptional activity by enhancing the interaction or sequestering activator transcription factor into the 

aggregates and eventually repressing gene expression, or facilitates the activity of repressor transcription factor 

by losing its interaction allowing them to get into the nucleus and represses transcription. MHtt can also 

interacts and alters the status of the histone acetyltransferases (HATs) and histone deacetylases (HDACs) 

inducing the chromatin structure to a more condensed state that ultimately causing repression of the 

transcription. 

 

Among the extensive list of dysregulated transcripts in HD, RE1-silencing transcription 

factor, also known as neuron-restrictive silencer factor (REST/NRSF) and cAMP-response 

element CREB-binding protein (Cbp) are the most largely studied. In normal conditions, Htt 

interacts with REST/NRSF preventing the translocation into the nucleus and subsequent 

repressive activity upon target genes. In HD, mHtt lead to a loss of this normal interaction, 

REST/NRSF is accumulated in the nucleus and downregulates the expression of 

neurotrophins and their receptors such as BDNF and TrkB, and other many synaptic 

proteins contributing to the pathogenesis of HD (Shimojo, 2008). Cbp is a transcriptional 

coactivator that enhances CREB-mediated transcription of specific genes (Chrivia et al., 

1993; Kwok et al., 1994). MHtt can interacts with Cbp through the glutamine-rich activation 

domain affecting transcription and gene expression or interact with the acetyltransferase 

domain of Cbp causing a reduction in histone acetylation and leading to gene repression 

through chromatin condensation, which resulted in a reduction of mRNA levels (Steffan et 

al., 2000; Steffan et al., 2001). 
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A relevant group that begins to receive special attention in the context of HD is the forkhead 

box (Fox) transcription factor family. Their structure allows DNA binding capacity and 

transcriptional activity, and it seems to perform a central role in regulating the expression of 

genes related to cell growth until brain development (Golson & Kaestner, 2016). Recently, it 

has been suggested that two members of the family,  Foxp1 and Foxp2, interact with mHtt 

resulting in the downregulation of their levels and the decrease of their transcriptional 

activity. Particularly, reduced expression of Foxp1 in the striatum of humans and HD mouse 

models results in a loss of the genes related to the immune response, while reduced 

expression of Foxp2 can induce behavioral phenotypes associated with HD (Hachigian et 

al., 2017; Louis et al., 2017). Moreover, the overexpression of Foxp2 can alleviate these 

phenotypes, probably by restoring synaptic function (Hachigian et al., 2017). 

Despite the gathered information described by Hachigian et al., 2017, the role of Foxp2 in 

HD has been poorly addressed and only in very advanced stages of the disease. In the next 

sections we will explain the role of Foxp2 in the central nervous system to understand and 

figure out to what extent Foxp2 could have a potential role in the pathogenesis of HD. 
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3. Foxp2 as novel therapeutic target in HD network dysfunction 

3.1. FOXP2 discovery 

FOXP2 has been first associated with a speech and language disorder in the large KE family 

(Lai et al., 2001). Affected individuals have a severe impairment of the selection and 

sequencing  of fine orofacial  movements, which  are necessary  for  articulation. The core 

deficit appears to be in the coordination of orofacial movements which is reflected in a 

relative immobility of the lower face and mouth of affected individuals (Vargha-Khadem et 

al., 1998). There are also deficits in language skills (Gopnik & Crago, 1991; Vargha-Khadem 

et al., 1995). Structural studies have shown abnormalities in several brain areas, including a 

bilateral reduction in the volume of the caudate nucleus thought to be the underlying 

pathological cause of the orofacial dyspraxia (Vargha-Khadem et al., 1998).  

3.2. FOXP2 structure, localization, and partners 

The initial report of FOXP2 described 19 exons, two of which (3a and 3b) are alternatively 

spliced into 4 different transcripts, covering approximately 300 kb on chromosome 7q31 (Lai 

et al., 2001). Later, it was suggested alternate splice variants and 5 others untranslated exons, 

a translated exon (4a) between exons 4 and 5, and a longer version of exon 10 (10+) that 

contains an alternate stop codon and produces a truncated protein (FOXP2-S). Later, one 

additional exon was identified in the intron 1. Thus, FOXP2 consist of 25 exons, with 18 

translated exons that spans approximately 600 kb of genomic DNA  (Bruce & Margolis, 

2002; Schroeder & Myers, 2008). 

FOXP2 belongs to a family of transcription factors (Kaestner et al., 2000) called FOX 

proteins implicated in the regulation of cell growth and differentiation as well as 

embryogenesis and longevity (Carlsson & Mahlapuu, 2002). FOXP (FOXP1–4) is a newly 

defined subfamily of the FOX transcription factors which contains several recognizable 

sequence motifs, including a glutamine-rich region, a zinc finger, a leucine zipper, and a 

highly conserved forkhead domain (Lai et al., 2001; Shu et al., 2001). Unlike most other FOX 

transcription factors, members of the FOXP subfamily typically repress rather than activate 

transcription (Li et al., 2004). 

The forkhead domain has a three-dimensional structure consisting of two Wl and W2 loops 

(or wings) and three α helices, whereas the α third helix allows the DNA binding (Katoh & 

Katoh, 2004; J. Li et al., 2021). FOXP2 also contains two polyglutamine tracts, near to the 

N- terminal of the protein, consisting of 40 consecutive glutamines and 10 consecutive 
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glutamines becoming one of the longest polyglutamine stretches in the human genome (Lai 

et al., 2001). Leucine zipper motif is responsible for heterotypic and homotypic interactions 

among the FOXP2 and other family FOXP members which is necessary for the regulation 

of its transcriptional activity. The zinc finger motif of FOXP2 also regulates transcription 

activity. Finally, a highly acidic region at the C terminus, termed ‘the acid-rich tail’ contains 

the nuclear localization signals (NLSs) (Mizutani et al., 2007; Thulo et al., 2021) (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Human FOXP2 gene and protein. (A) Representation of structural and functional domains of 

human FOXP2 protein. Poly-Q sequence, Zn finger, Leucine zipper and Forkhead domain are represented 

(arrows). (B) 3D structure prediction of the FOXP2 protein, which presents three α-helixes and two β-sheets. 

Adapted from (Castro Martínez et al., 2019). 

 

FOXP2 is expressed at high levels in neural, lung and gut tissues during embryogenesis and 

adult life  (Lai et al., 2003; Lu et al., 2002; Shu et al., 2001). Particularly, brains of human, 

mouse and rat show a highly expression of FOXP2 since embryogenesis (Lai et al., 2003; 

Takahashi et al., 2003; Ferland et al., 2003; Teramitsu et al., 2004). In the mouse brain, Foxp2 

is mainly expressed in the neurons of the striatum, thalamus, cortical plate, and cerebellum 

having an important role in early development of central nervous system (Ferland et al., 2003; 

Vernes et al., 2011). FOXP2 is crucial not only during embryogenesis, but it is also important 

in postnatal brain. Accordingly its expression is maintained throughout the entire lifespan in 

mice (Ferland et al., 2003) (Figure 15). 

A 

B 
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The exact function of FOXP2 in the brain is not fully understood yet. In an attempt for 

unravel its potential role in the context of brain function and disease, several studies have 

documented relevant putative neural target and potential pathways. Out of the hundreds of 

putative targets (genes) of FOXP2, a small subset has received special attention through 

validation and follow-up in animal or cell-based models (Figure 16). One of the first genes 

to be extensively studied as a FOXP2 downstream target has been the Contactin Associated 

Protein 2 (CNTNAP2), which encodes Caspr2, a neurexin transmembrane protein widely 

expressed in the brain implicated in nervous conduction, neuronal migration, neurite 

outgrowth, and connectivity (Rodenas-Cuadrado et al., 2013). FOXP2 directly binds to 

regulatory motifs of the CNTNAP2 locus to repress its expression (Adam et al., 2017; 

Mendoza & Scharff, 2017; SC et al., 2008). Interestingly, reported changes in CNTNAP2 

expression has been linked with developmental language and neurodevelopmental disorder, 

and also a range of brain-related phenotypes, including autism, schizophrenia and epilepsy 

(Alarcón et al., 2008; Bakkloglu et al., 2008; Friedman et al., 2007; Vernes et al., 2008; Strauss 

et al., 2009; Zweier et al., 2009). 

 

 

 

 

 

 

 

 

Figure 15. Localization of Foxp2 by in situ hybridization in the adult mouse brain. Intense 

hybridization signal is detected in the olfactory bulb, deep layers of the cortex, striatum, and to a lesser extent 

in thalamus and cerebellum in the coronal section of a brain mouse. CTX: cortex. STR: striatum. THAL: 

thalamus. CB: cerebellum. Adapted from Allen Brain Atlas. 

 

Similar studies have identified others downstream genes repressed by FOXP2 such as 

MET Proto-Oncogene, Receptor Tyrosine Kinase (MET) (Mukamel et al., 2011) and the 

Disrupted in Schizophrenia  1 (DISC1) (Walker et al., 2012; Spiteri et al., 2007). MET  is a 

gene belonging to the tyrosine kinase receptor family (Zhang et al., 2018).  It has been shown 

that common variation in MET has been associated with autism spectrum disorder and 
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schizophrenia (Burdick et al., 2010; Campbell et al., 2006). Also, post-mortem brain studies 

have shown altered MET expression in individuals with autism (Campbell et al., 2007).  

Figure 16. Molecular networks of Foxp2 in the brain. Subset of upstream and downstream target genes 

of Foxp2 and their implications in brain disorders.  

 

DISC1 gene has also been related to schizophrenia (Brandon et al., 2009; Dahoun et al., 2017; 

Hodgkinson et al., 2004). Also, disruption in the DISC1 locus segregates with bipolar 

disorder and recurrent major depression (St Clair et al., 1990). Even when FOXP2 acts mainly 

as a transcriptional repressor, also has been reported to be a direct activator of very-low-

density-lipoprotein receptor gene (VLDLR) (Adam et al., 2016; Mendoza & Scharff, 2017). 

Vldlr is a receptor for Reelin, expressed in the distal processes of migrating neurons in the 

developing cortex that regulates neuronal migration, and regulates dendrite and spine 

development  (Chai et al., 2015; Niu et al., 2008). Homozygous deletion of the 

human VLDLR gene has been discovered in patients with cerebellar hypoplasia in which 

the normal cerebellar folia is missing (Boycott et al., 2005; Ozcelik et al., 2008). 

Regarding the upstream chain, FOXP2 locus contains six highly conserved binding regions 

for T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors, which are 

regulatory proteins that are activated by canonical WNT/β-catenin signaling (Bonkowsky et 

al., 2008; Richter et al., 2021). Among the TCF/LEF transcription is the lymphoid enhancer 

binding factor 1 (LEF1) which regulates FOXP2 expression in vivo, corroborating in silico 

predictions (Bonkowsky et al., 2008). The FOXP2 locus also includes highly conserved 

binding sites for Paired Box 6 (PAX6), a key regulator of central nervous system 

development. It has been described an absence of Foxp2 expression in the telencephalon of 

mouse embryos carrying a Pax6 null mutation while knockdown of Pax6 in developing 
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zebrafish embryos disrupts Foxp2 expression (Coutinho et al., 2011). Pax6 mostly regulates 

migration and neuronal differentiation (Osumi, 2001). POU3F2, a well-known neural 

transcription factor also seems to regulate and increases FOXP2 expression through an 

intronic regulatory element in the middle of FOXP2 locus (Maricic et al., 2013). Pou3f2 plays 

a key role in the formation and radial migration of upper-layer cortical neurons and facilitates 

the differentiation of glutamatergic neurons  (Dominguez et al., 2013; McEvilly et al., 2002). 

TRB1 constitutes another potential candidate which may regulates FOXP2 expression. 

FOXP2 and TBR1 interact with each other and may co-regulate target genes in a cooperative 

manner (Deriziotis et al., 2014). In the cortex of Tbr1 knock-out mice the expression of 

Foxp2 is significantly decreased in the caudal area of layer VI (Siavash et al., 2018). In mice 

cortex, Tbr1 is essential for development, guidance, morphology, and cortical neurons 

survival (Hevner et al., 2001). 

 

3.3. Implications of Foxp2 in brain disorders  

As previously mentioned, FOXP2 was the first gene associated with speech and language 

disorder in the large KE family (Lai et al., 2001). Affected family members carried a 

heterozygous missense mutation (R553H) disrupting FOXP2 and suffers a severe 

developmental verbal apraxia with impairment in both expressive and receptive language 

skills (Gopnik & Crago, 1991; Vargha-Khadem et al., 1995; Vargha-Khadem et al., 1998). 

Later on, new cases of FOXP2-related speech and language disorders, inherited and de 

novo,  have been described. FOXP2 mutation carriers exhibit a severe developmental verbal 

dyspraxia (DVD), also called childhood apraxia of speech (CAS) mainly characterized by 

difficulties in coordinating sequences of articulatory movements (MacDermont et al., 2005; 

Feuk et al., 2006; Reuter et al., 2017), and occasionally is accompanied for other alterations 

as global developmental delays, autism features and facial dysmorphology (Feuk et al., 2006; 

Morgan et al., 2017; Reuter et al., 2017).  

Additionally, through the past two decades since the discovery, studies have investigated 

contributions of common variation in FOXP2 among the population. Multiple studies 

confirmed that single nucleotide polymorphisms (SNPs) in the FOXP2 gene are associated 

with schizophrenia risk (Tolosa et al., 2010; T. Li et al., 2013; X. Li et al., 2009; Liégeois et 

al., 2003; Rao et al., 2017; Sanjuán et al., 2006; Španiel et al., 2011), suggesting that FOXP2 

gene polymorphisms may confer vulnerability to schizophrenia. Large-scale systematic 

genome-wide association studies (GWAS) have identified significant associations of 

intronic FOXP2 SNPs with several traits, including attention-deficit/hyperactivity disorder 



INTRODUCTION 

 
43 

 

(ADHD) (Demontis et al., 2019; Soler Artigas et al., 2019), risk-taking behaviors (Clifton et 

al., 2018; Strawbridge et al., 2018), major depression and major depression-related symptoms  

(Lane et al., 2017; T. Li et al., 2013). Collectively, these insights suggest a major role of 

FOXP2 in neuropsychiatric disorders (Khanzada et al., 2017). 

Finally, FOXP2 also has been recently linked with HD as revealed by the substantial 

reduction of FOXP2 levels in postmortem brain striatum of individuals with stage III/IV 

HD and R6/2 mice. Additionally, the recovery of Foxp2 levels in the striatum of BACHD 

mouse model restores their motor coordination deficits (Hachigian et al., 2017). 

3.4. Role of Foxp2 in the remodeling of synaptic plasticity and circuits  

Foxp2 is known to be involved in synapse formation and synaptic plasticity (Rhijn et al., 

2018), neurite outgrowth (Vernes et al., 2011) and neurogenesis (Tsui et al., 2013), being 

then, particularly important for brain development (Figure 17).  

As disruptions of FOXP2 gene in humans resulted in speech and language deficits, following 

studies has been focused in unraveling the potential roles of its orthologues through genetic 

manipulations in an array of animal models. The genetic manipulation of Foxp2 has been 

mostly oriented to the study to ultrasonic vocalizations in mice and birds. Foxp2 KO mice 

resulted in severe motor impairment, developmental delay, absence of ultrasonic 

vocalizations and premature death (Shu et al., 2005). Additionally, heterozygous Foxp2 mice 

also produced shorter sequences of ultrasonic vocalizations with less complex syntax 

(Chabout et al., 2016). These results has been consistently corroborated in knockdown and 

overexpression studies in the brains of zebra finches suggesting that Foxp2 acts as a regulator 

of vocal learning during development and also in the maintenance of vocal behaviors in 

adulthood (Day et al., 2019; Heston & White, 2015; Norton et al., 2019; Haesler et al., 2004; 

Xiao et al., 2021). 

In addition to its role in language skills, Foxp2 is also important for the acquisition and 

performance of sequenced motor patterns. Mice carrying a missense mutation equivalent to 

the point mutation in KE family exhibit impaired motor-skill learning (French et al., 2012; 

Groszer et al., 2008). In line with the previous results, it has been described that Foxp2 

conditional homozygous knockout targeting mouse cortex, striatum and cerebellum result in 
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a variety of motor-skill deficits suggesting that Foxp2 modulates different aspects of motor 

function (French et al., 2018).  

Figure 17. Overview of Foxp2 functions in the rodent brain. Schematic diagram showing the main 

cellular functions of Foxp2 in the mouse brain. 

 

Along with these disturbances, Foxp2 mutation contributes to deficits in synaptic plasticity 

and wiring, whereas corticostriatal circuity results particularly affected. Long term depression 

at the corticostriatal synapse is impaired (Groszer et al., 2008), and striatum shows aberrant 

activity modulation during an acquisition task (French et al., 2012). Interestingly, evidence of 

Foxp2 as modulator of corticostriatal function comes from recordings in anesthetized birds 

showing that Foxp2 knockdown interferes with dopamine D1R-dependent modulation of 

activity propagation in a corticostriatal pathway, suggesting that these deficits may be partly 

attributable to reduced dopamine D1-like receptor and DARPP-32 protein levels (Murugan 

et al., 2013). Additionally, other study has observed that reduced Foxp2 expression disrupts 

the excitatory/inhibitory balance in D1-MSNs resulting in motor skill learning deficit. 

Specifically, Foxp2 reductions lead to a decrease in AMPA/NMDA currents while GABA 

content at the presynapse of D1-MSNs is increased (Rhijn et al., 2018). Similar findings were 

found in the medium spiny neurons of the songbird basal ganglia nucleus Area X (Adam et 

al., 2016). 
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Several studies have shown the role of Foxp2 as a positive regulator of spine density in 

several brain regions and species. Knockdown of Foxp2 has been reported to alter spine 

density and arborization three in the area X of zebra finches (Kosubek-Langer & Scharff, 

2020; Schulz et al., 2010). Striatum spine density in Foxp2  KO mice has been also disrupted 

along with reduction of synaptic markers (Chen et al., 2016). Also, Foxp2 mutation has been 

reported to decrease dendrite length of layer-VI excitatory neurons in the cortex, while spine 

density is spared (Druart et al., 2020).  Conversely, two studies describe that introducing a 

partially humanized version of Foxp2 into mice results in a general improvement of synaptic 

plasticity shown by an increase of the dendrite length, spine density and synaptic markers 

(Chen et al., 2016; Enard et al., 2009). 

Regarding neuronal migration, Foxp2 also seems to play a relevant role supported by the 

evidence from in vitro studies showing the effect of the gene on cell migration phenotypes 

(Devanna et al., 2014) and differentiation of MSNs (Chiu et al., 2014). From in vivo studies it 

has been documented that disruption of Foxp2 expression during embryonic development 

induces changes in cortical neurogenesis (Tsui et al., 2013) and in migration of neural 

progenitors out of the subventricular zone (Garcia-Calero et al., 2016). However, selective 

deletion of the gene does not recapitulate any of these effects (Kast et al., 2019). 

Consistently with the structural abnormalities found in the affected KE family members 

(Vargha-Khadem et al., 1998), Foxp2 KO mice show severe alterations in brain volume as a 

dramatic reduction in cerebellar growth, and similarly reductions in the ventral posterior 

nucleus and the parafasicular nucleus of thalamus (Ebisu et al., 2017; Groszer et al., 2008) 

corroborating a crucial role in neurodevelopment.  

In sum, genetic manipulations of Foxp2 have demonstrated its role in synaptic plasticity and 

circuit formation. Foxp2 has been proved to be critical for the corticostriatal synapse and the 

basal ganglia circuit. Moreover, some of the motor impairments observed in Foxp2 deficient 

mice resemble to those observed in HD mouse models (Hachigian et al., 2017; Shu et al., 

2005; Vargha-Khadem et al., 1995). Despite all this knowledge, Foxp2 role in HD has been 

not fully deciphered, and suggest by its functions could be a keystone in the understanding 

of neuronal dysfunction in HD.  
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Complex and pathological molecular processes triggered by mHtt along with compensatory 

mechanisms underlie basal ganglia and synaptic dysfunction in HD. Since transcriptional 

dysregulation, a key pathogenic mechanism, occurs early in the disease, we hypothesize that 

transcriptional dysregulation of Foxp2 might also happens at early stages of the disease and 

in others Foxp2-enriched brain regions, contributing to premature basal ganglia circuitry 

dysfunction and associated synaptic alterations. 

Thus, in this thesis we aimed to elucidate to what extent Foxp2 dysregulation could be a 

central mechanism in the pathogenesis of HD, and to investigate its potential therapeutic 

value. To address these questions, we propose the following objectives:  

1. To investigate the potential psychiatric-like disturbances in the juvenile R6/1 mouse 

model and to analyze to what extent Foxp2 regulates these features.  

2. To analyze the contribution of Foxp2 to the thalamus-striatal circuit dysfunction and 

neuropathology, and the associated HD sensory-motor phenotype.  
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1. Animals  

Transgenic R6/1 mice (Mangiarini et al., 1996) expressing the N-terminal exon-1 fragment 

of mHtt containing 115 CAG repeats, were used as a murine model of HD. Heterozygous 

R6/1 male mice were originally acquired from Jackson Laboratory (Bar Harbor, ME, USA) 

and maintained in a B6CBA genetic background from mating transgenic male mice 

(C57BL/6J x CBA/J) with F1 females. Genotypes were determined by polymerase chain 

reaction (PCR) from ear biopsy.  Microchips were implanted under the mice skin providing 

information about their birth, location, and genotype. Transgenic R6/1 mice and WT 

littermates were housed in numerical birth order in a room kept at 19-22ºC and 40-60% 

humidity under a 12:12 light/dark cycle with access to water and food ad libitum. All 

experiments were conducted exclusively with male mice to avoid estrus hormonal alterations. 

WT littermates were used as a control group.  

Standard animal procedures were approved by the animal experimentation Ethics Committee 

of the Universitat de Barcelona (274/18) and Generalitat de Catalunya (10/20), in agreement 

with the Spanish (RD53/2013) and European (2010/63/UE) regulations for the care and 

use of laboratory animals.  

 

2. Stereotaxic Surgery 

2.1. Intrastriatal injection of monosynaptic rabies virus 

To target the pre-synaptic inputs received by the striatum we utilized a two-virus system 

similar to a previous protocol  (Tornero et al., 2017) (Figure 18). Both viruses, the helper 

lentivirus using the pBOB-Syn-hisGFP-TVA-rabiesG plasmid (titres: 20-30 x 106 TU/ml) 

and the monosynaptic modified rabies EnvA-ΔG-mCherry rabies (titres: 2 × 1010  GC/ml) 

were provided by Dr. Malin Parmar from Lund University, Sweden.   

Stereotaxic surgery was performed in 4-week-old and 10-week-old R6/1 male mice and WT 

littermates by isoflurane-induced anesthesia. Mice were anesthetized with 3.5% isoflurane in 

100% oxygen in an induction chamber. Then, fixed in the stereotaxic apparatus anesthetic 

status was maintained with 1,5% isoflurane. Mouse head was shaved and cleaned with 

ethanol. Then iodine and local anesthesia was applied (lidocaine 2.5% and prilocaine 2.5% 

EMLA®, AstraZeneca), and a dose of 2 mg/kg of analgesic Metacam® was injected 

subcutaneously. Mouse skull was exposed, and the right hemisphere of each animal was 

drilled in order to deliver viral constructs. 1µl of viral vectors was injected targeting dorsal 

striatum.  
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Figure 18. Intrastriatal injection of the helper virus and the monosynaptic rabies virus. (A) First, 

mouse striatum was injected with the helper lentivirus (TVA+RG). (B) One week later the modified rabies 

virus (Enva) Monosyn Rabies-mCherry was injected at the same coordinate, but along a different injection tract 

with a 29 degrees tilt to avoid potential double-labeling of cortical cells along the injection tract. (C) It took 

another week for the rabies virus to replicate and spread monosynaptically before tissue processing and analysis. 

 

The following coordinates relative to Bregma (anteroposterior and lateral) and from skull 

(dorsoventral): AP: -0.5mm; L: +1.8mm and DV: -2.3mm were used for the 4-week-old 

animals. Meanwhile, for the 10-week-old animals the coordinates were relative to Bregma 

(anteroposterior and lateral) and from skull (dorsoventral): AP: -0.8mm; L: +2mm and DV: 

-2.6mm. Viral vectors were injected with a 5µl Hamilton syringe at an infusion rate of 

100nl/min. The needle was left in place for 5 min to ensure complete diffusion of the AAVs. 

Mice were returned to their home cage after fully recovery. After a week, animals were 

conducted to the second stereotaxic surgery and then infected with the rabies virus. The 

following coordinates relative to Bregma (anteroposterior and lateral) and from skull 

(dorsoventral): AP: -0.5mm; L: +3.45mm and DV: -2mm were used for the 4-week-old 

animals. Meanwhile, for the 10-week-old animals the coordinates were relative to Bregma 

(anteroposterior and lateral) and from skull (dorsoventral): AP: -0.8mm; L: +3.65mm and 

DV: -2.35mm. One week later mice were intracardially perfused with 40 mL of PBS, and 

subsequently with a 40 ml of 4% paraformaldehyde. After perfusion, the brain was isolated 

and transferred to a post fixative solution containing 4% paraformaldehyde and 30% sucrose 

in PBS with 0.02% Sodium Azide, and then kept overnight at 4°C. Then, 40μm coronal brain 

sections were prepared using a vibratome (Leica VT 1000S) and tissue was separated into 
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four groups to allow for multiple tissue manipulations. Tissue groups that were not used 

immediately were placed in a cryoprotectant anti-freeze solution (30% glycerol, 30% ethylene 

glycol and 15% Tris-HCl in H2Omq) and stored at −20 °C. 

 

2.2 Overexpression of Foxp2 

Foxp2-overexpression stereotaxic surgery was conducted in both, transgenic R6/1 mice and 

WT littermates at different stages and brain regions. At early stages, pups at postnatal day 

P0-P2 were subjected to bilateral intrastriatal injections. At late stages 12-week-old mice 

received bilateral intrathalamic injections. Adeno-associated virus (AAV) expressing Foxp2 

under CamKII promoter (AAV9-CamKIIa-eGFP-2A-mFoxp2-WPRE) (Vector Biolabs, 

Pennsylvania, USA) was injected in R6/1 mice (R6/1-Foxp2) and WT mice (WT-Foxp2) 

and AAV carrying GFP (rAAV5-CamKIIa-eGFP-2A-WPRE) (UNC Vector Cre, North 

Carolina, USA) used as a control was injected in both R6/1 mice (R6/1-GFP) and WT mice 

(WT-GFP). Titres of viral construct AAV9-CamKIIa-eGFP-2A-mFoxp2-WPRE were 1.6 x 

1013 GC/ml. Titres of viral construct rAAV5-CamKIIa-eGFP-2A-WPRE were 5.3 x 1012 

GC/ml. 

 

2.2.1. Intrastriatal injections of AAV-Foxp2 in R6/1 pups 

At postnatal day (P0-P2) R6/1 male mice and WT littermates were subjected to stereotaxic 

surgery through hypothermia-induced anesthesia. Pups were wrapped in Kleenex tissue and 

immersed in crushed ice up to the neck for 3 min. Hypothermia-induced anesthetized pups 

were fixed in the stereotaxic apparatus, their heads were cleaned with ethanol 70%. Skin head 

and skull were gently penetrated by a sterile needle to performed one incision in each brain 

hemisphere. 300nl of viral vectors were injected in each incision to bilaterally target the 

striatum. The following coordinates relative to Lambda (anteroposterior and lateral) and 

from skull (dorsoventral) were used: AP: +2.4mm; L: +/-1mm and DV: -1.9mm. Viral 

vectors were injected with a 5µl Hamilton syringe at an infusion rate of 100nl/min. The 

needle was left in place for 2 min to ensure complete diffusion of the AAVs. After surgery, 

pups were warm up for 30 min inside a plastic box filled with breeding and heated underneath 

by an electric blanket. After fully recovery, pups were returned to their home cage.  

 

2.2.2. Intrathalamic injections of AAV-Foxp2 in R6/1 adult mice 
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Stereotaxic surgery was carried out in 12-week-old R6/1 male mice and WT littermates by 

isoflurane-induced anesthesia. Mice were anesthetized with 3.5% isoflurane in 100% oxygen 

in an induction chamber. Then, fixed in the stereotaxic apparatus anesthetic status was 

maintained with 1,5% isoflurane. Mouse head was shaved and cleaned with ethanol. Then 

iodine and local anesthesia were applied (lidocaine 2.5% and prilocaine 2.5% EMLA®, 

AstraZeneca), and a dose of 2 mg/kg of analgesic Metacam® was injected subcutaneously. 

Mouse skull was exposed and drilled twice to deliver viral constructs. 500nl of viral vectors 

were injected in each hemisphere targeted bilaterally the thalamus. The following coordinates 

relative to Bregma (anteroposterior and lateral) and from skull (dorsoventral) were used: AP: 

-1.7mm; L: +/-1.5mm and DV: -3.5mm. Viral vectors were injected with a 5µl Hamilton 

syringe at an infusion rate of 100nl/min. The needle was left in place for 5 min to ensure 

complete diffusion of the AAVs. Mice were returned to their home cage after fully recovery.  

 

2.3. Transduction of AAV-shRNA-Foxp2 

Stereotaxical injection of AAVs containing a scrambled shRNA or a shRNA against Foxp2 

were used to knockdown Foxp2 expression. Bilateral intrathalamic injections were 

conducted in 10–11-week-old WT mice, using an AAV produced by Vector Biolabs. AAV 

expressing shRNAFoxp2 under U6 promoter (AAV8-mCherry-U6-mFoxp2-shRNA) 

(Vector Biolabs, Pennsylvania, USA) was injected in WT mice (WT-shFoxp2) and AAV 

carrying mCherry (AAV5-mCherry-U6-scrmb-shRNA) (UNC Vector Cre, North Carolina, 

USA) used as a control was injected in WT mice (WT-shScr). shRNAs cloning and AAV 

viral particles production, amplification and purification were done by Vector Biolabs (titres: 

8.5 x 1012 genomic particles/ml). 

 

2.3.1. Intrathalamic injections of AAV-shRNA-Foxp2 in R6/1 adult mice 

Stereotaxic surgery was carried out in 10-12-week-old WT mice by ketamine-xylazine-

induced anesthesia. Mice were injected peritoneally with a ketamine-xylazine mixture 

(100mg/kg; 10mg/kg) dissolved in saline. Animals were then mounted in a rodent 

stereotaxic apparatus and head-fixed using ear bars, bite bar, and nose clamp. Mouse head 

was shaved and cleaned with ethanol. Then iodine and local anesthesia was applied (lidocaine 

2.5% and prilocaine 2.5% EMLA®, AstraZeneca), and a dose of 2 mg/kg of analgesic 

Metacam® was injected subcutaneously. Mouse skull was exposed and drilled twice to deliver 

viral constructs. 500nl of viral vector were injected in each hemisphere targeted bilaterally 

the thalamus. The following coordinates relative to Bregma (anteroposterior and lateral) and 
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from skull (dorsoventral) were used: AP: -1.7mm; L: +/-1.5mm and DV: -3.5mm. Viral 

vectors were injected with a 5µl Hamilton syringe at an infusion rate of 100nl/min. The 

needle was left in place for 2 min to ensure complete diffusion of the AAVs. Mice were 

return to their home cage after fully recovery.  

 

3. Behavioral Assessment 

3.1. Evaluation of psychiatric disturbances 

A behavioral assay designed to evaluate behavioral and psychiatric disturbances was 

performed in the 3–4-week-old juvenile R6/1 mice and WT littermates (Table 2). 

 

3.1.1. Open Field 

A gray open-top square arena (40 cm x 40 cm long; with 30 cm high walls) was placed in a 

room with dim light (20-25 lux) as described elsewhere (Skillings et al., 2014). Room 

temperature was kept at 19-22ºC. Mice were placed in the center of the arena and were 

allowed to explore the arena for 15 min. Animal tracking was recorded via a CCD camera 

mounted above the arena. Image data acquisition and analysis were performed automatically 

using Panlab SMART Video Tracking System (3.0). Spontaneous locomotor activity data 

were inferred by measuring total distance travelled and speed. Spontaneous exploratory 

activity data were inferred by manually measured number of rearing and grooming events. 

Time remaining in the center of the arena was determined as a measure of anxiety.  

 

3.1.2. Elevated Plus Maze 

The elevated plus maze apparatus consisted of a cross shaped with two opposing situated 

open arms (30 x 8 cm) against to two other arms (30 x 8 cm) enclosed by 15 cm high walls 

and a center area. The maze was raised 50cm above the floor and lit with dim light (20-25 

lux) as described elsewhere (Pairojana et al., 2021). Mice were placed in the center, facing an 

open arm, and allowed to explore the maze for 5 min. Animal tracking were recorded via a 

CCD camera mounted above the maze. Image data acquisition and analysis were performed 

automatically using Panlab SMART Video Tracking System (3.0). The percentage of the time 

remaining in the open arms versus time remaining in the closed arms was inferred as a 

measure of anxiety.  

 

3.1.3. Jumping Test 
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Jumping behavior was performed as previously described (Matsuoka et al., 2005; Sancho-

Balsells et al., 2020). A round platform (an inverted glass container with a diameter of 13 cm 

and a height of 20 cm) was in a bench of the room. Mice were placed on the platform and 

allowed to remain for 15 min. The latency to jump out of the platform was registered and 

was inferred as a measure of impulsivity.   

 

3.1.4. Automated Running Wheels Test 

Circadian rhythms were assessed as previously described (Sugiyama et al., 2020). Mice were 

single housed in cages equipped with in running wheels (ENV-044 Mouse Low-Profile 

Wireless Running Wheel, Med Associates Inc.; 15,5 cm circumference; 25º from horizontal 

plane). The cages were placed in a separated room kept at 19-22ºC and 40-60% humidity 

under a 12:12 light/dark cycle with free access to water and food. Wheel-running activity was 

monitored through a Wireless transmitter system by using a hub (13.7 x 15.25 cm2) located 

in the same room for 3 and/or 4 days. Running wheels revolutions were monitored 

continuously.  

 

3.1.5. Resident-intruder Paradigm 

An adapted resident-intruder paradigm was carried out based on previous protocol (Lutz et 

al., 2015). After 4 days of single housing resident-intruder test was performed on the day test. 

Single housed residents were exposed for 10 min to an unfamiliar similar aged intruder 

(socially housed). Active social behavior as facial and genital sniffing, and active aggressive 

behavior as physical struggling were manually registered. Animal tracking were recorded via 

a CCD camera above the arena. Image data acquisition and analysis were performed 

automatically using Panlab SMART Video Tracking System (3.0). 

 

3.1.6. Forced-swimming test (FST) 

Mice were subjected to perform a forced swimming test as described elsewhere (Nakamoto 

et al., 2020). The apparatus consisted of a transparent plastic cylinder (35 cm height; 20 cm 

diameter). The cylinder was filled with water (26 ±1 ̊C) up to a height of 15 cm. Mice were 

placed into the cylinder and forced to swim for 6 min. Animal tracking were recorded via a 

CCD camera mounted in the ceiling room. Image data acquisition and analysis were 

performed automatically using Panlab SMART Video Tracking System (3.0). Animals escape 

related mobility behavior was analyzed as a measure of depressive-like behavior.  

 



METHODS 

59 
 

3.2. Evaluation of sensory-motor function 

A behavioral tests battery designed to evaluate motor-sensory deficits was performed in the 

16week-old R6/1 mice and WT littermates (Table 2). 

 

3.2.1. Open Field and Novel Whisker-dependent Texture Discrimination Test 

Novel whisker-dependent texture discrimination test was conducted as previously reported 

(Wu et al., 2013) consisted of two consecutive days of habituation in the open field, and one 

day for testing divided in two sessions: training and testing session (Figure 19). A gray open-

top square arena (40 cm x 40 cm long; with 30 cm high walls) was placed in a room with dim 

light (20-25 lux). The base of the arena was carpeted with 2 cm of standard laboratory 

bedding. Room temperature was kept at 19-22ºC. Mice were placed in the center of the arena 

and were allowed to explore the arena for two consecutive day (10 min/per day). 

Spontaneous locomotor activity data was inferred by measuring total distance travelled and 

mean speed. Spontaneous exploratory activity data was inferred by manually measured 

number of rearing events. Time remaining in the center of the arena was determined as a 

measure of anxiety. On testing day, for the first session mice were placed in the testing arena 

equidistant to and facing away from two identically smooth-textured objects at the center of 

the arena. The textured objects were placed in the center of the arena, equidistant to each 

other and the walls. Mice were allowed to explore the objects for 5 min and then removed 

and held in a cage for 5 min. Before the second session, the two objects in the arena was 

replaced with a third, one identically textured object and a novel object with a different 

texture. The position of the novel rough-textured object versus the familiar smooth-textured 

object was counterbalanced. Mice were then placed back into the arena for the second 

session, the test phase, and allowed to explore for 3 min, but only the first minute of 

exploration of the objects was used for the analysis. The amount of time mice spent actively 

investigating the objects was recorded. Investigation was defined as directing the nose 

towards the object (with less than 2 cm from the nose to the object) or touching the object 

with the nose. Animal tracking were recorded via a CCD camera mounted above the arena. 

Image data acquisition and analysis were performed automatically using Panlab SMART 

Video Tracking System (3.0). 
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Figure 19. Novel Whisker Texture Discrimination Task (NWDT). The novel whisker texture 

discrimination paradigm is a dependent task on mystacial vibrissae, performed within 3 days. No appetitive or 

aversive training is required.  

 

3.2.2. Spontaneous Place Preference Test (SPPT) 

Spontaneous place preference test was adapted from (Manita et al., 2015). A gray open-top 

square arena (40 cm x 40 cm long; with 30 cm high walls) was placed in a room with dim 

light (20-25 lux). Half of the base of the arena was covered with sandpaper, and the other 

half was covered with the reverse, smooth side of the sandpaper. The side (left versus right) 

with the sandpaper was counterbalanced across mice. Mice were placed individually in the 

arena and were allowed to explore for 10 min. The percentage of preference texture was 

measured. Animal tracking were recorded via a CCD camera mounted above the arena. 

Image data acquisition and analysis were performed automatically using Panlab SMART 

Video Tracking System (3.0). 

 

3.2.3. Accelerating Rotarod 

The accelerating rotarod training procedure (ARTP) was conducted as previously described 

(Fernández-García et al., 2020). To evaluate mouse motor learning and performance, mice 

were tested on the accelerating rotarod over 2 days. Animals were placed on a horizontal 

rotating rod (30 mm diameter) with an increasing gradually speed (4 to 40 RPM) over 5 min. 

Latency to fall was recorded as the time mice spent in the rod before falling. The testing 

session consisted of 3 trials a day for 2 consecutive days, with a 1h inter-trial interval.  

 

3.2.4. Vertical Pole  

Vertical pole test was performed as previously described elsewhere (Creus-Muncunill et al., 

2019) to assess mice coordination in the turnover behavior. Vertical pole consisted of a 

wooden pole wrapped in tape to facilitate walking and held horizontally above porexpan and 

bedding. Mice were placed just below the top of a vertical pole facing upwards and trained 

to turn and climb down the pole. Training sessions consisted of 3 trials a day over 2 
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consecutive days and testing was performed on the third day. Time to complete a turn and 

the time to climb down the pole were measured.  

 

Table 2. Behavioral Testing. For each test, information about the dimension, the age of 

animals during the test, and a reference is provided. 

BEHAVIORAL 
TEST 

AGE DIMENSION REFERENCE 

Open Field 

 

3-4week-old 

14-15-week-old 

16-week-old 

Locomotor and 
exploratory activity 

(Skillings et al., 2014) 

Elevated Plus Maze 

 

3-4week-old 

 

Anxiety-like behavior (Pairojana et al., 2021) 

Jumping Cliff 
Avoidance Test 

3-4week-old 

 

Impulsive-like behavior (Matsuoka et al., 2005; 
Sancho-Balsells et al., 

2020) 

Automated Running 
Wheels Test 

3-4week-old 

 

Circadian Rhythms (Sugiyama et al., 2020) 

Resident-intruder 
paradigm 

3-4week-old 

 

Social Interaction 

Aggressive-like behavior 

(Lutz et al., 2015) 

Forced Swimming 
Test (FST) 

3-4week-old Depressive-like 
behavior 

(Nakamoto et al., 2020) 

Novel whisker-
dependent texture 
discrimination test 

14-15-week-old 

16-week-old 

Whisker-sensory 
discrimination 

(Wu et al., 2013) 

Spontaneous place 
preference test 

(SPPT) 

14-15-week-old 

16-week-old 

Tactile sensory 
perception 

(Manita et al., 2015) 

Accelerating Rotarod 14-15-week-old 

16-week-old 

Motor learning and 
coordination 

(Fernández-García et al., 
2020) 

Vertical Pole 16-week-old Motor coordination in 
turnover behavior 

(Creus-Muncunill et al., 
2019) 

 

4. Protein extraction 

Mice were killed by cervical dislocation. The brain was quickly removed, and different brain 

regions (prefrontal and motor cortex, thalamus, hippocampus, and striatum) were quickly 

dissected out in ice-cold conditions. Frozen brain tissues were homogenized by sonication 

in ice-cold lysis buffer containing: 1% Triton X-100, 10% Glycerol, 50 mM Tris-HCl pH7.5, 
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10 mM EDTA, 150 mM NaCl, supplemented with proteases and phosphatase inhibitors: 

2mM PMSF (from phenylmethylsulphonyl fluoride), 10 μg/ml Aprotinin,1 μg/ml 

Leupeptin, 2mM Na3VO4 and 100 mM NaF and protease inhibitor cocktail (Sigma-Aldrich, 

St. Louis, MO, USA). Samples were centrifuged at 16,000 g during 30 min at 4ºC, and 

supernatant fractions were collected.  

Lysates of 4-week-old mice striatum from Foxp2 overexpression experiment were processed 

for mass spectrometry (MaxQuant run, Proteomic facility, Max Planck Institute of 

Biochemistry, Martinsried, Germany).  

 

5. Western Blot 

Quantification of protein fraction was performed using the Detergent-Compatible Protein 

Assay (Bio-Rad, Hercules, CA, USA). Protein extracts (normally 20 μg) were denatured in 

62.5 mM Tris-HCl (pH 6.8), 2% Sodium dodecyl sulfate (SDS), 10% glycerol, 140 mM b-

mercaptoethanol and 0.1% bromophenol blue and heated at 100ºC for 5 min. Protein 

extracts were resolved in denaturing SDS–polyacrylamide gel electrophoresis (SDS-PAGE), 

with variable polyacrylamide concentration depending on the molecular weight of the protein 

of interest, at 35 mA/gel over 1 h. The Precision Plus ProteinTM Dual Color ladder (Bio-Rad) 

was loaded along with the protein samples to properly identify the protein of interest. 

Afterwards, proteins were transferred to a nitrocellulose membrane (Whatman Schleicher & 

Schuell, Keene, NH, USA) during 1.5 h at 90 V at 4ºC. Membranes were stained momentarily 

using Ponceau S reagent to validate protein transfer and rinsed with Tris-buffered saline, 

0.1% Tween 20 (TBS-T) to remove staining. Non-specific protein binding sites were blocked 

during 1 h incubation in blocking solution containing 10% non-fat powdered milk in TBS-

T (50 mM Tris-HCl, 150 mM NaCl, pH 7.4, 0.05% Tween 20). Membranes were rinsed 3 

times during 10 min in TBS-T and immunoblotted overnight at 4°C with the primary 

antibody (Table 3). 

 

Table 3. Primary antibodies used for Western blot.  

ANTIGEN REFERENCE MW (kDa) HOST 
SPECIE 

DILUTION SOURCE 

Actin 
 

69100 42 Mouse 1:20,000 
MP Biochemicals 

(Aurora, OH, USA) 

GABA-A α1 224 211 50 Mouse 1:1000 
Synaptic Systems 

(Göttingen, Germany) 
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GABA-A α2 224 104 50 Guinea Pig 1:1000 
Synaptic Systems 

(Göttingen, Germany) 

GABRβ3 SAB200049 55 Mouse 1:1000 
Sigma-Aldrich 

(St. Louis, MO, USA) 

Foxp2 ab16046 75 Rabbit 1:1000 
Abcam 

(Cambridge, UK) 

Phospho-
PKAcat 

Sc-903 
42 Rabbit 1:1000 

Santa Cruz 
Biotechnology  

(Santa Cruz, CA, USA) 

Phospho-
PKA 

substrate  

9624S 
SMEAR Rabbit 1:1000 

Cell Signaling 
Technology (Beverly, 

MA, USA) 

Tyrosine 
Hydroxylase 

NB 300-100 
60 Sheep 1:1000 

Novus Biologicals  
(Littleton, CO, USA) 

α-Tubulin T-9026 55 Mouse 1:50,000 
Sigma-Aldrich 

(St. Louis, MO, USA) 

 

Membranes were then rinsed 3 times for 10 min each with TBS-T and incubated with the 

proper horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature 

(Table 4). 

 

Table 4. Secondary antibodies used for Western blot. All secondary antibodies were 

conjugated with the horseradish peroxidase.  

ANTIGEN REFERENCE DILUTION SOURCE 

Anti-mouse IgG SA1-100 1:2000 
Promega  

(Madison, WI, USA) 

Anti-rabbit IgG SA1-200 1:2000 
Promega  

(Madison, WI, USA) 

Anti-guinea-pig IgG ab97155 1:2000 Abcam  

(Cambridge, UK) 

Anti-sheep IgG ab97130 1:2000 Abcam  

(Cambridge, UK) 

 

Membranes were washed thrice for 10 min each with TBS-T and were developed using 

luminol reagent (Santa Cruz Biotechnology, Santa Cruz, CA, USA) in the Chemidoc MP 

Imaging System (Bio-Rad, California, USA). Gel-Pro densitometry program (Gel-Pro 3.2 
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Analyzer for Windows-version) was used to quantify the intensity of the different 

immunoreactive bands relative to the intensity of the loading controls. As loading control 

were used α-Tubulin or actin. 

 

6. Immunofluorescence 

Brain hemispheres used for immunohistochemistry were post-fixed with paraformaldehyde 

4% (PFA), and then kept in PBS with 0.02% Sodium Azide at 4ºC until use. Coronal sections 

(40 μm) of the brain were obtained using a vibratome (Leica VT 1000S) or a microtome 

(Leica SM 2000R) and kept in cryoprotectant anti-freeze solution at -20ºC until use. 

Free-floating brain sections were rinsed twice in PBS for min and incubated 2 times for 15 

min each with 50 mM NH4Cl to reduce aldehyde-induced tissue autofluorescence. Sections 

were permeabilized twice for 10 min each with PBS containing 0.5% Triton X-100. 

Thereafter sections were blocked with PBS containing 0.3% Triton X-100, 0.2% sodium 

Azide and 5% normal donkey serum/goat serum (Pierce Biotechnology, Rockford, IL) for 

2 h at room temperature. Then, sections were incubated overnight at 4ºC with primary 

antibody diluted in a solution of PBS containing 0.3% Triton X-100, 0.2% Sodium Azide 

and 5% normal donkey serum/goat serum (Table 5). 

 

Table 5. Primary antibodies used for Immunofluorescence. 

ANTIGEN REFERENCE HOST  
SPECIE 

DILUTION SOURCE 

GFP FITC ab6662 Goat 1:500 
Abcam 

(Cambridge, UK) 

EM48 MAB5374 Mouse 1:150 
Millipore  

(Burlington, MA, USA) 

DARPP-32 611520 Mouse 1:1000 
BD Transductions (San 

José, CA, USA) 

Foxp2 ab16046 Rabbit 1:100 
Abcam 

(Cambridge, UK) 

PSD95 3450 Rabbit 1:300 
Cell Signaling Technology  

(Beverly, MA, USA) 

RFP  
 600-401-379 

Rabbit 1:500 

Rockland 

(Pottstown, PA, USA) 
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VGluT2 AB2251-I Guinea pig 1:1000 
Millipore  

(Burlington, MA, USA) 

 

The next day, the sections were washed thrice with PBS for 10 min and then incubated 1.5h 

at room temperature with secondary antibodies diluted in PBS (Table 6). 

 

Table 6. Secondary antibodies used for Immunofluorescence. 

ANTIGEN REFERENCE DILUTION SOURCE 

Goat anti-rabbit Cy3 
555 

111-165-144 1:200 
Jackson ImmunoResearch 

(West Grove, PA, USA) 

Goat anti-mouse Cy3 
555 

115-165-003 1:200 
Jackson ImmunoResearch 

(West Grove, PA, USA) 

Goat anti-guinea pig  

Alexa Fluor 647 
106-605-003 1:200 

Jackson ImmunoResearch 

(West Grove, PA, USA) 

Donkey anti-mouse 
Cy3 555 

715-165-150 1:200 
Jackson ImmunoResearch 

(West Grove, PA, USA) 

Donkey anti-mouse 

Alexa Fluor 488 
715-545-150 1:200 

Jackson ImmunoResearch 

(West Grove, PA, USA) 

 

Hereafter, slices were covered with foil and protected from the light to avoid fluorescence 

photobleaching. After washing thrice from 10 min each with PBS, nuclei were stained with 

DAPI (Sigma-Aldrich) for 15 min. After three more washes of 10 min each in PBS slices 

were mounted in the slides and left until dry completely. Lastly, slides were covered in the 

mounting media and the coverslips.  

 

7. Golgi Staining 

Fresh brain hemispheres were processed following the Golgi-Cox method as described 

elsewhere (Giralt et al., 2017). Mouse brain hemispheres were incubated in the dark for 21 

days in filtered dye solution consisted of 1% potassium dichromate, 1% mercury chloride 

and 0.8% potassium chromate. Consecutively brain tissue was washed 3 times for 2 min each 

in distilled water and 30 min in 90% ethanol. Thereafter, brain hemispheres were cut in 

200µm sections in 70% ethanol on a vibratome (Leica VT 1000S) and washed in distilled 

water for 5 min. The 200µm sections were then reduced in 16% ammonia solution for 1 h, 

washed in water for 2 min and fixed in 1% sodium thiosulfate for 7 min. After reduction and 
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a 2 min final wash in water, sections were mounted on super frost coverslips and dehydrated 

for 3 min in 50, 70, 80 and 100% ethanol, incubated twice for 5 min each in a 2:1 

isopropanol/ethanol mixture, followed by 5 min incubation in pure isopropanol and twice 

incubation of 5 min each in xylol. Finally, samples were mounted with mounting medium 

(DPX, Merck) and let them dry. Secondary dendrites from striatum or cortex were 

photographed, with a maximum of two-three dendrites per neuron and from at least 3 slices 

per animal. Z-stacks from 0.2µm sections were obtained in bright field at x63 resolution on 

a Widefield AF6000 Monochroma Camera Leica Microscope. 

 

8. Dendritic Spine Analysis 

Images were analyzed with the ImageJ software. Secondary dendritic segments (>20 μm 

long) were selected and traced. The total number of spines was obtained using the cell 

counter tool from ImageJ. Dendritic spine density was obtained after dividing the number 

of spines by the length of the segment (nº spines/μm).  

 

9. Nissl staining 

Nissl staining protocol was performed as previously reported elsewhere (Giralt et al., 2011). 

Mice brain sections were mounted in coating slides and let them dry for 2 h. Sections were 

then stained in 0.1% cresyl violet (Nissl stain) for 45 min, dehydrated for 1 min in 70, 90 and 

100% ethanol and incubated twice in Xylol for 5 min each. Finally, slices were mounted with 

mounting medium (DPX, Merck) and let them dry.  

 

10. Cytochrome C Oxidase 

Cytochrome C Oxidase protocol was carried out as previously reported (Engmann et al., 

2015). Sections were washed in PB 0.1M, and then incubated for 10 h in 10% sucrose, 0,1 

g/l cytochrome C from equine heart (Sigma) and 0.125 g/l DAB (Sigma-Aldrich) at 37ºC. 

Henceforth, brain sections were washed in PB 0.1M, mounted then in coating-gelatin slides 

and let dry for 24 h. Next day, sections were dehydrated for 3 min in 70, 80, 90 and 100% 

ethanol and incubated in Xylol for 1 h. Slices were finally mounted with mounting medium 

(DPX, Merck) and let them dry.  

 

11. Unbiased stereology 
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Striatal and thalamic volumes of Nissl-stained brain sections were estimated using the 

Cavalieri method as previously described (Giralt et al., 2010).  

 

12. Estimation of monosynaptic tracer cells 

Slides were scanned with an Olympus BX51 microscope (Olympus, Ballerup, Denmark). 

Sections were analyzed using the Optical Fractionator technique and the VIS software 

package (version 7.0.3.3313). Cortical and thalamic neuronal inputs to striatum were obtained 

by counting tracer cells (marked in red) that fell within a 10 cm × 10 cm grid size at 40× and 

within 40 μm of the thickness of the section. Striatal starter cells were obtained by counting 

cells (marked in green and red) that fell within a 10 cm × 10 cm grid size at 40× and within 

40 μm of the thickness of the section. For each animal, the number of cortical and thalamic 

tracer neurons was divided by the number of striatal starter cell to normalize the proportion 

of the afferent inputs according to the widespread of striatal transduced neurons. 

 

13.  Quantification of cortical somatosensory thickness 

Thickness quantification of the somatosensory cortex were performed similar to previous 

protocol (Fenlon et al., 2015) selecting at least 9 consecutive and comparable brain sections 

from each mouse.  

 

14.  Statistical Analysis 

Statistical analysis was performed using Student’s two-tailed t-test and two-way ANOVA. 

Tukey’s Honestly Significant Difference test (HSD), Bonferroni’s and Sidak’s multiple 

comparisons post hoc tests were conducted as indicated in the figure legends. Data analysis 

and graphs were created using GraphPad Prism Software (Version 8.0). A 95% confidence 

interval was used and values with a p < 0.05 were considered statistically significant. Data 

was expressed as mean ± SEM. 
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1. Expression and distribution of Foxp2 in the R6/1 mouse 

model 

1.1. Foxp2 protein levels are early decreased in the striatum of juvenile 

R6/1 mice 

To investigate whether the endogenous Foxp2 protein was altered in the R6/1 mouse model, 

we analyzed Foxp2 protein levels in striatal extracts obtained from R6/1 mice and WT 

controls. Striatal samples were analyzed along the disease progression and the different 

symptomatic stages: asymptomatic stage (PND3, PND15, 4 and 8 weeks), early symptomatic 

stage (12 weeks), and late symptomatic stage (20 weeks). Interestingly, western blot analysis 

revealed that endogenous Foxp2 expression was significantly altered from PND15 

(t19=3.896, p=0.0010) and remained altered at 4 weeks (t10=4.325, P=0.0003), 8 weeks 

(t11=2.808, p=0.0170), 12 weeks (t10=7.775, p<0.0001) and 20 weeks (t12=6.373, p<0.0001) 

in the transgenic R6/1 mice striatal tissue compared to the WT mice. Also, two-way ANOVA 

showed a significant time effect on Foxp2 reductions levels (F(5,74)=6.056; p<0.0001) (Figure 

20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Expression of endogenous Foxp2 in the R6/1 mice striatum. Densitometric analysis showing 

protein levels of Foxp2 in WT and R6/1 striatum at PND3, PND15, 4, 8, 12 and 20 weeks. Protein levels were 

normalized with tubulin as loading control. Representative immunoblots are shown below. Data were analyzed 
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by Student’s two-tailed t test. *p < 0.05, ***p < 0.001, ****p < 0.0001 and two-way ANOVA for age factor, 

with genotype and age as factors. Data were expressed as (mean ± S.E.M) (n=6-11 animals per genotype). 

1.2. Foxp2 protein levels are altered in the dorsal striatum of juvenile 

R6/1 mice, but not in NAcc 

To further investigate if the reduction of Foxp2 protein levels was restricted to different 

subregions or, in contrast, was homogenous in the whole striatum, we next performed an 

immunofluorescence against Foxp2 to elucidate localization and expression in the juvenile 

4-week-old R6/1 mice striatum and age-matched WT controls. Foxp2 intensity was 

measured in coronal sections of the dorsal striatum and NAcc (Figure 21A).  Interestingly, 

we found a significant reduction of Foxp2 protein levels in the dorsal striatum of juvenile 

R6/1 mice compared to WT littermates (t8=2.654, p=0.0291) (Figure 21B, C), however in 

NAcc region the expression of Foxp2 protein was unchanged (t7=0.9226, p=0.3869) (Figure 

21D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Expression and distribution of endogenous Foxp2 in the dorsal striatum and NAcc of 

juvenile R6/1 mice (A) Photomicrograph showing Foxp2 expression in a WT brain mouse. Scale bar: 500µm. 

(B) Representative photomicrographs (high magnification) showing Foxp2 nuclei expression and localization 
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in the striatum of R6/1 mice and WT controls. Scale bar: 10µm. (C) Histogram shows quantification of the 

average of Foxp2-positive nuclei in the striatum. (D) Histogram shows quantification of the average of Foxp2-

positive nuclei in the NAcc. Data were analyzed by Student’s two-tailed t test. *p < 0.05. Data were expressed 

as (mean ± S.E.M) (n=4-5 animal per genotype). 

1.3. Foxp2 protein levels are also decreased in the cortex of the adult 

R6/1 mice 

To evaluate to what extent endogenous Foxp2 levels could be changed in our mouse model, 

we next tested Foxp2 protein levels in the R6/1 mice cortex and WT controls. Cortical 

samples representing all the symptomatic stages of the disease were analyzed by Western 

blot: asymptomatic stage (PND3, PND15, 4 and 8 weeks), early symptomatic stage (12 

weeks), and late symptomatic stage (20 weeks). Interestingly, western blot analysis revealed 

that endogenous Foxp2 expression was affected at 8 weeks (t11=7.437, p<0.0001), 12 weeks 

(t12=6.143, p<0.0001) and 20 weeks (t10=10.70, p<0.0001). However, at younger ages as 

PND3 (t10=0.4194, p=0.6840), PND15 (t11=0.7020, p=0.4973) or 4 weeks (t12=0.9250, 

p=0.3732), Foxp2 expression was similar in the R6/1 mice cortex compared to WT. Also, a 

two-way ANOVA showed a significant time effect on Foxp2 reductions levels (F(5,66)=5.271; 

p=0.0004) (Figure 22).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Expression of Foxp2 in the R6/1 mice cortex.  Densitometric analysis showing protein levels 

of Foxp2 in WT and R6/1 mice cortex at PND3, PND15, 4, 8, 12 and 20 weeks. Protein levels were normalized 

with tubulin as loading control. Representative immunoblots are shown below. Data were analyzed by Student’s 
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two-tailed t test. ***p < 0.001 and two-way ANOVA for age factor, with genotype and age as factors. Data 

were expressed as (mean ± S.E.M) (n= 6-8 animals per genotype). 

 

1.4. Foxp2 partially colocalizes with mHtt in juvenile R6/1 mice 

striatum 

Intracellular aggregates are the most distinctive histopathological feature of HD. These 

aggregates are mainly formed in the nucleus by N-terminal fragments of huntingtin, but they 

are also present in the cytoplasm (Davies et al., 1997). EM48 antibody raised against the N-

terminal region (amino acids 1-256) of human huntingtin has proved to selectively recognize 

aggregates forms in rodents (Dragatsis et al., 2009). Using this staining, previous studies have 

demonstrated that R6/1 mouse brain shows a nuclear EM48 labeling with a greater density 

of nuclear and neuropil aggregates (Gutekunst et al., 1999). Even when is not described that 

those intracellular aggregates occur at so young stages as Foxp2 reduced expression, we 

found necessary to rule out the possibility of a mHtt-dependent sequestration of Foxp2 

inside the intracellular inclusions as an explanation of the reduced levels of Foxp2. Therefore, 

to elucidate if endogenous Foxp2 in 4-week-old R6/1 mouse striatum was potentially 

decreased due to the presence of aggregates, we performed a double immunofluorescence 

against Foxp2 and EM48 in coronal striatal sections. Unexpectedly, we found nuclear diffuse 

staining and spheric and distinctly round immunolabeled nuclear inclusions in the striatum 

of juvenile R6/1 mouse. Also, Foxp2 staining showed a partial co-aggregation with mHtt 

(Figure 23). 

Figure 23. Foxp2 colocalization with mHtt in the juvenile R6/1 mice striatum. Representative 

photomicrographs (high magnification) showing colocalization of Foxp2 nuclei expression and EM48 (arrows) 

labelling in the striatum of R6/1 mice and WT controls. Scale bar: 20µm. 
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2. Behavioral assessment of psychiatric-like disturbances in 

juvenile R6/1 mice model 

2.1. Juvenile R6/1 mice display hyperlocomotive behavior 

Foxp2 alterations underlie several psychiatric-like behavioral deficits (Khanzada et al., 2017) 

including impulsivity, hyperactivity, and social disturbances (Medvedeva et al., 2019; Ribasés 

et al., 2012). Since juvenile R6/1 mice showed early diminished Foxp2 proteins levels, we 

next subjected juvenile R6/1 mice and age-matched WT controls to a set of behavioral tests 

(Figure 24A). We measured locomotor and exploratory activity in 15 min open-field test and 

found that juvenile R6/1 mice traveled for longer distances (t28=4.093, p=0.0003) (Figure 

24B), at higher speed ratio (t26=2.423, p=0.0227) (Figure 24C), and for longer times at fast 

speed (t26=2.281, p=0.0310) than WT mice (Figure 24D). These results indicate the presence 

of hyperlocomotive behavior in the 3–4-week-old R6/1 juvenile mouse. We did not observed 

differences between genotypes in time in the center of the arena (t26=1.518, p=0.1411), 

suggesting similar levels of anxiety-like behavior in both groups (Figure 24E). Parallel index 

(higher values means straighter walking), an altered parameter in some neurological 

conditions (Negishi et al., 2012), was similar between genotypes (t26=0.9956, p=0.3286), 

suggesting no alterations in the directionality of the free walking of mice (Figure 24F). 

 

 

 

 

 

 

 

 

 

 

Figure 24. Assessment of the locomotor activity in the juvenile R6/1 mice. (A) Timeline of behavioral 

testing in juvenile R6/1 mice and WT controls. (B) Distance in the open field. (C) Mean speed. (D) Fast time. 

(E) Time in the center of the arena. (F) Parallel index. Data were analyzed by Student’s two-tailed t test. *p < 

0.05 and ***p < 0.001. Data were expressed as (mean ± S.E.M) (n=12-16 animals per genotype). 
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2.2. Juvenile R6/1 mice and WT littermates do not show anxiety- and 

depressive-like behaviors 

Within the battery of behavioral tests (Figure 24A), we tested the presence of anxiety-like 

behavior in the 3-4-week-old R6/1 mice by performing a plus maze test (Figure 25A). Both, 

R6/1 mice and WT littermates spent similar percentage of the time in the plus-maze open 

arms (t26=0.4320, p=0.6693) (Figure 25B) and closed arms (t26=0.2682, p=0.7907) (Figure 

25C), suggesting no differences in anxiety-like behavior between genotypes. To test any signs 

of depressive-like behavior we performed a forced swimming test (Figure 25D), but we did 

not observe differences in immobility duration either, at the first 2 min (t24=0.2319, 

p=0.8186) (Figure 25E) or at the last 4 min (t26=0.4739, p=0.4739) (Figure 25F), suggesting 

similar levels of performance between genotypes. 

 

 

 

 

 

 

 

 

 

 

Figure 25. Juvenile R6/1 mice performance in the plus maze and in the forced swimming test. (A) 

Plus maze test. (B) Time spent in the open arms. (C) Time spent in the closed arms. (D) Forced Swimming 

pole test. (E) Immobility duration in the first 2 min of the forced swimming pole test. (F) Immobility duration 

in the last 4 min of the forced swimming pole test. Data were analyzed by Student’s two-tailed t test. Data were 

expressed as (mean ± S.E.M) (n= 12-16 animals per genotype). 
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2.3. Juvenile R6/1 mice exhibit impulsive-like behavior 

Within the battery of behavioral tests (Figure 24A), we assessed the presence of impulsive-

like behavior in the 3-4-week-old R6/1 mice and WT littermates by performing the cliff-

avoidance jumping test (Matsuoka et al., 2005) (Figure 26A). Interestingly, we observed that 

juvenile R6/1 mice manifest a significant increase in impulsive-like behavior by spending less 

time in the round platform than WT mice (t39=2.718, p=0.0098) (Figure 26B). 

 

 

 

 

 

 

 

Figure 26. Juvenile R6/1 mice performance in the cliff avoidance test. (A) Cliff avoidance jumping test. 

(B) Latency to jump out of the platform in the cliff avoidance jumping test. Data were analyzed by Student’s 

two-tailed t test. **p < 0.01. Data were expressed as (mean ± S.E.M) (n=18-24 animals per genotype). 

2.4. Juvenile R6/1 mice show altered locomotor circadian rhythms 

Next, we assessed the free-running period of locomotor activity in automated running wheels 

of 3-4-week-old R6/1 mice and WT controls for 3 days (Figure 27A). We observed 

differences between groups in general activity cycle. Two-way ANOVA showed a time 

(F(5,190)=71.87; p<0.0001), genotype (F(1,38)=6.824; p=0.0128), and interaction effect 

(F(5,190)=2.799; p=0.0183). Bonferroni post hoc analyses showed a significant increase in the 

activity levels of the juvenile R6/1 mice compared to WT littermates, at 12 hours (p=0.0112) 

and 60 hours (p=0.0134) of  the dark cycle (Figure 27B). During dark cycle or times of high 

activity R6/1 mice showed longer free-running period, suggesting a disruption of locomotor 

circadian rhythms (Figure 27C). Two-way ANOVA showed a time (F(2,76)=4.973; p=0.0093) 

and genotype effect (F(1,38)=5.450; p=0.0250) but did not show an interaction effect 

(F(2,76)=0.1982; p=0.8207). During light cycle or times of low activity juvenile R6/1 mice and 

WT controls displayed similar levels of activity. Neither time (F(2,74)=1.410; p=0.2507), nor 

genotype (F(1.37)=1.778; p=0.1906), nor interaction effect (F(2,74)=2.727; p=0.0720) was 

observed (Figure 27D).  
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Figure 27. Measurement of free-running period in juvenile R6/1 mice during the light/dark cycle. 
(A) Running Wheels Paradigm during the light/dark cycle. (B) Free-running period for 3 days. (C) Free-
running period during dark cycle. (D) Free-running period during light cycle. Data were analyzed by repeated 
measures ANOVA with genotype and time as factors. *p < 0.05. Bonferroni’s post hoc test was performed. 
Data were expressed as (mean ± S.E.M)  (n= 17-24 animals per genotype). 
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3. Normalization of Foxp2 levels in the striatum of juvenile 

R6/1 mice 

As mentioned before, Foxp2 alterations underlie several psychiatric-like behavioral deficits 

(Khanzada et al., 2017). As described previously in the present thesis, some of those 

psychiatric-like behavioral deficits were found in our juvenile R6/1 mouse model. To 

investigate whether a therapeutic intervention could restore these alterations, we next 

injected juvenile R6/1 mice and age-matched WT controls striatum with an AAV9 

containing Foxp2 to recover basal levels and subjected the mice to a similar battery of 

behavioral test than the previous one. R6/1 and WT mice control groups were injected with 

an AAV5 expressing only GFP (Figure 28).  

Figure 28. Experimental design of the Foxp2 recovery approach. 
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3.1. Restoration of the striatal Foxp2 levels in juvenile R6/1 mice  

To validate the overexpression of Foxp2 in the juvenile R6/1 and WT mice striatum we 

performed an immunofluorescence against Foxp2 and GFP signal. A double labelling 

Foxp2-GFP revealed a widespread viral transduction in the striatum (Figure 29A). Two-way 

ANOVA analysis showed significant differences between juvenile R6/1 and WT control 

mice (F(1,38)=26.79; p<0.0001), corroborating the Foxp2 downregulation previously observed 

in transgenic mice. Foxp2 overexpression in the striatum was confirmed by a significant 

difference in treatment factor (F(1,38)=11.19; p=0.0019), although significant interaction 

effect was not observed (F(1,38)=0.3454; p=0.5602). Despite the lack of interaction, Tukey’s 

multiple comparison test showed that Foxp2 intensity in R6/1-Foxp2 was significantly 

greater than in R6/1-GFP (p=0.0401) (Figure 29B, C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Expression and distribution of Foxp2 in the transduced juvenile R6/1 mice. (A) 

Representative photomicrograph of AAV9 virus site of injection in the striatum. Scale bar: 500µm. (B) 

Representative photomicrographs (high magnification) showing double labelling of Foxp2 and GFP in the 

striatum of WT-GFP, R6/1-GFP, WT-Foxp2 and R6/1-Foxp2. Scale bar: 10µm. (C) Histogram shows 

quantification of the average of Foxp2-positive nuclei in the striatum. Data were analyzed by two-way ANOVA 

with genotype and treatment as factors. Tukey’s pos hoc was performed. Data were expressed as (mean ± 

S.E.M) ( n=9-11 mice per group). 
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3.2. Transduced juvenile R6/1 mice do not recapitulate hyperlocomotive 

behavior 

We tested the four experimental groups WT-GFP, R6/1-GFP, WT-Foxp2 and R6/1-Foxp2 

to a battery of behavioral tests (Figure 30A). We first assessed locomotor and exploratory 

activity in 15 min open-field test and found that the four experimental groups traveled similar 

distances (Figure 30B), at similar speed ratio (Figure 30C), and for similar times at high speed 

(Figure 30D). Surprisingly, R6/1-GFP mouse does not recapitulate the hyperlocomotive 

behavior previously showed. Also, similar to observed in Figures A, B, C, the four 

experimental groups showed similar time in the center of the arena (Figure 30E),  and similar 

parallel index (Figure 30F). All these data suggest that Foxp2 overexpression had not effects 

neither in anxiety-like behavior nor walking directionality in none of the groups. Absence of 

the R6/1 mouse hyperlocomotive phenotype makes it difficult to find out the potential role 

of Foxp2 in the reversion of hyperlocomotive-like behavior.  

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Assessment of the locomotor activity in the transduced juvenile R6/1 mice. (A) Timeline 

of behavioral testing in WT-GFP, R6/1-GFP, WT-Foxp2 and R6/1-Foxp2. (B) Distance in the open field. 

(C) Mean speed. (D) Fast time. (E) Time in the center of the arena. (F) Parallel index. Data were analyzed by 

a two-way ANOVA with genotype and treatment as factor. Data were expressed as (mean ± S.E.M) (n=14-19 

animals per group). 

 

3.3. Foxp2 overexpression does not affect anxiety-like behavior in either, 

juvenile R6/1 or WT mice 
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To examine whether the striatal overexpression of Foxp2 in the juvenile R6/1 and WT mice 

striatum could affect anxiety-like behavior we performed a plus maze test (Figure 31A). All 

groups spent similar percentage of the time in open arms (Figure 31B), and closed arms 

(Figure 31C) of the plus maze. Two-way ANOVA showed that there was neither genotype 

effect (F(1,7)=0.0414; p=0.8445), nor treatment effect (F(1,7)=0.0027; p=0.9596), nor 

interaction effect (F(1,7)=1.329; p=0.2869), suggesting no differences between groups 

regarding anxiety-like behavior. 

 

 

 

 

 

 

 

Figure 31. Transduced juvenile R6/1 mice and WT littermates’ performance in the plus maze. (A) 

Plus maze apparatus. (B) Time spent in the open arms. (C) Time spent in the closed arms. Data were analyzed 

by two-way ANOVA test with genotype and treatment as factors. Data were expressed as (mean ± S.E.M) ( 

n=14-19 animals per group). 

 

3.4. Foxp2 treatment improves the impulsivity-phenotype in the juvenile 

R6/1 mice 

To evaluate the effects of Foxp2 rescued levels in the striatum of R6/1 mice in impulsivity-

like behavior, juvenile R6/1-GFP, R6/1-Foxp2, WT-GFP and WT-Foxp2 mice were 

subjected to the cliff avoidance jumping test (Figure 32A).  

 

 

 

 

 

 

 

 

 

Figure 32. Transduced juvenile R6/1 mice performance in the cliff avoidance test. (A) Cliff avoidance 

jumping test. (B) Latency to jump out of the platform in the cliff avoidance jumping test. Data were analyzed 

A B C 

A B 



RESULTS 

83 
 

by two-way ANOVA test with genotype and treatment as factors. ***p < 0.001. Tukey’s post hoc test was 

performed. Data were expressed as (mean ± S.E.M) ( n=12-14 animals per group). 

 

Two-way ANOVA revealed a genotype (F(1,45)=15.26; p=0.0003), treatment (F(1,45)=13.78; 

p=0.0006) and interaction effect (F(1,45)=4.192; p=0.0465). Interestingly, juvenile R6/1-GFP 

mouse replicated previous impulsive-like behavior by spending less time in the round 

platform than WT-GFP (p=0.0010) as showed by Tukey’s post hoc analysis. Tukey´s post 

hoc analyses yielded up that R6/1-Foxp2 mice spent more time in the round platform that 

R6/1-GFP (p=0.0010). Further, time spent by the R6/1-Foxp2 mice in the round platform 

reached similar levels to WT-GFP group ( p=0.9990) (Figure 32B). All these data suggest 

that Foxp2 striatal overexpression in the R6/1 mice restored impulsivity levels.  

 

3.5. Transduced juvenile R6/1 mice do not replicate altered locomotor 

circadian rhythms 

To evaluate whether the striatal overexpression of Foxp2 in the juvenile R6/1 and WT mice 

striatum could modulate locomotor circadian rhythms, we assessed the free-running period 

of locomotor activity in all experimental groups for 4 days (Figure 33A). Regarding general 

activity cycle, two-way ANOVA showed time effect (F(2.347,136.1)=99.63; p<0.0001) and 

interaction effect (F(21,406)=2.274; p=0.0012), but group effect was not observed (F(3,58)=1.410; 

p=0.2489). Tukey’s pos hoc test did not reveal differences between groups (Figure 33B). 

With regard to the dark cycle, two-way ANOVA showed group (F(3,236)=7.216; p=0.0001), 

and time effect (F(3,236)=12.39; p<0.0001), but interaction was not observed (F(9,236)=0.5065; 

p=0.8692) (Figure 33C). With respect to the light cycle, two-way ANOVA showed time 

effect (F(3,239)=8.907; p<0.0001), but neither group (F(3,239)=1.049; p=0.3715), nor interaction 

effect (F(9,239)=0.3027; p=0.9734) was observed(Figure 33D). Unexpectedly, R6/1-GFP mice 

did not replicate the disrupted locomotor circadian rhythms previously displayed. 
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Figure 33. Measurement of free-running period in the transduced juvenile R6/1 mice in a light/dark 
cycle. (A) Running Wheels Paradigm in the light/dark cycle. (B) Free-running period for 4 days. (C) Free-
running period during dark cycle. (D) Free-running period during light cycle. Data were analyzed by repeated 
measures ANOVA with genotype and time as factors. Data were expressed as (mean ± S.E.M). (n=16-21 
animals per genotype). 

 

However, Foxp2 overexpression seemed to have a differential effect by reducing the free-

running periods of WT-Foxp2 and increasing the free-running periods of R6-Foxp2 during 

dark cycle. Overall, these data suggest that even under the lack of R6/1 mice phenotype, 

Foxp2 overexpression could regulates free-running periods during dark cycle.  

 

3.6. Juvenile R6/1 mice show less aggressive-like behavior 

To further investigate the psychiatric-like alterations of the juvenile R6/1 mouse we 

performed a Resident-Intruder paradigm designed to assess aggressive-like behavior in mice. 

Experimental mice groups were single-isolated for 4 days, and then exposed to a conspecific 

intruder in their home cage for 10 minutes. We were mainly focused in measuring social 

interaction (sniffing) (Figure 34A) and aggressive behavior (fighting) (Figure 34D). Regarding 

sniffing behavior, all the groups displayed similar latency to sniffing (Figure 34B). However, 

regarding sniffing duration, two-way ANOVA analysis indicated an interaction effect 

(F(1,44)=6.337;p=0.0155), even when neither genotype (F(1,44)=0.1302;p=0.7200), nor 

treatment effect (F(1,44)=1.752;p=0.1924) were seen. Tukey’s pos hoc analysis showed a 

significant difference between WT-GFP and WT-Foxp2 (p=0.0443) (Figure 34C). 

Interestingly, we discovered that R6/1-GFP mice were less aggressive than WT-GFP (Figure 

34E). Less R6/1-GFP mice initiated a fight and the latency to start a fight also took longer 

(F(1,44)=4.252;p=0.0451), compared to WT as indicated by two-way ANOVA genotype effect. 

Nevertheless, even when two-way ANOVA showed an interaction effect 
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(F(1,44)=4.368;p=0.0424), treatment effect was not seen (F(1,44)=0.00002;p=0.9869). Tukey’s 

multiple comparison showed that juvenile WT-GFP latency to fight was significantly 

different to R6/1-GFP (p=0.0303), but not to R6/1-Foxp2 (p=0.4593). Similarly, the 

duration of the fight of the R6/1 mice was shorter (F(1,44)=9.459;p=0.0036) compared to WT 

as indicated by two-way ANOVA genotype effect, but neither interaction 

(F(1,44)=1.480;p=0.2303),  nor treatment effect (F(1,44)=0.9419;p=0.3371) were seen (Figure 

34F). All these data suggest that R6/1 displayed less aggressive behavior than WT mice, and 

that rescue of Foxp2 levels could modulate these alterations.  

 

Figure 34. Measurement of aggressive-like behavior in the transduced juvenile R6/1 mice. (A) 
Resident-Intruder Paradigm Sniffing Behavior. (B) Latency to sniffing. (C) Duration of the sniffing. (D) 
Resident-Intruder Paradigm Fight Behavior. (E) Latency to fight. (F) Duration of the fight. Data were analyzed 
by a two-way ANOVA with genotype and treatment as factors. *p < 0.05, **p < 0.01. Data were expressed as 
(mean ± S.E.M) (n=12-14 animals per group). 

 

3.7. Foxp2 treatment prevents loss of spine density in the juvenile R6/1 

mice 

To elucidate whether Foxp2 overexpression correlated with changes in structural plasticity 

in the striatum, we next analyzed the dendritic spine density in Golgi-impregnated striatal 

neurons in Foxp2 treated mice and controls. The dendritic spine density in striatal neurons 

from R6/1-GFP mice was reduced compared to WT mice, indicated by a signification of 

genotype factor in the two-way ANOVA analysis (F(1,302)=9.678; p=0.0020). Two-way 
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ANOVA also showed a treatment (F(1,302)=9.728; p=0.0020), and interaction effect 

(F(1,302)=14.65; p=0.0002). Sidak’s post hoc analyses revealed that R6/1-GFP mice have a 

significant lower spine density compared to WT-GFP (p<0.0001) and WT-Foxp2 

(p=0.0003) respectively. Additionally, R6/1-Foxp2 mice had also a significant greater density 

than R6/1-GFP (p<0.0001) indicating that striatal Foxp2 overexpression delayed the onset 

of dendritic spine pathology in the striatum of R6/1 mice. Furthermore, no differences were 

seen between R6/1-Foxp2 compared to WT-GFP (p>0.9999) and WT-Foxp2 groups 

(p=0.9967), suggesting that  Foxp2 treatment completely rescued striatal spine density loss 

in the juvenile R6/1 mouse (Figure 35A, B).  

 

 

 

 

 

 

 

 

Figure 35. Spine dendritic analysis in the transduced juvenile R6/1 mice. (A) Representative 

photomicrographs showing striatal dendrites of WT-GFP, WT-Foxp2, R6/1-GFP and R6/1-Foxp2. (B) 

Histogram shows quantitative analysis of dendritic spine density per micrometer. Data were analyzed by two-

way ANOVA test with genotype and treatment as factors. ****p < 0.0001. Sidak’s post hoc test was performed. 

Data were expressed as (mean ± S.E.M) (~300 dendrites; n=4-5 animals per group). 

 

3.8. Foxp2 overexpression restores downregulated and upregulated 

striatal proteins expression levels  

As early behavioral and synaptic changes showed by the juvenile R6/1 mice were improved 

by Foxp2 overexpression, we next focused in identify the underlying molecular alterations 

of these deficits, and whether Foxp2 overexpression could modulated its. We aimed to 

screening protein expression in the striatum of transduced juvenile R6/1 mice and WT 

littermates using a mass-spectrometry assay. As expected, according to presymptomatic stage 

of the R6/1 mouse model, we found subtle changes in protein expression. A total of 35 

proteins were differentially expressed between juvenile R6/1-GFP and WT-GFP (p < 0.05), 

19 of the aberrantly regulated proteins were downregulated, and 16 were upregulated. Most 
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of the altered proteins were related with cytoskeleton dynamics such as trafficking, actin 

filament and GTPase activity. Interestingly, Arhgap4, Sez6l2 and Tceal1 were associated with 

schizophrenia, Aldh1a, Dpp6, Dpysl4, Scarb2 and Sez6l2 were associated with risk-taking 

behavior, while Arhgef10l was related to insomnia (Figure 36A). Surprisingly, most of the 

aberrantly regulated proteins were restored in the R6/1 mice after Foxp2 overexpression 

(Figure 36B), only 2 altered proteins were not changed, whereas 6 new proteins were altered 

by Foxp2 overexpression (Figure 36C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Molecular analysis of the transduced juvenile R6/1 mice striatum. (A) Histogram shows 

downregulated (red) and upregulated proteins (blue) of R6/1-GFP mice striatum respect to WT-GFP mice. 

(B) Histogram shows downregulated (red) and upregulated proteins (blue) of R6/1-Foxp2 mice striatum 

respect to WT-GFP mice. (C)  Heat map shows clusters of downregulated (red) and upregulated proteins (blue) 

of R6/1-GFP and R6/1-Foxp2 mice striatum respect to WT-GFP mice. Cutoffs of ±0.5-fold change and p < 

0.05.  

 

3.9. GABAergic and dopaminergic synaptic markers were unaltered by 
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Since some of the psychiatric alterations observed in juvenile R6/1 animals such as 

aggression or impulsivity are related to GABAergic and dopaminergic neurotransmission 

(Jupp et al., 2013), we aimed to explore if the behavioral psychiatric-like deficits could be 

related to synaptic or circuits alterations, and to study whether Foxp2 could regulates such 

disturbances. We first analyzed protein levels of GABAAα1, GABAAα2 and GABAAβ3 in 

striatal samples of treated and control animals. Two-way ANOVA analysis revealed no 

significant changes in striatal GABAAα1, GABAAα2 and GABAAβ3 protein levels between 

groups (Figure 37A, B, C). We next analyzed striatal samples for components of 

dopaminergic pathway as p-PKA cat, p-PKA substrates and tyrosine hydroxylase which plays 

a role in catecholamine biosynthesis. Two-way ANOVA analysis showed no significant 

changes between groups (Figure 37D, E, F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Expression of GABAergic and dopaminergic synaptic markers in the transduced juvenile 

R6/1 mice. Densitometric analysis showing protein levels of (A) GABAAα1 protein levels. (B) GABAAα2 

protein levels. (C) GABAAβ3 protein levels. (D) p-PKAcat protein levels. (E) p-PKA substrates protein levels. 

(F) TH protein levels in WT and R6/1 striatum of treated and control animals. Protein levels were normalized 

with tubulin or actin as loading control. Representative immunoblots are shown below. Data were analyzed by 

two-way ANOVA with genotype and treatment as factors. Data were expressed as (mean ± S.E.M) (n=7-9 

animals per group). 
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4. Assessment of striatal afferent pathways in the R6/1 mouse 

model 

As our previous data showed Foxp2 overexpression in juvenile R6/1 mice striatum has 

shown an important role in regulating synaptic plasticity. As thalamus is also a Foxp2-

enriched region, we hypothesize that Foxp2 could regulates thalamostriatal connections in a 

similar way as modulation of corticostriatal pathway and its sensorimotor-related responses 

(French et al., 2012; Groszer et al., 2008). Thus, in this section, we aimed to assess striatal 

afferents pathway in presymptomatic and symptomatic stages. We particularly aimed to focus 

in thalamostriatal connections, which have been poorly addressed in HD, and also study its 

relationship with HD-sensoriomotor phenotypes, and ultimately to analyze the contribution 

of Foxp2 in these alterations.  
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4.1. Cortical and thalamic synaptic inputs to the striatum are altered in 

R6/1 mouse 

To assess brain network connectivity in R6/1 mice we used a monosynaptic circuit tracing 

system in 6-week-old (presymptomatic) and 12-week-old R6/1 mice ( early symptomatic) 

and age-matched WT controls, that allowed us to study a whole-brain mapping of the main 

brain regions that directly targeted striatum as motor and somatosensory cortex and 

thalamus. At 6-week-old, the proportion of pre-synaptic inputs from motor cortex 

(t12=1.154, p=0.1354), somatosensory cortex (t10=1.498, P=0.1651) and thalamus 

(t8=0.8638, p=0.4128) of R6/1 mice was not significantly different to WT controls (Figure 

38A, B, C). At 12-week-old, R6/1 mice showed a significant smaller proportion of 

presynaptic inputs from cortex (t9=2.577, p=0.0149) (Figure 38D, G, H), and thalamus 

(t9=2.330, p=0.0224) (Figure 38F, K, L), but not from somatosensory cortex (t9=1.573, 

p=0.1503) compared to WT controls (Figure 38E, I, J).  
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Figure 38. Cortical and thalamic synaptic inputs to striatum of the R6/1 mouse.  Histograms show 

quantitative analysis of proportion of pre-synaptic inputs to 6-week-old R6/1 mice striatum from (A) Motor 

cortex. (B) Somatosensory cortex. (C) Thalamus. Histograms show quantitative analysis of proportion of pre-

synaptic inputs to 12-week-old R6/1 mice striatum from (D) Motor cortex. (E) Somatosensory cortex. (F) 

Thalamus. Representative micrographs of pre-synaptic inputs to 12-week-old R6/1 mice striatum from (H) 

Motor Cortex. (J) Somatosensory Cortex. (L) Thalamus. Representative micrographs of pre-synaptic inputs to 

12-week-old WT mice striatum from (I) Motor Cortex. (K) Somatosensory Cortex. (M) Thalamus. Scale bar: 

250µm. Data were analyzed by Student’s two-tailed t test. *p < 0.05. Data were expressed as (mean ± S.E.M) 

(n=6-8 animals per group for 6-week-old mice/ n=5-6 animals per group for 12-week-old mice). 
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5. Expression and distribution of Foxp2 in the thalamus of 

R6/1 mice 

5.1. Foxp2 protein levels are decreased in the thalamus of 

presymptomatic R6/1 mouse 

To examine whether the endogenous Foxp2 protein levels were perturbed in the R6/1 

mouse model, Foxp2 protein levels were analyzed in thalamic extracts obtained from R6/1 

mice and WT controls. Thalamic samples were analyzed at different symptomatic stages: 

asymptomatic stage (8 weeks), early symptomatic stage (12 weeks), and late symptomatic 

stage (20 weeks). Interestingly, western blot analysis revealed that Foxp2 expression was 

significantly altered at 8 weeks (t10=3.016, p=0.0130), 12 weeks (t10=2.357, p=0.0402) and 20 

weeks (t10=4.288, p=0.0016) in the transgenic R6/1 mice striatal tissue compared to the WT 

mice. (Figure 39A).  

 

 

 

 

 

 

 

  

 

 

 

Figure 39. Expression and distribution of endogenous Foxp2 in thalamus of R6/1 mice. (A) 

Densitometric analysis showing protein levels of Foxp2 in WT and R6/1 thalamus at 8, 12 and 20 weeks. 

Protein levels were normalized with tubulin as loading control. Representative immunoblots are shown below. 

(B) Photomicrograph showing Foxp2 distribution in a WT brain mouse. Scale bar: 500µm. (C) Representative 

photomicrographs (high magnification) showing Foxp2 nuclei expression and localization in the thalamus of 

R6/1 mice and WT controls. Scale bar: 10µm. (D) Histogram shows quantification of the average of Foxp2-

positive nuclei in the thalamus. Data were analyzed by Student’s two-tailed t test. *p < 0.05, **p < 0.01, ***p 

< 0.001. Data were expressed as (mean ± S.E.M) (n=6 per genotype/Western Blot; n=5-8 mice per 

genotype/Immunofluorescence). 
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To further investigate if the reduction of Foxp2 levels was restricted to different thalamic 

nuclei or, in contrast, was homogenous in the whole thalamus, we next performed an 

immunofluorescence against Foxp2 in 16-week-old R6/1 mice and WT age-matched 

controls. We choose to investigate the levels of Foxp2 in the 16-week-old R6/1 mice because 

is a well-characterized symptomatic age, in which described behavioral deficits are consistent 

between studies. Also, based on the expression and distribution of Foxp2 in the R6/1 mouse  

at this age, we will select the specific region or nuclei for the recovery of Foxp2 levels. Foxp2 

intensity was measured in coronal sections of the thalamus (Figure 39B). Interestingly, we 

found a significant homogeneous reduction of Foxp2 protein levels in R6/1 thalamus 

compared to WT littermates (t8=2.654, p=0.0291) (Figure 39C, D).  

 

5.2. Foxp2 shows a weak colocalization with mHtt in the thalamus of 

presymptomatic R6/1 mice 

Even when intracellular aggregates are a common feature of striatum or cortex regions 

(Naver et al., 2003), we considered to examine whether perturbed levels of endogenous 

Foxp2 might be due to a Foxp2-mHtt interaction. Therefore, we performed an 

immunofluorescence against Foxp2 and EM48 in coronal thalamic sections of pre-

symptomatic 8-week-old R6/1 mouse and WT controls. As expected, we found diffuse 

nuclear staining and few immunolabeled nuclear inclusions in the thalamus of  R6/1 mouse 

(Figure 40). Also, it seems that Foxp2 staining presents a weak colocalization with mHtt, at 

least, at this stage.  

 

 

 

 

 

Figure 40. Foxp2 colocalization with mHtt in the R6/1 mice thalamus. (A) Representative 

photomicrographs (high magnification) showing Foxp2 nuclei expression and EM48 labelling in the thalamus 

of R6/1 mice and WT controls. Scale bar: 20µm. 
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6. Normalization of Foxp2 levels in symptomatic R6/1 mouse 

thalamus 

To address whether a Foxp2 rescue approach could restore motor-sensory deficits previously 

described in the R6/1 mouse model (Mazarakis et al., 2005; Puigdellívol et al., 2015), we 

choose to rescue the levels of Foxp2 in the ventrolateral thalamus because it is consisted of 

the ventral posterior nucleus that projects to the dorsolateral striatum, which is involved in 

motor coordination and learning consolidation (Cataldi et al., 2021; Díaz-Hernández et al., 

2018). In addition, the ventral posterior nucleus targets the layer 4 of somatosensory cortex 

(barrel cortex), which processes neuronal information of whisker-sensory and tactile 

perception in mice (Guo et al., 2020). Therefore, we transduced the ventrolateral thalamus 

of 12-week-old R6/1 mice and WT mice with an AAV9 designed to overexpress Foxp2. 

R6/1 and WT mice control groups were injected with an AAV9 expressing only GFP. We 

waited for 4 weeks until the virus expression was stable and then subjected the animal to an 

array of behavioral test (Figure 41A, B).  

 

 

 

 

 

 

Figure 41. Experimental Design of Foxp2 Thalamus Overexpression. (A) Viral constructs injected in 

the ventrolateral thalamus of R6/1 and WT mice. (B) Timeline. 
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6.1. Verification of Foxp2-Overexpression in the thalamus of 

symptomatic R6/1 mice 

To validate the overexpression of Foxp2 in the symptomatic 16-week-old R6/1 mice and 

WT aged-matched controls we performed an immunofluorescence against Foxp2 and GFP 

signal. A double labelling Foxp2-GFP revealed viral transduction in the ventrolateral 

thalamus (Fig 42A). Two-way ANOVA analysis showed significant differences between 

R6/1 and WT control mice (F(1,155)=32.75; p<0.0001), corroborating the Foxp2 

downregulation previously observed in mutant mice. Foxp2 overexpression in the thalamus 

was confirmed by a significant difference in treatment factor (F(1,155)=100.3; p<0.0001), and 

interaction was not seen (F(1,155)=0.7112; p=0,4003). Despite the lack of interaction, Tukey’s 

multiple comparison test showed that Foxp2 intensity in R6/1-Foxp2 was significantly 

greater than in R6/1-GFP (p<0.0001) (Figure 42B, C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Expression and distribution of Foxp2 in the transduced symptomatic R6/1 mice (A) 

Representative photomicrograph of site of injection of AVV9 in the ventrolateral thalamus. Scale bar: 500µm. 

(B) Representative photomicrographs (high magnification) showing double labelling of Foxp2 and GFP in the 

thalamus of  WT-GFP, R6/1-GFP, WT-Foxp2 and R6/1-Foxp2. Scale bar: 10µm. (C) Histogram shows 

quantification of the average of Foxp2-positive nuclei in the thalamus. Data were analyzed by two-way ANOVA 

with genotype and treatment as factors. Tukey’s post hoc test was performed. Data were expressed as (mean ± 

S.E.M) (~40 nuclei per group; n=4 animals per group). 
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6.2. Foxp2 overexpression in the ventrolateral thalamus fully recovers 

whisker-sensory disturbances in the R6/1 mouse 

We subjected 16-week-old R6/1-GFP, R6/1-Foxp2, WT-GFP and WT-Foxp2 mice to a 

battery of motor-sensory test (Figure 43A). As referred before, transgenic R6/1 mouse 

model shows sensory deficits in a barrel cortex-dependent sensory-discrimination learning 

task (Mazarakis et al., 2005). As barrel cortex-dependent sensory-discrimination depends on 

thalamic-cortical pathway (El-Boustani et al., 2020), we aimed to check whether the 

restoration of Foxp2 levels in the thalamus could mitigate these alterations. Novel whisker-

dependent texture discrimination test was conducted as previously reported (Wu et al., 2013)  

(Figure 43B ). We first measured locomotor and exploratory activity during 2 days of 

habituation in the open field. Only data from day 1 of habituation (Figure 43C) is shown as 

representative of the following parameters: distance, mean speed, and time in the center. All 

experimental groups traveled similar distances (Figure 43D), at similar speed ratio (Figure 

43E). Also, all experimental groups spent similar times in the center of the open field, 

suggesting similar levels of anxiety-like behavior (Figure 43F). Similarly, only data from day 

1 of habituation is shown as representative of the following parameters: supported rearing 

(exploratory behavior) and unsupported rearing (emotional-like behavior) (Sturman et al., 

2018) indicating the levels of exploratory activity. Two-way ANOVA genotype effect showed 

significant differences between WT and R6/1 groups regarding supported rearing 

(F(1,53)=10.68; p=0.0019) (Figure 43G), and unsupported rearing (F(1,52)=18.94; p<0.0001) 

(Figure 43H). On the third testing day, during training phase, all groups explored the two 

similar smooth-textured objects in the arena. The two smooth-textured objects were similarly 

explored without preference by all groups (Figure 43I). Interestingly, during the testing 

phase, R6/1-Foxp2 displayed an improved sensory-whisker discrimination as described by 

two-way ANOVA with significant object effect (F(1, 94)=23.24; p<0.0001) and interaction 

effect (F(3, 94)=7.940 p<0.001), even when no group effect was seen (F(3,94)=7.769e-022); 

p>0.9999). Bonferroni’s pos hoc analyses revealed that WT-GFP (p=0.0012), WT-Foxp2 

(p=0.0085) and R6/1-Foxp2 mice (p<0.0001) could discriminate between the familiar 

smooth texture and the novel rough texture, but not R6/1-GFP mice (p=0.3428) (Figure 

43J). These results indicate that Foxp2 overexpression in the ventrolateral thalamus of R6/1 

mice fully and specifically recovered whisker dependent sensory discrimination. 
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Figure 43. Symptomatic R6/1 mice performance in a barrel cortex-dependent sensory-discrimination 
learning task. (A) Battery of sensory-motor behavioral tests. (B) Novel Whisker Texture Discrimination Task 
(NWTDT).  (C) Day 1 of habituation in the open field. (D) Distance. (E) Mean speed. (F) Time in the center. 
(G) Supported rearing. (H) Unsupported rearing. (I) % Time investigating texture object during training phase. 
(J) % Time investigating texture object during testing phase. Data were analyzed by two-way ANOVA with 
object and group as factors. Bonferroni’s post hoc test was performed. **p < 0.01, ****p < 0.0001. Data were 
expressed (as mean ± S.E.M) (n=12-16 animals per group). 
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6.3. Foxp2 overexpression in the ventrolateral thalamus restores motor 

learning and coordination in the R6/1 mouse 

Motor learning and coordination is severely affected in the R6/1 mouse model as previously 

described (Puigdellívol et al., 2015). To evaluate whether restoration of Foxp2 levels in the 

ventrolateral thalamus could alleviate motor deficits, all experimental groups were subjected 

to an accelerated rotarod test, and latency to fall was measured. Latency to fall from the rod 

was decreased in R6/1-Foxp2 mice reaching similar level to WT mice. Repeated measures 

ANOVA showed significant effects of mice group (F(3,26)=4.039; p=0.0175), time 

(F(2.461,63.97)=10.61, p<0.0001), even when no interaction effect was seen (F(21,182)=0,9875; 

p=0.4808). Moreover, Tukey’s post-hoc analyses showed significant differences between 

WT-GFP and R6/1-GFP (p<0.0001), and between R6/1-GFP and R6/1-Foxp2 (p<0.0001) 

(Figure 44). These data suggest that recovery of Foxp2 levels fully corrected motor learning 

and coordination impairments observed in R6/1 mice.  

 

 

 

 

 

 

 

Figure 44. Motor performance of the thalamus transduced R6/1 mice. (A) Latency to fall in the 
accelerating rotarod task. Data were analyzed by repeated measures ANOVA with group and time as factors. 
Tukey’s post hoc test was performed. ****p < 0.0001. Values are expressed as (mean ± S.E.M.) (n=6-9 animals 
per group). 
 

6.4. Foxp2 overexpression in the ventrolateral thalamus does not restore 

impaired performance of R6/1 mice in the vertical pole test  

To further investigate the effects mediated by Foxp2 recovery levels in thalamus, mice motor 

coordination in the turnover behavior was also evaluated in the vertical pole task. Both 

groups, R6/1-GFP and R6/1-Foxp2 mice, displayed longer latencies to turn (F(1,54)=7.175; 

p=0.0098) (Figure 45A), longer latencies to go down (F(1,54)=37.13; p<0.0001) (Figure 45B), 

and higher scores in the total time spent in the pole (F(1,54)=26.89; p<0.0001) (Figure 45C), 

compared to WT mice group indicated by two-way ANOVA analysis genotype effect. No 
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treatment, nor interaction effect indicated that Foxp2 therapy was not able to improve R6/1 

mouse alterations.  

 

 

 

 

 

 

 
 
Figure 45. Symptomatic R6/1 mice performance in a vertical pole task. (A) Time to turn. (B) Time to 
go down. (C) Total time. Data were analyzed by two-way ANOVA with genotype and treatment as factors.  
**p < 0.01, ****p < 0.0001. Data were expressed as (mean ± S.E.M) (n=14-16 animals per group). 
 

6.5. Symptomatic R6/1 mice show a similar performance in a tactile 

perception test than WT controls 

To further investigate the range of sensory deficits in the symptomatic R6/1 mice and the 

effects of Foxp2 thalamic overexpression, we finally subjected the experimental groups to 

the spontaneous preference place test (Figure 46A). Whisker-trimmed mice were allowed to 

explore the open field square box containing two different textures (smooth and rough). 

Since mice seems to prefer rough texture over smooth ones (Manita et al., 2015) the time 

spent on a rough-textured place was a measure for the tactile perception performance. The 

percentages of time in the rough-textured place across the groups did not reach significant 

values (Figure 46B, C).  

 

 

 

 

 

 

 

 

Figure 46. Symptomatic R6/1 mice performance in the spontaneous preference place test. (A) 
Spontaneous preference place test. (B) Representative images of path mice in the arena. (C) % Time spent on 
a preferred tactile texture. Data were analyzed by two-way ANOVA with genotype and object as factors. Data 
were expressed as (mean ± S.E.M) (n=10-13 animals per group). 
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Two-way ANOVA showed that there was neither genotype effect (F(3,82)=97.416e-022; 

p>0.9999), nor interaction effect (F(3,82)=2.140; p=0.1015). Interestingly, an object effect 

(F(1,82)=9.228; p=0.0014) was observed. Altogether, these data suggest the absence of tactile 

disturbances in the R6/1 mice. 

 

6.6. Foxp2 overexpression in the ventrolateral thalamus significantly 

corrects striatal dendritic spine loss in R6/1 mice 

To further investigate whether improvement of motor deficits by Foxp2 overexpression in 

the ventrolateral thalamus correlated with structural plasticity changes, we analyzed dendritic 

spine density in Golgi-impregnated dorsal striatal neurons. Dendritic spine density was 

reduced in dorsal striatal neurons from R6/1 compared to WT mice, as previously described 

(Spires et al., 2004). Foxp2 overexpression in the thalamus increased the spine density in 

R6/1 mice striatum, without changing dendritic spine density in WT control, as indicated by 

two-way ANOVA with genotype (F(1,179)=136.8; p<0.0001), treatment (F(1,179)=14.35; 

p=0.0002), and interaction effect (F(1,179)=25.11; p<0.0001). Sidak’s multiple comparison 

showed that WT-GFP and WT -Foxp2 have a significantly greater difference in spine density 

compared to R6/1-GFP (p<0.0001 in both cases). Moreover, the R6/1-Foxp2 mice had also 

a significant greater spine density than R6/1-GFP (p<0.0001) indicating that thalamic Foxp2 

overexpression significantly corrected dendritic spine density in the dorsal striatum of mutant 

treated mice (Figure 47A, B).  

 

 

 

 

 

 

 

Figure 47. Spine dendritic analysis in the transduced symptomatic R6/1 mice striatum. (A) 

Representative photomicrographs showing striatal dendrites of WT-GFP, WT-Foxp2, R6/1-GFP and R6/1-

Foxp2. (B) Histogram shows quantitative analysis of dendritic spine density per micrometer. Data were 

analyzed by two-way ANOVA test with genotype and treatment as factors. ****p < 0.0001. Sidak’s post hoc 

test was performed. Data were expressed as (mean ± S.E.M) (~200 dendrites; n=3 animals per group). 
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6.7. Foxp2 thalamic overexpression corrects L4 somatosensorial cortical 

dendritic spine pathology in R6/1 mouse 

To elucidate whether rescue of sensory deficits by Foxp2 overexpression in ventrolateral 

thalamus correlated with plasticity changes in the somatosensorial cortex (SS) -main 

afference of thalamus-, we next analyzed the dendritic spine density in Golgi-impregnated 

L4 stellae cortical neurons (barrel cortex neurons) in Foxp2 treated mice and control (Figure 

48A). The dendritic spine density in stellae cortical neurons from R6/1 mice was reduced 

compared to WT, indicated by a genotype effect two-way ANOVA analysis (F(1,82)=29.61; 

p<0.0001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 48. Spine dendritic analysis in the transduced symptomatic R6/1 mice L4 somatosensorial 

cortex  (A) Representative photomicrograph of layers of somatosensorial cortex and L4 stellae cortical neuron. 

(B) Representative photomicrographs showing cortical dendrites of WT-GFP, WT-Foxp2, R6/1-GFP and 

R6/1-Foxp2. (C) Histogram shows quantitative analysis of dendritic spine density per micrometer. Data were 

analyzed by two-way ANOVA test with genotype and treatment as factors. ***p < 0.001, ****p < 0.0001. 
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Sidak’s post hoc test was performed. Data were expressed as (mean ± S.E.M) (~100 dendrites; n=4-5 animals 

per genotype). 

Two-way ANOVA also showed a treatment (F(1,82)=6.496; p=0.0127), and interaction effect 

(F(1,82)=13.49; p=0.0004). Tukey’s post hoc analysis revealed that R6/1-GFP mice have a 

significant lower spine density compared to WT-GFP and WT-Foxp2 (p<0.0001 in both 

conditions) respectively. Further, R6/1-Foxp2 mice had also a significant greater spine 

density than R6/1-GFP (p=0.0005) indicating that thalamic Foxp2 overexpression 

significantly corrects somatosensorial dendritic spine pathology in R6/1 mouse (Figure 48B, 

C).  

 

6.8. Thalamic Foxp2 overexpression fully restores ventrolateral 

thalamus degeneration in the R6/1 mouse 

To determine the mechanism by which thalamic Foxp2 overexpression improved the 

behavioral performance of treated R6/1 mice, we analyzed the size of different key brain 

regions affected in HD (reviewed in Reiner et al., 2011). We aimed to elucidate whether 

thalamic Foxp2 overexpression could correlate with an increase in the size of those regions. 

As Foxp2 is a regulator of thalamic pattern (Ebisu et al., 2017), we first performed a 

cytochrome oxidase staining and then analyzed the volume of ventral posterior nucleus of 

the thalamus of Foxp2 overexpressed mice. The ventral posterior nucleus volume analysis 

showed the following means ± SEM for each experimental condition: WT-GFP = 2.016 

mm3 ± 0.064 ; WT-Foxp2 = 1.982 mm3 ± 0.061 ; R6/1-GFP = 1.534 mm3 ± 0.115, and 

R6/1-Foxp2 = 1.956 mm3 ± 0.047.  

 

Figure 49. Evaluation of the ventral posterior nucleus volume in the thalamus transduced R6/1 mice. 

(A) Histogram shows quantitative analysis of the volume of ventral posterior nucleus in all experimental groups. 

(B) Representative photomicrographs of the volume of ventral posterior nucleus for each experimental 

condition. Data were analyzed by two-way ANOVA test with genotype and treatment as factors. **p < 0.01, 
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***p < 0.001. Tukey’s post hoc test was performed. Data were expressed as (mean ± S.E.M) (n=5-8 animals 

per group). 
 

The two-way ANOVA analysis indicated a significant genotype (F(1,21)=9.812; p=0.0050), 

treatment (F(1,21)=12.21; p=0.0022), and interaction effect (F(1,21)=7.125; p=0.0144) (Figure 

49A, B). Tukey’s post hoc test was performed and showed that WT mice have a significant 

greater ventral posterior nucleus volume than R6/1-GFP (p=0.0006). Volume of R6/1-

Foxp2 ventral posterior nucleus was significantly different from R6/1-GFP (p=0.0044). 

Moreover, R6/1-Foxp2 ventral posterior nucleus volume reached similar levels to WT mice 

ventral posterior nucleus volume, suggesting that Foxp2 overexpression fully delays 

ventrolateral thalamus neurodegeneration in R6/1 mice. 

 

6.9. Partial rescue of striatal degeneration in R6/1 mice after thalamic 

Foxp2 overexpression  

Next, we investigated the volume of the striatum of thalamic Foxp2 overexpressed mice, 

another main efferent of the thalamus. To this end, a Nissl staining was performed, and 

striatal sections were quantified. The striatal volume analysis showed the following means ± 

SEM for each experimental condition: WT-GFP = 10.050 mm3 ± 0.253 ; WT-Foxp2 = 

10.200 mm3 ± 0.257 ; R6/1-GFP = 7.564 mm3 ± 0.173, and R6/1-Foxp2 = 8.418 mm3 ± 

0.196. The two-way ANOVA analysis indicated a significant genotype (F(1,44)=89.89; 

p<0.0001) and treatment effect (F(1,44)=5.232; p=0.0270), but interaction effect was not 

observed (F(1,44)=2.617; p=0.1129) (Figure 50A, B).  

 

 

 

 

 

 

 

 

 

 

Figure 50. Evaluation of striatum volume in the thalamus transduced R6/1 mice. (A) Histogram shows 

quantitative analysis of striatum volume in all experimental groups. (B) Representative photomicrographs of 

striatum volume for each experimental condition. Data were analyzed by two-way ANOVA test with group 

and volume as factors. *p < 0.05, ****p < 0.0001. Data were expressed as (mean ± S.E.M) (n=12-13 animals 

per group). 
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Despite the lack of interaction, Tukey’s multiple comparison test was performed and showed 

that WT mice have a significantly greater striatal volume than both R6/1-GFP mice 

(p<0.0001). Volume of R6/1-Foxp2 was significantly different from R6/1-GFP (p=0.0407), 

suggesting that Foxp2 overexpression slightly delayed striatal neurodegeneration in R6/1 

mice.  

 

6.10. Thalamic Foxp2 overexpression did not rescue the somatosensory 

cortex thickness loss in R6/1 mouse model 

As Foxp2 recovery levels in ventrolateral thalamus showed a slightly delay in R6/1 striatum 

degeneration, we decided to investigate whether Foxp2 overexpression could exert an effect 

in thickness of somatosensory cortex. To address this question, we measured triplicates of 

the distance between the first and sixth cortical layer of the somatosensory cortex for each 

section of each animal and we then obtained the mean of the triplicates. Next, we compared 

the mean of the thickness of each section number across the 4 experimental conditions. 

Two-way ANOVA group effect indicated that somatosensory cortex thickness was 

significantly different between the 4 groups (F(3,172)=14.41; p<0.0001). Somatosensory cortex 

thickness along the consecutive sections was also different (F(6,172)=138.7; p<0.0001), but no 

interaction effect was seen (F(18,172)=0.5974; p=0.8982) (Figure 51A,B). These results suggest 

that Foxp2 therapy was not efficient in the restoration of the somatosensory cortex thickness 

loss in the R6/1 mouse model.  

 

 

 

 

 

 

 

Figure 51. Evaluation of SS cortex thickness in the thalamus transduced R6/1 mice. (A) Histogram 

shows quantitative analysis of cortical thickness along coronal cortical section. (B) Representative 

photomicrographs showing progression of coronal sections starting from the first one -located +1.10 mm from 

Bregma- until the last one –located -2.06 mm from Bregma-. Data were analyzed by two-way ANOVA test 

with group and section as factors.  ****p < 0.0001. Data were expressed as (mean ± S.E.M) (~210 coronal 

section; n=6-9 animals per group). 
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6.11. VGluT2-positive clusters are decreased at layer IV of the 

somatosensory barrel cortex, but not PSD-95-positive clusters 

To investigate whether sensory deficits in the R6/1 mice were accompanied by decreased 

structural plasticity in the somatosensory cortex, and further examine the potential effects of 

Foxp2 overexpression in the ventrolateral thalamus, we next checked the excitatory 

postsynaptic sites in the barrel cortex of all experimental groups. To this end, an 

immunofluorescence against VGluT2 and PSD-95 was performed, and barrel cortex clusters 

were quantified (Figure 52A, B). Regarding VGluT2-positive clusters, two-way ANOVA 

analysis indicated a significant genotype (F(1,22)=10.25; p=0.0041) and interaction effect 

(F(1,22)=5.805; p=0.0248), but treatment effect was not observed (F(1,22)=0.02101; p=0.1129) 

(Figure 52C, D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Evaluation of synaptic marker in the somatosensory cortex in the thalamus transduced 

R6/1 mice. (A) Representative photomicrograph of VGluT2-staining in the barrel cortex of a WT mouse. 

Scale bar: 300µm. (B) Representative photomicrographs (high magnification) showing double labelling of 

VGluT2-  and PSD-95-positive clusters in a WT mouse. Scale bar: 100µm. (C) Representative 

photomicrographs (high magnification) showing double labelling of VGluT2- and PSD-95-positive clusters of 

WT-GFP, R6/1-GFP, WT-Foxp2 and R6/1-Foxp2. Scale bar: 5µm. (D) Histogram shows quantification of 

the average of VGluT2-positive clusters in the barrel cortex. (E) Histogram shows quantification of the average 

of VGluT2-positive clusters in the barrel cortex. Data were analyzed by two-way ANOVA test with genotype 

and treatment as factors.  **p < 0.01. Data were expressed as (mean ± S.E.M) (n=6-9 animals per group). 
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Tukey’s multiple comparison test was performed and showed that VGluT2-positive 

clusters/field  in WT-GFP mice was significantly greater than R6/1-GFP (p=0.0024), but 

not significantly different when compared with R6/1-Foxp2 (p=0.1866). Regarding PSD-

95-positive clusters, two-way ANOVA analysis indicated neither genotype (F(1,23)=1.004; 

p=0.3269) nor interaction (F(1,23)=1.458; p=0.2394), nor treatment effect (F(1,23)=0.1906; 

p=0.6665) (Figure 52C, E). Altogether, these data suggest that presynaptic excitatory sites in 

the barrel cortex, rather than postsynaptic sites, are disrupted in the symptomatic R6/1 mice. 

In addition, thalamic Foxp2 overexpression could regulate these disturbances. 
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7. Downregulating Foxp2 levels in ventrolateral thalamus 

mimics HD motor-sensory alterations 

To test whether lowering of Foxp2 levels could lead to HD motor-sensory disturbances, we 

next transduced ventrolateral thalamus of 10-11-week-old WT mice with an AAV8-short 

hairpin RNA (shRNA) construct targeting Foxp2 under a U6 promoter. Control group was 

injected with an AAV8 expressing only mCherry. We waited for 4 weeks until the virus 

expression was stable and then subjected the animal to an array of behavioral test (Figure 

53A, B).  

 

 

 

 

 

Figure 53. Experimental Design of Foxp2 Thalamus Downregulation. (A) Viral constructs injected in 

the ventrolateral thalamus of WT mice. (B) Timeline.  

7.1. Verification of Foxp2-Downregulation in the thalamus of WT mice 

To confirm the downregulation of Foxp2 levels in the thalamus of adult WT-shFoxp2 mice 

and WT-scramble controls we performed a western blot against Foxp2. Interestingly, 

western blot analysis revealed that Foxp2 levels expression were significantly decreased in 

WT-shFoxp2 thalamus when compared with WT-scramble controls (Figure 54).  

 

 

 

 

 

 

Figure 54. Expression of Foxp2 in the thalamus of WT-shFoxp2.  Densitometric analysis showing 

protein levels of Foxp2 in WT-shFoxp2 and WT-scramble. Protein levels were normalized with tubulin as 

loading control. Representative immunoblots are shown below. Data were analyzed by Student’s two-tailed t 

test. **p < 0.01. Data were expressed as (mean ± S.E.M) (n= 15-17 animals per genotype). 
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7.2. Downregulating Foxp2 levels in ventrolateral thalamus mimics HD 

whisker-sensory disturbances  

Both groups, WT-scramble and WT-shFoxp2 mice were subjected to a battery of motor-

sensory test (Figure 55A). Novel whisker-dependent texture discrimination test was 

conducted as described elsewhere (Wu et al., 2013) (Figure 55B). We first measured 

locomotor and exploratory activity during 2 days of habituation in the open field. Only data 

from day 1 of habituation (Figure 55C) is shown as representative of the following 

parameters: distance, mean speed and time in the center. All experimental groups traveled 

similar distances (Figure 55D) at similar speed ratio (Figure 55E). Also, all experimental 

groups spent similar times in the center of the open field, suggesting similar levels of anxiety 

(Figure 55F).  

 

 

 

 

 

 

 

 

Figure 55. WT-shFoxp2 and WT-scramble mice performance in a barrel cortex-dependent sensory-

discrimination learning task. (A) Battery of sensory-motor behavioral test. (B) Novel Whisker Texture 

Discrimination Task (NWTDT).  (C) Day 1 of habituation in the open field. (D) Distance. (E) Mean speed. 
(F) Time in the center. (G) Supported rearing. (H) Unsupported rearing. (I) % Time investigating texture 
object during training phase. (J) % Time investigating texture object during testing phase. Data were analyzed 
by Student’s two-tailed t test. *p < 0.05, ***p < 0.001 and two-way ANOVA with object and group as factors. 
Bonferroni’s post hoc test was performed. ****p < 0.0001. Data were expressed (as mean ± S.E.M) (n=13-17 
animals per group). 
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Similarly, only data from day 1 of habituation is shown as representative of the following 

parameters: supported rearing (exploratory behavior) and unsupported (emotional-like 

behavior) (Sturman et al., 2018), indicating the levels of exploratory activity. Interestingly, 

WT-shFoxp2 spent less time in supported rearing (t(31)=2.432; p=0.02) and unsupported 

rearing (t(31)=3.950; p=0.0004) than WT-scramble (Figure 55G, H). On the third testing day, 

during training phase, both groups explored the two similar smooth-textured objects in the 

arena, without preference (Figure 55I). Surprisingly, during the testing phase, WT-shFoxp2 

showed an impairment in sensory-whisker discrimination as described by two-way ANOVA 

with significant object effect (F(1, 48)=5.734; p=0.0206) and interaction effect (F(1,48)=20.3; 

p<0.0001), even when no group effect was seen (F(1,48)=4.384e-019); p>0.9999). Bonferroni’s 

pos hoc analyses yielded up that WT-scramble (p<0.0001) could discriminate between the 

familiar smooth texture and the novel rough texture, but not WT-shFoxp2 (p=0.2826) 

(Figure 55J). Overall, these data indicated that single Foxp2 knockdown in the ventrolateral 

thalamus was fully able to replicate HD exploratory deficits and whisker-sensory 

disturbances.  

7.3. Lowering Foxp2 levels in ventrolateral thalamus mimics HD motor 

deficits  

We next assess motor learning and coordination, WT-scramble and WT-shFoxp2 were 

subjected to an accelerated rotarod test, and latency to fall was measured.  

 

 

 

 

 

 

 

 
 
Figure 56. Motor performance of WT-shFoxp2 and WT-scramble mice. (A) Latency to fall in the 
accelerating rotarod task. Data were analyzed by repeated measures ANOVA with group and time as factors. 
Bonferroni’s post hoc test was performed.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data were 
expressed as (mean ± S.E.M.) (n=17-18 animals per group). 
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Interestingly, latency to fall from the rod was decreased in WT-shFoxp2 respect to WT-

scramble. Repeated measures ANOVA showed a significant group effect (F(1,31)=28.16; 

p<0.0001), time (F(4.712,146.1)= 39.49, p<0.0001), and interaction (F(7,217)=4.678; p<0.0001) 

(Figure 56). These data suggested that single Foxp2 knockdown in the ventrolateral thalamus 

was fully able to replicate HD motor deficits.  

7.4. Silencing Foxp2 levels in ventrolateral thalamus does not induce 

tactile sensory alterations 

We next evaluated the time animals spent on a preferred tactile texture as a measure of tactile   

sensory perception (Figure 57A). Both groups, WT-scramble and WT-shFoxp2 spent similar 

times in the smooth and rough textures indicated by two-way ANOVA with texture effect 

(F(1,64)=9.319; p<0.0001), but neither group (F(1,64)=0.09591, p=0.7578), nor interaction effect 

(F(1,64)=0.1044; p=0.7477) were observed (Figure 57B, C). These data suggested that both 

WT-scramble and WT-shFoxp2 have similar tactile preference sensory perception, and 

Foxp2 knockdown in the ventrolateral thalamus was not able to induce tactile sensory 

alterations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 57. Assessment of tactile sensory perception in WT-shFoxp2 and WT-scramble mice. (A) 
Spontaneous preference place test. (B) Representative images of path mice in the arena. (C) % Time spent on 
a preferred tactile texture. Data were analyzed by repeated measures ANOVA with group and texture as factors. 
Data were expressed as (mean ± S.E.M.) (n=14-18 animals per group). 
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HD is a disabling condition involving a cascade of neurodegenerative processes which 

eventually lead the HD mutation carriers to death, in a period of a few decades. Scientific 

efforts had failed in the pursue of a current cure, since available treatments are uniquely 

oriented to alleviate motor, and psychiatric disease symptoms, to a lesser extent. 

Paradoxically, several studies consistently reported that psychiatric disturbances worsen 

quality of life to a greater extent than motor symptoms of the disease (Helder et al., 2001; 

Ho et al., 2009; Ready et al., 2008). Moreover, tetrabenazine the only drug approved in the 

treatment of hyperkinetic movements (Marshall, 2006; Paleacu et al., 2004) can be found to 

be discontinued by patients mainly due to a lack of treatment effectiveness and/or worsening 

of psychiatric disturbances as depression (Claassen et al., 2018). 

Along the past decades, HD clinical and biomolecular landscape has become clearer and 

more reachable. Multicomplex arrays including histobiochemical analysis of HD postmortem 

brains, in vivo multimodal MRI and PET studies have provided evidence of major 

neurobiochemical, neuropathological and metabolic changes in HD patients (Albin et al., 

1991; Augood et al., 1996; Feigin et al., 2007; Koroshetz et al., 1997; van Oostrom et al., 

2007; Schippling et al., 2009; Taylor-Robinson et al., 1996). Also, cellular and animal murine 

models have revealed prior cellular and molecular pathogenic events triggered by mHtt 

before neurodegeneration and death of neuronal populations (Bates et al., 2015; Zuccato et 

al., 2010; Jiang et al., 2016; Jimenez-Sanchez et al., 2017; Ross & Tabrizi, 2011). From these 

studies, it can be deduced that a synergy between deleterious effects of mHtt and complex 

compensatory mechanisms occur during the disease, starting with the synaptic and neuronal 

dysfunction until the inexorable death of the striatal neurons and development of the clinical 

symptoms. As mentioned above, early hyperkinetic-stage and dystonic late-stage symptoms 

of HD  emerge from prominent alterations in DA transmission (Garrett & Soares-da-Silva, 

1992; Kish et al., 1987). Additionally, some psychiatric disturbances which can precede the 

classical motor symptoms by up to a decade (Epping et al., 2016) are potentially caused by 

the fronto-striatal dysfunction in HD (Anderson & Marder, 2001; Goh et al., 2018), whereas 

sleep alterations have been associated with hypothalamic dysfunction and disruption of 

circadian rhythmicity in HD (Petersén, 2006). Moreover, an enhanced thalamic activation in 

preclinical HD subjects during the performance of a motor learning task (Feigin et al., 2006, 

2007) emerges as a compensatory mechanism of cortico-striatal dysfunction. Interestingly, 

prior to these functional alterations, several cellular processes are progressively compromised 

by mHtt in an indiscernible way, resulting in disturbances in synaptic plasticity and 

neurotransmission and homeostatic dysregulation. Eventually the impairment and 
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disintegration of the entire HD network becomes evident through the behavioral and 

functional disabilities. Hence, we found particularly necessary to sought and decipher the 

initial key mechanism of the disease in prodromal stages and design useful therapeutic 

strategies able to delay the onset and the neuropathologic changes and clinical symptoms in 

HD.  

In this thesis we have analyzed the early dysregulation of a candidate gene named Foxp2 

which seems to be linked to early behavioral and molecular changes in the juvenile R6/1 

mouse model. Juvenile R6/1 mice behavioral phenotype was characterized by increased 

hyperlocomotive and impulsive-like behavior, less aggressive-like behavior and disrupted 

locomotor circadian rhythms converging with structural and functional changes as decreased 

dendritic spine density and dysregulation of striatal gene expression. Interestingly, the rescue 

of striatal Foxp2 levels reverted impulsivity-phenotype, delayed the striatal dendritic 

pathology and restored striatal protein dysregulation. Dysregulation of Foxp2 in the thalamus 

of pre- and symptomatic R6/1 mouse was also described. Also, we confirmed the well-

established cortico-striatal disconection previously seen in HD models, but also 

demonstrated the functional disconnection between thalamus and striatum at symptomatic 

stages of R6/1 mice. Recovery of Foxp2 in the ventrolateral thalamus rescued sensory and 

motor deficits in the R6/1 mice, along with structural and functional changes, whereas 

knockdown of Foxp2 in wild type mice mimicked HD-associated phenotype.  

1. Deciphering the role of Foxp2 in early behavioral deficits 

and striatal vulnerability in HD 

Transcriptional dysregulation is a central pathogenic mechanism in HD that is faithfully 

recapitulated in mouse models. The presence of mHtt compromising transcriptional profiles 

of several genes have been detected in both, HD patients and animal models (Augood et al., 

1996, 1997; Cha et al., 1998). Importantly, transcription factors have been a major target for 

mHtt, since an enhanced or decreased interaction resulted in a detrimental effect by 

diminishing or cancelling its regular roles such neuroprotection, anti-apoptotic function, or 

gene transcriptional regulation (Gao et al., 2019; Hernández et al., 2017; Steffan et al., 2000; 

Yildirim et al., 2019; Zuccato et al., 2007). Conversely, the rescue of these transcription 

factors and/or their putative target genes has been enough proof of its beneficial effects 

including the attenuation of polyglutamine-induced apoptosis and the mHtt-mediated 

toxicity or the restoration of aberrant neuronal gene transcription (Hernández et al., 2017; 

Yildirim et al., 2019; Zuccato et al., 2007). Recently, it has been described that Foxp2, a 
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member of the Fox transcription factor family, interacts with mHtt resulting in the reduction 

of its expression. In fact, Foxp2 levels have been found decreased in the striatum of HD 

patients and HD models. Interestingly, reduced levels of Foxp2 might contribute to the 

appearance of motor phenotypes associated with HD (Louis et al., 2017; Hachigian et al., 

2017), while overexpression of Foxp2 can alleviate these phenotypes, likely by restoring 

synaptic function (Hachigian et al., 2017). In despite of these relevant results, the role of 

Foxp2 in HD has been poorly addressed and only in very advanced stages of the disease. In 

this thesis, we hypothesized that transcriptional dysregulation of Foxp2 could occur at early 

stages of the disease and in several brain regions, contributing to the onset and progression 

of basal ganglia circuitry dysfunction and associated synaptic alterations. As we theorized, 

our outcomes revealed an early downregulation of Foxp2 striatal levels in the R6/1 mice at 

PND15, which was consistently maintained in the consecutives 4, 8, 12 and 20-week-old. As 

we previously referred, mHtt through the polyQs fragments aggregates into insoluble forms 

sequestering essential proteins, such as transcription factors (Nucifora et al., 2001; Steffan et 

al., 2000, 2001). Distinguishing presence of mHtt aggregates in the R6/1 mouse striatum was 

first described at 8-week-old, whereas at 3-week-old it was an absence of intracellular 

inclusions (Hansson et al., 2001). Nevertheless, we aimed to dismiss the possibility that 

reduction of Foxp2 levels could result from a mHtt-dependent sequestration of Foxp2 inside 

the intracellular inclusions. Interestingly, we found nuclear diffuse staining and distinctly 

round immunolabeled nuclear inclusions in the striatum of juvenile R6/1 mouse. Also, 

Foxp2 staining showed a partial co-aggregation with mHtt. From this result, we deduced that 

Foxp2 dysregulation might arise in part from a potential interaction with mHtt. Nonetheless, 

a partial colocalization of Foxp2 with mHtt cannot explain entirely the substantial reduction 

of striatal Foxp2 at the early PND15. In fact, the view of a transcriptional dysregulation 

mainly caused by mHtt sequestration has been challenged since some studies have described 

disruption of transcriptional profiles prior to inclusions formation, while others have 

documented a lack of colocalization between Htt aggregates and polyglutamine-containing 

transcription factor in HD mice, suggesting that altered gene expression probably results 

from the interaction between nuclear transcription factors and soluble mHtt, rather than 

sequestration by nuclear inclusions (Dunah et al., 2002; Yu et al., 2002). In our research, a 

future study could include an assessment of Foxp2 mRNA levels which could bring some 

insights about the potential mechanism underlying early Foxp2 dysregulation.  

Although Foxp2 was first described in relation with speech and language deficits, subsequent 

investigations have consistently postulated FOXP2 gene as a relevant risk factor for 
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schizophrenia (Tolosa et al., 2010; T. Li et al., 2013; X. Li et al., 2009; Liégeois et al., 2003; 

Rao et al., 2017; Sanjuán et al., 2006; Španiel et al., 2011). FOXP2 has been linked with other 

psychiatric features such as ADHD, risk-taking behavior, insomnia, and major depression 

(Clifton et al., 2018; Demontis et al., 2019; Lane et al., 2017; T. Li et al., 2013; Soler Artigas 

et al., 2019). Also, some of its putative neuronal targets have been associated with a range of 

brain-related phenotypes, including autism, schizophrenia, bipolar disorder, and depression  

(Brandon et al., 2009; Burdick et al., 2010; Friedman et al., 2007; Ji et al., 2013; St Clair et al., 

1990). Accordingly, FOXP2 gene begins to be considered as a potential susceptibility locus 

in neuropsychiatric disorders (Khanzada et al., 2017). Interestingly, some of these psychiatric 

features related with FOXP2 common variations resemble to those observed in HD patients, 

suggesting that FOXP2 changes could underlie psychiatric symptoms in HD. As previously 

reviewed, HD mutation carriers can develop personality changes including apathy, 

depression, anxiety, psychosis, insomnia, irritability, impulsivity, and risk-taking behavior 

among others (Anderson & Marder, 2001; Goh et al., 2018). Although investigations have 

been mainly focused on motor symptoms, several studies emphasize that those psychiatric 

disturbances worsen quality of life to a greater extent than the motor symptoms of the disease 

(Helder et al., 2001; Ho et al., 2009; Ready et al., 2008), and have been shown to exert a 

greater impact on levels of functional disability in early stages of the disease (Hamilton et al., 

2003). Importantly, HD murine models have faithfully reproduced some of the psychiatric 

disturbances manifested by HD patients, including an anxiety- and depressive-like phenotype 

(Brito et al., 2019; C.-T. Chiu et al., 2011; Ciamei & Morton, 2008; Grote et al., 2005; Hickey 

et al., 2005; L. Menalled et al., 2009; Orvoen et al., 2012; Pouladi et al., 2009; Renoir et al., 

2011), along with abnormal social interaction (Shelbourne et al., 1999; Wood & Morton, 

2015) and disruption of circadian rhythms (Kantor et al., 2013; Loh et al., 2013). However, 

behavioral studies have been mostly oriented to the study of psychiatry alterations in middle-

late stages of the disease, while the assessment of psychiatric spectrum in early stages has 

been poorly addressed.  

As we hypothesized, our data suggested that Foxp2 transcriptional dysregulation with 

concomitant presence of mHtt aggregates at 4-week-old mice correlated with an early 

behavioral phenotype displayed by the juvenile R6/1 mice, characterized by increased 

hyperlocomotive and impulsive-like behavior, less aggressive-like behavior, and disrupted 

locomotor circadian rhythms, without any sign of anxiety- or depressive-like behavior. 

Interestingly, our results supported a previous postnatal behavioral phenotype reported in 

two HD murine models. In this study, the HD mice displayed a decreased anxiety, increased 



DISCUSSION 

119 
 

risk-taking behavior, and reduced emotionality at postnatal stages (Siebzehnrübl et al., 2018). 

Remarkably, our findings successfully recapitulated the HD clinical scenario, in which the 

appearance of the main psychiatric alterations occurs prior to the first motor abnormalities, 

and it seems to be caused by the fronto-striatal dysfunction (Epping et al., 2016; Goh et al., 

2018; Thompson et al., 2012). We showed that psychiatric-like manifestations displayed by 

R6/1 mice occur several weeks before any sign of motor impairment. Moreover, 

hyperlocomotion, impulsiveness and less-aggression exhibited by juvenile R6/1 mice, have 

been shown to be regulated by cortico-basal ganglia circuit (particularly on dopaminergic 

neurotransmission in the NAcc) (Dalley & Robbins, 2017; King et al., 2003; Lischinsky & 

Lin, 2020; Patil & Brid, 2010; Rouillon et al., 2007; Taepavarapruk et al., 2000), whereas 

locomotor circadian rhythms are partially regulated by the dorsal striatum (Miyazaki et al., 

2021). We confirmed R6/1 mice hyperactivity in the open field at 4-week-old, which has 

been previously described elsewhere (Bolivar et al., 2004), and described similar control 

deficits to those reported in the R6/2 mouse model, and in the tgHD rat model (Balci et al., 

2009; Massioui et al., 2016).  

Interestingly, we showed a disruption of locomotor circadian rhythms in the juvenile R6/1 

mice, which exhibited an enhanced locomotor activity during the nocturnal phase. In the 

same line, other studies have demonstrated a decline in circadian rhythms of activity and 

sleep in HD mouse models at late stages, showing a progressive age-dependent reduction of 

the wakefulness or levels activity during the dark phase (Kantor et al., 2013; Loh et al., 2013). 

Altogether, these results consolidate the view of a symptomatic progression in HD, 

characterized by an early hyperactivation of circuits and behavioral outputs which eventually 

lead to hypoactivation (Bolivar et al., 2004; Cepeda et al., 2003; Feigin et al., 2006, 2007; 

Garrett & Soares-da-Silva, 1992; Kish et al., 1987; Paulsen et al., 2004; Saft et al., 2008). 

Worth mentioning that aggressive dimension diverges between HD patients and mouse 

models, when the last ones are subjected to a resident-intruder paradigm. Although full-

length models displayed significantly shorter latency and more aggressive behavior towards 

the intruder, R6/2 mice showed a lack of interest for the intruder at late stages of the disease 

compared to WT mice (Shelbourne et al., 1999; Wood & Morton, 2015). In our study, an 

aggressive-like phenotype was also missing  in the juvenile R6/1 mouse model indicating that 

these alterations have a very early onset.  

Even when the behavioral manifestations described in this thesis are associated with the 

cortico-striatal pathway (Dalley & Robbins, 2017; King et al., 2003; Lischinsky & Lin, 2020; 

Patil & Brid, 2010; Rouillon et al., 2007; Taepavarapruk et al., 2000), some of them are 
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canonically regulated by brain regions of the limbic system such amygdala or hypothalamus 

(Kerr et al., 2015; D. Lin et al., 2011; Siegel et al., 1999; Steele et al., 2021). Nevertheless, 

behavioral aggressive deficits have been reported in the absence of limbic regions 

malfunction, and rather associated with major glutamatergic deficiency and elevated 

dopamine in striatum (Adamczyk et al., 2012). In fact, the role of dopamine in striatum and 

NAcc regarding the formation of aggressive and impulsive traits has been increasingly 

accepted and standardized (Hahn et al., 2011; Tiihonen et al., 1995). Additionally, 

abnormalities in volume and activity levels in  basal ganglia has been extensively reported in 

relation with these behavioral alterations (Amen et al., 1996; Soderstrom et al., 2002). 

Rhythmic processes are coordinated by the master circadian clock located in the 

suprachiasmatic nucleus (SCN) (Ralph et al., 1990; Schwartz & Zimmerman, 1991), although 

locomotor circadian rhythms can be partially regulated by the dorsal striatum (Miyazaki et 

al., 2021). In fact, age-dependent circadian disruption in the behavior of the zQ175 HD 

model has been described in association with dysregulated activity of the SCN or without 

any evidence of loss of cells or disruption of the central circadian pacemaker (Loh et al., 

2013; Smarr et al., 2019). 

In an effort to evaluate the extent of Foxp2 dysregulation, we analyzed Foxp2 levels in the 

cortex and NAcc of the R6/1 mice, knowing that both brain regions constitute a well-known 

neural substrates underlying the observed behavioral deficits. Surprisingly, the levels of 

Foxp2 in the cortex of R6/1 mice were decreased from 8 weeks of age, and Foxp2 levels in 

the NAcc showed a tendency towards decrease but were not significantly altered at 4 weeks 

of age, suggesting that early psychiatric manifestations in the R6/1 mice occurs in the absence 

of Foxp2 alterations in these brain regions. The specific region-dependent reduction of 

Foxp2 affecting the dorsal striatum at so early stages reinforces the notion of the striatal 

vulnerability in HD and suggest that the behavioral phenotype displayed by juvenile R6/1 

mouse predominantly correlates with the reduction of Foxp2 in the dorsal striatum, rather 

than the changes in the cortex, or the NAcc. Although among subcortical regions NAcc has 

been traditionally associated with the behavioral responses described in this thesis, in vivo 

MRI analyses in humans in conjunction with pharmacological and experimental lesion 

studies in animal models have shown the solely involvement of the dorsal striatum along 

with changes in biochemical correlates in regarding of hyperlocomotion, choise-impulsivity 

task and aggression (Glenn & Yang, 2012; Kim & Im, 2019; Koshikawa et al., 1989; Tedford 

et al., 2015). Additionally, genetic manipulations of Foxp2 in mice have been associated with 

altered social behaviors (Herrero et al., 2021; Medvedeva et al., 2019), and increased 
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locomotor and exploratory activity along with enhanced dopamine levels in subcortical 

regions such striatum and NAcc (Enard et al., 2009). Moreover, alterations in the levels of 

Cntnap2, a major target gene of Foxp2, induces locomotor hyperactivity in the open field 

and altered locomotor circadian rhythms (Adam et al., 2017; Scott et al., 2019). 

In the Foxp2 overexpression experiments, impulsivity levels of juvenile R6/1 mice were 

entirely restored reaching similar levels compared to WT mice controls. Disadvantageously, 

the relationship between Foxp2 and impulsivity has been poorly addressed in animal studies, 

on the contrary GWAS analyses in humans have extensively established the implication of 

Foxp2 locus with ADHD, and the associated impulsivity dimension (Dark et al., 2018; 

Demontis et al., 2019; Faraone & Larsson, 2018; Ribasés et al., 2012). Altogether, this result 

suggested that impulsive phenotype is highly dependent on striatal Foxp2 regulation in the 

R6/1 mice. Impulsivity phenotype has been positively correlated with the initiation of 

substances use, or with maladaptive clinical addictions (Belin et al., 2008; Jentsch et al., 2014; 

Quinn et al., 2011). Pathological gambling behavior, adverse social behavior and reckless 

driving among other risk-taking behavior have been largely documented in HD patients 

(Jensen et al., 1998; Jhanjee et al., 2011; McDonell et al., 2020; Rebok et al., 1995; Schultz et 

al., 2017). Interestingly, during a perfomance in the Cambridge Gambling Task (CGT), which 

evaluates decision-making and impulsive behavior, prodromal HD patients shows impulse 

control deficits in the absence of risk-taking or poor judgment. In the light of these findings, 

the researchers postulated that gambling behavior relies more in a predisposition to 

impulsivity, rather than a genuine risk-taking behavior (Galvez et al., 2017), as has been 

suggested in other studies (Rogers et al., 1999a; Rogers et al., 1999b). Intriguingly, we found 

these insights closely related to our findings, since we corroborated the impulsive phenotype 

exhibits by juvenile R6/1 mouse in the jumping test, without any sign of anxiety- or risk-

taking behavior, which can be assessed in the open field or the elevated plus maze. Dopamine 

has been traditionally related to impulsivity (Congdon & Canli, 2005). Pharmacological 

enhancement of dopamine activity increases impulsivity in humans, while administration of 

dopaminergic antagonists reduces impulsive responding in patients and control subjects 

(Aron et al., 2003; Pine et al., 2010). Additionally, dopamine D2 receptor has been implicated 

in the pathophysiology of various psychiatric disorders, including impulse control conditions 

and addiction-related behaviors (Janssen et al., 2015; Linden et al., 2018). Moreover, higher 

dopamine receptor D1 mRNA levels receptor in the prefrontal cortex and NAcc may predict 

greater impulsive action (Simon et al., 2013), while the discovery of dopamine receptor D1 

polymorphisms in humans support a role of dopamine receptors D1 in impulsive behaviors 
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(Moses et al., 2019). Looking for potential mechanisms that could explain how Foxp2 could 

regulates impulsive-like behavior in the R6/1 mice, we found that disruptions of FoxP2 

expression in at least two behavioral studies result in reduced expression of D1 receptor 

whereas D2 receptor expression was spared (Co et al., 2019; Xiao et al., 2021). Interestingly, 

a deficient Foxp2 mice showed increased impulsive-like behavior and concurrent increase in 

dopamine content in the rostral striatum and medial prefrontal cortex (Jhang et al., 2017), 

suggesting that increased dopamine neurotransmission might underlies impulsiveness in 

mice. In our work, whether dopamine receptor or dopamine signaling could be altered by 

striatal Foxp2 dysregulation remains elusive.  

Even when reduced aggressive-like behaviour in R6/1-Foxp2 mice was not rescued, R6/1-

Foxp2 mice were engaged in more fights than R6/1-GFP mice, suggesting that Foxp2 could 

modulate these alterations. In fact, Foxp2 heterozygous mice reveal significant deficits in 

male territorial aggression by displaying smaller number of attacks, and shorter durations in 

the fights in a resident-intruder task (Herrero et al., 2021). Counterintuitively, juvenile 3-4-

week-old R6/1 mice did not recapitulate hyperlocomotive behaviour, or hyperactivity in the 

running wheels during dark cycle (disruption of locomotor circadian rhythms). These 

negative results prevented us of having conclusions about the role of Foxp2 in 

hyperlocomotive or circadian rhythms alterations in juvenile R6/1 mice. We discarded that 

the loss of phenotype may arise as a result from the surgery intervention, since the protocol 

was systematically followed as described elsewhere (Janus & Golde, 2014) to ensure the 

survival and the proper development of the pups. We hypothesized that surgery in WT and 

R6/1 pups could imply a source of stress that could impact in locomotion and circadian 

rhythmicity, since both dimensions have been shown to be sensitive to stress (Metz et al., 

2001; Sturman et al., 2018). 

Regarding histopathological changes, we described for the first time a reduction of the spine 

density in the striatum of the juvenile R6/1 mice as described in advanced stages (Spires et 

al., 2004). Foxp2 overexpression successfully delayed the onset of dendritic spine pathology 

in the striatum of R6/1 mice by increasing dendritic spine density in striatal neurons from 

R6/1 mice reaching similar levels to WT mice dendritic spine density. This data is consistent 

with previous findings in the literature suggesting Foxp2 as a positive regulator of spines in 

several regions and animal models (Chen et al., 2016; Enard et al., 2009). As some of the 

psychiatric alterations observed in juvenile R6/1 animals such as aggression or impulsivity 

are related to GABAergic and dopaminergic neurotransmission (Jupp et al., 2013), we aimed 

to explore if behavioral psychiatric-like deficits could be related to synaptic or circuits 
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alterations, and to study whether Foxp2 could regulates such disturbances. We checked 

protein levels of GABAAα1, GABAAα2 and GABAAβ3, p-PKA cat, p-PKA substrates and 

tyrosine hydroxylase, but we did not observe significant changes between groups. Among 

the reasons for the lack of significant changes could be that changes in the receptors and 

synaptic markers at these early ages are subtle, or inexistent. First evidence of GABA 

neurotransmission dysregulation has been reported in the presymptomatic 8-week-old R6/1 

mice, which showed an increased number of clusters containing the α2 subunit followed by 

a decreased expression in late stages (Du et al., 2017). Additionally, it has been described a 

global increase of α1 subunit expression in the MSN neuropil of symptomatic R6/2 at 12-

week-old (Cepeda et al., 2004).  

Finally, a proteomic analysis was performed to identify the putative molecular targets 

regulated by Foxp2 which show a significant relationship with behavioural changes described 

before. We aimed to interrogate protein expression in the striatum of juvenile R6/1 mice 

and WT littermates using a mass-spectrometry assay. As expected, according to 

presymptomatic stage of the R6/1 mouse model, we found subtle changes in gene 

expression. A total of 35 genes were differentially expressed between juvenile R6/1-GFP 

and WT-GFP, 19 of the aberrantly regulated candidate proteins were downregulated, and 16 

were upregulated. Most of the altered genes are related with cytoskeleton dynamics as 

trafficking, actin filament and GTPase activity. From this result, we suggest that early 

decrease in spine dendritic density might be associated with dysregulation of these synaptic 

markers, given that all the synaptic processes mentioned before are a keystone in the 

formation and stabilization of spine (Penzes & Cahill, 2012). Interestingly, Arhgap4, Sez6l2 

and Tceal1 are associated with schizophrenia, Aldh1a, Dpp6, Dpysl4, Scarb2 and Sez6l2 are 

associated with risk-taking behavior, while Arhgef10l is related to insomnia. Interestingly, 

most of the aberrantly regulated candidate proteins were restored with Foxp2 

overexpression, only 2 candidate proteins remained altered and changed expression of 6 new 

genes appeared as a secondary effect of Foxp2 overexpression. This broad recovery on 

protein expression observed in R6/1-Foxp2 mice is in line with previous studies reporting 

an important role for Foxp2 in neuropsychiatric disorders.  

In summary, we have described early postnatal behavioral and molecular changes in the 

juvenile R6/1 strongly associated with early dysregulation of striatal Foxp2 levels. 

Importantly, some of these changes can be reversed by striatal Foxp2 overexpression, 

probably by restoring synaptic plasticity and general alterations in protein expression (Figure 

58).  
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Figure 58. Recovery of striatal Foxp2 expression levels and its effects in behavioral and molecular 

alterations in juvenile R6/1 mice.  Early dysregulation of striatal Foxp2 correlates with behavioral and 

molecular changes in the R6/1 mice (left panel). Recovery of striatal Foxp2 levels restores impulsivity levels in 

the juvenile R6/1 mice along with dendritic spine density and transcriptional regulation (right panel).  

 

2. Unravelling the contribution of Foxp2 to the thalamostriatal 

circuit dysfunction and neuropathology, and the associated HD 

sensory-motor phenotype. 

Striatum disconection from its main afferents is a core feature in HD. Both, HD patients 

and mouse models’ striatum undergoes into a progressive depletion of the synaptic wiring 

with its excitatory main inputs (Bohanna et al., 2011; Cabanas et al., 2017; Dogan et al., 2015; 

Fernández-García et al., 2020; Gatto & Weissmann, 2022; Hintiryan et al., 2016). In addition, 

neurotransmission dysregulation, which is preceded by signaling dysregulation, correlates 

with the onset of the symptoms in  the R6/2 mouse model (Cepeda et al., 2003). In this 

issue, cortico- and nigro-striatal pathways have received greater attention, in fact, the study 

of potential treatments in HD have been oriented to the re-establishment of these circuits. 

Nonetheless, the prescription of tetrabenazine, a dopamine pathway inhibitor indicated for 

the treatment of hyperkinetic movements (Marshall, 2006; Paleacu et al., 2004) has shown 

extrapyramidal side effects such parkinsonism and bradykinesia and worsening of psychiatric 

symptoms as depression, insomnia, and anxiety along with increased risk of suicidality 

(Claassen et al., 2018; Dalby, 1969; Elena, 2018; Guay, 2010; Jankovic & Beach, 1997). 

Further, pharmacological approaches targeting glutamatergic system or selective antagonism 
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of NMDAR has consistently shown a lack of efficacy in the improvement of symptoms 

and/or shown subtle effects in slow down progression of the disease in clinical trials and 

animal studies (Kieburtz et al., 1996; Landwehrmeyer et al., 2007; Lee et al., 2006; Seppi et 

al., 2001; The Huntington Study, 2001), or even worsens cognitive and psychiatric symptoms 

(Murman et al., 1997). Moreover, amantadine, a non-competitive NMDA antagonist 

suggested as therapeutic alternative for tetrabenazine in the treatment of chorea in HD 

(Armstrong & Miyasaki, 2012) has proved little improvement in patients, overall it is not 

effective reducing chorea in HD (Lucetti et al., 2002; Metman et al., 2002; O’Suilleabhain & 

Dewey, 2003). 

This scenario implicates that not only the connections between the striatum and the cortex 

could be relevant for the symptoms observed in HD, but other circuits may be involved. We 

found that thalamostriatal alterations could play a relevant role with Foxp2 as a potential 

master molecule regulating these events. First, in our studies we confirmed the cortico-striatal 

disconection at symptomatic stages previously showed in other studies (Cepeda et al., 2003; 

Fernández-García et al., 2020; Hong et al., 2012; Joshi et al., 2009). Interestingly, we also 

were capable to demonstrate the disruption of thalamostriatal afferent connectivity at 

symptomatic stages in the R6/1 mice, corroborating the loss of thalamostriatal synaptic 

inputs already described in the zQ175 mouse model since early stages (Deng et al., 2013, 

2014). Paradoxically, the study of the thalamus and its connections in HD has been poorly 

addressed. Thalamostriatal excitatory terminals represent the 40% of the overall excitatory 

drive incoming to the striatum (Lei et al., 2013). Additionally, thalamostriatal and 

corticostriatal afferents differs in their synapse’s properties, and in the modulation of their 

output targets (J. Ding et al., 2008; Y. Smith et al., 2004). This differential synaptic 

modulation of thalamostriatal projections might suggest a distinctive role for the thalamus 

in synaptic plasticity, and particularly in the context of HD (Parievsky et al., 2017). Recently, 

it has been reported that thalamostriatal afferents contribute to the acquisition and 

performance of sequenced motor patterns by targeting dorsal striatum, which is implicated 

in motor learning and coordination (Díaz-Hernández et al., 2018). Moreover, the loss of 

glutamate signaling from the thalamus to the dorsal striatum compromises motor function 

in mice, resulting in the impairment in motor coordination tasks such as the rotarod and 

beam-walk tests (Melief et al., 2018). Remarkably, these motor deficits resemble HD-

associated motor phenotype. Therefore, we suggested that impairment of motor skills in the 

R6/1 could be related to a disfunction of thalamostriatal projections.  
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As hypothesized, Foxp2 levels in the thalamus of the R6/1 mice were downregulated from 

8, 12 and 20-week-old, recapitulating, at least in part, the early dysregulation observed in the 

striatum and cortex of R6/1 mice. Our colocalization studies indicated that Foxp2 staining 

showed just a subtle co-localization with mHtt. This result confirmed our hypothesis that 

additional interplaying mechanisms caused by mHtt are responsible for Foxp2 dysregulation, 

including but not only by sequestration by mHtt aggregates (Dunah et al., 2002; Yu et al., 

2002). 

As previously mentioned, Foxp2 plays a fundamental role in motor skill learning, synaptic 

plasticity and wiring, and coherent modulation of  subcortical regions activity (French et al., 

2012; Grozer et al., 2008). Moreover, Foxp2 recovery in striatum has already showed a 

significant efficacy in restoring HD-associated phenotype (Hachigian et al., 2017). 

Altogether, these data highlight the potential promising therapeutic effects of Foxp2 in 

thalamostriatal dysfunction and motor-sensory deficits in HD.  

In our rescue studies over-expressing Foxp2 we first observed a decline of the exploratory 

behavior in R6/1 mice by showing a reduction in the time of supported and unsupported 

rearings, in accordance with previous studies in which exploration was significantly decreased 

in mouse models of HD (Clifford et al., 2002; Rudenko et al., 2009). Nevertheless, Foxp2 

overexpression resulted ineffective in the restoration of these deficits. As already mentioned, 

transgenic R6/1 mouse model shows sensory deficits in a barrel cortex-dependent sensory-

discrimination learning task at presymptomatic ages (Mazarakis et al., 2005). As barrel cortex-

dependent sensory-discrimination are mediated by ventrolateral thalamic-cortical projections 

(El-Boustani et al., 2020), we hypothesized that restoration of Foxp2 levels in the 

ventrolateral thalamus could mitigate these alterations. Indeed, R6/1-Foxp2 showed an 

improvement in a sensory-whisker discrimination task suggesting that the recovery of Foxp2 

thalamic levels fully and specifically recovers sensory-whisker discrimination deficits in the 

R6/1 mice. In accordance with these findings, a previous study revealed that a Foxp2 loss of 

function resulted in a substantial shortening of thalamocortical projections. Furthermore, as 

sensory-whisker discrimination is built on the integrity of thalamus and somatosensory 

cortex barreloids (Petersen, 2007; van der Loos, 1976), when these areas were examined, 

heterozygous Foxp2 mice showed morphological changes in both, the ventrolateral 

thalamus, and the cerebral cortex, suggesting that disruption of barreloid patterns in the 

thalamus leads to disruption of barrel patterns in the cerebral cortex (Ebisu et al., 2017). All 

these data suggest the involvement of Foxp2 in the integrity of thalamus and regulation of 

thalamocortical projection patterns, which seems to be essential for the preservation of 
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whisker sensory perception. Conversely, in the evaluation of tactile perception in the 

spontaneous place preference test, we reported an absence of significant tactile perception 

disturbances in the R6/1 mice, although some tendency towards a subtle impairment can be 

observed in the R6/1-GFP, whereas R6/1-Foxp2 showed a tendency towards improvement 

of tactile perception, suggesting a therapeutic role for Foxp2 in perception-related 

thalamocortical pathway. Interestingly, it has been reported that HD patients at early stages 

of the disease preserve subjective perception of sensation but impairment of sensorimotor 

integration (Mirallave et al., 2017). In our study, the lack of differences between mutant mice 

and WT controls might be due to the simplicity of the test, which has been designed as a 

passive task and integration of stimulus-responses is not particularly required.  

Motor learning and coordination deficits in the R6/1 mice during the rotarod perfomance 

task were fully corrected after restoration of thalamic Foxp2 levels in the R6/1 mice. Motor 

learning and coordination are substantially affected in the R6/1 mouse model as described  

elsewhere (Barriga et al., 2017; Creus-Muncunill et al., 2019). In our study, R6/1-GFP mice 

exhibited a functional decline in the learning and performance of sequenced motor patterns, 

which remained consistently across the trials. On the contrary, R6/1-Foxp2 mice showed a 

significant improvement in motor acquisition and perfomance reaching similar levels to WT 

controls. These relevant findings led us to consider that motor learning and coordination 

deficits in the R6/1 mouse model might be highly regulated by the thalamostriatal pathway, 

and that this thalamostriatal pathway is partially or completely restored by the rescue of the 

Foxp2 levels in the thalamus. In contrast, Foxp2 overexpression was unable to improve the 

altered performance of the R6/1 mice in the vertical pole test. Interestingly, although the 

vertical pole test is used to assess the motor coordination during turning behavior in mice, 

the task is supposed to be highly sensitive to the nigrostriatal pathway. Furthermore, this test 

has been well established for examining bradykinesia or the effects of an injection of 1-

methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice (Hölter & Glasl, 2011; Matsuura 

et al., 1997; Ogawa et al., 1985; Tasaki et al., 1991), which is commonly used as a model of 

Parkinson’s disease (Arai et al., 1990). In our study, the recovery of thalamic Foxp2 levels 

exerted effects in behavioral deficits which seem to be based on specific thalamic projections, 

for example, by the cortical and striatal efferents. Altogether, we can conclude that R6/1 

mouse-behavioral deficits are age-dependent and region-specific like what is observed in HD 

patients and other HD mouse models (Cao et al., 2019; K. L. Harris et al., 2019; Hernandez 

et al., 2021; Quirion & Parsons, 2019; Rangel-Barajas & Rebec, 2016; Sapp et al., 2020). In 

this thesis, we demonstrated that deficits in sensory-whisker discrimination and rotarod 
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perfomance in R6/1 mice seems to be highly dependent on thalamocortical and 

thalamostriatal circuit dysfunction mediated by a loss of Foxp2 expression, and that the 

recovery of such Foxp2 reduced levels appears to alleviate these disturbances.  

In addition to the rescue of sensory-motor disturbances in the symptomatic R6/1 mice, we 

described structural plasticity changes in striatum and somatosensory cortex of mutant mice 

after Foxp2 thalamic overexpression. First, we confirmed a decrease in dendritic spine 

density in MSNs of the dorsal striatum as previously reported (Ferrante et al., 1991; 

Graveland et al., 1985; Klapstein et al., 2001; Spires et al., 2004). Additionally, we found a 

reduction in the dendritic spine of L4 stellae cortical in somatosensory cortex similar to those 

described in the barrel cortical neurons of R6/2 mouse model (Murmu et al., 2013, 2015). 

Interestingly, changes on structural plasticity provoked by Foxp2 overexpression in the 

thalamus were demonstrated by a significantly improvement of dendritic spine density in 

MSNs of the dorsal striatum and L4 stellae barrel cortical neurons of transduced R6/1 mice. 

Genetic manipulations of Foxp2 levels have extensively proven the role of this transcription 

factor in the positive regulation of spine density in several brain regions and species (Y.-C. 

Chen et al., 2016; Druart et al., 2020; Enard et al., 2009; Schulz et al., 2010). Nevertheless, in 

this part of our study plasticity-induced changes emerged from the potential modulation of 

Foxp2 in thalamocortical and thalamostriatal pathways in HD. The involvement of Foxp2 

in these excitatory pathways is still to be revealed, but some inferences of potential 

mechanisms can be deduced from its role in the excitatory corticostriatal pathway. 

Disruption of Foxp2 induces major changes in corticostriatal circuitry by affecting long term 

plasticity, dendritic spine density, neuronal activity modulation, propagation of corticostriatal 

neuronal firing and excitatory/inhibitory balance in the striatum (French et al., 2012; Groszer 

et al., 2008; Murugan et al., 2013; van Rhijn et al., 2018). Whether similar changes can be 

occurring in thalamostriatal and thalamocortical in HD is unclear, but these pathways deserve 

more research.  

Histological analyses revealed macroscopic neuropathological changes in several regions of 

the R6/1 mice. A dramatic striatal atrophy, with reduction of thalamus volume and cortical 

shrinkage were observed in the R6/1 mouse model, which faithfully recapitulates the pattern 

of selective brain atrophy already described in HD patients and mouse models (Crevier-

Sorbo et al., 2020; Gray et al., 2008; Sotrel et al., 1991; van Dellen et al., 2000; van Raamsdonk 

et al., 2005; Vonsattel et al., 1985; Vonsattel et al., 2008, 2011). Interestingly, Foxp2 thalamic 

overexpression entirely restored ventrolateral thalamus degeneration in the R6/1 mouse and 

partially rescued striatal degeneration, which conversely resulted ineffective in the rescue of  
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the somatosensory cortex thickness loss in R6/1 mouse model. In the pursue of the 

underlying potential mechanisms behind these results, we found outstanding data regarding 

Foxp2 and the neuropathological consequences of its loss of function. A bilateral reduction 

in the volume of the caudate nucleus has been described in patients with speech and language 

disorder, which is caused by a mutation in FOXP2 gene (Vargha-Khadem et al., 1998). 

Deletion of the human VLDLR gene, which is a major putative target of FOXP2, has been 

discovered in patients, in which the cerebellar content is missing (Boycott et al., 2005; Ozcelik 

et al., 2008). Moreover, during mice development Foxp2 becomes essential in thalamic 

patterning given that its loss of function induces a substantial reduction of the ventral 

posterior nucleus of thalamus (Ebisu et al., 2017). Here, the mechanism by which Foxp2 

overexpression partially delayed the neurodegeneration of the striatum is, to our knowledge, 

still unknown.  

In HD, the progressive cortical loss of BDNF has been classically identified as one of the 

main sources underlying striatal neurodegeneration (Baquet et al., 2004; Canals et al., 2004). 

However, although the major source of BDNF to the striatum is provided by the cortex 

(Altar et al., 1997), it is known that thalamic projections constitute another supply of 

neurotrophic support to striatum (Conner et al., 1997). On top of this, two studies have 

shown an important reduction of Bdnf mRNA expression in a thalamostriatal nuclei of R6/2 

mice, corresponding to significant atrophy and reduced number of striatal neurons (Samadi 

et al., 2013; Wang et al., 2021). Moreover, a chronic pharmacologic treatment targeting 

thalamostriatal projections rescued BDNF expression and D2 MSNs in the HD mouse 

model (Wang et al., 2021). These data suggest that in addition to cortical afferents, 

anterograde thalamostriatal BDNF trophic support may therefore also play an important role 

in survival of striatal neurons in HD. In our case, in despite of these significant data, we 

discarded a potential rescue of BDNF transport or increased levels since BDNF expression 

in our main thalamic target, the ventral posterior nucleus, seems to be particularly absent 

(Conner et al., 1997). 

Synapse loss and aberrant plasticity are major contributors to the onset and progression of 

several neurodegenerative diseases (Chang et al., 2019; Chen et al., 2018; Pradhan et al., 2019; 

Selkoe, 2002). In some of these diseases, the thalamostriatal projections appear to be 

particularly affected and correlate with motor disorders (Crevier-Sorbo et al., 2020; Parker et 

al., 2016). As we previously discussed, certain motor skills that are affected in the R6/1 mice 

depend on the integrity of the thalamostriatal circuit (Melief et al., 2018). Based on these 

findings, we proposed that the delay in striatal neurodegeneration and plasticity-induced 
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changes in the R6/1-Foxp2 mice may arise from the remodeling of thalamostriatal 

projections in HD by Foxp2 overexpression, starting with minor changes in synaptic 

plasticity as an increase of the number of dendritic spines and progressing to macroscopic 

changes as a correction of the striatal volume. Based on this hypothesis, we have planned to 

perform in the close future a subset of parallel experiments including in vivo microdialysis and 

electrophysiological techniques to functionally assess thalamostriatal and thalamocortical 

pathways in R6/1 mice, and further examine the neuroprotective effects of Foxp2 

overexpression.  

A more detailed analysis of neurochemical profiles from R6/1 mice and controls WT 

transduced with Foxp2 can provide further relevant information about the plasticity-induced 

effects of Foxp2 overexpression in our HD mouse model. So far, a first assessment of 

thalamocortical projections showed a substantial decreased in VGluT2+ terminals in R6/1 

mice compared to WT controls, whereas PSD-95 clusters were spared.  Altogether, these 

data suggested a severe loss of thalamocortical inputs in symptomatic R6/1 mice, and that 

presynaptic excitatory sites in the barrel cortex, rather than postsynaptic sites, are disrupted 

in the symptomatic R6/1 mice. VGluT2 levels in thalamocortical terminals of Foxp2 

transduced R6/1 mice were not significantly different compared to WT controls, and showed 

a promising tendency towards increase, although did not reach significant levels. Altogether, 

we assumed that Foxp2 overexpression in the ventrolateral thalamus could be a helpful 

approach to tackle synaptic deficits in the R6/1 mouse model, but further analysis needs to 

be done.  

Briefly, we finally described that knockdown of Foxp2 in the thalamus of WT mice resulted 

in the development of HD-associated behaviors including a decreased exploratory behavior 

and decline in motor perfomance, along with whisker-sensory disturbances. These results are 

in line with other studies showing that genetic manipulation of Foxp2 leads to motor 

impairments which resemble to those observed in HD (French et al., 2012; Hachigian et al., 

2017). However, in our study we demonstrated that motor and whisker sensory perception 

impairment might arise from the single Foxp2 disruption in the ventrolateral thalamus, 

suggesting the relevance of Foxp2 in thalamostriatal and thalamocortical circuits in HD, and 

the highly specificity of these circuits as interplaying mechanisms underlying HD-behavioral 

phenotype (Figure 59). 
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Figure 59. Knockdown of Foxp2 mimics HD-associated phenotype. Normotypical motor-sensory 

responses performed by WT mice (left). Silencing of thalamic Foxp2 levels recapitulated HD-associated 

phenotype (right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60. Rescued of thalamic Foxp2 expression levels and its effects in behavioral and molecular 

alterations in symptomatic R6/1 mice.  Decreased thalamic Foxp2 expression correlated with behavioral 

and neuropathological changes in the symptomatic R6/1 mice (left). Recovery of thalamic Foxp2 levels restored 

motor and sensory deficits in the R6/1 mice, likely by restoring spine dendritic loss and neuropathology (right).  

 
In summary, we proposed that HD-associated phenotype emerges from dysfunctions located 

in the thalamostriatal and thalamocortical circuitry and provided strong evidence of the 

potential therapeutic effects caused by a thalamic Foxp2 recovery in the improvement of 

HD-associated phenotypes, likely by restoring synaptic plasticity and delaying thalamic and 

striatal neurodegeneration (Figure 60).  
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1. Juvenile R6/1 mouse model exhibits an early behavioural phenotype, characterized 

by hyperlocomotive and impulsive-like behavior, less aggressive-like behavior in 

conjunction with altered locomotor circadian rhythms.  

2. R6/1 early behavioural phenotype correlates with an early and specific dysregulation 

of Foxp2 levels expression in dorsal striatum. 

3. Normalization of striatal Foxp2 levels expression in the juvenile R6/1 mouse model 

restores impulsivity levels, likely by rescuing protein expression dysregulation and 

synaptic plasticity impairments.  

4. Thalamostriatal synaptic inputs are decreased in symptomatic R6/1 mouse and 

correlate with the downregulation of thalamic Foxp2 expression levels and the onset 

of motor phenotypes. 

5. Genetic normalization of thalamic Foxp2 levels in the symptomatic R6/1 mouse 

model rescues motor-sensory disturbances, likely by restoring synaptic plasticity and 

connectivity.     

6. Ventrolateral thalamic Foxp2 silencing recapitulates some HD-associated 

phenotypes.   
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