

Final Degree Project

Biomedical Engineering Degree

Disentangling human decisions under

strong time pressure in an expectation-

based 2AFC auditory task

Barcelona, 8th June 2022

Author: Alexandre Garcia-Duran Castilla

Director/s: Manuel Molano Mazón

Jaime de la Rocha

Tutor: Roser Sala Llonch

1

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my project director Manuel

Molano for his constant support, guidance and willing to transmit knowledge and motivation, and

for his kindness and time.

I would also like to acknowledge and give special thanks to Jaime de la Rocha for giving me the

opportunity to work on this project and for the valuable suggestions and advice given.

A special thanks to all the researchers in the laboratory, who also played a key role in giving

advice and providing a friendly working environment.

Moreover, I would like to give my appreciation to my tutor Roser Sala, who guided and advised

me on this last part of the journey.

Finally, I would like to extend my heartfelt thanks to my family and friends for their unconditional

support all the time.

2

Only these countless attempts, corrected by natural selection, could, like in any other organ,

make the central nervous system a system adapted to its particular function. For the brain: give

the sensitive world a suitable representation for the functionalities of each species [...] and

subjectively simulate the experience to foresee the results and prepare the action.

Jacques Monod – Chance and necessity: Essay on the Natural Philosophy of Modern Biology [1]

3

ABSTRACT

Decision-making in humans is difficult to study because it is a complex process influenced by

many factors. How are these factors combined and their effect is studied in rats. Recent studies

have thoroughly characterized the behavior of rats performing a Two-Alternative Forced Choice

(2AFC) auditory task, in which the probability to repeat the previous stimulus category is varied in

a blockwise fashion. These studies showed that rats exhibit a transition bias: a tendency to

alternate/repeat the previous response using an estimate of the probability given the recent trial

history. However after error trials, the transition bias was null. Even though it is suboptimal, this

so-called reset strategy has been shown to be highly robust and present in many task variants.

On the other hand, the reaction times of rats performing the 2AFC task has been shown to be

governed by two independent processes: one that depends on the accumulation of the stimulus

evidence and a second, stimulus-independent process that only depends on the time elapsed

since the beginning of the trial. Here we have investigated the behavior of human subjects

performing an auditory 2AFC task presenting the same type of correlations experienced by the

rats. We found that their strategies were more heterogeneous, with some subjects displaying a

clear reset strategy while others developed a more optimal strategy. Furthermore, the reaction

times of the human subjects showed evidence of being influenced by the two processes

mentioned above, suggesting that the existence of the two different mechanisms described in rats

may be a general feature present across species.

Keywords

Auditory 2AFC Task, Reset/Reverse Strategy, Transition Bias, Reaction Time, Expectations

4

Table of contents
List of figures ... 7

List of tables ... 8

1. Introduction .. 9

1.1 Objectives .. 11

1.2 Temporal and spatial limitations ... 11

1.3 Aim of the project ... 11

2. Background .. 12

2.1 Context .. 12

2.1.1 Perceptual decision-making and Two-alternative forced choice (2AFC) task 12

2.1.2 Sequential effects ... 13

2.2 Previous work .. 14

2.2.1 Response outcomes gate the impact of expectations on perceptual decisions........... 14

2.2.2 Pre-training RNNs on ecologically relevant tasks explains sub-optimal behavioral reset 16

2.2.3 Proactive and reactive accumulation-to-bound processes compete during perceptual

decisions .. 17

2.2.4 Investigating sequential effects in humans performing a 2AFC psychophysical task .. 18

3. Market analysis .. 20

3.1 Sectors involved ... 20

3.2 Research distribution ... 20

3.3 Applications.. 20

3.4 Market’s historical evolution and future perspectives ... 21

4. Conception Engineering ... 22

4.1 Brief summary of the methods and solution determination .. 22

4.1.1 Methodological choices ... 22

4.1.2 Coding language ... 23

4.1.3 Compiler .. 24

4.1.4 Considerations in recruiting new subjects ... 24

4.1.5 Missing/Not a Number (NaN) data .. 25

4.2 Final solution .. 25

5. Detailed Engineering .. 26

5.1 Task ... 26

5.1.1 Workflow ... 26

5.1.2 Structure ... 26

5.2 Dataset .. 27

5

5.3 Metrics ... 28

5.4 Analyses .. 28

5.4.1 Transition and lateral biases ... 28

5.4.2 Reaction time .. 32

6. Results and discussion .. 34

6.1 General statistics: Humans learn to do the task ... 34

6.2 Transition bias .. 35

6.2.1 Subjects do not show lateral bias .. 35

6.2.2 All subjects present transition bias .. 35

6.2.3 The reverse strategy is the predominant ... 38

6.3 Reaction time ... 41

6.3.1 Express performance depend on stimulus strength ... 41

6.3.2 Reaction time in proactive responses is not modulated by stimulus strength 42

6.4 Scientific output .. 44

7. Execution Chronogram .. 45

7.1 Work Breakdown Structure (WBS) ... 45

7.2 WBS dictionary .. 45

7.3 Precedence analysis .. 47

7.4 Program Evaluation and Review Technique (PERT) ... 47

7.5 Gantt chart ... 48

8. Technical feasibility .. 49

8.1 Technical Aspects .. 49

8.2 SWOT .. 49

9. Economic feasibility ... 50

9.1 Economic planification ... 50

9.2 Costs and importance .. 50

9.3 Funding .. 51

10. Regulation and legal aspects ... 52

11. Conclusions ... 53

11.1 Further applications ... 53

11.2 Future work .. 54

12. References... 56

13. Annex ... 62

13.1 BARCCSYN 2022 .. 62

13.1.1 Certificate of attendance ... 62

6

13.1.2 Abstract ... 63

13.1.3 Poster.. 64

13.1.4 Image .. 65

13.2 Code .. 67

13.2.2 Main: analyses.py ... 67

13.2.2 Helper functions: helper_functions.py ... 97

13.3 Legal documents .. 134

13.3.1 Consent ... 134

13.3.2 Instructions .. 137

7

List of figures
Figure 1. Auditory discrimination task and stimulus sequence statistics ... 15

Figure 2. Left, center: psychometric curves after correct and after error trials, respectively. Transition bias

and reset strategy can be visualized in the presence or non-presence of the horizontal shift, respectively.

Right: GLM transition weights, differentiating after correct and after error trials. .. 16

Figure 3. Left: example showing the counterfactual inference intuition. Right: theoretical result of the

reverse strategy in the psychometric curves. .. 16

Figure 4. GLM transition weights for a 2AFC limited (Left) and a more naturalistic (Right) environments. . 17

Figure 5. In (a) AI reaches the Go bound first, triggering a proactive response. In (b) EA process reaches a

decision bound first, setting both RT and choice; the AI process plays no role. ... 18

Figure 6. The figure shows the main interface of the task. The two light grey circles represent left or right

choice; the dark grey one is the circle participants have to move towards the light grey ones in order to

indicate which side they heard the sound mainly coming from. .. 19

Figure 7. Left: task workflow and design for Version 1 (Response time: 500ms). Right: Markov chain with

the two types of blocks (top) and a chronicle possible presentation of the correct choices (bottom). 19

Figure 8. Number of articles published evolution over the years. Data from PubMed [70]. 21

Figure 9. General conception schematic with main topics to be discussed marked with an interrogation

mark (?). ... 22

Figure 10. General conception schematic... 25

Figure 11. Two-state Markov chain (top) with examples of sequences (bottom). 27

Figure 12. Generalized Linear Model (GLM) intuition. Lateral and Transition biases in top and bottom of

the figure, respectively. ... 30

Figure 13. GLM transition weights from rats [13] and RNNs [15], showing an exponential decay. 31

Figure 14. Performance over trial index. It can be seen a positive progression, stronger the first 200-300

trials. ... 34

Figure 15. Mean accuracy for all subjects. Median: 85.6% ... 34

Figure 16. Psychometric curves on the lateral space: we can see the data points with error bars and the

fitted curve. Left: showing bias to the left. Right: not showing bias. .. 35

Figure 17. Psychometric curves in the transition space: we can see data points with error bars and

psychometric curve fitting. Top and bottom, left both subjects show transition bias; Right: subject 5 seems

to adopt a stronger reverse strategy, whether subject 19 adopts a weaker version. Subject 19 has steeper

curves, meaning that the task was well understood. ... 36

Figure 18. Group psychometric curves in the transition space. Left: all subjects showed transition bias.

Right: there is a mix of both strategies (reset and reverse), but the presence of a reverse is noted. 37

Figure 19. Boxplot of bias. Clear behaviors after correct, showing transition bias. However, after error the

strategies are unclear. .. 37

Figure 20. Psychometric curves from the subjects that presented the reverse strategy grouped as one

single subject. Left: clear transition bias, stronger on the alternation blocks. Right: clear reverse strategy.

 .. 38

Figure 21. Transition (T++) weights from the GLM. Left: fixed exponential decay constant to one. Right:

fitted a constant for each subject. We see more reverse strategy than reset. .. 38

Figure 22. Left: GLM transition weights for rats [13]. Center: GLM transition weights for RNNs [15]. Right:

GLM transition weights for humans. ... 39

Figure 23. Reset index and its distribution. ... 39

Figure 24. GLM weights and its significance for two subjects. Left: reset. Right: reverse. 40

Figure 25. Top: meta-subjects, reverse and reset corresponding to left and right top parts of the figure,

respectively. Bottom: GLM weights for the Version 1 subjects. .. 41

Figure 26. Left: distribution of the reaction times and threshold (blue). Center: express responses

performance in humans. Right: express responses performance in rats [16]. .. 42

Figure 27. Tachometric curves. Left: humans. Right: rats [16]. .. 42

file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529846
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529847
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529847
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529847
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529848
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529848
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529849
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529850
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529850
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529851
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529851
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529851
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529852
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529852
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529854
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529854
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529856
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529858
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529859
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529859
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529860
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529861
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529861
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529862
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529862
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529862
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529862
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529863
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529863
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529864
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529864
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529865
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529865
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529865
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529866
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529866
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529867
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529867
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529868
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529869
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529870
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529870
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529871
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529871
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529872

8

Figure 28. RT (black) and MT (green) over stimulus strength. ... 43

Figure 29. Top-Left: raw RT C.D.F. with the means for all subjects in wider lines. Top-right: mean filtered

RT C.D.F. with the modulation onset in blue. Bottom: top-right plot zoomed at the first 160ms. 43

Figure 30. Work Breakdown Structure schematic. .. 45

Figure 31. PERT schematic with the critical path in orange. ... 47

Figure 32. Gantt chart. .. 48

Figure 33. Finger trajectories from 100 trials from subject 10. .. 54

Figure 34. Trajectories with changes of mind (green) of 800 trajectories from subject 13. 55

List of tables
Table 1. Summary of the subjective analysis regarding programming language. 24

Table 2. General characteristics of the dataset... 27

Table 3. Characteristic exponential constant distribution. ... 39

Table 4. Precedence analysis table. ... 47

Table 5. Project schedule and chronogram. ... 48

Table 6. S.W.O.T. analysis table. ... 49

Table 7. Economic planification over the chronogram. ... 50

Table 8. Costs table, and the importance of each item. .. 51

file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529873
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529874
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529874
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529875
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529876
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529877
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105529878
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105411138
file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105411140

9

1. Introduction

The human brain is an intricate organ full of unanswered questions. From the anatomy, its

components can be studied, but what makes this organ unique and knotty is its complex network

formed by its main components: neurons. A single neuron inhibits or activates the surrounding

ones, which can be modeled at the unity scale; but the problem comes when facing the 86 billion

neurons [2] conforming the brain. And not only with neurons, but with the connections between

them, called synapses, because one unit can be connected to many and vice-versa. Studies

show that each neuron may be connected to up to 10,000 other neurons, passing signals to each

other via as many as 1,000 trillion synapses [3]. Knowing this, brain’s complexity is evident.

Therefore, researchers have found ways to simplify this huge complexity by finding patterns and

relationships in many different aspects, such as imaging, behavior, language, etc. making this an

interdisciplinary science involving many different fields.

In this project, we will focus on the study of human behavior. All mammals have complex

behaviors, but these are generally stereotyped in nature and lack the flexibility of human behavior

[4]. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size

and has acquired abilities for vocal learning, language, and intense cooperation [5]. To date,

researchers have made substantial progress toward defining uniquely human aspects of

cognition [6], but there are still numerous unknowns. To answer them, simplifying the concept of

behavior and studying its basis has been a powerful tool in the neuroscience field. We will focus

on decision-making, a fundamental component of behavior. After the past 50 years of work in

judgment and decision making, we now know that human choice is often not as rational as one

might expect. In several contexts, human decisions tend to systematically deviate from what

rational choice models would predict [7], for example, the context and situation influence them [8]

even in scenarios where it is not informative.

Amongst all the different kind of choices, the ones studied here are the ones driven by sensory

information. Due to their complexity, the mechanism used by the brain to integrate multisensory

information during decision making is still unclear [9]. Hence, over the past two decades,

understanding how perceptual decisions are made has become a central topic in neurosciences

[10]. Thus, traditional techniques for studying decision-making are now complemented by novel

approaches, which include cell specific targeting, the use of naturalistic stimuli, new analyses for

population recordings and automated methods for movement tracking [11]. Some of these

techniques try to simplify the task for the subject to use the lowest number of senses possible, so

the small interactions and the basis of perceptual decision making can be understood.

Taking a general view, all the species have evolved to optimize their decisions and compete for

survival. In our everyday life, we are constantly receiving sensory inputs because of years and

years of evolution, which made possible the development of what we now call the senses. These

senses provide information of our near surroundings and can be used in many different

situations: to see a dangerous animal and thus being able to hide, to smell herbs and discern

between venomous or medicinal plants, etc. Therefore, perceptual decision-making is the

process by which animals detect, discriminate, and categorize information from the senses [10].

Facing perceptual uncertainty, the brain combines information from different senses to make

optimal perceptual decisions and to guide behavior [9]. However, not only sensory information is

gathered to decide, studies have shown that perceptual decisions can also be influenced by

expectations built from previous experiences [12]–[15]. These previous experiences can present

10

patterns understandable for the animal and an expectation can be formed, and joining this

information with the sensorial, a more optimal choice can be made. This is related to the concept

of cause, since our brain creates a probabilistic model of the surroundings, using information from

past experiences, building relations cause-effect, which defined by David Hume [16] are:

A cause is an object precedent and contiguous to another, and so united with it, that the idea, of

the one determines the mind to form the idea of the other, and the impression of the one to form a

more lively idea of the other.

And by Pierre-Simon Laplace [17]:

Present events are connected with preceding ones with a tie based upon the evident principle

that a thing cannot occur without a cause which produces it. […] We ought to regard the present

state of the universe as the effect of its anterior state and as cause of the one which is to follow.

In other words, when two objects are constantly conjoined in our experience, observing the one

naturally leads us to form an idea of the other. For example, all classical physics laws can be

understood by animals in a perceptive way: due to repetition of the events, we know that the sun

will rise next morning the same way that rose today, that apples fall from trees to the ground, etc.

Animals save a memory of these events received by the senses, and by means of repeating,

create expectations of what will happen next time because a seemingly non-alterable repetition

pattern can be detected. Ludwig Wittgenstein [18] said that, perceptually speaking:

That the sun will rise tomorrow is a hypothesis; and that means: we do not know whether it will

rise.

Meaning that we build expectations from experience, but we do not know for sure whether the

sun will rise or not, we just assume it because of the huge evidence of the repeating experience.

Our brain creates a predictive model, of what will happen in the next exact same situation.

Therefore, patterns can be detected in past experiences and our behavior, and choices, are

affected by them.

Another example is a tennis match [12], [13], where players can alternate (left, right, left, right) to

make the opponent move the maximum possible, and afterwards repeat when the opponent is

thinking that there is an alternating scenario. Players have a few milliseconds to receive sensory

information, make an estimation and a motor plan, and execute it. Therefore, expectation can

suppose a great advantage because subjects can respond faster. There, players try to

understand the patterns performed by the opponent while they are playing, they accumulate

evidence of these sequences and while the rival is doing the same, try to surprise the opponent

with an abrupt change.

To sum up, this project will study how human beings retain memory of recent perceptual

experiences and are able to build expectations in sequential situations. Also, there will be a

comparison between subjects of different species whose data comes from Brain Circuits and

Behavior Lab (IDIBAPS). This project includes all the analyses performed to data and a fitted

model.

These situations are frequent in the daily life and understanding how people behave in them can

be used to help in the early diagnose of mental disorders, such as Alzheimer or Parkinson

diseases; or to study how a certain medicine can affect the reaction time in front of these

stimulus.

11

1.1 Objectives
Here the objectives of the project are defined, separated by the general, the analysis-specific and

the secondary. The general objectives are:

• Study if humans are affected by prior expectations in a sequential task.

• Analyze the modulation of reaction times in humans.

In order to reach these objectives, the following tasks were defined:

• Create an acquisition system of psychometric data.

• Device and software implementation.

• Quantify the strategies adopted by humans in sequential tasks.

• Model the choices of humans in perceptual decision-making tasks.

• Understand sequential tasks.

Finally, secondary objectives have been defined:

• Create a predictive model.

• Apply the analyses in a clinical environment.

1.2 Temporal and spatial limitations
Regarding the analysis, since the work is based in computer programming, there are no spatial

limitations because work and meetings can be done at home. However for the experiment, which

is supervised by me, is run in the August Pí i Sunyer Biomedical Research Institute (IDIBAPS for

the initials in Catalan). The other parts of the project do not require a specific location.

Concerning time limitations, bibliographic research and programming courses were done five

months before the project is defined to finish. Afterwards, data was extracted from twenty from

subjects, and this process lasted one month, extracting data from five subjects each week. During

data extraction, some analyses were done, and hypotheses proposed. Then, the programming

work was developed in the four remaining months. To summarize, the project lasted up to eight

months.

1.3 Aim of the project
This work is directed towards whoever follows my line of research work, because one of its

purposes is learning and acquiring knowledge regarding the human brain and its complexity, full

of conundrums for the moment. Many possible applications could be developed regarding

different sectors. Some examples could be:

- In hospitals, it can be centered in the study of neurodegenerative diseases’ affections

regarding human behavior and understanding it can be key to early detection and

therefore prevent or control the disease.

- In the pharmaceutical industry, it could be used for testing as a drug validation system.

- In sports industry, its use could be centered in training elite athletes to reduce its reaction

time to perceptual stimulus.

- In research, since it is a non-invasive study, using it in humans would reduce the use of

laboratory animals.

12

2. Background

To have a better understanding of the topic, general knowledge and previous studies, I will

analyze them in more detail in this section.

2.1 Context
Neuroscience now stands at the boundary of an exciting new era, with computational formalisms

playing a significant role [19], because to learn how cognition is implemented in the brain, we

must build computational models that can perform cognitive tasks and evaluate such models with

brain and behavioral experiments [20]. Nowadays computational cognitive neuroscience is an

emerging discipline that employs mathematical analysis and computational models to understand

the neural basis of cognitive functions [21]. Its main goal is to reveal the computational

mechanisms by which neural circuits encode, store, and analyze perceptual signals; combine

them with other behaviorally relevant information; and use them to resolve conflicts between

competing motor plans [22]. One advantage of computational models is that they provide access

to latent variables, which are the ones inferred indirectly from visible ones, which cannot be

directly observed from behavior [23]. In our project, we focus on sequential effects in perceptual

decision-making tasks.

2.1.1 Perceptual decision-making and Two-alternative forced choice (2AFC) task

Perceptual decision making is the process by which sensory information is used in the brain to

guide behavior in the external world. This involves gathering information through the senses,

evaluating, and integrating it according to the current goals and internal state of the subject, and

using it to produce motor responses [22]. This process of extraction, integration, and

interpretation of sensory information enables individuals to perform perceptual decisions about

the most likely correct response of the task [24]. These perceptual decisions can be of varying

complexity as determined by different contexts [25]. Since the context of the experiments is well-

known, analysis can be done with all boundaries settled. In addition, the process of perceiving

and identifying sensory signals is often a split‐second instance of perception. However, this rapid

action is the outcome of multiple stages of decision‐making based on various levels of neural and

cognitive processing [24].

Since cognition is intricate, researchers try first to understand simplistic models and interactions.

In other words, build the basis of understanding a certain cognitive process, which in our case is

perceptual decision-making. Therefore, most of the literature has focused on tasks involving

categorization of a single stimulus into one of two response options [26]. The standard two-

alternative forced choice (2AFC) method is a ubiquitous paradigm. During one trial of a typical

2AFC experiment, a subject is asked to decide about the perceived difference between two

stimuli regarding a particular stimulus parameter of interest [27]. Therefore, it is ideal for

measuring detection or discrimination thresholds. Most of them are based on simple choice tasks,

where subjects need to choose between two possibilities (2AFC tasks). However, a small number

of studies focus on 3AFC or NAFC tasks as well, which means the possibility to choose across

three or more alternatives [14], [28].

These tasks can provide several distinct types of stimuli, depending on the sense which will

receive the stimulus:

• Visual [29], [30]

13

• Auditory [12], [15], [30]

• Somatosensory [31], [32]

Tasks can also be classified depending on the fundamentals of the task, on what does the

subject has to choose between. For example, we can find measurements of contrast sensitivity,

where subjects are asked to report the position of an object, sound intensity, etc. which has

different contrast from trial to trial [12], [29], [33]. Another example is the discrimination of different

objects or sounds, where subjects are asked to recognize a specified target [34]. Also, these

tasks can present trial-to-trial correlations, such as patterns [12], [14]. For example, repetition or

alternation sequences.

In our case, we have focused on Intensity Level Discrimination Auditory 2AFC. In the task design,

we can tune the following variables:

• Fixation Time: the time that the subject has to wait from the start of the trial until the

stimulus is presented.

• Response Time: the time in which the subject has to answer. It starts counting as soon

as the Fixation Time ends.

• Stimulus strength/Evidence/Coherence: standardized stimulus balance between left/right

sides. The higher the value, the more unbalanced the sound is, and thus the easier to

discern between sides.

And the common outcomes returned by the task are:

• Reaction Time (RT): is the time that passes since the Fixation Time ends and the subject

makes a movement to answer. This can give information on the time that the subject

takes to process the stimulus, or whether it has planned an action before the stimulus

starts and therefore it can answer faster. This kind of responses are known as Proactive

Responses [15].

• Accuracy: how many correct response trials over the total number of trials, considering

only valid trials.

• Motor Time (MT): is the time that the subject takes move and finish the answer. Its

beginning is the Reaction Time and ends when the participant finishes the trial.

2.1.2 Sequential effects

Many of the events that we observe, as well as the behaviors we produce, are sequential in

nature. Consequently, to adapt and survive, all higher organisms must learn to operate within a

temporally bounded environment where sequential events occur [35], making these sequential

effects important for learning and prior beliefs [36]. All these higher organisms rely on

expectations, derived from experience, to make quick decisions. We can define sequential effects

as the influence that a recent experience has on the performance of the current and subsequent

decisions.

Sequential effects have been observed in a wide range of experimental tasks conducted both in

non-human animals [12], [15] and in humans [37]. Moreover, studies have shown that they

increase when individuals perform a task repeatedly or perform a series of tasks [34], and that

subjects, indeed, present faster responses with a higher accuracy if they detect a pattern [38].

However, when following an error, subjects manifest a more cautious behavior, which is

14

demonstrated by an increase of the Reaction Time (time until the subject responds) and a

decrease in accuracy [34].

Moreover, subjects can show a so-called win-stay-lose-switch bias [12]. It means that they are

more likely to pick the same choice if it previously led to a reward and, vice versa, to opt-away

from the unrewarded one. This competitive behavior is common and has been identified even in

people playing the game of “rock-scissors-paper” [39]. The previous biases have been seen when

stimulus is harder to discern or perceive. In fact, it has been shown in rats and humans that the

impact of the prior on accuracy is largest for low stimulus strength and it vanishes as the stimulus

strength increases [12], [37]. In other words, when stimuli were hard to categorize, expectations

benefitted subjects to provide a correct response. Nonetheless, they kept following the patterns

even if the bias led to a lower performance and there is evidence that doing it did not lead to any

advantage [40]. In fact, agents applied this approach even in situations where there was no

correlation between the events [41]. To prove that, subjects were set in tasks with totally

randomized trials, and they would still exhibit a bias toward one particular choice depending on

the recent history of trials, even when subjects were explicitly informed that the stimuli were

completely random [34].

This is thought to indicate that sequential effects are part of an intrinsic behavior that cannot be

easily modulated, being the result of the brain’s attempt to adapt to a dynamic and constantly

changing environment [42]. They look like a consequence of a learning process in which subjects

try to increase future rewards, minimizing the error possibilities [43], [44]. In fact, it has been

shown that this mechanism is dysfunctional, over or under-relying on expectations, in subjects

with schizophrenia [45], autism and dyslexia [46]. Moreover, perceptual decisions of individuals

with dyslexia and individuals with autisms are less influenced by previous trials than neurotypical

participants [46].

2.2 Previous work
This project emerges from four previous studies conducted in recent years at Brain Circuits and

Behavior Lab, at IDIBAPS. Two of them studied rats, and another one studied recurrent neural

network. The last one, based in humans, is the precursor of this project. I summarize these

studies below.

2.2.1 Response outcomes gate the impact of expectations on perceptual decisions

This study was developed by Ainhoa Hermoso-Mendizábal et al. and published in 2020 [12].

They wanted to study how the recent history of stimuli, responses and outcomes influence

perceptual choices in rats. They created a framework that could explain how rats form their

expectations, investigating if and how the combination of these and sensory evidence can be

dynamically modulated.

Pursuing this objective, they developed and trained rats in a two alternative forced choice (2-AFC,

Fig. 1, left) task, in which animals are exposed to a stimulus, and must choose between two

options. In this case, the stimulus was auditive and was applied after a fixation break of 300ms.

The rats received it from both left and right, but with variable amplitudes between them, meaning

in some trials the left side was heard stronger and vice-versa. Once they chose a side, they had

to lick the corresponding port (Left or Right). Therefore, their options were left or right, and they

received a reward (water) when getting a correct answer. After an erroneous response, rats were

punished with light and 5 seconds of waiting. Hence, feedback was present.

15

Also, the trials presented repetition and alternation patterns. These were created using a two-

sided Markov chain in which the probability of repeating the same correct side Prep was 0.7 in

repeating context and 0.2 in alternating context (Fig.1, right). This way, they could study whether

rats understood the statistics behind the task and developed an optimal behavior considering trial

history.

After studying psychometric parameters, they saw that after correct responses, rats showed a

transition bias: they tended to repeat answers in repetitive blocks and alternate in alternating

blocks, meaning that they combined the stimulus with previous trials to compute the decision. The

psychometric curves, which are the subject’s repeating probability over stimulus’ repeating

evidence, show a horizontal shift for both repeating and alternating blocks, this shift is called

transition bias (Fig. 2, left). However, after error answers, rats showed a reset strategy, meaning

that they did not use the previous trials, but relied only on the stimulus. In this case, the shift in

the psychometric curves would be zero, null (Fig.2, center).

To quantify the use of previous trials, the authors developed a Generalized Linear Model (GLM)

using different regressors, distinguishing after error and after correct trials:

- Lateral: the subjects consider the last choices made and they create an attraction to the

most repeated response (e.g., if the last four response have been R+ R+ R+ L+, the subject will

be more likely to repeat R, where “+” means correct answer)

- Transition: the subjects detect a pattern in the trials such as repetition or alternation of

the correct answer. (e.g., if the last four response have been L+ R+ R+ R+ R+ it means there

have been Alt, Rep, Rep, Rep; subjects detect a repetition pattern). This transition regressors are

used to quantify the reset strategy: it is expected that the weights after correct trials are positive

due to transition bias and after error trials are zero, since rats ignored the transition bias after

error.

Consistent with the previous analysis, the GLM showed that after error responses, rats relied only

on the stimulus, ignoring expectations, but not erasing them, because after a correct response

they used expectations from before the error. Consequently, after error weights for the transition

Figure 1. Auditory discrimination task and stimulus sequence statistics

16

regressor (T++) are zero (Fig. 2, right), meaning that they did not contribute to the decision;

whereas for after correct the weights are positive and decayed to zero some trials back, meaning

that anterior trials to the previous 6-10 did not affect the decision.

2.2.2 Pre-training RNNs on ecologically relevant tasks explains sub-optimal

behavioral reset
Molano-Mazon et al. [14] dealt thoroughly with the sub-optimal reset strategy adopted in a 2AFC

task with serial correlations, behavior originally identified by Hermoso-Mendizabal et al. [12].

As previously said, animals’ decision-making processes are determined by the perceptual

stimulus but also by individual experience and structural priors. However, after error trials,

animals ignored the information acquired by the choice history and followed a strategy only based

on the current stimulus. An optimal agent, instead, would have used the error to learn and have

reversed the transition bias (reverse strategy). Fig. 3 shows an example: in the bottom part the

optimal agent is clearly in an alternation block (L-R-L) and after doing an error (next R), this

subject must think that Left should be the correct, and since it was an alternation block, now the

correct answer must be Right. The moment where the subject considers and learns from the error

is called Conterfactual inference. Finally, the responses have been L-R-L-R-R (alternation-

repetition), so that is why there is a reverse strategy.

The first aim of this study was to quantify the extent to which rats followed the reset or the reverse

strategies. To do so, they trained rats in different variants of a 2AFC task and modeled their

Figure 2. Left, center: psychometric curves after correct and after error trials, respectively. Transition bias and reset
strategy can be visualized in the presence or non-presence of the horizontal shift, respectively. Right: GLM transition
weights, differentiating after correct and after error trials.

Figure 3. Left: example showing the counterfactual inference intuition. Right: theoretical result of the reverse
strategy in the psychometric curves.

17

choices using a Generalized Linear Model (GLM). One of the main results was that rats showed

the reset strategy in numerous different tasks.

Afterwards, they trained Recurrent Neural Networks (RNN), which constitute a useful tool to study

the neural circuit mechanisms implementing the computations required to solve sequential tasks

[47], [48]; in the same conditions as rats. RNNs were able to fully exploit the symmetry of the

2AFC task, adopting the reverse strategy and therefore outperforming rats, and their GLM

transition weight was negative after error trials (Fig. 4, left).

They hypothesized that the difference may reside in the nature of the task, in RNNs the task is

well defined and constrained, nothing else than the task is affecting them. However, the brain of

rats evolved in very complex environment, and thus is designed to deal with different statistical

structures. RNNs were pre-trained in a more ecological environment where they had more

alternatives to choose, therefore mimicking real world scenarios. These RNNs pre-trained on

ecological tasks showed the same reset strategy as rats (Fig.4, right).

They concluded that the reset strategy originates from evolution as adaptation to a dynamic

environment. The reset strategy, indeed, is the result of a structural prior which adapted to an

environment with multiple alternatives.

2.2.3 Proactive and reactive accumulation-to-bound processes compete during

perceptual decisions

This is a study with a different focus conducted by Lluís Hernández-Navarro et al. [15] and

published in 2021.The main objective was to provide an alternative model to the standard ones

regarding the way perceptual decisions are taken for rats. These standard models englobe Drift

Diffusion Models (DDM), and postulate that a response is triggered in reaction to stimulus

presentation when the accumulated stimulus evidence reaches a decision threshold. This

architecture excludes the possibility that responses are generated proactively at a time

independent of stimulus. Instead, the authors suggest that evidence accumulation and motor

initiation, commonly viewed as serial processes, might occur in parallel as decoupled processes.

For this study, rats were trained in the same 2-AFC task.

Figure 4. GLM transition weights for a 2AFC limited (Left) and a more
naturalistic (Right) environments.

18

In Fig. 5 we can see both processes acting in parallel, Evidence Accumulation (EA) leads to a

Reactive response: subjects listen to the stimulus and initiate a motor response only after

gathering enough evidence about the right choice. Whereas Action Initiation (AI) leads to a

Proactive response: initiated regardless of the integration of the stimulus. On a certain trial,

participants are more likely to perform a proactive response if they can anticipate the stimulus, for

example driven by choice bias, or if they are under a strong time pressure.

The authors defined proactive responses, which are so fast the subject could have not processed

the stimulus, as express responses. These rapid answers occur before the modulation onset,

where timing is independent of the evidence accumulation, but choice depends on stimulus.

Since the fixation period is constant, animals can predict the time when the stimulus starts, and

they can prepare the motor action; in this way they respond rapidly after stimulus onset.

Henceforth, they developed the Parallel Sensory Integration and Action Model (PSIAM). This

model contains a standard Evidence Accumulation process that integrates stimulus evidence

over time and that is bounded by left and right decision bounds, i.e., a standard DDM; and an

independent Action Initiation process (AI) which reflects the preparation of a response. The first

process reaching bound initiates the response.

2.2.4 Investigating sequential effects in humans performing a 2AFC psychophysical task

This Bachelor Thesis by Debora Lombardo [49], developed in 2022, is the precursor of my

project. The author designed a psychophysical task adapted to humans, based in the work with

rats of Hermoso-Mendizábal et al.[12], so results can be compared, even if they come from

distinct species. In the task, participants are presented on each trial with an auditory stimulus,

and they are required to necessarily choose between two responses, which are left or right,

depending on the strength of the stimulus, since the white noise sound presented to the subjects

has different distributions on the left or on the right side. Subjects receive feedback at each trial,

so this is something to consider regarding history trials. By being a simplified environment with

only two options, it is possible to correctly measure all the needed values such as hit rate,

misses, time of reaction etc. and evaluate the influence that distinct factors may have. Moreover,

the interface design has been created in this way to simulate the trajectories in rats’ studies. The

task presents trial-to-trial correlations, as in the ones done by Molano-Mazón et al. [14]. These

were created using a two-sided Markov chain in which the probability of repeating the same

correct side Prep was 0.8 in repeating context and 0.2 in alternating context (Fig. 7, right).

Figure 5. In (a) AI reaches the Go bound first, triggering a proactive response. In (b) EA process
reaches a decision bound first, setting both RT and choice; the AI process plays no role.

19

The trial workflow of the task:

1. The subject presses and maintains pressed the central gray button for 500ms (Fixation

Time, Fig.6).

2. The auditory stimulus begins and lasts up to 500 or 300ms (Response time, Version 1

and Version 2 of the task, respectively). In this time, the participant must answer.

Possible cases regarding response timing:

a. If the response was before ending the fixation time (fixation break) or after

ending the response time (missed trial), the screen will turn yellow, and the trial

will count as invalid.

b. If the response is in the correct time range, during the Response Time, the

screen will turn green or red, for correct or incorrect responses respectively.

In the following figure (Fig. 7) we can see an example of a correct response trial workflow for a

response time of 500ms, and two examples of different blocks.

Figure 6. The figure shows the main interface of the task. The two light grey circles represent left or right choice; the
dark grey one is the circle participants have to move towards the light grey ones in order to indicate which side they
heard the sound mainly coming from.

Figure 7. Left: task workflow and design for Version 1 (Response time: 500ms). Right: Markov chain with the two
types of blocks (top) and a chronicle possible presentation of the correct choices (bottom).

20

3. Market analysis
In this part, the market involving the context of the project will be analyzed.

3.1 Sectors involved
Psychophysical experiments have been conducted for the study of perception and cognition in

neuroscience. The study of how perceptual processes affect subject's behavior is a matter of

interest for neuroscientists and psychologists. Moreover, several other categories of researchers

are hired to contribute to their realization, such as back-end and front-end programmers,

neuropsychologists, etc.. The findings of these studies can be further applied to, for example, in

marketing, where some studies showed that the use of neuroscience tools to study consumer

behavior and the decision-making process in marketing has improved our understanding of

cognitive, neuronal, and emotional mechanisms related to marketing-relevant behavior [50], [51].

Therefore, these experiments contribute to generate new fields of study, such as neuromarketing,

following the previous example. At the same time that a company can benefit from the studies

with the adaptation of its marketing strategies according to the consumers, the scientific

community can take profit and learn from the results [51].

In addition, it constitutes a relevant basis for the investigation of neurological diseases: indeed,

inquiring which behaviors are linked to a specific pathology allows to investigate which areas of

the brain are not functioning correctly in those cases. These studies can help to develop early

detection or control processes for a certain pathology. Therefore, these studies can be addressed

to clinical and biomedical institutions and pharmaceutical or engineering companies that

specifically focus on neuroscience and the study of neurological diseases.

To sum up, this project is aimed to research, to get a better understanding of the human brain in

perceptual decision-making situations. Therefore, it is directed to whoever wanting to continue my

line of work, helping in the contribution of this field, with obvious advantages.

3.2 Research distribution
Regarding research by countries, United States leads the world rankings of most documents

published of the Neuroscience field, followed by United Kingdom and Germany, whereas Spain is

in 12th position [52]. However, United States has a low international collaboration percentage,

while the others have a higher, led by United Kingdom and followed by Spain in 2021 [53].

Regarding Barcelona, the Barcelona Computational, Cognitive and Systems Neuroscience

Community (BARCCSYN) [54] englobes research in neuroscience in Barcelona, with 21 public

and private research groups.

From private research, one of the main contributors to the topic is Google [55], who joined

DeepMind [56] in 2014, a project based in the understanding of the human intelligence using

computation, creating detection and prediction algorithms, altogether with Deep Learning

cognitive models. Neuroscience is one of the main research focuses of this project [57],

investigating human decision-making from a computer interface perspective, for example in a

virtual reality environment [58].

3.3 Applications
In the pharmaceutic industry it has been shown that some drugs can have side effects on

humans, for example, Diazepam and opioids can increase the Reaction Time [59], [60]. Hence,

psychophysical tasks should be used to determine the impact of these medicines in decision-

making situations. These kinds of tasks have been also used in the alcohol industry, to see

21

quantitatively how it affects to the decision-making process and to the individuals’ reaction time

[61]. In hospitals or clinics, there are many applications, for example aiding in the diagnosis of

several disorders, such as Attention Deficit Hyperactivity Disorder (ADHD) [62] or Alzheimer’s

Disease [63]. In sports, there are several tests to evaluate Reaction Times. For example, S.I.

Instruments [64] have the Multi-Operational Apparatus for Reaction Time (MOART) system, with

which simple reaction time tasks can be employed such as Go/No Go tasks for the study of

higher centers of the brain, and more complex discriminate reaction time tasks to study cognitive

processing [65]. Also, there are some used for the improvement of these capacities, such as

Batak [66], which provides a piece of equipment specifically designed to improve reaction, hand

eye co-ordination and stamina by enabling sportsmen and women to train under simulated 'sports

like' conditions. On the other side, it can be used to measure athletes’ doping attitudes [67], as

proved by the Substance Abuse Treatment, Prevention, and Policy Journal [68], which

encompasses research concerning substance abuse, with a focus on policy issues.

3.4 Market’s historical evolution and future perspectives
Interest in the measurement of human reaction time apparently began in 1865 [69]. There were

sporadic investigations of the relations between age and RT until about 1950, when interest in

this topic increased because of an assumption that an individual's RT might be informative about

the status of his or her neurological system [70]. 1985 was a landmark year for research on

motion perception [71], and led to a huge increase in research on this topic until now. However, it

is a field which is barely 50 years old, considering publication density, and therefore there is still

much potential behind. In Fig. 8 the evolution of articles published, with the topic Psychophysics,

(in logarithmic scale) can be seen. The data used is from PubMed [72].

Figure 8. Number of articles published evolution over the years. Data from PubMed [70].

All the applications commented before are new, and are part of a fresh field to study, with big

potential and a vast number of opportunities. A future expectation is that more and accurate

applications and software for mobile devices will be released, becoming the first method used in

psychophysical experiments. Other technologies can be used as well, such as a facial recognition

system controlled by the main camera, that, for example, can track eye movements: this would be

useful for a wide range of experiments, paving the way to further analysis.

https://www-sciencedirect-com.sire.ub.edu/topics/psychology/neurological-system

22

4. Conception Engineering
This section describes the approaches and methods that were implemented in this project to

achieve its objectives. The choice of these proposed solutions among the possible solutions is

detailed below.

4.1 Brief summary of the methods and solution determination
The first part deals with the previous learning for understanding neuroscience topics involving this

project, so it can start and be developed dynamically. Afterwards, the experiments will be

performed, and data will be acquired and extracted, followed by its processing and analysis. In

Fig. 9 we can see a general conception schematic with the main topics to be conceived as an

interrogation mark. These are:

- The experiment: englobes how is the task performed and which components of the

design should be selected to optimize the task.

- Data processing: comprehends the programming language used and its compiler.

- Missing data: comprises how missing values are treated.

- Methodological choices: encompasses the analysis to be performed and the variables to

be studied.

4.1.1 Methodological choices

As the task makes possible the extraction of a vast amount of data, topic selection must be

performed to optimize computational time and focus the project on a certain area. The main

focuses are:

• Reaction Time (RT): from the RT we can study the Proactive responses of human

subjects, analyzing the proportions of them for each participant. Afterwards, PSIAM

model [15] can be fitted to quantify these responses, and proof that these are existent

also in humans. Duration time: 3 months.

Methodological choices

Figure 9. General conception schematic with main topics to be discussed marked with an interrogation mark (?).

23

• Transition biases: analyses of psychometric curves [12], [49] and computing a General

Linear Model (GLM) [12], [14], to quantify the previous trials importance and therefore

see which strategy uses each subject. Duration time: 3 months.

• Trajectories: subject fingers’ trajectories can be extracted, and from them the Change of

Mind (CoM) can be studied. The CoM is basically when the subject starts going to one

side and changes drastically to the other, changing the response abruptly. This could

give information of the confidence of each subject, together with the individual influence

of the stimulus evidence. Duration time: 4 months.

Studying the time for each focus, we will aim to analyze transition biases, since this will follow

Debora’s work [49]. As second priority, we will also study Reaction Times, since the time to do it

is less than for trajectories. However, due to time limitations we may not be able to finish the

project, leaving an opened line of work.

4.1.2 Coding language

Since there are different languages available, and all are powerful enough for the project, here we

can find a detailed explanation of each one:

• Matlab: an abbreviation of "MATrix LABoratory", developed by Mathworks [73], combines

a desktop environment perfected for the iterative analysis and design processes with a

programming language that expresses matrices and arrays mathematics directly. The

license is private, but since I am a Universitat de Barcelona student, it can be used for

free. If that was not the case, it would cost up to 2000€. The toolboxes used, which are

available with the license, would be Statistics and Machine Learning Toolbox and Signal

Processing Toolbox. The releases used would be R2021b and R2022a, corresponding to

the versions and release dates 9.11, September 22nd of 2021 and 9.12.0, March 9th of

2022 respectively. I have experience with Matlab, mainly in signal and image analysis.

There is a great community and a lot of documentation available, and data visualization

is user-friendly, with many options available.

• Python: Python is a high-level, interpreted, general-purpose programming language. It is

free and so are the libraries. Its design philosophy emphasizes code readability with the

use of significant indentation [74], [75]. The toolboxes used would include matlplotlib,

numpy, pandas, sklearn, scipy, seaborn, among others. It could be interpreted using

Jupyter Notebook or Spyder. The version used would be 3.8, with release date Sept.

24th, 2020. I have a lot of experience with it, in the areas of data processing, analysis

and visualization, signal processing and Deep Learning. Many different file types can be

read easily, for example Excel, CSV or PDF. There is also a great community and plenty

of available documentation; and using matplotlib and seaborn packages, data

visualization is very clear and neat.

• R: is a free software environment for statistical computing and graphics. It compiles and

runs on a wide variety of UNIX platforms, Windows and MacOS [76]. It would be

compiled using RStudio. The version used would be 4.1.2, released the November 1st of

2021. The libraries used would be ggplot2, dplyr, MASS, among others. I also have

experience with it, but I am not as used as to the others.

24

Table 1. Summary of the subjective analysis regarding programming language.

Since I have more experience in coding with Python, its open source, which is better if someone

will follow my line of work; there is plenty of documentation available, works perfectly in

mathematics and statistics environments; and data visualization is clean, Python will be the

programming language used.

4.1.3 Compiler

Since Python was chosen, a computational environment must be chosen now between the

following:

- Spyder is an open-source cross-platform integrated development environment (IDE) for

scientific programming in the Python language [77]. Not much experience with it, but it is

easier to use and does not have to run the code in blocks. Also, has tools such as

debugging that let the user an easier interaction with the code.

- Jupyter Notebook: Jupyter Notebook (formerly IPython Notebooks) is a web-based

interactive computational environment for creating notebook documents [78]. The code is

run in blocks, which is great when working with data frames, because you can analyze

each set visually. I have more experience with it.

Considering the user-friendly tools from each one, Spyder was chosen to be the computational

environment used for this project.

4.1.4 Considerations in recruiting new subjects

Because new subjects were needed to do the task and extract more data, the version of the task

had to be thought. Debora [49] extracted data from the following tasks:

• Response time of 500ms, with easier stimulus (Version 1).

• Response time of 300ms, with harder stimulus (Version 2).

The second one was too easy for the subjects, which are all between 19 and 25 years. Therefore,

the first one made them think quickly and be more focused on the task. A new version of the task

was designed but was not applied because by implementing the same tasks as Debora, data

could be joined and therefore compared.

In addition, since one of the objectives is to implement this system in a clinical environment, we

had the opportunity to work with Dr. Lorena Rami, from the research group ‘Alzheimer Disease

and other Cognitive Disorders’ of Hospital Clinic, who wanted to use the task to study for

differences in subjects with possible cognitive disorder and control ones. Therefore, since their

subjects’ age range is from 50 to 70 years old, another version of the task had to be designed so

they could adapt easily. Hence, the task implemented had a reaction time of 500ms, and same

coherences.

 Matlab Python R

License price 0-2000€ 0€ 0€

Personal experience +++ ++++ ++

Community and documentation ++++ ++++ +++

Data visualization ++ +++ ++++

25

4.1.5 Missing/Not a Number (NaN) data

Invalid trials, when the subject responded before the Fixation Time ended or after the Response

Time, are saved as NaN in the variables: “choices” (whether the subject answers left or right, as

0/1 respectively) and “hit” (correct/incorrect answers saved as 0/1). The possible solutions were

to delete NaN values directly or maintain and consider them in the analysis. Since we are

studying trial history and its implications and influence in decision-making, we cannot manipulate

the timeline by deleting NaNs, but must consider them in the analysis.

4.2 Final solution
The project will be developed with Python, using Spyder as the computational environment. The

main focuses will be Transition Biases and Reaction Time, with the respective order of priority.

The task implemented to the new subjects to analyze for the project, will have a Response Time

of 300ms and harder stimulus (Version 2). For the subjects for the Hospital Clinic, the difference

will be in the Response Time, which will be of 500ms. Nan values will not be eliminated and will

be considered for the analyses.

General conception schematic (Fig. 10):

Figure 10. General conception schematic.

26

5. Detailed Engineering

5.1 Task
The task is the same as used in a previous study from the group [49], based on the 2AFC done to

rats [12], [14], [15]. It is explained on 2.2 Previous work, in 4. 2.2.4 Investigating sequential

effects in humans performing a 2AFC psychophysical task. The task is designed to be

administrated to healthy subjects using a tablet.

5.1.1 Workflow

The subject is presented with a tablet whose screen has three main buttons (see Fig. 6): two light

gray in the right and left top corners and a dark gray one in the bottom center. Moreover,

he/she/they will use headphones provided by the laboratory, which will emit the auditory stimulus.

The subject presses and maintains pressed the central dark gray button for 500ms (Fixation

Time). The auditory stimulus begins and lasts up to 300 or 500ms (Response time). In this time,

the participant must answer. Possible cases regarding response timing:

a. If the response was before ending the fixation time or after ending the response

time, the screen will turn yellow, and the trial will count as invalid.

b. If the response is in the correct time range, during the Response Time, the

screen will turn green or red, for correct or incorrect responses respectively.

Therefore, feedback was shown to the subjects through the screen color at each trial: green,

yellow, and red for correct, invalid, and incorrect, respectively. This is a relevant feature of the

task because subjects know their performance at each trial.

5.1.2 Structure

Trials:

A total of 2000 trials per subject, separated in 20 sections of 100. Between sections the accuracy

is displayed, and subjects with less than 40% will be removed from the study.

Fixation time:

500ms

Response time:

500ms (Version 1) and 300ms (Version 2).

Reward:

Subjects receive 0.01€ for correct response. This was done to motivate participants to engage in

the experiment and not give random responses.

Stimulus strength:

Stimulus strength is referred as coherence or evidence. Left stimuli have a coherence of 0 ≤ x <

0.5. For the right ones, instead, it is 0.5 < x ≤ 1. The values set in one of the versions of the task

are:

• 0.2, 0.4, 0.45, 0.499: left stimuli, Version 1

• 0.8, 0.6, 0,55, 0.501: right stimuli, Version 1

27

• 0.3, 0.4, 0.45, 0.499: left stimuli, Version 2

• 0.7, 0.6, 0,55, 0.501: right stimuli, Version 2

Which were transformed by taking the absolute values and rounding the subtraction between

these absolutes and 0.5. Therefore, we finally have:

• 0, 0.05, 0.1 and 0.3 for Version 1

• 0, 0.05, 0.1 and 0.2 for Version 2

This way the strength is standardized and is a way of knowing how informative the stimulus is,

from 0 (no deviated) to 0.2 (maximum deviation, clear sound to one of the sides).

Stimulus sequence:

A two-state Markov chain parametrized by the conditioned probabilities PREP =P(L|L) and P(R|R)

generated a sequence of stimulus category ck = {-1,1}, which determined the side of the reward

(left/right). The stimulus strength sk was randomly drawn from the set of values from before. The

stimulus evidence was defined in each trial as the combination ek = ck*sk, thus generating seven

different options (0, ±0.05, ±0.1, ±0.2 or 0.3) (see Fig. 11).

5.2 Dataset
We have a total of 10 subjects for Version 1 (500ms) and 20 subjects for Version 2 (300ms).

Sexes are balanced at 50%. The age ranges from 20 to 26, with mean of 22.30±1.16 years old.

None of them presented auditory problems nor psychological or psychiatric disorders. A summary

table can be seen in Tab. 2.

Table 2. General characteristics of the dataset.

 Version 1 (N=8) Version 2 (N=20) Differences

Age (mean ± SD, years) 22.25±1.20 22.30±1.14 No

Sex (Male/Female) 4/4 10/10 No

Right-handed (Yes/No) 7/1 19/1 No

Auditory problems (Yes/No) 0/8 0/20 No

Figure 11. Two-state Markov chain (top) with
examples of sequences (bottom).

28

5.3 Metrics
The data that the app returns in csv format is made of several features:

• Hit: Boolean variable, expresses whether the subject is correct (1) or not (0).

• Choice: Boolean variable, expresses whether the subject chose right (1) or left (0).

• Correct: Boolean variable, expresses which was the correct response, right (1) or left (0).

• Stimulus strength: which values go from 0 to 1, expressing how lateralized is the

stimulus. The closest to 0.5, the more balanced and indistinguishable it is.

• Time of the answer: time that the subject lasted to answer, in seconds. It considers

Fixation Time also, so afterwards it must be subtracted to get the Reaction Time.

• Motor Time: time that passes from the Reaction Time to the end of the trial, in other

words, for how long has the subject moved its finger.

• Space coordinates: trajectories in time of the subjects’ fingers, in coordinates X, Y,

according to the screen dimensions. These values are given in millimeters, and the

sample rate is 59 Hz.

5.4 Analyses

5.4.1 Transition and lateral biases

Psychometric curve:

Measuring thresholds is probably the most common psychophysical procedure in use today [79].

The psychometric function relates an observer’s performance to an independent variable, usually

some physical quantity of a stimulus in a psychophysical task [80], [81]. This curve is shaped by

important parameters, such as biases and sensitivity to the stimulus. However, it is not possible

to solve them analytically, so a fitting must be done with the results in order to extract the

parameters. The proportion of rightward responses vs. stimulus evidence e is given by:

𝑃𝑟𝑖𝑔ℎ𝑡𝑤𝑎𝑟𝑑𝑠(𝑒) =
1

2
(1 + erf (

𝛽𝑒 + 𝑏

√2
))

Where erf(𝑥) is the error function, also known as Gauss error function, defined as:

erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
𝑧

0

, erf(𝑥) ∈ (−1, 1)

β is a sensitivity that quantifies the stimulus discrimination ability, e is the stimulus strength and b

indicates the subject’s tendency to repeat (b>0) or alternate (b<0). In order to analyze this

probability, trials are grouped by the stimulus strength values. Subsequently, for each stimulus

strength, the probability to choose the right side over the left one is calculated, which is the

percentage of times that the subject has chosen right according to a certain stimulus value.

Therefore, the curve can be fitted, and the parameters extracted.

Also, the proportion of repeated responses as a function of the repeating stimulus evidence is

fitted and is expressed by the following function:

𝑃𝑟𝑒𝑝𝑒𝑎𝑡(�̂�) =
1

2
(1 + erf (

𝛽′�̂� + 𝐵

√2
))

29

β' is a sensitivity that quantifies the stimulus discrimination ability, and:

�̂�𝑡 = 𝑟𝑡−1 𝑒𝑡

Where t is a trial and r is a response, with:

𝑟𝑡−1 = {−1, 1}

Representing if the response in the previous trial was left or right, respectively. For example, a

rightward stimulus with evidence et = 0.4 after a left response implies a repeating stimulus

evidence equal to êt = - 0.4. The process is the same as before, the difference is the probability

calculated, which is based on repeating responses for each stimulus strength.

Generalized Linear Model (GLM):

We built a GLM where different features, such as the current stimulus and previous history

events, were linearly summed to give rise to the probability that the subject’s response rt in trial t

was toward the right port [12], [14], [82]–[84].

The following regressors were the chosen for this model, trying to have the optimal number to

avoid combination of effects in a single regressor. For example, the lateral regressors could be

hidden in the transition ones. For each regressor two weights were computed: after correct and

after error.

• Evidence: current stimulus effect.

• Lateral:

o L+: 1 if right and correct, -1 if left and correct.

o L-: same as L+ but with incorrect responses.

• Transition:

o T+-: a correct response followed by an error, right/left are {1, -1} respectively.

o T-+: an error followed by a correct, right/left are {1, -1} respectively.

o T--: two consecutive errors, right/left are {1, -1} respectively.

o T++: two consecutive correct answers, right/left are {1, -1} respectively.

• Intercept: fixed side bias.

In Fig. 12 we can see a general schematic of the GLM intuition, with the sum of effects from the

Lateral and Transition biases, and the evidence. In this example, the subject starts with three

correct Rights, which correspond to a repetitive block; however since this blocks are designed

with probabilities, it changes to Left, but because it is a repetitive Block, the transition evidence is

influencing the subject to choose Left again, depending of course on the stimulus evidence; but

the subject’s expectations are built biased to the left.

30

Figure 12. Generalized Linear Model (GLM) intuition. Lateral and Transition biases in top and bottom of the figure,
respectively.

The probability p(rt=+1|yt) that the response rt in the t-th trial was Rightwards was modeled as a

linear combination of the current stimulus and trial history passed through a logistic function:

𝑝(𝑟𝑡 = 1|𝑦𝑡) =
1

1 + 𝑒−𝑦𝑡

Where the argument of the function was:

𝑦𝑡 = 𝛽𝑠𝑡𝑖𝑚𝑆𝑡 + ∑(𝛽𝑟,𝑘
+ 𝑟𝑡−𝑘

+ + 𝛽𝑟,𝑘
− 𝑟𝑡−𝑘

−)

6

𝑘=1

+ (∑ ∑ 𝛽𝑇,𝑘
𝑜,𝑞𝑇𝑡−𝑘

𝑜,𝑞

6

𝑘=1𝑜,𝑞

) 𝑟𝑡−1 + 𝛽0

The current stimulus was given by St defined as the intensity difference between the two tone

sounds in trial t. The trial history contributions included the impact of the previous ten trials (t-1, t-

2, t-3...; grouping the impact of trials t−6 to trial t−10 in one term):

𝐹𝑜𝑟 𝑘 = 6 − 10, 𝑟𝑡−6
𝑜 = ∑(𝛽𝑟,𝑘

+ 𝑟𝑡−𝑘
+ + 𝛽𝑟,𝑘

− 𝑟𝑡−𝑘
−)

10

𝑘=6

The terms rt−k+ represented the previous rewarded responses being −1 (correct left), +1 (correct

right), or 0 (error response). Similarly, rt-k− represented previous unrewarded responses being −1

(incorrect left), +1 (incorrect right), or 0 (correct response). Previous transitions were given by:

𝑇𝑘
𝑜,𝑞

= 𝑟𝑘−1
𝑜 𝑟𝑘

𝑞

Meaning that they were 𝑇𝑘
𝑜,𝑞 = +1 for repetitions and 𝑇𝑘

𝑜,𝑞 = −1 for alternations. The

superindices {o,q} refer to the type of transition which depended on the outcomes of the last two

31

trials t-1 and t, respectively: correct-correct {+, +}, correct-error {+, −}, error-correct {−, +}, and

error-error {−, −}. Finally, the coefficient β 0 represented a fixed side bias.

For rats [12] and RNN [14] the weights were the following (for the T++ regressor):

We can see an exponential behavior in After-correct (orange) transition weights for rats (Fig. 13,

left) and for both After-correct (orange) and After-error (black) weights in RNNs (Fig. 13, right).

Therefore, each regressor was discretely convoluted with an exponential kernel, as in previous

studies [84], to reduce the computational cost: instead of computing a value for each history trial

(1, 2, 3, 4, 5, 6-10), it only had to compute one.

𝑟𝑡
𝑜 = (𝑓 ∗ 𝑔)[𝑡] = ∑ 𝑟𝑡−𝑘

𝑜 · 𝑒−
𝑘
𝜏

6

𝑘=1

Where 𝜏 is the decay constant of the exponential. First we fitted the model using a fixed 𝜏 = 1.

And then we fitted different values of it: 0.5, 1, 2, 3, 4, 5 using Cross-Validation with five folds..

This indicated how many trials influenced each subject. Therefore, after convoluting with a

specific 𝜏, we get:

𝑦𝑡 = 𝛽𝑠𝑡𝑖𝑚𝑆𝑡 + 𝛽𝑟
+𝑟𝑡

+ + 𝛽𝑟
−𝑟𝑡

− + (∑ 𝛽𝑇
𝑜,𝑞𝑇𝑡

𝑜,𝑞

𝑜,𝑞

) 𝑟𝑡−1 + 𝛽0

Which reduced computational time and increased algorithm’s robustness. Therefore, we have

only one value for each regressor. Since values from invalid trials are stored as not a number

(Nan), the convolution had to consider them, and predefined Python functions could not be used,

therefore, it had to be done manually with a Boolean mask that considered Nans:

𝑚𝑎𝑠𝑘(𝑟𝑡−𝑘
𝑜) = {

0, 𝑟𝑡−𝑘
𝑜 = 𝑁𝑎𝑛

1, 𝑟𝑡−𝑘
𝑜 ≠ 𝑁𝑎𝑛

𝑟𝑡
𝑜 = ∑ 𝑟𝑡−𝑘

𝑜 · 𝑒−
𝑘
𝜏

6

𝑘=1

· 𝑚𝑎𝑠𝑘(𝑟𝑡−𝑘
𝑜)

Figure 13. GLM transition weights from rats [13] and RNNs [15], showing an exponential decay.

32

By using this, the computational time raised, but it ensured that the GLM did not receive any Nan

value. This was done because Nan could not be replaced by any other value, since the trial

history is being accumulated and therefore an artifact would be added if replaced.

The number of trials for our subjects is limited compared to works with rats, which undergo an

average of 50000 trials each individual [12]; or with RNN, whose number of trials is in the order of

millions [14]. Therefore, statistical significance of the weights, which shows whether they

contribute or not in the GLM (different from zero or not, respectively), had to be computed using

the Python package statsmodel.api [85].

Reset/reverse strategies:

As explained before (see 2.2 Previous work for details), rats presented the reset strategy: ignored

previous transitions’ information after error trials; whereas RNNs fully exploited the task adopting

the reverse strategy: learning from errors. Here the GLM transition weights after error will be

studied to see if they are zero (reset strategy) or negative (reverse strategy).

Reset Index:

The Reset Index (RI) quantifies the extent to which an agent follows the reset strategy. It is

computed as:

𝑅𝐼 = 1 −
𝑇𝑟𝑎𝑓𝑡𝑒𝑟−𝑒𝑟𝑟𝑜𝑟

𝑇𝑟𝑎𝑓𝑡𝑒𝑟−𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Where 𝑇𝑟𝑎𝑓𝑡𝑒𝑟−𝑒𝑟𝑟𝑜𝑟 and 𝑇𝑟𝑎𝑓𝑡𝑒𝑟−𝑐𝑜𝑟𝑟𝑒𝑐𝑡 are computed as the absolute value of the sum of

transition weights 𝑤𝑘,+,+
𝑇 with k = 2, …, 6-10. Therefore, for values near to one, subjects are

more likely to present reset; whereas for values far from one, they are expected to present the

reverse.

5.4.2 Reaction time

Proactivity and express performance:

Proactive (express) answers are the ones done by the subject before being able to receive,

process and execute a motor action. The simple auditory reaction time is one of the fastest

reaction times and in normal population is rarely less than 100ms [86], [87]. However, when

people have a bias, they can make a motor plan even before the stimulus starts and these

decisions’ timing is independent of the evidence accumulation, but choice depends on stimulus

[15]. In these situations, the Reaction Time (RT) drops before this threshold of 100ms. Therefore,

the RT distribution was analyzed to see whether subjects responded before a threshold of

100ms. Afterwards, the trials that were under this threshold were selected and the accuracy was

computed (Express performance) conditioned by the stimulus strength, to see if the stimulus still

influenced in the decision. The RT histogram and its density function (proportion) were computed

to see if there was a proportion of reaction times before the threshold.

Tachometric curves:

These curves show how the accuracy changes depending on the reaction time, conditioning on

stimulus strengths: comparing each accuracy for each different stimulus strength. Since data was

discrete (sample rate ~59Hz, reaction time precision of 17ms), a binning of 18ms was done.

33

Reaction time and motor time dependence with stimulus strength:

This dependence was analyzed to see whether the subjects perform the task systematically, that

happens when RT does not depend on stimulus strength, because participants respond

periodically. On the other side, it is intuitive to think that for most informative responses, there

would be less doubt and therefore lower Motor Time.

Cumulative distribution functions and modulation onset:

The cumulative distribution function (CDF) of the reaction times’ histogram was computed. It was

obtained by performing the cumulative sum of the probability density function (from the RT

histogram). We computed the CDF in two scenarios: trials presenting more informative stimulus

(strengths of 0.05, 0.1 and 0.2) and the ones which does not give much information (strength of

0). By this means we could see if the reaction times were independent or not from stimulus

strengths. Then we assessed the modulation onset, which is the point where the two curves start

to be independent one from another. For each time t, we computed a one-tailed Kolmogorov–

Smirnoff test [15], [88] comparing the RT cumulative distributions for trials with strongest and

weakest stimulus evidence (stimulus strength s = 0.2 versus stimulus strength s = 0), and

excluding all reaction times larger than t. For each subject, we defined the modulation onset as

the minimal value of t at which this comparison became significant (p < 0.05). On the other hand,

since data is discrete (reaction time precision of 17ms), the CDF was expected to be stair-like.

Consequently, the CDF was mean filtered, which consists in replacing each data value with the

mean value of its neighbors, including itself. It was done with a window size of 17 because it

coincided with the Reaction Time precision and thus returned a smoothed CDF useful for

visualization.

34

6. Results and discussion
I will now present and discuss the results of the analysis. All analyses were performed to Version

2 (300ms) subjects.

6.1 General statistics: Humans learn to do the task
First I will describe the general stats, such as accuracy and valid trials. In Fig. 14 we can see an

example subject, which increases the proportion of valid trials, meaning that the participant learns

to accommodate to the timing of the task. In general, the first 200 trials are the ones where

participants are still learning (for this reason this period will not be taken into account in the

analysis). This participant has a mean performance of 85%, and a percentage of valid trials of

97.2%. However, there are sudden drops in accuracy most likely due to breaks taken by the

subject during the experiment. This is a feature I have observed in most subjects (data not

shown).

In Fig. 15 we can see the mean accuracy of all subjects and its distribution, with a median of

85.6%. The minimum mean accuracy is 69.5% and the maximum 90.1%. The group’s mean

accuracy is 83.6±5.8 %.

From here we can conclude that humans learn to do the task.

Figure 14. Performance over trial index. It can be seen a positive progression, stronger the first 200-300 trials.

Figure 15. Mean accuracy for all subjects. Median: 85.6%

35

6.2 Transition bias

6.2.1 Subjects do not show lateral bias

We first studied lateral biases, which is the tendency to respond leftwards or rightwards, and can
be seen in the psychometric curves on the right/left space, which compute the probability of
choosing right over the evidence of right. Both biases will be computed in the GLM, which will
provide a more precise quantification than extracting them by fitting a complex curve with only
seven points.

First we visualized the psychometric curves in the right/left space for an example subject (Fig.
16). We have a subject (left, Subject 5) that presents a bit of lateral bias to the left, and another
(right, Subject 19) for which the lateral bias seems to be null. Both learnt the task correctly.

Lateral bias was seen in a low number of subjects and was not significant.

6.2.2 All subjects present transition bias

I then studied the transition bias, which is the tendency to repeat/alternate given a certain

experience. This bias can be visualized in the psychometric curves on the repeating/alternating

space, which compute the probability of repeating the previous choice over the repeating

evidence: the original evidence with a negative sign if the repeating side is the left one (Fig. 17).

We will see the same subjects as before (top, Subject 5; and below, Subject 19). Transition bias

is present in both subjects after correct trials (left), whereas after error curves they show a mix of

reverse (see Fig. 3), alternating (red) curve is over the repeating (blue) one; and reset, both

curves cross at zero evidence and 0.5 probability.

Subject 19 Subject 5

Figure 16. Psychometric curves on the lateral space: we can see the data points with error bars and the fitted curve.
Left: showing bias to the left. Right: not showing bias.

36

Now the group’s psychometric curves are shown in Fig. 18. We can see that all subjects

presented transition bias, whereas the strategy adopted cannot be studied in here, since it

happens the same as before: reset and reverse are combined and therefore the group’s curve is

a mix of both..

After correct After error Subject 5

Subject 19

Figure 17. Psychometric curves in the transition space: we can see data points with error bars and psychometric
curve fitting. Top and bottom, left both subjects show transition bias; Right: subject 5 seems to adopt a stronger
reverse strategy, whether subject 19 adopts a weaker version. Subject 19 has steeper curves, meaning that the task
was well understood.

37

In order to see more clearly the transition biases, the values were extracted from the

psychometric curves’ fitting (see 5. Detailed Engineering) and visualized through a boxplot of for

each situation (Fig. 19). These scenarios are the following:

• Repetition block after correct trial (Rep. ac)

• Alternation block after correct trial (Alt. ac)

• Repetition block after error trial (Rep. ae)

• Alternation block after error trial (Alt. ae)

Figure 18. Group psychometric curves in the transition space. Left: all subjects showed transition bias. Right: there is
a mix of both strategies (reset and reverse), but the presence of a reverse is noted.

Figure 19. Boxplot of bias. Clear behaviors after correct, showing transition bias. However, after error the strategies
are unclear.

38

And it can be clearly seen that after correct trials the transition bias is present: positive for

repetition and negative for alternation. However, it is not so clear after error trials. Therefore, for

visualization, a meta-subject was created by joining all subjects that most-likely presented the

reverse strategy. In Fig. 20 we can see that after correct responses all present transition bias,

and after error responses, the reverse is even more clear.

However, this is only for visualization, since these curves can be combining different factors, it is

not accurate extract the transition bias or the strategy from them.

6.2.3 The reverse strategy is the predominant

To quantify these biases, I used a GLM (See 5. Detailed Engineering for details), this GLM

separates the influence of different factors (regressors) and extracts only the transition bias

wanted1. Once performed, we could extract the transition weight (T++) and plot it for visualization,

first with a fixed characteristic decay constant for the exponential decay (τ=1, Fig. 21 left). The

constant was fixed to 1 because it approximated what was seen in rats and RNNs. Afterwards,

we computed the trial lag weights for an individual-specific constant (Fig. 21, right), selected

using cross-validation.

Figure 20. Psychometric curves from the subjects that presented the reverse strategy grouped as one single subject.
Left: clear transition bias, stronger on the alternation blocks. Right: clear reverse strategy.

N=20 N=20

Figure 21. Transition (T++) weights from the GLM. Left: fixed exponential decay constant to one. Right: fitted a
constant for each subject. We see more reverse strategy than reset.

39

Even though for a specific constant the result is more precise, for visualization purposes we will

use the fixed constant so comparisons with other studies are easier. Some subjects do the reset

strategy, as rats [12] (Fig. 22, left): after error values are zero, meaning that these participants

ignore previous experiences in these situations. However, the most predominant strategy is the

reverse, which is more optimal. This strategy is the one adopted by RNNs [14] (Fig. 22, center),

which fully exploited the task statistics and can be seen in the values after error with a negative

contribution: it means the subject change from repeating to alternating, and vice-versa, in after

error trials scenarios. However, the reverse in human subjects was not as strong as in RNNs,

where even previous 6-10 trials affected a lot. In most subjects, the 5th previous trial influence

was null.

Then, I computed the Reset Index (RI), whose values can be seen in Fig. 23. There we can see

the four subjects which are above 0.8, whereas all the others are below. With mean 0.47±0.40

and median 0.56. Separating the values taking 0.8 as threshold, the upper mean is 0.96±0.02

and the lower is 0.34±0.34. Regarding the decay characteristic constant 𝜏, it was uniformly

distributed across subjects, as it can be seen in Tab. 3.

Table 3. Characteristic exponential
constant distribution.

Figure 22. Left: GLM transition weights for rats [13]. Center: GLM transition weights for RNNs [15]. Right: GLM
transition weights for humans.

Figure 23. Reset index and its distribution.

N=20

40

Since these 2000 trials are separated into after correct and after error situations and the mean

performance is 85.6%, the mean number of after error trials is 288. Therefore, the statistical

significance of the weights (whether the weights are different from zero or not) had to be

computed for each subject. We can see here a subject (Fig. 24 left, Subject 17) that presented

reset: T++ is close to zero after error trials; and one that presented reverse (Fig. 24 right, Subject

12): T++ is negative after error trials. However, as said before, since there is a small number of

after error trials, there was no statistical significance. There is no common strategy regarding

lateral (L) weights.

Two meta-subjects joining all subjects presenting reverse and reset, respectively, were computed

and the results were the following (Fig. 25, top): there was statistical significance for the weights

after error for the reverse meta-subject (top-left). However, no statistical significance for the

weights after error was found in the reset meta-subject (top-right),indicating that the reset strategy

is also present in humans. However, we speculate that if the task was longer (e.g., 5000 trials), all

subjects would present the reverse strategy. This is supported with the GLM performed on the

Version 1 subjects, which had more time to think, and therefore they understood earlier the task

(Fig. 25, bottom).

On the other hand, we see a clear significance on lateral biases for L+, which are negative after

correct and positive after error, meaning that subjects were negatively influenced by right choices

after correct answers. Moreover, statistically significant weights are seen in L+ after error, where

participants are strongly influenced by previous correct choices after error. We have not seen a

common strategy regarding L- weights.

To summarize, humans present different strategies for 2000 trials, ranging from full reset to a

more reverse behavior, which was more predominant. However, it is thought that for more trials

(e.g., 5000) they would all present the reverse strategy because for tasks with less time pressure

subjects presented even more this strategy, indicating that if they did longer tasks, they all would

adopt this more optimal strategy.

Figure 24. GLM weights and its significance for two subjects. Left: reset. Right: reverse.

41

6.3 Reaction time

6.3.1 Express performance depend on stimulus strength

I also studied Reaction Times (RT). First, the distribution of them was visualized to see if there
were express responses (Fig. 26, left), assumed to be the responses before 100ms after the
stimulus onset (blue line). There is a great proportion of them before this threshold. Therefore, we
filtered the responses with a threshold of 100ms to see the performance of the subjects in these
express responses over the stimulus strength (Fig. 26, center).Importantly, subjects accuracy
depended on the stimulus strength, even though subjects did not have enough time to integrate
and process the stimulus and prepare a motor plan. This means that subjects prepared this motor
plan even before the stimulus started, during the Fixation Time. Accuracies for express
responses did not start at 50% as expected, they were increased by the transition bias,
consequently we could say that subjects are influenced by the previous expectations in express
responses. These results were also seen in rats [15] (Fig. 26, right) and taking the same
conclusions as this study, we could say that the reaction time of human subjects is governed by
two independent processes: one that corresponds to the stimulus accumulation (called Reactive)
and another that is stimulus’ timing independent (called Proactive).

Figure 25. Top: meta-subjects, reverse and reset corresponding to left and right top parts of the figure, respectively.
Bottom: GLM weights for the Version 1 subjects.

42

On the other hand, tachometric curves were visualized (Fig. 27, left), conditioning in stimulus

strength. As expected, for the strongest stimulus strength (0.2) the accuracy was the highest and

descended according to this evidence. Performance did not start at 50% (effect of transition bias)

and curves are sorted from highest to lowest stimulus strength even at the start, evidencing the

same as in the previous figure. Also, for stimulus strength equal to zero (black), it can be seen

that the accuracy decreased with the reaction times, meaning that when the stimulus was hard to

differentiate, the longer the time to answer the lowest the accuracy. This was also seen in rats

[15] (Fig. 27, right).

6.3.2 Reaction time in proactive responses is not modulated by stimulus strength

Finally, I analyzed the dependence of the Reaction and Motor Time (RT and MT, respectively)

with the stimulus strength (see Fig. 28). Intuitively, the MT negatively depended on the stimulus

strength, because the higher the auditive difference, the easier and faster to respond. However

for the RT, since the task has a limited sampling rate, significant changes in RT could not be

perceived and therefore it seems that it is independent from stimulus strength. But we will see

with the RT Cumulative Distribution Function (C.D.F.) that it is not exactly like that.

Figure 26. Left: distribution of the reaction times and 100ms threshold (blue). Center: express responses
performance in humans. Right: express responses performance in rats [16].

Express performance

Figure 27. Tachometric curves. Left: humans. Right: rats [16].

43

After analyzing the CDFs of the Reaction Times (Fig. 29), we can see that before the modulation

onset (mean: 78ms, SD: 21ms. Fig.29, top-right and bottom: blue line) the reaction times did not

depend on the stimulus strength (Fig.29, bottom), but after this point it did. Concluding that these

proactive responses were independent from the stimulus, as in rats.

Figure 28. RT (black) and MT (green) over stimulus strength.

Figure 29. Top-Left: raw RT C.D.F. with the means for all subjects in wider lines. Top-right: mean filtered RT C.D.F.
with the modulation onset (78ms) in blue. Bottom: top-right plot zoomed at the first 160ms.

44

To sum up, the reaction time of human subjects is governed by two independent processes: one

that corresponds to the stimulus accumulation and another that is stimulus independent.

6.4 Scientific output
These results were presented in the annual meeting of the Barcelona Computational, Cognitive

and Systems Neuroscience Community (BARCCSYN: https://www.crm.cat/barccsyn-2022/) [89]

with a poster (See Annex Fig. 2 and 3).

https://www.crm.cat/barccsyn-2022/

45

7. Execution Chronogram
In this chapter it will be analyzed the temporal organization of the project and the completed

tasks. The study started on the 1st of September, and it lasted until the 30th of June, having a

duration of 350 hours.

7.1 Work Breakdown Structure (WBS)
In this section the project will be itemized, providing the Work Breakdown Structure. The WBS

can be seen in Fig. 29.

7.2 WBS dictionary
Here we will describe each component of the WBS visualized before.

• Previous learning: since the fields of computational and theoretical neuroscience are very

specific, some previous learning is highly recommended so the project can start

dynamically and develops with a correct pace. This learning consists in two different

strategies in parallel:

o Bibliography: The Brain Circuits and Behavior laboratory has published many

articles, but this project is based mainly in three of them [12], [14], [15], [49]. So,

by reading and understanding these, the main concepts of the project can be

understood, and the analysis can be applied.

o Courses and practice: a 4-month duration course was done, named Deep

Learning Specialization, and taught by DeepLearning.IA and available at

Coursera. In this course, the focus is on acquiring the tools necessary for build

and train different architectures of neural networks. Furthermore, data pre-

Bibliography

Figure 30. Work Breakdown Structure schematic.

46

processing techniques are also taught, useful in any other fields of data analysis.

The language used for instruction is Python, and the specialized library is

Tensorflow.

The practice consists in the use of the concepts learnt for individual projects, so

the concepts of the course are consolidated.

• Task: the data extraction process. 18 subjects did the task in the previous work done by

Debora Lombardo [49], but the analysis performed needed more data. Thus, more

participants were needed. The subjects came to the laboratory to perform the task. It

consists of a two-alternative forced choice (2-AFC) task, in which participants received an

auditory stimulus in both ears and had to discern on which side the stimulus was greater.

o Data extraction: The response was indicated in a tactile tablet, and a lot of data

was saved: reaction times, motor times, choice, finger trajectories, and others.

o Design: since this field of study is very sensitive to different conditions, the

optimal task had to be chosen so the data has the minimum noise possible, and

all subjects are in a standardized environment. Since our analysis is also part of

a project in Hospital Clinic for Alzheimer early detection, the design had to be

changed because subjects were older and were less used to tactile technologies.

• Data: pre-processing and posterior analysis of data so substantial information can be

extracted.

o Pre-processing: here the data received will be pre-processed to get rid of the

noise and missing values.

▪ Noise: here noisy data was dealt with, performing smoothing because of

the discrete nature of it. The sampling period was 17ms, so non-binned

histograms were discrete and cumulative distribution functions were

staircase functions consequently. Also, since the first 100-200 trials of

each subject are noisy, because the participant is still learning the task,

they were not considered.

▪ Missing values: invalid trials are saved as missing values (not a number,

nan), and it can give problems in the analysis. Since the proportion of

valid trials for most of the subjects is bigger than 90%, they can be

avoided. However, for transition analysis, these cannot be done because

they are part of the trial history, in other words, the subject can be late in

responding (invalid trial), but the stimulus can be clear, and an

expectation of the posterior trial can be built.

o Analysis: the data will be analyzed using different techniques. Two main focuses

were analyzed. For more details, see 4.1.1 Methodological choices and 5.

Detailed engineering.

▪ Transition/lateral biases: these biases explain how subjects rely on

previous trials, considering blocks (repetition/alternation) or sides

(left/right). These are analyzed in two different scenarios: after correct

and after error trials. Using this, we can know which strategy uses each

subject (reset/reverse).

▪ Reaction time: the time that a participant takes to answer a single trial.

With this we can know if the subject relies more in the stimulus or in the

previous trials history and see if the statistics (patterns) behind the task

are understood.

47

• Model:

o Model creation: programming. (GLM)

o Model evaluation: comparison with previous studies and computing statistical

significance of the weights.

• Control and management:

o Prepare a presentation.

o Redaction of the memory.

o Control: recurrent meetings with the Director, Dr. Molano. At least 3 meetings per

week.

7.3 Precedence analysis
In this section a temporal sequence of the project’s main tasks is built, analyzing the

precedencies of each one (Tab. 4).

Table 4. Precedence analysis table.

Activity Precedent Duration (weeks)

Learning (L) - 17

Task (T) L 4

Data pre-processing (DP) T 1

Data analysis (DA) DP 8

Model creation (MC) DA 5

Model evaluation (ME) MC 4

Redaction (R) - 35

Presentation preparation (PP) R, ME 1

7.4 Program Evaluation and Review Technique (PERT)
Here the tasks are ordered according to their timings and graphed (Fig. 30). The critical path is

shown in orange. This path shows the minimum amount of time that the project must last (40

weeks).

Figure 31. PERT schematic with the critical path in orange.

48

7.5 Gantt chart
In this part that illustrates the project’s schedule (Tab. 5), with the tasks on the vertical axis, and

time intervals on the horizontal axis. In the Gantt chart (Fig. 31), the width of the horizontal bars in

the graph shows the duration of each activity.

Table 5. Project schedule and chronogram.

Figure 32. Gantt chart.

49

8. Technical feasibility

8.1 Technical Aspects
This project has been carried out at the Center Esther Koplowitz (CEK), where IDIBAPS is based.

It has been fundamental the use of an experimental room located at the laboratory, where

subjects could perform the task. The room is situated on the basement of CEK, it has no

windows, and it is provided with a desk and a chair facing the wall, so that participants would not

be distracted by the surrounding environment.

8.2 SWOT
Here are presented the internal aspects - such as strengths (S) and weaknesses (W)- and the

external ones - such as opportunities (O) and threats (T) (Tab. 6).

 Internal origin External origin

l

WEAKNESSES THREATS

- Lack of prior knowledge of

computational neuroscience.

- Low number of trials per subject.

- Limited experience with Spider.

- Small number of resources destined to

scientific investigation.

- Limitations due to pandemic of SARS-

Cov-2.

- Field in early stages of development.

- Low economic benefit.

+

STRENGTHS OPORTUNITIES

- Periodic meetings, recurrent control.

- Experience with Python language.

- Availability of IDIBAPS equipment and

facilities.

- Possibility of working remotely.

- No environmental impact.

- User-friendly, free, and handy

application.

- Field in development.

- Minimal initial inversion.

- Hospital Clinic of Barcelona and IDIBAPS

leading biomedical investigation in Spain

[90].

- Useful in different market sectors.

Table 6. S.W.O.T. analysis table.

50

9. Economic feasibility
In this section the economic aspects of the project will be discussed, and the costs shown.

9.1 Economic planification
In Tab. 7 the economic planification over the Gantt diagram can be seen.

9.2 Costs and importance

• Licenses: total cost of 0€

o Spyder: to work with Python, since this was the chosen option, its compiler

becomes an indispensable requisite.

o GitHub: it is an essential tool to update the code in a common repository, so

supervisors and other people can benefit from the work and see the progress.

o Asana: optional tool that is designed to organize projects, where people can see

the progress, the tasks undone, etc.

o Slack: it is an optional, but very recommended tool to improve communication

with co-workers.

o Inkscape: optional tool used to modify figures and images.

• Staff: total cost of 7500 €

o Junior engineer: indispensable requisite. Project developer. Salary: 15 €/h.

Hours of work: 300h. Total cost: 4500€.

o Project supervisor: indispensable requisite to guide the engineer in the project

development. Salary: 25 €/h. Hours of work: 120h. Total cost: 3000 €.

• Hardware:

o Computer: indispensable item to read and analyze data. For a fast execution of

the code, it is recommended 8GBof RAM memory, no storage limit since files’

size is in the order of hundreds of kB. Cost: 1000 €.

o Tablet: indispensable to execute the task. No limitations regarding storage

capacities. Cost: 400 €.

Table 7. Economic planification over the chronogram.

51

o Headphones: indispensable requisite to do the task. These must have good

noise isolating properties for the correct development of the task. Cost: 600 €.

• Training:

o Courses: optional requisite to have a dynamical start with the project. Cost: 40€.

• Others:

o Subject payment: subjects received 20€ as basis and 0.01 € for correct

response. Considering the hours spent and the rewards obtained, the total cost

went up to 394 €.

Therefore, we have a maximum cost of 9934 € and a minimum of 9894 €.

Costs summary:

Items Importance Cost

Licenses Spyder

GitHub

Asana

Slack

Inkscape

Indispensable requisite

Indispensable requisite

Optional requisite

Optional requisite

Optional requisite

0 €

0 €

0 €

0 €

0 €

Staff Junior engineer

Project supervisor

Indispensable requisite

Indispensable requisite

4500 €

3000€

Hardware Computer

Tablet

Headphones

Indispensable requisite

Indispensable requisite

Indispensable requisite

1000€

400€

600€

Training Courses Optional requisite 0 – 40€

Others Subject payment Indispensable requisite 394 €

Total, maximum 9934 €

Total, minimum 9894 €

Table 8. Costs table, and the importance of each item.

9.3 Funding
The funding of this project comes from both institutions that take part in this project: the University

of Barcelona and the IDIBAPS, the institution where this project has been carried out. The Brain

Circuits and Behavior Laboratory, from IDIBAPS, has received the fundings by the European

Research Council (ERC). Therefore, financial issues derived by the project, such as the payment

of the subjects or the purchase of needed equipment have been expensed by the IDIBAPS. The

student’s work insurance has been covered by the University of Barcelona thanks to the existing

academic cooperation agreement between both institutions and the placement program.

This research was supported by the Spanish Ministry of Economy and Competitiveness together

with the European Regional Development Fund (IJCI-2016-29358 to D.D.; RTI2018-099750-B-

I00 to J.R.), and the European Research Council (ERC-2015-CoG - 683209 Priors to J.R.).

52

10. Regulation and legal aspects
Since the study has involved human subjects, it has been fundamental to define the regulations

and the legal aspects. They have all been communicated to the participants before taking part in

the study. An information consent was presented, and the subjects had to sign it to prove their

agreement. In addition, they all could refuse to participate and withdraw from the study at any

time without any type of penalty. The information consent template can be found in the Annex

(13.4 Legal Documents).

The treatment, communication and transfer of personal data of all participants comply with the

provisions of Organic Law 15/1999, of December 13, on the protection of personal data and the

Royal Decree that develops it (RD 1720/2007). Although the results obtained from the research

carried out are published in scientific fields, their identity will never be disclosed.

Personal data become part of the Investigations and Clinical Trials File, which is responsible for

the Consortium of the Institut de Investigacions Biomèdiques August Pi i Sunyer and are

processed solely and exclusively within the framework of the subjects’ participation in this study.

Moreover, data is not saved in hard copies, and is pseudonymized, so during its processing,

analysis or publication, only the people involved in the study can identify who have participated in

it. The pseudonymized data may be transmitted to third parties and to other countries but in no

case will they contain information that can identify the subjects, such as name and surname,

initials, address, etc. If this sharing of the anonymous data occurs, it will be for the same

purposes of the study described or for use in scientific publications. The promoter undertakes to

establish the necessary measures to guarantee the same level of confidentiality as in Spain.

Participants have the right of access, rectification, cancellation and opposition to said data by

contacting the person in charge of the study.

In addition, different software has been used for the development of this study. However, they all

have open-source licenses, which means that they are allowed to be freely used, modified, and

shared. In particular, it has been used the programming language Python, which is protected by

the General Public License (GNU) [91]. The GNU is a set of commonly used free software

licenses that give users the right to run, study, distribute, and change the software.

53

11. Conclusions
After analyzing twenty human subjects, I have seen that all learnt correctly to do the task, and the
learning took between 100 and 300 trials. Moreover, all participants presented transition bias after
correct responses. Whereas after error trials, the reverse, which is more optimal, was the most
predominant strategy. I hypothesize that all humans can adopt the reverse strategy, but it would
have to be proved by making tasks longer and with a larger dataset. On the other hand, humans’
reaction times have been seen to be modulated by two independent processes: one that
corresponds to the stimulus accumulation and another that is stimulus independent.

In our day-to-day life, previous decisions can affect our current ones, in many different situations.

This is because we build expectations from the past experiences, therefore creating a

probabilistic model of our surroundings. This is an easier task when these experiences present

patterns such as repetitions or alternations, therefore under the influence of serial correlations.

The reason why sequential effects dominate our behavior is still a matter of study. However, they

showed to be an intrinsic characteristic not only for humans but also for other animals such as

rats, manifesting similar behaviors between them. For this reason, we can hypothesize that these

behaviors derive from a long evolutionary process in which animals tended to adapt to the

surrounding circumstances and their statistics [14].

The project has shown to be economically and technically viable. Moreover, the method used to

carry out the experiment has shown to be effective to detect sequential effects, making it the

perfect candidate to conduct further studies and for its application in the market.

Regarding the task and software, it could be useful for many other researchers in the

neuroscience field. Since it is a non-invasive technique in humans and understandable for

subjects, its implementation is easy; and increasing the number of human experiments, the use of

other animals would be directly reduced, therefore minimizing the exposure of those to laboratory

conditions and providing a good impact to their wellbeing.

To sum up, humans showed to be under the influence of these sequential effects, understood as

an efficient solution to the challenges we all face, reflecting the attempt to predict future events in

a dynamic environment; and harnessing them in the most optimal way after error trials.

11.1 Further applications
These behaviors could be affected under certain effects, such as drugs or cognitive disorders.

Also, they can be trained to give a better performance and reduced reaction time, desirable for

some professional sectors. More specifically, the task and analysis could be used in:

• Drug validation: task performed to subjects and see if there are side effects regarding

reaction times, decision-making, and sequential effects.

• Help in diagnosis and/or treatment of cognitive disorders

• For professional profiles whose reaction times are important, such as elite athletes, the

task could be used to train them in these effects, reducing the response time, trying to

reduce their reaction time. It could be used even as a doping test.

However, to implement the task, it should be standardized by taking a much larger dataset, for
example by expanding the software to be used worldwide, such as Adrian Owen, who created a
web-based platform for the assessment of cognitive function [92], therefore collecting a vast
amount of data, which might be noisier than the dataset used in the current study but since there

54

are many samples, more relevant and significant results could be extracted, capturing general
behaviors in a big population. By this means we would be able to standardize the procedure and
provide a service to the sectors mentioned above. The same process could be used to detect
similarities and differences between different categories of participants, by considering factors
such as age, sex, pathologies or different approaches and strategies according to distinct task
settings.

Regarding task design, neurofeedback [93], [94] could be implemented so the task can adapt to

each subject and thus it is fully exploit: characteristic response time and stimulus strength values

for each participant.

11.2 Future work
Regarding research, the future analysis to be performed are:

• Fitting the model developed by Hernández-Navarro et al. [15] regarding proactive and

reactive responses. This model is called Parallel Sensory Integration and Action Model

(PSIAM).

• Study of humans’ finger trajectories in the task (Fig. 32): this study would give information

about changes of mind (Fig. 33), which are the trials where participants start answering

to one side but mid-trial change abruptly the answer side. This could be because of the

transition bias mixed with a strong stimulus evidence: for example, a subject is in a

repetition pattern on the right and then there is a strong stimulus on the left, but the

subject started going to the right due to the bias and mid-trial changed the trajectory

because of a great stimulus strength.

 Figure 33. Finger trajectories from 100 trials from subject 10.

55

Figure 34. Trajectories with changes of mind (green) of 800 trajectories from subject 13.

• Track and analysis of eye movement: this could give insight of whether the subjects look

at the response sides before answering or the finger movement is prior to the eyes.

• Electroencephalogram (EEG) recording and analysis: this could give information about

subjects’ brain activity when doing the task, which will be a broad new field of analysis.

56

12. References
[1] J. Monod, Le hasard et la nécessité: Essai sur la philosophie naturelle de la biologie

moderne. 1981.

[2] S. Herculano-Houzel, “The remarkable, yet not extraordinary, human brain as a scaled-up

primate brain and its associated cost,” Proc Natl Acad Sci U S A, vol. 109, no. SUPPL.1,

pp. 10661–10668, Jun. 2012, doi: 10.1073/PNAS.1201895109/ASSET/41169010-7103-

422B-8F77-AF073BA4D5D7/ASSETS/GRAPHIC/PNAS.1201895109FIG06.JPEG.

[3] J. Zhang, “Basic Neural Units of the Brain: Neurons, Synapses and Action Potential,” May

2019, doi: 10.48550/arxiv.1906.01703.

[4] D. Neill, “Cortical evolution and human behaviour,” Brain Res Bull, vol. 74, no. 4, pp. 191–

205, Sep. 2007, doi: 10.1016/J.BRAINRESBULL.2007.06.008.

[5] W. Enard, “The Molecular Basis of Human Brain Evolution,” Curr Biol, vol. 26, no. 20, pp.

R1109–R1117, Oct. 2016, doi: 10.1016/J.CUB.2016.09.030.

[6] E. L. Maclean, “Unraveling the evolution of uniquely human cognition,” Proc Natl Acad Sci

U S A, vol. 113, no. 23, pp. 6348–6354, Jun. 2016, doi: 10.1073/PNAS.1521270113.

[7] L. R. Santos and A. G. Rosati, “The Evolutionary Roots of Human Decision Making,” Annu

Rev Psychol, vol. 66, p. 321, 2015, doi: 10.1146/ANNUREV-PSYCH-010814-015310.

[8] S. Danziger, J. Levav, and L. Avnaim-Pesso, “Extraneous factors in judicial decisions,”

Proc Natl Acad Sci U S A, vol. 108, no. 17, pp. 6889–6892, Apr. 2011, doi:

10.1073/PNAS.1018033108/-/DCSUPPLEMENTAL.

[9] M. R. Mercier and C. Cappe, “The interplay between multisensory integration and

perceptual decision making,” Neuroimage, vol. 222, Nov. 2020, doi:

10.1016/J.NEUROIMAGE.2020.116970.

[10] T. D. Hanks and C. Summerfield, “Perceptual Decision Making in Rodents, Monkeys, and

Humans,” Neuron, vol. 93, no. 1, pp. 15–31, Jan. 2017, doi:

10.1016/J.NEURON.2016.12.003.

[11] F. Najafi and A. K. Churchland, “Perceptual Decision-making: a field in the midst of a

transformation,” Neuron, vol. 100, no. 2, p. 453, Oct. 2018, doi:

10.1016/J.NEURON.2018.10.017.

[12] A. Hermoso-Mendizabal, A. Hyafil, P. E. Rueda-Orozco, S. Jaramillo, D. Robbe, and J. de

la Rocha, “Response outcomes gate the impact of expectations on perceptual decisions,”

Nature Communications 2020 11:1, vol. 11, no. 1, pp. 1–13, Feb. 2020, doi:

10.1038/s41467-020-14824-w.

[13] G. Vernon, D. Farrow, and M. Reid, “Returning serve in tennis: a qualitative examination

of the interaction of anticipatory information sources used by professional tennis players,”

Front. Psychol., vol. 9, no. JUN, p. 895, Jun. 2018, doi: 10.3389/fpsyg.2018.00895.

[14] M. Molano-Mazon, D. Duque, G. R. Yang, J. de La Rocha, and M. Molano-Mazón, “Pre-

training RNNs on ecologically relevant tasks explains sub-optimal behavioral reset,”

bioRxiv, p. 2021.05.15.444287, May 2021, doi: 10.1101/2021.05.15.444287.

[15] L. Hernández-Navarro, A. Hermoso-Mendizabal, D. Duque, J. de la Rocha, and A. Hyafil,

“Proactive and reactive accumulation-to-bound processes compete during perceptual

57

decisions,” Nature Communications 2021 12:1, vol. 12, no. 1, pp. 1–15, Dec. 2021, doi:

10.1038/s41467-021-27302-8.

[16] D. Hume, A Treatise of Human Nature: Being an Attempt to Introduce the Experimental

Method of Reasoning into Moral Subjects. 1740.

[17] P.-S. de Laplace, Essai philosophique sur les probabilités. 1814.

[18] L. Wittgenstein, Tractatus Logico-Philosophicus. 1921.

[19] L. Jan, “Neuroscience: Past and Future,” Neuron, vol. 98, no. 1, pp. 10–11, Apr. 2018, doi:

10.1016/J.NEURON.2018.03.029.

[20] N. Kriegeskorte and P. K. Douglas, “Cognitive computational neuroscience,” Nat Neurosci,

vol. 21, no. 9, p. 1148, Sep. 2018, doi: 10.1038/S41593-018-0210-5.

[21] S. Becker, “Preface to the special issue: Computational cognitive neuroscience,” Brain

Research, vol. 1202, pp. 1–2, Apr. 2008, doi: 10.1016/J.BRAINRES.2007.06.030.

[22] C. K. Hauser and E. Salinas, “Perceptual Decision Making,” Encyclopedia of

Computational Neuroscience, pp. 1–21, 2014, doi: 10.1007/978-1-4614-7320-6_317-1.

[23] W. van den Bos, R. Bruckner, M. R. Nassar, R. Mata, and B. Eppinger, “Computational

neuroscience across the lifespan: Promises and pitfalls,” Developmental Cognitive

Neuroscience, vol. 33, p. 42, Oct. 2018, doi: 10.1016/J.DCN.2017.09.008.

[24] M. Dricu and S. Frühholz, “A neurocognitive model of perceptual decision‐making on

emotional signals,” Human Brain Mapping, vol. 41, no. 6, p. 1532, Apr. 2020, doi:

10.1002/HBM.24893.

[25] M. Dricu, L. Ceravolo, D. Grandjean, and S. Frühholz, “Biased and unbiased perceptual

decision-making on vocal emotions,” Scientific Reports, vol. 7, no. 1, Dec. 2017, doi:

10.1038/S41598-017-16594-W.

[26] R. Ratcliff, C. Voskuilen, and A. Teodorescu, “Modeling 2-Alternative Forced-Choice

Tasks: Accounting for both Magnitude and Difference Effects,” Cogn Psychol, vol. 103, p.

1, Jun. 2018, doi: 10.1016/J.COGPSYCH.2018.02.002.

[27] M. Jogan and A. A. Stocker, “A new two-alternative forced choice method for the unbiased

characterization of perceptual bias and discriminability,” Journal of Vision, vol. 14, no. 3,

pp. 20–20, Mar. 2014, doi: 10.1167/14.3.20.

[28] J. C. Lee, T. Beesley, and E. J. Livesey, “Sequential effects and sequence learning in a

three-choice serial reaction time task,” Acta Psychol (Amst), vol. 170, pp. 168–176, Oct.

2016, doi: 10.1016/J.ACTPSY.2016.08.004.

[29] D. Bindman and C. Chubb, “Brightness assimilation in bullseye displays,” Vision Res, vol.

44, no. 3, pp. 309–319, 2004, doi: 10.1016/S0042-6989(03)00430-9.

[30] Á. Lukács, K. S. Lukics, and D. Dobó, “Online Statistical Learning in Developmental

Language Disorder,” Frontiers in Human Neuroscience, vol. 15, Sep. 2021, doi:

10.3389/FNHUM.2021.715818.

[31] D. A. Ganea, A. Bexter, M. Günther, P. M. Gardères, B. M. Kampa, and F. Haiss,

“Pupillary Dilations of Mice Performing a Vibrotactile Discrimination Task Reflect Task

Engagement and Response Confidence,” Front Behav Neurosci, vol. 14, Sep. 2020, doi:

10.3389/FNBEH.2020.00159.

58

[32] E. C. Ketel, R. A. de Wijk, C. de Graaf, and M. Stieger, “Effect of cross-cultural differences

on thickness, firmness and sweetness sensitivity,” Food Res Int, vol. 152, Feb. 2022, doi:

10.1016/J.FOODRES.2020.109890.

[33] A. Abrahamyan, L. L. Silva, S. C. Dakin, M. Carandini, and J. L. Gardner, “Adaptable

history biases in human perceptual decisions,” Proc Natl Acad Sci U S A, vol. 113, no. 25,

p. E3548, Jun. 2016, doi: 10.1073/PNAS.1518786113.

[34] R. Y. Cho et al., “Mechanisms underlying dependencies of performance on stimulus

history in a two-alternative forced-choice task,” Cogn Affect Behav Neurosci, vol. 2, no. 4,

pp. 283–299, 2002, doi: 10.3758/CABN.2.4.283.

[35] C. M. Conway and M. H. Christiansen, “Sequential learning in non-human primates,”

Trends in Cognitive Sciences, vol. 5, no. 12, pp. 539–546, Dec. 2001, doi: 10.1016/S1364-

6613(00)01800-3.

[36] F. H. Petzschner, S. Glasauer, and K. E. Stephan, “A Bayesian perspective on magnitude

estimation,” Trends in Cognitive Sciences, vol. 19, no. 5, pp. 285–293, May 2015, doi:

10.1016/J.TICS.2015.03.002.

[37] F. O’Brien, “Sequential contrast effects with human subjects,” Journal of the Experimental

Analysis of Behavior, vol. 11, no. 5, p. 537, Sep. 1968, doi: 10.1901/JEAB.1968.11-537.

[38] “Sequential effects reflect parallel learning of multiple environmental regularities.”

https://papers.nips.cc/paper/2009/hash/522a9ae9a99880d39e5daec35375e999-

Abstract.html (accessed May 17, 2022).

[39] Z. Wang, B. Xu, and H. J. Zhou, “Social cycling and conditional responses in the Rock-

Paper-Scissors game,” Scientific Reports 2014 4:1, vol. 4, no. 1, pp. 1–7, Jul. 2014, doi:

10.1038/srep05830.

[40] A. Abrahamyan, L. L. Silva, S. C. Dakin, M. Carandini, and J. L. Gardner, “Adaptable

history biases in human perceptual decisions,” Proc Natl Acad Sci U S A, vol. 113, no. 25,

p. E3548, Jun. 2016, doi: 10.1073/PNAS.1518786113.

[41] W. S. Verplanck, J. W. Cotton, and G. H. Collier, “Previous training as a determinant of

response dependency at the threshold,” Journal of Experimental Psychology, vol. 46, no.

1, pp. 10–14, Jul. 1953, doi: 10.1037/H0050386.

[42] M. H. Wilder, M. Jones, and M. C. Mozer, “Sequential effects reflect parallel learning of

multiple environmental regularities.”

[43] M. Wilder, “Common Principles Underlying Models of Sequential Effects.”

[44] D. Gökaydin, D. J. Navarro, A. Ma-Wyatt, and A. Perfors, “The Structure of Sequential

Effects,” Journal of Experimental Psychology: General, vol. 145, no. 1, pp. 110–123, Jan.

2016, doi: 10.1037/XGE0000106.

[45] H. Stein et al., “Reduced serial dependence suggests deficits in synaptic potentiation in

anti-NMDAR encephalitis and schizophrenia,” Nature Communications 2020 11:1, vol. 11,

no. 1, pp. 1–11, Aug. 2020, doi: 10.1038/s41467-020-18033-3.

[46] I. Lieder, V. Adam, O. Frenkel, S. Jaffe-Dax, M. Sahani, and M. Ahissar, “Perceptual bias

reveals slow-updating in autism and fast-forgetting in dyslexia,” Nature Neuroscience 2019

22:2, vol. 22, no. 2, pp. 256–264, Jan. 2019, doi: 10.1038/s41593-018-0308-9.

59

[47] D. Sussillo, “Neural circuits as computational dynamical systems,” Curr Opin Neurobiol,

vol. 25, pp. 156–163, Apr. 2014, doi: 10.1016/J.CONB.2014.01.008.

[48] G. R. Yang and X. J. Wang, “Artificial Neural Networks for Neuroscientists: A Primer,”

Neuron, vol. 107, no. 6, pp. 1048–1070, Sep. 2020, doi: 10.1016/J.NEURON.2020.09.005.

[49] Debora Lombardo, “ Investigating sequential effects in humans performing a 2AFC

psychophysical task,” Universitat de Barcelona, 2022. Accessed: Feb. 15, 2022. [Online].

Available: Investigating sequential effects in humans performing a 2AFC psychophysical

task

[50] A. Javor, M. Koller, N. Lee, L. Chamberlain, and G. Ransmayr, “Neuromarketing and

consumer neuroscience: contributions to neurology,” BMC Neurology, vol. 13, p. 13, Feb.

2013, doi: 10.1186/1471-2377-13-13.

[51] L. Alvino, L. Pavone, A. Abhishta, and H. Robben, “Picking Your Brains: Where and How

Neuroscience Tools Can Enhance Marketing Research,” Frontiers in Neuroscience, vol.

14, p. 577666, Dec. 2020, doi: 10.3389/FNINS.2020.577666.

[52] “SJR - International Science Ranking.”

https://www.scimagojr.com/countryrank.php?category=2802&order=it&ord=desc

(accessed May 23, 2022).

[53] “SJR Compare Countries.”

https://www.scimagojr.com/comparecountries.php?ids[]=us&ids[]=cn&ids[]=gb&ids[]=de&i

ds[]=ca&ids[]=it&area=2800 (accessed May 23, 2022).

[54] “BARCCSYN – Barcelona Computational, Cognitive and Systems Neuroscience

Community.” https://barccsyn.org/ (accessed May 30, 2022).

[55] “Google.” https://www.google.es/ (accessed May 20, 2022).

[56] “DeepMind.” https://www.deepmind.com/ (accessed May 20, 2022).

[57] “Research.” https://www.deepmind.com/research?tag=Neuroscience (accessed May 20,

2022).

[58] P. M. Pilarski, A. Butcher, M. Johanson, M. M. Botvinick, A. Bolt, and A. S. R. Parker,

“Learned human-agent decision-making, communication and joint action in a virtual reality

environment,” May 2019, doi: 10.48550/arxiv.1905.02691.

[59] S. Sarkar et al., “Effects of Diazepam on Reaction Times to Stop and Go,” Frontiers in

Human Neuroscience, vol. 14, p. 403, Oct. 2020, doi:

10.3389/FNHUM.2020.567177/BIBTEX.

[60] S. Baykara and K. Alban, “Visual and Auditory Reaction Times of Patients with Opioid Use

Disorder,” Psychiatry Investigation, vol. 16, no. 8, p. 602, Aug. 2019, doi:

10.30773/PI.2019.05.16.

[61] O. H. Hernández, M. Vogel-Sprott, and V. I. Ke-Aznar, “Alcohol impairs the cognitive

component of reaction time to an omitted stimulus: a replication and an extension,” J Stud

Alcohol Drugs, vol. 68, no. 2, pp. 276–281, 2007, doi: 10.15288/JSAD.2007.68.276.

[62] C. Bolfer et al., “Reaction time assessment in children with ADHD,” Arq Neuropsiquiatr,

vol. 68, no. 2, pp. 282–286, 2010, doi: 10.1590/S0004-282X2010000200025.

[63] B. U. Christ, M. I. Combrinck, and K. G. F. Thomas, “Both reaction time and accuracy

measures of intraindividual variability predict cognitive performance in Alzheimer’s

60

disease,” Frontiers in Human Neuroscience, vol. 12, p. 124, Apr. 2018, doi:

10.3389/FNHUM.2018.00124/BIBTEX.

[64] “Force and Torque Testing Instruments | S. I. Instruments.” https://www.si-

instruments.com.au/ (accessed May 30, 2022).

[65] “Reaction Time Panel | SI Instruments.” https://www.si-

instruments.com.au/supplier/lafayette/reaction-time-panel.html (accessed May 30, 2022).

[66] “BATAKPro.” https://www.batak.com/batakpro.htm (accessed May 30, 2022).

[67] R. Brand, W. Wolff, and D. Thieme, “Using response-time latencies to measure athletes’

doping attitudes: The brief implicit attitude test identifies substance abuse in bodybuilders,”

Substance Abuse: Treatment, Prevention, and Policy, vol. 9, no. 1, pp. 1–10, Oct. 2014,

doi: 10.1186/1747-597X-9-36/FIGURES/3.

[68] “Substance Abuse Treatment, Prevention, and Policy | Home page.”

https://substanceabusepolicy.biomedcentral.com/ (accessed May 30, 2022).

[69] “MUSEUM OF THE HISTORY OF REACTION TIME RESEARCH.”

http://tomperera.com/psychology_museum/mrt.htm (accessed Jun. 01, 2022).

[70] T. A. Salthouse, “Reaction Time,” Encyclopedia of Gerontology, pp. 407–410, 2007, doi:

10.1016/B0-12-370870-2/00158-X.

[71] D. Burr and P. Thompson, “Motion psychophysics: 1985-2010,” Vision Research, vol. 51,

no. 13, pp. 1431–1456, Jul. 2011, doi: 10.1016/J.VISRES.2011.02.008.

[72] “psychophysics - Search Results - PubMed.”

https://pubmed.ncbi.nlm.nih.gov/?term=psychophysics (accessed Jun. 01, 2022).

[73] “MathWorks - MATLAB & Simulink Creators.” https://es.mathworks.com/ (accessed May

15, 2022).

[74] “A Python Book: Beginning Python, Advanced Python, and Python Exercises.”

https://web.archive.org/web/20120623165941/http://cutter.rexx.com/~dkuhlman/python_bo

ok_01.html (accessed May 15, 2022).

[75] “About PythonTM | Python.org.” https://www.python.org/about/ (accessed May 15, 2022).

[76] “R: The R Project for Statistical Computing.” https://www.r-project.org/ (accessed May 15,

2022).

[77] “Home — Spyder IDE.” https://www.spyder-ide.org/ (accessed May 16, 2022).

[78] “Project Jupyter | Home.” https://jupyter.org/ (accessed May 16, 2022).

[79] Y. Yi and D. M. Merfeld, “Decision Making: Neural Mechanisms and Innovative

Methodology: A quantitative confidence signal detection model: 1. Fitting psychometric

functions,” Journal of Neurophysiology, vol. 115, no. 4, p. 1932, Apr. 2016, doi:

10.1152/JN.00318.2015.

[80] F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and

goodness of fit,” Perception & Psychophysics 2001 63:8, vol. 63, no. 8, pp. 1293–1313,

2001, doi: 10.3758/BF03194544.

[81] H. Dai and C. Micheyl, “Psychometric functions for pure-tone frequency discrimination,” J

Acoust Soc Am, vol. 130, no. 1, pp. 263–272, Jul. 2011, doi: 10.1121/1.3598448.

61

[82] A. Abrahamyan, L. L. Silva, S. C. Dakin, M. Carandini, and J. L. Gardner, “Adaptable

history biases in human perceptual decisions,” Proc Natl Acad Sci U S A, vol. 113, no. 25,

pp. E3548–E3557, Jun. 2016, doi: 10.1073/PNAS.1518786113.

[83] L. Busse et al., “The Detection of Visual Contrast in the Behaving Mouse,” The Journal of

Neuroscience, vol. 31, no. 31, p. 11351, Aug. 2011, doi: 10.1523/JNEUROSCI.6689-

10.2011.

[84] I. Fründ, F. A. Wichmann, and J. H. Macke, “Quantifying the effect of intertrial dependence

on perceptual decisions,” J Vis, vol. 14, no. 7, pp. 1–16, 2014, doi: 10.1167/14.7.9.

[85] “Introduction — statsmodels.” https://www.statsmodels.org/stable/index.html (accessed

Jun. 06, 2022).

[86] M. T. G. Pain and A. Hibbs, “Sprint starts and the minimum auditory reaction time,” J

Sports Sci, vol. 25, no. 1, pp. 79–86, Jan. 2007, doi: 10.1080/02640410600718004.

[87] J. Valls-Solé, A. Solé, F. Valldeoriola, E. Muñoz, L. E. Gonzalez, and E. S. Tolosa,

“Reaction time and acoustic startle in normal human subjects,” Neurosci Lett, vol. 195, no.

2, pp. 97–100, Aug. 1995, doi: 10.1016/0304-3940(94)11790-P.

[88] F. Antoneli, F. M. Passos, L. R. Lopes, and M. R. S. Briones, “A Kolmogorov-Smirnov test

for the molecular clock based on Bayesian ensembles of phylogenies,” PLoS One, vol. 13,

no. 1, Jan. 2018, doi: 10.1371/JOURNAL.PONE.0190826.

[89] “BARCCSYN 2022 - Centre de Recerca Matemàtica.” https://www.crm.cat/barccsyn-2022/

(accessed Jun. 05, 2022).

[90] “El IDIBAPS y sus entidades consorciadas son líderes en producción científica según el

estudio SCImago Institutions Rankings | Hospital Clínic Barcelona.”

https://www.clinicbarcelona.org/noticias/el-idibaps-y-sus-entidades-consorciadas-son-

lideres-en-produccion-cientifica-segun-el-estudio-scimago-institutions-rankings (accessed

May 23, 2022).

[91] “The GNU Operating System and the Free Software Movement.”

https://www.gnu.org/home.en.html (accessed May 20, 2022).

[92] “Online Cognitive Assessment Platform | Cambridge Brain Sciences.”

https://www.cambridgebrainsciences.com/ (accessed Jun. 01, 2022).

[93] C. Loriette, C. Ziane, and S. ben Hamed, “Neurofeedback for cognitive enhancement and

intervention and brain plasticity,” Rev Neurol (Paris), vol. 177, no. 9, pp. 1133–1144, Nov.

2021, doi: 10.1016/J.NEUROL.2021.08.004.

[94] R. Markiewicz, “The use of EEG Biofeedback/Neurofeedback in psychiatric rehabilitation,”

Psychiatr Pol, vol. 51, no. 6, pp. 1095–1106, 2017, doi: 10.12740/PP/68919.

62

13. Annex

List of figures
Annex Figure 1. Certificate of attendance at the BARCCSYN 2022 annual meeting. 62

Annex Figure 2. Poster presented in the BARCCSYN 2022 annual meeting. .. 64

Annex Figure 3. Poster presentation in BARCCSYN 2022 annual meeting. .. 65

Annex Figure 4. Mean performance of Version 1 subjects ... 66

Annex Figure 5. Psychometric curves of Version 1 subjects. ... 66

13.1 BARCCSYN 2022

13.1.1 Certificate of attendance

Annex Figure 1. Certificate of attendance at the BARCCSYN 2022 annual meeting.

file:///C:/Users/alexg/Desktop/UB/4.2/TFG/TFG.docx%23_Toc105579073

63

13.1.2 Abstract

Human idiosyncratic biases in an expectation-based 2AFC auditory task under strong time
pressure
Alex Garcia-Duran1, Debora Lombardo1, Jaime de la Rocha1, Manuel Molano-Mazón1,2

1 IDIBAPS, Rosselló 149, Barcelona, 08036, Spain
2 Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale

Recent studies have thoroughly characterized the behavior of rats performing a Two-Alternative
Forced Choice (2AFC) auditory task, in which the probability to repeat the previous stimulus
category is varied in a blockwise fashion. These studies showed that rats exhibit a transition bias:
a tendency to alternate/repeat the previous response using an estimate of the probability given
the recent trial history. However after error trials, the transition bias was null (Hermoso-
Mendizabal et al. 2020). Even though it is suboptimal, this so-called reset strategy has been
shown to be highly robust and present in many task variants (Molano-Mazón et al. 2021). On the
other hand, the reaction times of rats performing the 2AFC task has been shown to be governed
by two independent processes: one that depends on the accumulation of the stimulus evidence
and a second, stimulus-independent process that only depends on the time elapsed since the
beginning of the trial (Hernández-Navarro et al. 2021). Here we have investigated the behavior of
human subjects performing an auditory 2AFC task presenting the same type of correlations
experienced by the rats. We found that their strategies were more heterogeneous, with some
subjects displaying a clear reset strategy while others developed a more optimal strategy.
Furthermore, the reaction times of the human subjects showed evidence of being influenced by
the two processes mentioned above, suggesting that the existence of two the different
mechanisms described in rats may be a general feature present across species.

References
Hermoso-Mendizabal, A., Hyafil, A., Rueda-Orozco, P. E., Jaramillo, S., Robbe, D., & De la
Rocha, J. (2020). Response outcomes gate the impact of expectations on perceptual decisions.
Nature communications, 11(1), 1-13.
Molano-Mazon, M., Shao Y., Duque, D., Yang, G. R., Ostojic S. & de la Rocha, J. (2021).
Ecologically pre-trained RNNs explain suboptimal animal decisions. bioRxiv.
Hernández-Navarro, L., Hermoso-Mendizabal, A., Duque, D., de la Rocha, J., & Hyafil, A. (2021).
Proactive and reactive accumulation-to-bound processes compete during perceptual decisions.
Nature communications, 12(1), 1-15.

Acknowledgements
This research was supported by the Spanish Ministry of Economy and Competitiveness together
with the European Regional Development Fund (IJCI-2016-29358 to D.D.; RTI2018-099750-B-
I00 to J.R.), the European Research Council (ERC-2015-CoG - 683209 Priors to J.R.).

64

13.1.3 Poster

Annex Figure 2. Poster presented in the BARCCSYN 2022 annual meeting.

65

13.1.4 Image

 Annex Figure 3. Poster presentation in BARCCSYN 2022 annual meeting.

66

13.2 Figures from Version 1 (500ms)
Mean performance of all the group:

Annex Figure 4. Mean performance of Version 1 subjects

Group psychometric curves in the rep/alt space:

Annex Figure 5. Psychometric curves of Version 1 subjects.

67

13.3 Code
The code is available at the following GitHub repository:

https://github.com/manuelmolano/psycho_priors

13.3.1 Main: analyses.py

import pandas as pd

import helper_functions as hf

from scipy.optimize import curve_fit

import numpy as np

import matplotlib.pyplot as plt

import glob

import os

from scipy.signal import find_peaks

import seaborn as sns

GLOBAL VARIABLES

FIX_TIME = 0.5

NUM_BINS_RT = 6

NUM_BINS_MT = 7

MT_MIN = 0.05

MT_MAX = 1

START_ANALYSIS = hf.START_ANALYSIS # trials to ignore

TAU_LIST = hf.tau_list

def box_plot(data, ax, x, lw=.5, fliersize=4, color='k', widths=0.15):

 bp = ax.boxplot(data, positions=[x], widths=widths)

 for p in ['whiskers', 'caps', 'boxes', 'medians']:

 for bpp in bp[p]:

 bpp.set(color=color, linewidth=lw)

 bp['fliers'][0].set(markeredgecolor=color, markerfacecolor=color, alpha=0.5,

 marker='x', markersize=fliersize)

 ax.set_xticks([])

def get_data(subj, main_folder):

 # subject folder

 # folder = main_folder+subj+'/' # Manuel

 folder = main_folder+'\\'+subj+'\\' # Alex

 # find all data files

 files = glob.glob(folder+'*trials.csv')

 # take files names

 file_list = [os.path.basename(x) for x in files

 if x.endswith('trials.csv')]

 # sort files

 sfx = [x[x.find('2021'):x.find('2021')+15] for x in file_list]

https://github.com/manuelmolano/psycho_priors

68

 sorted_list = [x for _, x in sorted(zip(sfx, file_list))]

 print(sorted_list)

 # create data

 data = {'correct': np.empty((0,)), 'answer_response': np.empty((0,)),

 'soundPlay_object1_leftRightBalance': np.empty((0,)),

 'respondedInTime': np.empty((0,)), 'block': np.empty((0,)),

 'soundPlay_responseTime': np.empty((0,)),

 'soundPlay_duration': np.empty((0,)),

 'answer_responseTime': np.empty((0,))}

 # go over all files

 for f in sorted_list:

 # read file

 # df1 = pd.read_csv(main_folder+subj+'/'+f, sep=',') # Manuel

 df1 = pd.read_csv(main_folder+'\\'+subj+'\\'+f, sep=',') # Alex

 for k in data.keys():

 values = df1[k].values

 if k == 'soundPlay_object1_leftRightBalance':

 values = values-.5

 values[np.abs(values) < 0.01] = 0

 data[k] = np.concatenate((data[k], values))

 return data

def plot_learning(perf, valid, ax, w_conv=200):

 m_p = np.mean(perf)

 learning_curve = np.convolve(perf, np.ones((w_conv,))/w_conv, mode='valid')

 ax.plot(learning_curve,

 'k', label='Performance ('+str(np.round(m_p, 3))+')')

 m_v = np.mean(valid)

 valid_curve = np.convolve(valid, np.ones((w_conv,))/w_conv, mode='valid')

 ax.plot(valid_curve,

 color=(.7, .7, .7),

 label='Valid trials ('+str(np.round(m_v, 3))+')')

 tune_panel(ax=ax, xlabel='Trials', ylabel='Performance')

 ax.axhline(y=0.5, linestyle='--', lw=0.2, color=(.5, .5, .5))

 ax.legend()

 return learning_curve, valid_curve

def plot_ws_lsw_psycho_curve(choice_12, ev, prev_perf, lbs, ws_lsw_panel):

 colors = [(.5, .5, .5), (0, 0, 0)]

 mean_rep_prop = [] # XXX: this is actually the bias and the std is not used

 for ip, p in enumerate([0, 1]):

 # WS/LS

 popt, pcov, ev_mask, repeat_mask =\

 hf.bias_psychometric(choice=choice_12.copy(), ev=-ev.copy(),

 mask=(prev_perf == p), maxfev=100000)

69

 d_ws_ls = hf.plot_psycho_curve(ev=ev_mask, choice=repeat_mask, popt=popt,

 ax=ws_lsw_panel, color_scatter=colors[ip],

 color=colors[ip],

 label=lbs[ip], plot_errbars=True)

 # STORE BIAS

 mean_rep_prop.append(popt[1])

 if p == 1:

 x_ws_ls_ac = d_ws_ls['x_fit']

 y_ws_ls_ac = d_ws_ls['y_fit']

 else:

 x_ws_ls_ae = d_ws_ls['x_fit']

 y_ws_ls_ae = d_ws_ls['y_fit']

 tune_panel(ax=ws_lsw_panel, xlabel='Rep. stim. evidence',

 ylabel='Probability of repeat')

 ws_lsw_panel.axhline(y=0.5, linestyle='--', lw=0.2, color=(.5, .5, .5))

 ws_lsw_panel.legend() # bbox_to_anchor=(1, 1.5))

 d_ws_ls = {'x_ws_ls_ac': x_ws_ls_ac, 'y_ws_ls_ac': y_ws_ls_ac,

 'x_ws_ls_ae': x_ws_ls_ae, 'y_ws_ls_ae': y_ws_ls_ae}

 return mean_rep_prop, d_ws_ls

def plot_rep_alt_psycho_curve(choice_12, ev, prev_perf, blocks,

 rep_alt_panel, lbs):

 colors = [hf.rojo, hf.azul]

 all_means = []

 all_xs = []

 biases = []

 for i_b, blk in enumerate([1, 2]): # blk = 1 --> alt / blk = 2 --> rep

 for p in [0, 1]:

 plt.sca(rep_alt_panel[p])

 alpha = 1 if p == 0 else 1

 lnstyl = '-' if p == 0 else '-'

 plt_opts = {'color': colors[i_b],

 'alpha': alpha, 'linestyle': lnstyl}

 # rep/alt

 popt, pcov, ev_mask, repeat_mask =\

 hf.bias_psychometric(choice=choice_12.copy(), ev=-ev.copy(),

 mask=hf.and_(prev_perf == p,

 blocks == blk),

 maxfev=100000)

 # this is to avoid rounding differences

 ev_mask = np.round(ev_mask, 2)

 d =\

 hf.plot_psycho_curve(ev=ev_mask, choice=repeat_mask,

 popt=popt, ax=rep_alt_panel[p],

 color_scatter=colors[i_b],

 label=lbs[p], plot_errbars=True,

70

 **plt_opts)

 means = d['means']

 xs = d['xs']

 if blk == 1:

 if p == 1:

 x_alt_ac = d['x_fit']

 y_alt_ac = d['y_fit']

 else:

 x_alt_ae = d['x_fit']

 y_alt_ae = d['y_fit']

 elif blk == 2:

 if p == 1:

 x_rep_ac = d['x_fit']

 y_rep_ac = d['y_fit']

 else:

 x_rep_ae = d['x_fit']

 y_rep_ae = d['y_fit']

 all_means.append(means)

 all_xs.append(xs)

 biases.append(popt[1])

 d_curves = {'x_alt_ac': x_alt_ac, 'y_alt_ac': y_alt_ac,

 'x_rep_ac': x_rep_ac, 'y_rep_ac': y_rep_ac,

 'x_alt_ae': x_alt_ae, 'y_alt_ae': y_alt_ae,

 'x_rep_ae': x_rep_ae, 'y_rep_ae': y_rep_ae}

 return all_means, all_xs, biases, d_curves # TODO: return bias (popt[1])

def tune_panel(ax, xlabel, ylabel, font=10):

 ax.set_xlabel(xlabel, fontsize=font)

 ax.set_ylabel(ylabel, fontsize=font)

 ax.spines['right'].set_visible(False)

 ax.spines['top'].set_visible(False)

def get_hist(values, bins):

 hist, x_hist = np.histogram(values, bins=bins)

 hist = hist/np.sum(hist)

 return hist, x_hist

def extract_vars_from_dict(data, steps=None):

 steps = get_steps(steps, num_tr=len(data['correct']))

 ev = data['soundPlay_object1_leftRightBalance'][steps[0]:steps[1]]

 # TODO: change ev to decibels

 choice = data['answer_response'][steps[0]:steps[1]]

 perf = data['correct'][steps[0]:steps[1]]

 valid = data['respondedInTime'][steps[0]:steps[1]] == 1

71

 reaction_time = data['soundPlay_responseTime'][steps[0]:steps[1]]-FIX_TIME

 answ_rt = data['answer_responseTime'][steps[0]:steps[1]]

 sound_dur = data['soundPlay_duration'][steps[0]:steps[1]]-FIX_TIME

 blocks = data['block'][steps[0]:steps[1]]

 return ev, choice, perf, valid, reaction_time, blocks, answ_rt, sound_dur

def get_fig(figsize):

 f, ax = plt.subplots(nrows=2, ncols=5, figsize=figsize)

 return f, ax[0][0], ax[0][1], ax[0][2], [ax[1][1], ax[1][0]], ax[0][3],\

 ax[1][2], ax[1][3], ax[0][4], ax[1][4]

def get_steps(steps, num_tr):

 if steps is None:

 steps = [0, num_tr]

 else:

 if steps < 0:

 steps = [num_tr+steps, num_tr]

 else:

 steps = [0, steps]

 return steps

def process_subject(main_folder, subj, subjects, steps=None, kernels=True, conv_w=2,

 min_num_samples=50, figsize=(18, 8)):

 """

 Process subject data.

 Parameters

 main_folder : TYPE

 DESCRIPTION.

 subj : TYPE

 DESCRIPTION.

 steps : TYPE, optional

 DESCRIPTION. The default is None.

 conv_w : TYPE, optional

 DESCRIPTION. The default is 2.

 figsize : TYPE, optional

 DESCRIPTION. The default is (5, 5).

 margin : TYPE, optional

 DESCRIPTION. The default is 0.1.

 top_row : TYPE, optional

 DESCRIPTION. The default is 0.55.

 Returns

72

 TYPE

 DESCRIPTION.

 mean_rep_prop : TYPE

 DESCRIPTION.

 """

 n_bins = 75 # número de bins para histograma

 # pre-process data

 data = get_data(subj=subj, main_folder=main_folder)

 # get relevan variables

 ev, choice, perf, valid, _, _, _, _ =\

 extract_vars_from_dict(data, steps=steps)

 ev = ev[valid]

 choice = choice[valid]

 # perf = perf[valid]

 print('Percentage of invalid trials:')

 print(np.sum(valid == 0)/len(valid))

 print('Performance:')

 print(np.sum(perf == 1)/len(perf))

 f, learning_panel, psycho_panel, ws_lsw_panel, rep_alt_panel, rt_panel,\

 weights_panel, rt_mt_vs_ev, rt_vs_ev,\

 mt_vs_perf = get_fig(figsize=figsize)

 # LEARNING

 learning_curve, valid_curve = plot_learning(perf=perf,

 valid=valid, ax=learning_panel)

 learning_curve = learning_curve/learning_curve[0]

 valid_curve = valid_curve/valid_curve[0]

 learning_panel.set_title(subj)

 # TODO: remove first part of training from here

 # PSYCHO-CURVE

 popt, pcov = curve_fit(hf.probit_lapse_rates,

 ev[START_ANALYSIS:], choice[START_ANALYSIS:],

 maxfev=10000)

 # bias = popt[1]

 # d_individual was to save the data points to save a csv file

 # d_individual =

 hf.plot_psycho_curve(ev=ev[START_ANALYSIS:],

 choice=choice[START_ANALYSIS:],

 popt=popt, ax=psycho_panel,

 color_scatter='k',

 color='k', plot_errbars=True)

 tune_panel(ax=psycho_panel, xlabel='Evidence of right',

 ylabel='Probability of right')

 psycho_panel.axhline(y=0.5, linestyle='--', lw=0.2, color=(.5, .5, .5))

73

 ev, choice, perf, valid, reaction_time, blocks, answ_rt, sound_dur =\

 extract_vars_from_dict(data, steps=steps)

 # plot reaction times

 # _, ax = plt.subplots(ncols=3)

 # num_bins = 20

 # # plot delay between RT and stim duration (sampling rate seems to be ~18ms)

 # ax[0].hist(sound_dur-reaction_time, num_bins)

 # tune_panel(ax=ax[0], xlabel='Sound duration - resp. time',

 # ylabel='Counts')

 # ax[1].hist(reaction_time, num_bins)

 # tune_panel(ax=ax[1], xlabel='Resp. time', ylabel='Counts')

 # ax[2].hist(answ_rt, num_bins)

 # tune_panel(ax=ax[2], xlabel='Answer time', ylabel='Counts')

 prev_perf = np.concatenate((np.array([0]), perf[:-1]))

 choice_11 = 2*(choice-0.5)

 perf_11 = 2*(perf-0.5)

 gt = choice_11*perf_11

 # CHECK REP. PROBS.

 gt_blk1 = gt[blocks == 1] # alternating block

 reps = hf.get_repetitions(gt_blk1)

 print('Rep. Prob. in Alt. block: ', np.round(np.mean(reps), 3))

 gt_blk2 = gt[blocks == 2] # repeating block

 reps = hf.get_repetitions(gt_blk2)

 print('Rep. Prob. in Rep. block: ', np.round(np.mean(reps), 3))

 choice_12 = choice + 1

 choice_12[~valid] = 0

 lbs = ['after error', 'after correct']

 # WIN-STAY/LOSE-SWITCH, REACTION TIMES AND ZERO-COHERENCE ANALYSIS

 # TODO: remove first part of training

 mean_rep_prop, d_ws_ls = plot_ws_lsw_psycho_curve(

 choice_12=choice_12[START_ANALYSIS:], ev=ev[START_ANALYSIS:],

 prev_perf=prev_perf[START_ANALYSIS:], lbs=lbs,

 ws_lsw_panel=ws_lsw_panel)

 valid = valid[START_ANALYSIS:]

 # RT

 # TODO: remove -1s

 # ignore first START_ANALYSIS trials

 reaction_time = reaction_time[START_ANALYSIS:]

 sound_dur = sound_dur[START_ANALYSIS:]

 median_rt = np.median(reaction_time)

 motor_time = answ_rt[START_ANALYSIS:]+(sound_dur-reaction_time)

 m_str = str(np.round(median_rt, 3))

 counts, bins =\

 np.histogram(reaction_time, n_bins)

 rt_panel.plot(bins[1::], counts/sum(counts), label='Median: '+m_str)

 rt_panel.axvline(x=0, linestyle='--', color='k', lw=0.5)

 rt_panel.axvline(x=RESP_W, linestyle='--', color='k', lw=0.5)

74

 rt_panel.set_xlim([0, 0.5])

 rt_panel.legend()

 tune_panel(ax=rt_panel, xlabel='RT (s)', ylabel='Proportion')

 rt_panel.legend(loc='lower right') # bbox_to_anchor=(1, 1.5))

 # tune_panel(ax=rt_panel, xlabel='Reaction time (s)', ylabel='Frequency')

 # rt_panel.legend()

 # REP/ALT

 # plt.figure()

 # plt.plot(choice)

 # plt.plot(blocks)

 # TODO: get bias

 all_means, all_xs, biases, d_curves =\

 plot_rep_alt_psycho_curve(choice_12=choice_12[START_ANALYSIS:],

 ev=ev[START_ANALYSIS:],

 prev_perf=prev_perf[START_ANALYSIS:],

 blocks=blocks[START_ANALYSIS:],

 rep_alt_panel=rep_alt_panel, lbs=lbs)

 # d_curves['x_normal'] = d_individual['x_fit']

 # d_curves['y_normal'] = d_individual['y_fit']

 # d_curves.update(d_ws_ls)

 # df = pd.DataFrame(d_curves)

 # df.to_csv(main_folder + '\\' + subj + '\\psychometric_curves_' +

 # str(subj)+'.csv')

 for ax, tag in zip(rep_alt_panel, ['(Aft. Err.)', '(Aft. Corr.)']):

 tune_panel(ax=ax, xlabel='Rep. stim. evidence',

 ylabel='Probability of repeat '+tag)

 ax.axhline(y=0.5, linestyle='--', lw=0.2, color=(.5, .5, .5))

 if steps is not None:

 steps = get_steps(steps=steps, num_tr=len(data['correct']))

 steps = '_'.join([str(stp) for stp in steps])

 else:

 steps = 'whole_exp'

 # PLOT ACCURACY VS RT

 perf = perf[START_ANALYSIS:]

 ev_abs = np.round(np.abs(ev), 3)[START_ANALYSIS:]

 ev_vals = np.unique(ev_abs)

 rt_bins = np.linspace(0, RESP_W, NUM_BINS_RT)

 mean_perf_rt = []

 for ev_fix in ev_vals[1:]:

 mean_perf_rt_temp = []

 for i_rt in range(len(rt_bins)-1):

 indx = np.logical_and.reduce((reaction_time > rt_bins[i_rt],

 reaction_time < rt_bins[i_rt+1],

 ev_abs == ev_fix))

 print(np.sum(indx))

75

 if np.sum(indx) == 0:

 print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXX')

 print('NON VALID')

 print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXX')

 mean_perf_rt_temp.append(np.mean(perf[indx]))

 mean_perf_rt_temp = np.array(mean_perf_rt_temp)

 mean_perf_rt_temp = mean_perf_rt_temp/mean_perf_rt_temp[0]

 mean_perf_rt.append(mean_perf_rt_temp)

 mean_perf_rt = np.array(mean_perf_rt)

 # sem_perf_rt = np.nanstd(mean_perf_rt, axis=0)/np.sqrt(3)

 mean_perf_rt = np.nanmean(mean_perf_rt, axis=0)

 # PLOT performance vs Reaction times

 # rt_vs_perf.errorbar(rt_bins[:-1]+(rt_bins[1]-rt_bins[0])/2,

 # mean_perf_rt, sem_perf_rt, marker='.')

 # tune_panel(ax=rt_vs_perf, xlabel='RT (s)', ylabel='Accuracy')

 # REACTIVE/PROACTIVE on EV vs RT

 # proactive = reaction_time[reaction_time < 0.15]

 # reactive = reaction_time[reaction_time >= 0.15]

 # perf_reac = perf[reaction_time >= 0.15]

 # perf_proac = perf[reaction_time < 0.15]

 rt_threshold = 0.12

 perf_reac_list = []

 perf_proac_list = []

 sems_reac = []

 sems_proac = []

 for e in ev_vals:

 indx = ev_abs == e

 perf_reac_list.append(np.mean(perf[indx*(reaction_time >= rt_threshold)]))

 perf_proac_list.append(np.mean(perf[indx*(reaction_time < rt_threshold)]))

 sems_reac.append(np.std(perf[indx*(reaction_time >= rt_threshold)]) /

 np.sqrt(np.sum(indx*(reaction_time >= rt_threshold))))

 sems_proac.append(np.std(perf[indx*(reaction_time < rt_threshold)]) /

 np.sqrt(np.sum(indx*(reaction_time < rt_threshold))))

 rt_vs_ev.errorbar(ev_vals, perf_reac_list, sems_reac, marker='.', label='Reac')

 rt_vs_ev.errorbar(ev_vals, perf_proac_list, sems_proac, marker='.',

 label='Proac')

 rt_vs_ev.legend()

 tune_panel(ax=rt_vs_ev, xlabel='Stimulus strength',

 ylabel='Accuracy')

 # PLOT RT VS COHERENCE

 median_rt_coh = []

 sems_rt_coh = []

 for e in ev_vals:

 indx = ev_abs == e

 median_rt_coh.append(np.median(reaction_time[indx]))

 sems_rt_coh.append(np.std(reaction_time[indx])/np.sqrt(np.sum(indx)))

76

 # PLOT MOTOR AND REACTION TIMES VS COHERENCE

 median_mt_coh = []

 sems_mt_coh = []

 for e in ev_vals:

 indx = ev_abs == e

 median_mt_coh.append(np.median(motor_time[indx]))

 sems_mt_coh.append(np.std(motor_time[indx])/np.sqrt(np.sum(indx)))

 rt_mt_vs_ev.errorbar(ev_vals, median_mt_coh,

 sems_mt_coh, marker='.', label='MT')

 tune_panel(ax=rt_mt_vs_ev, xlabel='Stimulus strength',

 ylabel='Reaction and Motor times (s)')

 rt_mt_vs_ev.errorbar(ev_vals, median_rt_coh,

 sems_rt_coh, marker='.', label='RT')

 rt_mt_vs_ev.legend()

 # BARPLOT WEIGHTS WITH SIGNIFICANCES

 # if kernels:

 # d_kern = pd.read_csv(main_folder + '\\kernels.csv')

 # tau_dict_ini = pd.read_csv(main_folder + '\\tau_dict.csv').to_dict()

 # indx = [i for i, nam in enumerate(subjects) if nam == subj]

 # cols_ac = [val for i, val in enumerate(d_kern.columns)

 # if d_kern.columns[i].endswith('c') or

 # d_kern.columns[i].endswith('pt')

 # or d_kern.columns[i].endswith('nce')]

 # cols_ae = [val for i, val in enumerate(d_kern.columns)

 # if d_kern.columns[i].endswith('e') or

 # d_kern.columns[i].endswith('pt')

 # or d_kern.columns[i].endswith('nce')]

 # ws_ac = [d_kern[cols_ac].iloc[indx].values]

 # ws_ae = [d_kern[cols_ae].iloc[indx].values]

 # else:

 scores_ac = []

 scores_ae = []

 try:

 # tau_dict_ini = pd.read_csv(main_folder + '\\tau_dict.csv').to_dict() # Alex

 tau_dict_ini = pd.read_csv(main_folder + '/tau_dict.csv').to_dict()

 if subj in tau_dict_ini.keys():

 tau_final = tau_dict_ini[subj][0]

 ws_ac, ws_ae, df, score_ac, score_ae, p_z_ac, p_z_ae =\

 standard_glm(ev, choice_12, perf, tau_final)

 else:

 for tau in TAU_LIST:

 _, _, _, score_ac, score_ae, p_z_ac, p_z_ae =\

 standard_glm(ev, choice_12, perf, tau)

 scores_ac.append(score_ac)

 scores_ae.append(score_ae)

 combined = np.mean((np.array(scores_ac) + np.array(scores_ae))/2,

 axis=1)

77

 tau_final = TAU_LIST[np.where(combined == max(combined))[0][0]]

 # tau_final = TAU_LIST[0]

 ws_ac, ws_ae, df, score_ac, score_ae, p_z_ac, p_z_ae =\

 standard_glm(ev, choice_12, perf, tau_final)

 except Exception:

 for tau in TAU_LIST:

 _, _, _, score_ac, score_ae, p_z_ac, p_z_ae =\

 standard_glm(ev, choice_12, perf, tau)

 scores_ac.append(score_ac)

 scores_ae.append(score_ae)

 combined = np.mean((np.array(scores_ac) + np.array(scores_ae))/2,

 axis=1)

 tau_final = TAU_LIST[np.where(combined == max(combined))[0][0]]

 # tau_final = TAU_LIST[0]

 ws_ac, ws_ae, df, score_ac, score_ae, p_z_ac, p_z_ae =\

 standard_glm(ev, choice_12, perf, tau_final)

 index_ws = [i for i, x in enumerate(hf.model_cols) if x == 'T++' or

 x == 'L+' or x == 'L-']

 bars_names = ['T++_ac', 'T++_ae', 'L+_ac', 'L+_ae', 'L-_ac', 'L-_ae']

 heights = []

 w_ac = ws_ac[0][0]

 w_ae = ws_ae[0][0]

 p_list = []

 for i in [0, 1, 2]:

 if i == 0:

 heights.append(w_ac[index_ws[2]])

 heights.append(w_ae[index_ws[2]])

 p_list.append(p_z_ac['T++'])

 p_list.append(p_z_ae['T++'])

 elif i == 1:

 heights.append(w_ac[index_ws[0]])

 heights.append(w_ae[index_ws[0]])

 p_list.append(p_z_ac['L+'])

 p_list.append(p_z_ae['L+'])

 else:

 heights.append(w_ac[index_ws[1]])

 heights.append(w_ae[index_ws[1]])

 p_list.append(p_z_ac['L-'])

 p_list.append(p_z_ae['L-'])

 weights_panel.bar(bars_names, heights)

 weights_panel.tick_params(axis='x', labelrotation=45)

 for i, pv in enumerate(p_list):

 text = ''

 p = .05

 while pv < p and p > 0.05/1e3:

 text += '*'

 p /= 10.

78

 weights_panel.text(x=i-0.2, y=heights[i], s=text,

 size='large')

 weights_panel.text(x=1.5, y=heights[1]+0.5, s='Tau: '+str(tau_final))

 weights_panel.set_ylabel('GLM weights')

 # PLOT ACCURACY VS MOTOR

 mt_bins = np.linspace(MT_MIN, MT_MAX, NUM_BINS_MT)

 print('Number of MT below MIN', np.sum(motor_time < MT_MIN))

 print('Number of MT above MAX', np.sum(motor_time > MT_MAX))

 print('Minimum MT', np.min(motor_time))

 print('Max MT', np.max(motor_time))

 mean_mt_perf = []

 sem_mt_perf = []

 for i_mt in range(len(mt_bins)-1):

 indx = np.logical_and(motor_time > mt_bins[i_mt],

 motor_time < mt_bins[i_mt+1])

 print(np.sum(indx))

 if np.sum(indx) > min_num_samples:

 mean_mt_perf.append(np.mean(perf[indx]))

 sem_mt_perf.append(np.std(perf[indx])/np.sqrt(np.sum(indx)))

 else:

 mean_mt_perf.append(np.nan)

 sem_mt_perf.append(np.nan)

 mt_vs_perf.errorbar(mt_bins[:-1]+(mt_bins[1]-mt_bins[0])/2,

 mean_mt_perf, sem_mt_perf, marker='.')

 tune_panel(ax=mt_vs_perf, xlabel='MT (s)', ylabel='Accuracy')

 # TODO: PLOT CUMMULATIVE RT VS ???

 f.savefig(main_folder+'\\'+subj+'\\psycho_curve_'+steps+'.png', dpi=400,

 bbox_inches='tight') # Alex

 # f.savefig(main_folder+subj+'/psycho_curve_'+steps+'.svg', dpi=400,

 # bbox_inches='tight') # Manuel

 plt.close(f)

 # return exponential decays with tau

 index_kernel = [i for i, x in enumerate(hf.model_cols) if x == 'T++']

 decay_ac = w_ac[index_kernel[0]]*np.exp(-np.arange(10)/tau_final)

 decay_ac[5] = sum(decay_ac[5:10])

 decay_ac = decay_ac[0:6]

 decay_ac = decay_ac[::-1]

 decay_ae = w_ae[index_kernel[0]]*np.exp(-np.arange(10)/tau_final)

 decay_ae[5] = sum(decay_ae[5:10])

 decay_ae = decay_ae[0:5]

 decay_ae = decay_ae[::-1]

 # TODO: return dictionary

 # lst = [np.mean(perf[valid]), mean_rep_prop, median_rt, all_means,

 # all_xs, mean_perf_rt, median_mt_coh, median_rt_coh, mean_mt_perf,

 # ev_vals, motor_time, learning_curve, valid_curve, biases]

79

 # stg = ["np.mean(perf[valid]), mean_rep_prop, median_rt, all_means,"

 # "all_xs, mean_perf_rt, median_mt_coh, median_rt_coh, mean_mt_perf,"

 # "ev_vals, motor_time, learning_curve, valid_curve, biases"]

 # d = hf.list_to_dict(lst, stg)

 return np.mean(perf[valid]), mean_rep_prop, median_rt, all_means,\

 all_xs, mean_perf_rt, median_mt_coh, median_rt_coh, mean_mt_perf, \

 ev_vals, motor_time, learning_curve, valid_curve, biases, perf, \

 choice_12[START_ANALYSIS:], ev_abs, perf_reac_list, \

 perf_proac_list, ws_ac, ws_ae, df, score_ac, score_ae, tau_final,\

 decay_ac, decay_ae, reaction_time, sems_proac

 # TODO: add bias

def psycho_analysis(main_folder, subjects, steps=[None], name=''):

 """

 Go over all subjects and plot summary figs.

 Parameters

 main_folder : str

 folder where the data for all subjects is.

 subjects : list

 list with the name of the folders corr. to each subject.

 steps : list, optional

 timesteps to process subject for different periods during

 training ([None])

 Returns

 None.

 """

 # TODO: adjust size

 f2, ax2 = plt.subplots(ncols=4, nrows=2, figsize=(8, 5),

 sharey=True)

 f2.suptitle('weights' + name + 'ms')

 m_rep_probs = []

 m_perf = []

 m_rt_VS_perf = []

 m_stimStr_VS_rt = []

 m_stimStr_VS_mt = []

 m_reaction_times = []

 m_mt_VS_perf = []

 median_rep_alt = []

 cohs_rep_alt = []

 all_rt_mat = []

 all_mt_mat = []

80

 all_learn_curv = []

 all_valid_curve = []

 bias_total = []

 d_final = {}

 y_cols = ['y_Alt_ae', 'y_Rep_ae', 'y_Alt_ac', 'y_Rep_ac']

 x_cols = ['x_Alt_ae', 'x_Rep_ae', 'x_Alt_ac', 'x_Rep_ac']

 f_ri, ax_ri = plt.subplots(1)

 ax_ri.set_title(name + ' ms')

 ax_ri.set_ylabel('Reset index')

 # resets = {}

 # kernels_over_time_ac = {}

 # kernels_over_time_ae = {}

 # times_final = {}

 d_kernels = {}

 reset_total = []

 tau_dict = {}

 decays_ac = []

 decays_ae = []

 acc_rte = {}

 rte_bins = {}

 proac_arr = np.zeros((len(subjects), 4))

 err_proac_arr = np.zeros((len(subjects), 4))

 time_delay = []

 # reac_times = []

 reverse_st = {}

 reset_st = {}

 ae_list = []

 cdf_tog_all = []

 bins_all = []

 st_mod = []

 for i_s, subj in enumerate(subjects):

 print('-----------')

 print(subj)

 # lbls = ['', subj]

 # go over steps to get psychometric curves for different periods

 for i_stp, stp in enumerate(steps):

 print('---')

 m_p, m_r_prop, m_rt, m_repalt, c_repalt,\

 m_perf_rt, m_mt_coh, m_rt_coh, m_perf_mt, ev_vals, all_mt,\

 l_c, v_c, biases, perf, choice_12, \

 ev, _, proac, ws_ac, ws_ae, df, score_ac, score_ae, tau_final,\

 decay_ac, decay_ae, all_rt, sems_proac =\

 process_subject(main_folder, subj, subjects, steps=stp, kernels=True)

 m_perf.append(m_p)

 m_rep_probs.append(m_r_prop)

 m_rt_VS_perf.append(m_perf_rt)

 m_stimStr_VS_rt.append(m_rt_coh)

81

 m_stimStr_VS_mt.append(m_mt_coh)

 m_mt_VS_perf.append(m_perf_mt)

 m_reaction_times.append(m_rt)

 all_mt_mat.append(all_mt)

 median_rep_alt.append(np.array([np.array(a) for a in m_repalt]))

 cohs_rep_alt.append(np.array([np.array(a) for a in c_repalt]))

 acc_vs_rte, r_bins = hf.tachometric_curves(perf, all_rt, ev_vals,

 np.abs(ev))

 acc_rte[subj] = acc_vs_rte

 rte_bins[subj] = r_bins

 for ind, j in enumerate(m_repalt):

 d_final[subj + '_' + y_cols[ind]] = m_repalt[ind]

 d_final[subj + '_' + x_cols[ind]] = c_repalt[ind]

 all_rt_mat.append(all_rt)

 all_learn_curv.append(l_c)

 all_valid_curve.append(v_c)

 bias_total.append(biases)

 hf.call_plot_kernels(ws_ac, ws_ae, ax2)

 # hf.check_dictionary(data=df, start=250, num_tr=50)

 reset = hf.compute_reset_index(ws_ac, ws_ae, tau_final)

 prev_perf = np.concatenate((np.array([0]), perf[:-1]))

 after_error = perf[(prev_perf == 0)*(ev == 0)]

 ae_list.append(np.mean(after_error))

 # after_correct = perf[prev_perf == 1]

 if reset > 0.66:

 reset_st[subj+'_ae'] = np.mean(after_error)

 reset_st[subj+'_acc'] = np.mean(perf)

 # reset_st[subj+'_ac'] = np.mean(after_correct)

 if reset <= 0.66:

 reverse_st[subj+'_ae'] = np.mean(after_error)

 reverse_st[subj+'_acc'] = np.mean(perf)

 hf.plot_reset_index(reset,

 ax_ri, step=None, per=None, xs=0.5)

 reset_total.append(reset)

 d_kernels = hf.kernel_dicts(ws_ac, ws_ae, d_kernels)

 decays_ac.append(decay_ac)

 decays_ae.append(decay_ae)

 tau_dict[subj] = tau_final

 cdf_tog, reacbins, tdel, _, _ =\

 hf.time_delay(all_rt, ev_vals, np.abs(ev))

 cdf_tog_all.append(cdf_tog)

 bins_all.append(reacbins)

 # hf.plot_time_delay_cdf(cdf_tog, cdf_shift_tog, rt_bins)

 proac_arr[i_s, :] = proac

 err_proac_arr[i_s, :] = sems_proac

 time_delay.append([td for td in tdel])

 modulation = hf.cdf_comparison(ev, all_rt, ev_vals)

82

 st_mod.append(modulation)

 # reac_times.append([round(rt, 4) for rt in rt_bins])

 d_kernels_df = pd.DataFrame(d_kernels, index=[a for a in range(20)])

 d_kernels_df.to_csv(main_folder + '\\kernels' + '.csv')

 tau_df = pd.DataFrame(tau_dict, index=[0])

 tau_df.to_csv(main_folder + '\\tau_dict' + '.csv')

 hf.boxplot_ae_acc(reset_st, reverse_st)

 hf.plot_all_tachometric(ev_vals, acc_rte, rte_bins)

 hf.boxplot_reset_ind(reset_total, ax_ri)

 hf.plot_all_tachometric(ev_vals, acc_rte, rte_bins)

 hf.plot_ac_ae(d_kernels['T++_ae'], d_kernels['T++_ac'])

 hf.plot_expo_kernel(decays_ac, decays_ae)

 # start analysis

 median_rep_alt = np.array(median_rep_alt)

 cohs_rep_alt = np.array(cohs_rep_alt)

 m_rt_VS_perf = np.array(m_rt_VS_perf)

 m_stimStr_VS_rt = np.array(m_stimStr_VS_rt)

 m_stimStr_VS_mt = np.array(m_stimStr_VS_mt)

 m_mt_VS_perf = np.array(m_mt_VS_perf)

 # TODO: use array to get different lists

 bias_total = np.array(bias_total)

 bias_alt_error = bias_total[:, 0]

 bias_alt_correct = bias_total[:, 1]

 bias_rep_error = bias_total[:, 2]

 bias_rep_correct = bias_total[:, 3]

 bias_total = [bias_rep_correct, bias_alt_correct,

 bias_rep_error, bias_alt_error]

 # psycho plots: create figure

 f, ax = plt.subplots(nrows=2, ncols=4, figsize=(15, 9))

 f.suptitle(name)

 ax = ax.flatten()

 # learning

 min_l = np.min([len(x) for x in all_learn_curv])

 all_learn_curv = [x[:min_l] for x in all_learn_curv]

 all_learn_curv = np.array(all_learn_curv)

 # valid

 min_l = np.min([len(x) for x in all_valid_curve])

 all_valid_curve = [x[:min_l] for x in all_valid_curve]

 all_valid_curve = np.array(all_valid_curve)

 # m_stimStr_VS_rt

 first_value_Str_rt = m_stimStr_VS_rt[:, 0]

 m_stimStr_VS_rt = m_stimStr_VS_rt/first_value_Str_rt[:, None]

 # m_stimStr_VS_mt

 first_value_Str_mt = m_stimStr_VS_mt[:, 0]

 m_stimStr_VS_mt = m_stimStr_VS_mt/first_value_Str_mt[:, None]

 # m_rt_VS_perf

 first_value_m_rt_VS_perf = m_rt_VS_perf[:, 0]

83

 m_rt_VS_perf = m_rt_VS_perf/first_value_m_rt_VS_perf[:, None]

 # MEAN PSYCHO-CURVES FOR REP/ALT, AFTER CORRECT/ERROR

 counter = -1

 colors = [hf.rojo, hf.azul]

 ttls = ['After error', 'After correct']

 bias_final = []

 slope_final = []

 for i_b, blk in enumerate([1, 2]):

 for ip, p in enumerate([0, 1]):

 counter += 1

 if i_b == 0:

 ax[2-ip].axvline(x=0., linestyle='--', lw=0.2,

 color=(.5, .5, .5))

 ax[2-ip].axhline(y=0.5, linestyle='--', lw=0.2,

 color=(.5, .5, .5))

 ax[2-ip].set_title(ttls[ip])

 ax[2-ip].set_yticks([0, 0.5, 1])

 tune_panel(ax=ax[2-ip], xlabel='Rep. stim. evidence',

 ylabel='Prop. repeated responses')

 ax[2-ip].plot(cohs_rep_alt[:, counter, :].flatten(),

 median_rep_alt[:, counter, :].flatten(),

 color=colors[i_b], alpha=0.2, linestyle='',

 marker='+')

 medians = np.median(median_rep_alt, axis=0)[counter]

 sems = np.std(median_rep_alt, axis=0)[counter] /\

 np.sqrt(median_rep_alt.shape[0])

 ax[2-ip].errorbar(cohs_rep_alt[0][0], medians, sems,

 color=colors[i_b], marker='.', linestyle='')

 ev_gen = cohs_rep_alt[0, counter, :].flatten()

 popt, pcov = curve_fit(hf.probit_lapse_rates,

 ev_gen,

 np.median(median_rep_alt, axis=0)[counter],

 maxfev=10000)

 bias_final.append(popt[1])

 slope_final.append(popt[0])

 x_fit = np.linspace(-np.max(ev), np.max(ev), 20)

 y_fit = hf.probit_lapse_rates(x_fit, popt[0], popt[1], popt[2], popt[3])

 ax[2-ip].plot(x_fit, y_fit, color=colors[i_b])

 box_plot(data=m_perf, ax=ax[0], x=0, lw=.5, fliersize=4, color='k',

 widths=0.15)

 regs = ['L+_ac', 'L+_ae', 'L-_ac', 'L-_ae', 'T++_ac', 'T++_ae']

 kernels = [d_kernels[key] for key in d_kernels.keys() if key in regs]

 ax[3].boxplot(kernels)

 ax[3].set_xticklabels(regs)

 ax[3].tick_params(axis='x', labelrotation=45)

 tune_panel(ax=ax[0], ylabel='Mean performance', xlabel='')

84

 tune_panel(ax=ax[1], ylabel='Median reaction times', xlabel='')

 # TODO: plot individual traces (alpha=0.2)

 rt_bins = np.linspace(0, RESP_W, NUM_BINS_RT)

 # ev_abs = np.round(np.abs(ev), 3)

 # ev_vals = np.unique(ev_abs)

 # mt_bins = np.linspace(MT_MIN, MT_MAX, NUM_BINS_MT)

 ax[5].plot(rt_bins[:-1]+(rt_bins[1]-rt_bins[0])/2,

 m_rt_VS_perf.T, alpha=0.2, color='k')

 ax[5].errorbar(rt_bins[:-1]+(rt_bins[1]-rt_bins[0])/2,

 np.nanmedian(m_rt_VS_perf, axis=0),

 np.nanstd(m_rt_VS_perf, axis=0) /

 np.sqrt(m_rt_VS_perf.shape[0]),

 marker='.', color='k')

 ax[6].plot(ev_vals, m_stimStr_VS_rt.T, alpha=0.2, color='k')

 ax[6].errorbar(ev_vals, np.median(m_stimStr_VS_rt, axis=0),

 np.std(m_stimStr_VS_rt, axis=0) /

 np.sqrt(m_rt_VS_perf.shape[0]),

 marker='.', color='k')

 ax[6].plot(ev_vals, m_stimStr_VS_mt.T, alpha=0.2, color='g')

 ax[6].errorbar(ev_vals, np.median(m_stimStr_VS_mt, axis=0),

 np.std(m_stimStr_VS_mt, axis=0) /

 np.sqrt(m_rt_VS_perf.shape[0]),

 marker='.', color='g')

 ax[6].legend(['', '', 'RT', 'MT'])

 rt_num_bins = 20

 atm_h_list = []

 # vals inferred by looking at hists

 for atm in all_rt_mat:

 atm_hist, atm_bins = np.histogram(atm, bins=rt_num_bins, range=[0, 0.35])

 atm_hist = atm_hist/np.sum(atm_hist)

 ax[4].plot(atm_bins[:-1]+(atm_bins[1]-atm_bins[1]) /

 2, atm_hist, color='k', alpha=0.25)

 atm_h_list.append(atm_hist)

 mean_rt = np.mean(atm_h_list, axis=0)

 ax[4].plot(atm_bins[:-1]+(atm_bins[1]-atm_bins[1]) /

 2, mean_rt, color='k', alpha=1, linewidth=2)

 # Boxplot bias:

 # ax[7].boxplot(bias_total)

 # ax[7].scatter(np.repeat([1, 2, 3, 4], len(subjects)), bias_total,

 # alpha=0.5, marker='x',

 # c=hf.gris)

 # ax[7].plot([np.repeat(1, len(subjects)), np.repeat(2, len(subjects)),

 # np.repeat(3, len(subjects)), np.repeat(4, len(subjects))],

 # bias_total, c=hf.gris, linewidth=0.5)

 # ax[7].set_xticks([1, 2, 3, 4])

 # ax[7].set_xticklabels(["rep cor", "alt cor", "rep err",

 # "alt err"])

85

 # ax[7].set_ylim([-1.5, 1])

 # Proac

 for i, pr in enumerate(proac_arr):

 ax[7].errorbar(ev_vals, pr, err_proac_arr[i], marker='.',

 label='Proac', alpha=0.1, color='gray', capsize=8,

 fmt='o-')

 ax[7].scatter(ev_vals, pr, linewidth=1, color='gray', alpha=0.08)

 mean_proac = np.nanmean(proac_arr, axis=0)

 mean_err = np.nanmean(err_proac_arr, axis=0)

 ax[7].errorbar(ev_vals, mean_proac, mean_err, marker='.',

 label='Proac', alpha=1, color='k', capsize=8, fmt='o-',

 linewidth=2.5)

 ax[7].scatter(ev_vals, mean_proac, linewidth=2, color='k')

 tune_panel(ax=ax[7], xlabel='Stimulus strength',

 ylabel='Accuracy')

 # TODO: tune panels

 tune_panel(ax=ax[4], xlabel='RT', ylabel='Proportion')

 tune_panel(ax=ax[5], ylabel='Accuracy', xlabel='Reaction time')

 tune_panel(ax=ax[6], ylabel='RT and MT', xlabel='Stimulus strength')

 # f.savefig(main_folder+'rep_props_'+name +

 # '.svg', dpi=400, bbox_inches='tight')

 f.savefig(main_folder+'\\rep_props_'+name +

 '.png', dpi=400, bbox_inches='tight')

 # f, ax = plt.subplots(nrows=1, ncols=1, figsize=(4, 2))

 # ax.plot(all_learn_curv.T, color='k', alpha=0.2)

 # ax.plot(np.median(all_learn_curv, axis=0), color='k')

 # tune_panel(ax=ax, ylabel='Accuracy', xlabel='Trials')

 # f, ax = plt.subplots(nrows=1, ncols=1, figsize=(4, 2))

 # ax.plot(all_valid_curve.T, color='k', alpha=0.2)

 # ax.plot(np.median(all_valid_curve, axis=0), color='k')

 # tune_panel(ax=ax, ylabel='Proportion of valid trials', xlabel='Trials')

def process_trajectories_rep_alt(data_tr, data_traj):

 """

 With this function, data from trials and trajectories is extracted.

 We want to study the slope of the lines so we take the diff on each

 trajectory and then we measure the average slope for each trajectory.

 Since the objective points are at ratio 2:1 to the center, each objective

 point is at ratio 1:1 to the starting point so the slope must be

 approximately 1. With this function we are computing the slope, the

 trajectories and separating them by correct/incorrect, to see if there

 is some bias in these.

 Inputs:

 data_tr : data from trials

86

 data traj: data from trajectories

 condition: wheter the user wants to see repetition (rep),

 alternation (alt), or total (all) data

 Outputs:

 dict_all: has information about trajectories, slopes, left/right

 choices, correct/incorrect choices

 """

 choice = np.array(data_tr['answer_response'])

 correct = np.array(data_tr['correct'])

 x_traj = [x for x in data_traj['answer_positionsX']

 if x not in [np.nan]]

 y_traj = [x for x in data_traj['answer_positionsY']

 if x not in [np.nan]]

 times = [x for x in data_traj['answer_times']

 if x not in [np.nan]]

 difference_x = []

 difference_y = []

 slope = []

 slope_mean = []

 choice_f = []

 correct_f = []

 slope_correct = []

 slope_incorrect = []

 xtraj_correct = []

 ytraj_correct = []

 xtraj_incorrect = []

 ytraj_incorrect = []

 right_correct = []

 right_incorrect = []

 left_correct = []

 left_incorrect = []

 right = []

 left = []

 ind_cor = []

 ind_incor = []

 # first we process the data from the repetition pattern

 for inde in range(len(x_traj)):

 x_traj[inde] = str(x_traj[inde]).split(';')

 y_traj[inde] = str(y_traj[inde]).split(';')

 times[inde] = str(times[inde]).split(';')

 for i in range(len(x_traj[inde])):

 x_traj[inde][i] = float(x_traj[inde][i])

 times[inde][i] = float(times[inde][i])

 difference_x.append(np.diff(x_traj[inde])) # compute the diff in x

 for j in range(len(y_traj[inde])):

 y_traj[inde][j] = float(y_traj[inde][j])

 difference_y.append(np.diff(y_traj[inde])) # compute the diff in y

87

 slope_dummy = []

 for r in range(len(np.diff(y_traj[inde]))):

 # compute the slope by steps of a trajectory

 slope_dummy.append(np.diff(y_traj[inde])[r] /

 np.diff(x_traj[inde])[r])

 slope.append(slope_dummy)

 slope_mean.append(np.mean(slope_dummy)) # compute the mean of slope

 choice_f.append(int(choice[inde])) # save choice

 correct_f.append(correct[inde]) # save correct answer

 if correct[inde] == 1:

 # if subject is correct

 slope_correct.append(np.mean(slope_dummy)) # save slope

 xtraj_correct.append(x_traj[inde]) # save trajectory in x

 ytraj_correct.append(y_traj[inde]) # save trajectory in y

 ind_cor.append(inde)

 if int(choice[inde]) == 1: # if choice is right

 right_correct.append(np.mean(slope_dummy)) # append mean

 right.append(inde) # also append the index

 else:

 left_correct.append(np.mean(slope_dummy)) # same with left

 left.append(inde)

 else: # if choice is incorrect

 slope_incorrect.append(np.mean(slope_dummy)) # same as before

 xtraj_incorrect.append(x_traj[inde])

 ytraj_incorrect.append(y_traj[inde])

 ind_incor.append(inde)

 if int(choice[inde]) == 1:

 right_incorrect.append(np.mean(slope_dummy))

 right.append(inde)

 else:

 left_incorrect.append(np.mean(slope_dummy))

 left.append(inde)

 slope_mean = np.nan_to_num(slope_mean, copy=True, posinf=10)

 slope_incorrect = np.nan_to_num(slope_incorrect, copy=True, posinf=10)

 slope_correct = np.nan_to_num(slope_correct, copy=True, posinf=10)

 right_incorrect = np.nan_to_num(right_incorrect, copy=True, posinf=10)

 right_correct = np.nan_to_num(right_correct, copy=True, posinf=10)

 left_incorrect = np.nan_to_num(left_incorrect, copy=True, posinf=10)

 left_correct = np.nan_to_num(left_correct, copy=True, posinf=10)

 # replace infinite by 10 and save dictionary

 dict_all = {'slope': slope, 'mean': slope_mean, 'choice': choice,

 'correct': correct, 'x_correct': xtraj_correct,

 'y_correct': ytraj_correct,

 'x_incorrect': xtraj_incorrect,

 'y_incorrect': ytraj_incorrect,

 'slope_correct': slope_correct,

 'slope_incorrect': slope_incorrect,

88

 'right_correct': right_correct, 'left_correct': left_correct,

 'left_incorrect': left_incorrect,

 'right_incorrect': right_incorrect, 'right': right,

 'left': left, 'x_traj': x_traj, 'y_traj': y_traj,

 'ind_cor': ind_cor, 'ind_incor': ind_incor, 'times': times}

 return dict_all

def change_of_mind(dict_n, threshold):

 first_thought = np.zeros(len(dict_n['x_traj']))

 final_thought = np.zeros(len(dict_n['x_traj']))

 change_o_m = np.zeros(len(dict_n['x_traj']))

 corr = np.zeros(len(dict_n['x_traj']))

 x_points = [np.array(x)-x[0] for x in dict_n['x_traj']]

 correct = dict_n['correct']

 indx_com = []

 indx_no_com = []

 for ind, x_list in enumerate(dict_n['x_traj']):

 # dummy_first = []

 # for x in x_list:

 # if abs(x) < threshold:

 # dummy_first.append(x)

 # if len(dummy_first) == 0:

 # max_num = x_points[ind][1]

 # else:

 # max_num = max(dummy_first, key=abs)

 if abs(x_points[ind][1]) < threshold:

 max_num = x_list[1]

 else:

 max_num = x_points[ind][1]

 if max_num > 0:

 first_thought[ind] = 1

 else:

 first_thought[ind] = -1

 final_number = x_list[-1]

 if final_number > 0:

 final_thought[ind] = 1

 else:

 final_thought[ind] = -1

 if first_thought[ind] == final_thought[ind]:

 change_o_m[ind] = int(0)

 indx_no_com.append(ind)

 else:

 change_o_m[ind] = int(1)

 indx_com.append(ind)

 if change_o_m[ind] == 1 and correct[ind] == 0:

 corr[ind] = 1

89

 else:

 corr[ind] = 0

 if len(correct[indx_no_com]) != 0:

 prop_incorrect_no_com = sum(correct[indx_no_com] == 0) / \

 len(correct[indx_no_com])

 # incorrect w/o change of mind

 prop_incorrect_com = sum(correct[indx_com] == 0) / len(correct[indx_com])

 # incorrect with change of mind

 proportion = sum(corr)/sum(correct == 0) # general proportion

 # changes of mind over incorrect answers

 proportion_com = len(indx_com) / (len(indx_no_com) + len(indx_com))

 prop_errors = sum(correct == 0)/len(correct)

 return change_o_m, indx_no_com, indx_com, proportion,\

 prop_incorrect_no_com, prop_incorrect_com, proportion_com, prop_errors

def plot_slope_traj(dict_n):

 """

 This function receives a dictionary from the process_trajectories_rep_alt

 function and plots distributuons of slopes and trajectories, with different

 colors for correct/incorrect.

 Input:

 dict_n : dictionary from previous function

 Output:

 histogram of mean slope (for correct and incorrect)

 boxplot of mean slope

 plots trajectories

 boxplot of mean slopes, differences between correct/incorrect

 boxplot of mean slopes, differences between right/left +

 correct/incorrect

 """

 # histogram

 plt.figure('Histogram')

 plt.hist(abs(dict_n['mean']), 100)

 plt.ylabel('Counts')

 plt.xlabel('Mean of slope')

 plt.title("Histogram of the slope's mean absolute value")

 plt.xlim([0, 5])

 # boxplot

 plt.figure('Boxplot')

 plt.boxplot(abs(dict_n['mean'][dict_n['mean'] < 7]))

 plt.title("Boxplot of the slope's mean absolute value")

 # separated correct/incorrect histograms

 plt.figure('Histograms')

 plt.subplot(1, 2, 1)

 plt.hist(np.nan_to_num(dict_n['slope_correct'], copy=True, posinf=15), 90,

90

 label='correct', color='g')

 plt.ylabel('Counts')

 plt.xlabel('Mean slope in correct choices')

 plt.legend()

 plt.subplot(1, 2, 2)

 plt.hist(np.nan_to_num(dict_n['slope_incorrect'], copy=True, posinf=15),

 90, label='incorrect', color='r')

 plt.ylabel('Counts')

 plt.xlabel('Mean slope in incorrect choices')

 plt.legend()

 # Trajectories

 plt.figure('trajectories')

 # N = min(len(dict_n['x_correct']), len(dict_n['x_incorrect']))

 for trajectory in range(19, 200):

 if trajectory in dict_n['ind_cor']:

 plt.plot(dict_n['x_correct'][trajectory],

 dict_n['y_correct'][trajectory], color='g',

 linewidth=0.5)

 else:

 plt.plot(dict_n['x_incorrect'][trajectory],

 dict_n['y_incorrect'][trajectory], color='r',

 linewidth=0.5)

 plt.xlim([-700, 700])

 plt.legend(labels=['correct', 'incorrect'])

 plt.title('Trajectories')

 plt.ylabel('Y direction')

 plt.xlabel('X direction')

 # Boxplot of mean slopes if correct or incorrect

 abs_correct = [abs(x) for x in dict_n['slope_correct'] if abs(x) < 4]

 abs_incorrect = [abs(x) for x in dict_n['slope_incorrect'] if abs(x) < 4]

 plt.figure('boxplots_1')

 plt.boxplot([abs_correct, abs_incorrect])

 plt.xticks([1, 2], ['Correct', 'Incorrect'])

 # Right/Left boxplot

 right_correct = dict_n['right_correct']

 right_incorrect = dict_n['right_incorrect']

 right = np.concatenate((right_correct, right_incorrect))

 plt.figure('boxplots_2')

 plt.subplot(1, 3, 1)

 plt.boxplot([right_correct, right_incorrect])

 plt.ylim([-1, 1.5])

 plt.xticks([1, 2], ['right_correct', 'right_incorrect'])

 left_correct = dict_n['left_correct']

 left_incorrect = dict_n['left_incorrect']

 plt.subplot(1, 3, 2)

 plt.boxplot([left_correct, left_incorrect])

 plt.xticks([1, 2], ['left_correct', 'left_incorrect'])

91

 plt.ylim([-2, 2])

 left = np.concatenate((left_correct, left_incorrect))

 plt.subplot(1, 3, 3)

 plt.boxplot([right, left])

 plt.xticks([1, 2], ['right', 'left'])

 plt.ylim([-3, 3])

 plt.figure('Change of mind')

 # N1 = len(dict_n['x_traj'])

 change_o_m, indx_no_com, indx_com, proportion,\

 prop_incorrect_no_com, prop_incorrect_com, proportion_com\

 = change_of_mind(dict_n, 200)

 for traj in range(19, 1019): # 181 is a bit strange

 if traj in indx_com:

 plt.plot(dict_n['x_traj'][traj],

 dict_n['y_traj'][traj], color='g', linewidth=0.5,

 label='Change of mind')

 if traj in indx_no_com:

 plt.plot(dict_n['x_traj'][traj],

 dict_n['y_traj'][traj], color='r', linewidth=0.1,

 label='No change of mind')

 plt.legend(labels=['No change of mind', 'Change of mind'])

 plt.title('Trajectories')

 plt.ylabel('Y direction')

 plt.xlabel('X direction')

 return

def traj_analysis(main_folder, subjects, steps=[None], name=''):

 prop_inc_com = []

 prop_inc_no_com = []

 prop_com = [] # len(indx_com) / (len(indx_no_com) + len(indx_com))

 prop_correlation = [] # sum(corr)/sum(correct == 0), corr is 1 when C.O.M.

 prop_err_general = []

 prop_acc_general = []

 for i_s, subj in enumerate(subjects):

 print('-----------')

 print(subj)

 for i_stp, stp in enumerate(steps):

 data_tr, data_traj = get_data_traj(subj, main_folder)

 dict_n = process_trajectories_rep_alt(data_tr, data_traj)

 # plot_slope_traj(dict_n)

 change_o_m, indx_no_com, indx_com, proportion,\

 prop_incorrect_no_com, prop_incorrect_com, proportion_com,\

 prop_errors = change_of_mind(dict_n, 200)

 prop_inc_com.append(prop_incorrect_com)

 prop_inc_no_com.append(prop_incorrect_no_com)

 prop_com.append(proportion_com)

92

 prop_correlation.append(proportion)

 prop_err_general.append(prop_errors)

 prop_acc_general.append(1-prop_errors)

 # boxplots of proportion of incorrects when COM and when not COM

 fig, ax = plt.subplots(nrows=1, ncols=3)

 ax = ax.flatten()

 ax[0].boxplot([prop_inc_no_com, prop_inc_com, prop_com])

 ax[0].scatter(np.repeat(1, len(prop_inc_no_com)), prop_inc_no_com,

 alpha=0.5, marker='x', c=hf.gris)

 ax[0].scatter(np.repeat(2, len(prop_inc_com)), prop_inc_com,

 alpha=0.5, marker='x', c=hf.gris)

 ax[0].scatter(np.repeat(3, len(prop_com)), prop_com,

 alpha=0.5, marker='x', c=hf.gris)

 ax[0].set_xticks([1, 2, 3])

 ax[0].set_xticklabels(['Inc_COM',

 'Inc_NO_COM', 'Changes of mind'])

 ax[0].set_ylabel('Proportion')

 ax[0].set_xlabel('Proportion of changes of mind')

 ax[0].set_title(name + ' ms')

 # scatter plot of accuracy vs proportion of change of mind

 ax[1].scatter(prop_com, prop_acc_general)

 ax[1].set_ylabel('General accuracy')

 ax[1].set_xlabel('Proportion of changes of mind')

 ax[1].set_title(name + ' ms')

 # boxplots of proportion of incorrects general

 ax[2].scatter(prop_com, prop_inc_com, label='Incorrect_COM')

 ax[2].scatter(prop_com, prop_inc_no_com, label='Incorrect_NO_COM')

 ax[2].set_ylabel('Error proportion')

 ax[2].set_xlabel('Proportion')

 ax[2].legend()

 ax[2].set_title(name + ' ms')

 fig2, ax2 = plt.subplots(1)

 ax2.plot(dict_n['times'][[indx_com][0][90]][1:-1],

 dict_n['x_traj'][[indx_com][0][90]][1:-1], 'o-', marker='x')

 ax2.set_xlabel('Time from movement (ms)')

 ax2.set_xticks([0, 0.1, 0.2, 0.3, 0.4, 0.5])

 ax2.set_xticklabels([0, 100, 200, 300, 400, 500])

 ax2.set_ylabel('X position')

 ax2.set_title('Change of mind')

 return

def standard_glm(ev, choice_12, perf, tau):

 # data = np.load(folder+'/bhvr_data_all.npz', allow_pickle=1)

 # assert len(data) > 0

 # TODO: get functions from helper_functions_reset_paper.py and

 # copy them in helper_functions.py

93

 data = {'signed_evidence': ev, 'choice': choice_12,

 'performance': perf}

 df = hf.get_GLM_regressors(data, tau, chck_corr=False)

 fit_ac, fit_ae, score_ac, score_ae, p_z_ac, p_z_ae = hf.glm(df)

 ws_ac = fit_ac.coef_[None, :, :]

 ws_ae = fit_ae.coef_[None, :, :]

 return ws_ac, ws_ae, df, score_ac, score_ae, p_z_ac, p_z_ae

def glm_krnls(main_folder='/home/molano/priors/rats/', tag='.mat', x=0,

 axs_glm_krnls=None, ax_inset=None, color=None, name='', contr_th=.05,

 tags_mat=[['T++', 'T-+', 'T+-', 'T--']], sv_folder=None,

 ax_wsls=None, plt_ind_trcs=True, plt_ind_indx=True, ax_2d_plot=None):

 xtcks = ['T++'+x for x in ['2', '3', '4', '5', '6-10']]

 sv_folder = sv_folder or main_folder+'figures'

 if not os.path.exists(sv_folder):

 os.makedirs(sv_folder)

 files = glob.glob(main_folder+'*'+tag+'*')

 # figures

 if axs_glm_krnls is None:

 f_glm, ax_tr = plt.subplots(nrows=2, ncols=2, sharey=True,

 figsize=(8, 6))

 # f_glm, ax = plt.subplots(nrows=1, ncols=4, sharey=True,

 # figsize=(16, 3))

 ax_inset = plt.axes((0.22, 0.45, 0.06, 0.425))

 axs_glm_krnls = [ax_tr.flatten()]

 sv_figs = True

 else:

 sv_figs = False

 # plotting options

 plot_opts = {'alpha': 0.2, 'fntsz': 12}

 if color is not None:

 plot_opts['color_ac'] = color

 plot_opts['color_ae'] = color

 plot_opts['lstyle_ac'] = '-'

 plot_opts['lstyle_ae'] = '--'

 color_inset = color

 else:

 color_inset = 'k'

 all_ws_glm_ac = []

 all_ws_glm_ae = []

 all_resets = []

 for f in files:

 if f.find('PreProcess') == -1:

 # print('-----------------')

 # print(f)

94

 if f.find('.mat') != -1:

 folder = f[:-4]+'/'

 else:

 folder = f+'/'

 # TODO: get function from process_rats_data.py

 hf.exp_results_process(f)

 if not os.path.exists(folder+'/weights_150222.npz'):

 ws_ac, ws_ae = standard_glm(folder=folder)

 np.savez(folder+'/weights_150222.npz',

 **{'ws_ac': ws_ac, 'ws_ae': ws_ae})

 weights = np.load(folder+'/weights_150222.npz')

 ws_ac = weights['ws_ac']

 ws_ae = weights['ws_ae']

 # TODO: get function from plotting_functions_reset_paper.py and

 # copy it in helper_function.py

 reset, krnl_ac, krnl_ae =\

 hf.compute_reset_index(ws_ac, ws_ae, xtcks=xtcks,

 full_reset_index=False)

 contr_ac = np.abs(np.mean(krnl_ac))

 contr_ae = np.abs(np.mean(krnl_ae))

 if contr_ac+contr_ae > contr_th:

 all_ws_glm_ac.append(ws_ac)

 all_ws_glm_ae.append(ws_ae)

 all_resets.append(reset)

 if plt_ind_trcs:

 hf.plot_kernels(ws_ac, ws_ae, ax=axs_glm_krnls,

 regrss=tags_mat, **plot_opts)

 if plt_ind_indx:

 ax_inset.scatter(x+np.random.randn()*0.02, reset,

 edgecolor='none', color=color_inset,

 alpha=0.2)

 if ax_2d_plot is not None:

 ax_2d_plot.plot(contr_ae, contr_ac, color=color_inset,

 marker='+')

 mean_ws_ac = np.mean(np.array(all_ws_glm_ac), axis=0)

 mean_ws_ae = np.mean(np.array(all_ws_glm_ae), axis=0)

 std_ws_ac = np.std(np.array(all_ws_glm_ac), axis=0)

 std_ws_ae = np.std(np.array(all_ws_glm_ae), axis=0)

 plot_opts['alpha'] = 1

 plot_opts['label'] = name

 plot_opts['lw'] = 1.5

 hf.plot_kernels(mean_ws_ac, mean_ws_ae, std_ac=std_ws_ac, std_ae=std_ws_ae,

 ax=axs_glm_krnls, regrss=tags_mat, **plot_opts)

 box_plot(data=all_resets, ax=ax_inset, x=x)

 print('Mean Reset Index:')

95

 print(np.mean(all_resets))

 print('STD Reset Index:')

 print(np.std(all_resets))

 print('N = ', len(all_resets))

 if ax_wsls is not None:

 f, ax = plt.subplots()

 # print(np.array(all_ws_glm_ac).shape)

 ac_mat = []

 ae_mat = []

 for awgac, awgae in zip(all_ws_glm_ac, all_ws_glm_ae):

 k_Lp, _ = hf.get_krnl(name='L+', cols=hf.afterc_cols, weights=awgac,

 n_stps_ws=1)

 k_Lm, _ = hf.get_krnl(name='L-', cols=hf.aftere_cols, weights=awgae,

 n_stps_ws=1)

 ax.plot(k_Lp, color=hf.naranja)

 ax.plot(k_Lm, color='k')

 ac_mat.append(k_Lp[0])

 ae_mat.append(k_Lm[0])

 ac_mean = np.median(ac_mat)

 ac_mat = np.array(ac_mat)/ac_mean

 ae_mat = np.array(ae_mat)/ac_mean

 ax_wsls.scatter(0.01*np.random.rand(len(ac_mat)), ac_mat, color=hf.naranja)

 ax_wsls.scatter(0.01*np.random.rand(len(ac_mat)), ae_mat, color='k')

 box_plot(data=ac_mat, ax=ax_wsls, x=0, lw=.5, fliersize=4,

 color=hf.naranja)

 box_plot(data=ae_mat, ax=ax_wsls, x=0, lw=.5, fliersize=4, color='k')

 # TODO: change folder

 SV_FOLDER =\

 '/home/molano/Dropbox/project_Barna/reset_paper/figures/' +\

 'figs_from_python/'

 hf.sv_fig(f=f, name='wsls_krnls', sv_folder=SV_FOLDER)

 # ax_wsls.scatter(all_ws_glm_ac)

 if sv_figs:

 for ax in ax_tr:

 ax.spines['right'].set_visible(False)

 ax.spines['top'].set_visible(False)

 ax_inset.spines['right'].set_visible(False)

 ax_inset.spines['top'].set_visible(False)

 ax_inset.set_xticks([])

 ax_inset.set_yticks([0, 1])

 ax_inset.set_xlim([x-0.5, x+0.5])

 ax_inset.set_ylabel('Reset Index')

 f_glm.savefig(sv_folder+'/GLM_kernels_transition.png', dpi=400,

 bbox_inches='tight')

 reset_data = {'rest_indexes': all_resets}

96

 np.savez(sv_folder+'/all_resets.npz', **reset_data)

def get_data_traj(subj, main_folder):

 # subject folder

 # folder = main_folder+subj+'/' # Manuel

 folder = main_folder+'\\'+subj+'\\' # Alex

 # find all data files

 files_trials = glob.glob(folder+'*trials.csv')

 files_traj = glob.glob(folder+'*trials-trajectories.csv')

 # take files names

 file_list_trials = [os.path.basename(x) for x in files_trials

 if x.endswith('trials.csv')]

 file_list_traj = [os.path.basename(x) for x in files_traj

 if x.endswith('trials-trajectories.csv')]

 # sort files

 sfx_tls = [x[x.find('2021'):x.find('2021')+15] for x in file_list_trials]

 sfx_trj = [x[x.find('2021'):x.find('2021')+15] for x in file_list_traj]

 sorted_list_tls = [x for _, x in sorted(zip(sfx_tls, file_list_trials))]

 sorted_list_trj = [x for _, x in sorted(zip(sfx_trj, file_list_traj))]

 # create data

 data_tls = {'correct': np.empty((0,)), 'answer_response': np.empty((0,)),

 'soundPlay_object1_leftRightBalance': np.empty((0,)),

 'respondedInTime': np.empty((0,)), 'block': np.empty((0,)),

 'soundPlay_responseTime': np.empty((0,)),

 'soundPlay_duration': np.empty((0,)),

 'answer_responseTime': np.empty((0,))}

 # go over all files

 for f in sorted_list_tls:

 # read file

 # df1 = pd.read_csv(main_folder+subj+'/'+f, sep=',') # Manuel

 df1 = pd.read_csv(main_folder+'\\'+subj+'\\'+f, sep=',') # Alex

 for k in data_tls.keys():

 values = df1[k].values

 if k == 'soundPlay_object1_leftRightBalance':

 values = values-.5

 values[np.abs(values) < 0.01] = 0

 data_tls[k] = np.concatenate((data_tls[k], values))

 data_trj = {'answer_positionsX': np.empty((0,)),

 'answer_positionsY': np.empty((0,)),

 'answer_times': np.empty((0,))}

 for f in sorted_list_trj:

 # read file

 # df1 = pd.read_csv(main_folder+subj+'/'+f, sep=',') # Manuel

 df1 = pd.read_csv(main_folder+'\\'+subj+'\\'+f, sep=',') # Alex

 for k in data_trj.keys():

97

 values = df1[k].values

 if k == 'soundPlay_object1_leftRightBalance':

 values = values-.5

 values[np.abs(values) < 0.01] = 0

 data_trj[k] = np.concatenate((data_trj[k], values))

 return data_tls, data_trj

13.3.2 Helper functions: helper_functions.py

import numpy as np

from numpy import logical_and as and_

from copy import deepcopy as deepc

import seaborn as sns

from numpy import concatenate as conc

import matplotlib.pyplot as plt

from scipy.special import erf

from scipy.optimize import curve_fit

from scipy.stats import mstats

import scipy.io as sio

import seaborn as sns

from sklearn.linear_model import LogisticRegression

import pandas as pd

import os

import re

import glob

import sys

from scipy.io import loadmat

from matplotlib.ticker import MultipleLocator

from scipy.stats import shapiro, ttest_ind, wilcoxon, ttest_1samp

from sklearn.model_selection import cross_val_score

import statsmodels.api as sm

from scipy.stats import norminvgauss as norminv

from scipy.stats import norm

from scipy.interpolate import interp1d

from scipy.signal import savgol_filter, medfilt

from scipy.optimize import curve_fit

from scipy.signal import find_peaks

from scipy.stats import ks_2samp, kstest, chisquare # Kolmogorov-Smirnov test

sys.path.append(os.path.expanduser("~/neurogym"))

rojo = np.array((228, 26, 28))/255

azul = np.array((55, 126, 184))/255

verde = np.array((77, 175, 74))/255

morado = np.array((152, 78, 163))/255

naranja = np.array((255, 127, 0))/255

marron = np.array((166, 86, 40))/255

amarillo = np.array((155, 155, 51))/255

rosa = np.array((252, 187, 161))/255

98

cyan = np.array((0, 1, 1))

gris = np.array((.5, .5, 0.5))

azul_2 = np.array([56, 108, 176])/255

rojo_2 = np.array([165, 15, 21])/255

XTICKS = np.array(['1', '2', '3', '4', '5', '6-10'])

COLORES = conc((azul.reshape((1, 3)), rojo.reshape((1, 3)),

 verde.reshape((1, 3)), morado.reshape((1, 3)),

 naranja.reshape((1, 3)), marron.reshape((1, 3)),

 amarillo.reshape((1, 3)), rosa.reshape((1, 3))),

 axis=0)

COLORES = np.concatenate((COLORES, 0.5*COLORES))

model_cols = ['evidence',

 'L+', 'L-', 'T+-', 'T-+', 'T--', 'T++', 'intercept']

afterc_cols = [x for x in model_cols if x not in ['L+2', 'L-1', 'L-2']]

aftere_cols = [x for x in model_cols if x not in ['L+1', 'L+2', 'L-2']]

tau_list = [0.5, 1, 2, 3]

tau_list = [1]

START_ANALYSIS = 200

--- PLOTTING FUNCTIONS

def check_dictionary(data, start=200, num_tr=200):

 """

 Plots responses and hit, together with the regressors and the fitted

 regressors.

 """

 nrows = 8

 f, ax = plt.subplots(nrows=nrows, ncols=1, figsize=(8, 8), sharex=True)

 ax = ax.flatten()

 ax[0].plot(data['R_response'][start:start+num_tr], '-+',

 label='Choice')

 ax[0].plot(data['hit'][start:start+num_tr], '--+',

 label='hit')

 ax[0].legend()

 ax[1].plot(data['T++1'][start:start+num_tr], label='T++1')

 ax[1].set_ylabel('T++1')

 ax[1].plot(data['T++'][start:start+num_tr], label='T++')

 ax[1].legend()

 ax[2].plot(data['rep_response_11'][start:start+num_tr])

 ax[2].set_ylabel('rep_response_11')

 ax[2].legend()

 ax[3].plot(data['T--1'][start:start+num_tr], label='T--1')

 ax[3].set_ylabel('T--1')

 ax[3].plot(data['T--'][start:start+num_tr], label='T--')

 ax[3].legend()

 ax[4].plot(data['T+-1'][start:start+num_tr], label='T+-1')

99

 ax[4].set_ylabel('T+-1')

 ax[4].plot(data['T+-'][start:start+num_tr], label='T+-')

 ax[4].legend()

 ax[5].plot(data['T-+1'][start:start+num_tr], label='T-+1')

 ax[5].set_ylabel('T-+1')

 ax[5].plot(data['T-+'][start:start+num_tr], label='T-+')

 ax[5].legend()

 ax[6].plot(data['L+1'][start:start+num_tr], label='L+1')

 ax[6].set_ylabel('L+1')

 ax[6].plot(data['L+'][start:start+num_tr], label='L+')

 ax[6].legend()

 ax[7].plot(data['L-1'][start:start+num_tr], label='L-1')

 ax[7].set_ylabel('L-1')

 ax[7].plot(data['L-'][start:start+num_tr], label='L-')

 ax[7].legend()

 for i in range(nrows):

 ax[i].grid(axis='x', which='major')

 ax[i].xaxis.set_major_locator(MultipleLocator(5))

def compute_reset_index(weights_ac, weights_ae, full_reset_index=False,

 xtcks=None):

 """

 Computes reset index as: r_index = 1-abs(w_T++_ac)/abs(w_T++_ae)

 """

 xtcks = 'T++'

 indx = np.array(np.where(np.array(afterc_cols) == xtcks))

 indx = np.array([x for x in indx if len(x) > 0])

 w_ac = abs(weights_ac[0, 0, indx][0])

 w_ae = abs(weights_ae[0, 0, indx][0])

 reset = 1-(w_ae+1e-6)/(w_ac+1e-6)

 return reset[0]

def significant_difference(w_ae):

 """

 First it computes whether the distribution is normal and then performs a

 ttest (if normal) to see if the weights after error are different from zero.

 """

 normal_ae = shapiro(w_ae)[1] > 0.05

 if normal_ae:

 p_value = ttest_1samp(w_ae, 0)[1]

 else:

 p_value = wilcoxon(w_ae)[1]

 return p_value

100

def plot_ac_ae(weights_ac, weights_ae):

 """

 Plots GLM weights of AE vs weights of AC of the desired regressor

 """

 fig_w, ax_w = plt.subplots(1)

 ax_w.scatter(weights_ae, weights_ac)

 ax_w.set_xlabel('GLM Weights AE')

 ax_w.set_ylabel('GLM Weights AC')

def kernel_dicts(weights_ac, weights_ae, d):

 """

 This function is used to update the dictionary where the weights of all

 subjects will be saved, differentiating between after correct and after error.

 """

 weights_ac = weights_ac[0][0]

 weights_ae = weights_ae[0][0]

 cols = model_cols

 for j in range(1, len(weights_ac)-1):

 w_ac = weights_ac[j]

 w_ae = weights_ae[j]

 if len(d.keys()) < 12:

 d[cols[j]+'_ac'] = [w_ac]

 d[cols[j]+'_ae'] = [w_ae]

 else:

 d[cols[j]+'_ac'].append(w_ac)

 d[cols[j]+'_ae'].append(w_ae)

 return d

def boxplot_kernels(d_kernels, name):

 """

 This function plots a boxplot of the GLM weights. Separating between

 after correct and after error.

 """

 fb, axb = plt.subplots(ncols=4, nrows=2, figsize=(8, 5),

 sharey=True)

 axb = axb.flatten()

 fb.suptitle('weights' + name + 'ms')

 cols = [x for x in model_cols if x != 'intercept' and x != 'evidence']

 for j in range(len(cols)):

 axb[j].boxplot([d_kernels[cols[j]+'_ac'],

 d_kernels[cols[j]+'_ae']])

 axb[j].scatter(np.repeat(1, len(d_kernels[cols[j]+'_ac'])),

 d_kernels[cols[j]+'_ac'],

 alpha=0.5, marker='x', c=gris)

 axb[j].scatter(np.repeat(2, len(d_kernels[cols[j]+'_ae'])),

101

 d_kernels[cols[j]+'_ae'],

 alpha=0.5, marker='x', c=gris)

 axb[j].set_xticks([1, 2])

 axb[j].set_xticklabels([cols[j]+'_ac', cols[j]+'_ae'])

 axb[j].set_ylabel('GLM weights')

def boxplot_reset_ind(reset_list, ax):

 """

 This function plots the boxplot of the reset index of all subjects.

 """

 ax.boxplot(reset_list)

 ax.scatter(np.repeat(1, len(reset_list)), reset_list,

 alpha=0.5, marker='x', c=gris)

 ax.set_ylabel('Reset index')

 ax.set_xticks([1])

 ax.set_xticklabels([''])

def boxplot_ae_acc(reset_st, reverse_st):

 revae = [a for i, a in enumerate(reverse_st.values()) if i % 2 == 0]

 resae = [a for i, a in enumerate(reset_st.values()) if i % 2 == 0]

 acc_res = [a for i, a in enumerate(reset_st.values()) if i % 2 == 1]

 acc_rev = [a for i, a in enumerate(reverse_st.values()) if i % 2 == 1]

 fig, ax = plt.subplots(1)

 data = [revae, resae, acc_rev, acc_res]

 ax.boxplot(data)

 ax.set_xticks([1, 2, 3, 4])

 ax.set_xticklabels(['Rev_ae', 'Res_ae', 'Acc_rev', 'Acc_res'])

 ax.tick_params(axis='x', labelrotation=45)

 ax.set_ylabel('Accuracy')

 for i, y in enumerate(data):

 ax.scatter(np.repeat(i+1, len(y)) + np.random.randn(len(y)) / 10, y,

 marker='x', alpha=0.4, color='k')

def sv_fig(f, name, sv_folder):

 """

 Save figure.

 Parameters

 f : fig

 figure to save.

 name : str

 name to use to save the figure.

102

 Returns

 None.

 """

 f.savefig(sv_folder+'/'+name+'.svg', dpi=400, bbox_inches='tight')

 f.savefig(sv_folder+'/'+name+'.pdf', dpi=400, bbox_inches='tight')

 f.savefig(sv_folder+'/'+name+'.png', dpi=400, bbox_inches='tight')

def plot_psycho_curve(ev, choice, popt, ax, color_scatter, plot_errbars=False,

 **plt_opts):

 """

 Plot psycho-curves (fits and props) using directly the fit parameters.

 THIS FUNCTION ASSUMES PUTATIVE EVIDENCE (it will compute response proportions

 for all values of ev)

 Parameters

 ev : array

 array with **putative** evidence for each trial.

 choice : array

 array with choices made by agent.

 popt : list

 list containing fitted parameters (beta, alpha, piL, piR).

 ax : axis

 where to plot.

 **plt_opts : dict

 plotting options.

 Returns

 means : list

 response means for each evidence value.

 sems : list

 sem for the responses.

 x : array

 evidences values for which the means/sems are computed.

 y_fit : array

 y values for the fit.

 x_fit : array

 x values for the fit.

 """

 x_fit = np.linspace(np.min(ev), np.max(ev), 20)

 y_fit = probit_lapse_rates(x_fit, popt[0], popt[1], popt[2], popt[3])

103

 ax.plot(x_fit, y_fit, markersize=6, **plt_opts)

 means = []

 sems = []

 n_samples = []

 for e in np.unique(ev):

 means.append(np.mean(choice[ev == e]))

 sems.append(np.std(choice[ev == e])/np.sqrt(np.sum(ev == e)))

 n_samples.append(np.sum(ev == e))

 x = np.unique(ev)

 plt_opts['linestyle'] = ''

 if 'label' in plt_opts.keys():

 del plt_opts['label']

 if plot_errbars:

 ax.errorbar(x, means, sems, **plt_opts)

 ax.scatter(x, means, marker='.', alpha=1, s=60, c=color_scatter)

 ax.plot([0, 0], [0, 1], '--', lw=0.2, color=(.5, .5, .5))

 d_list = [means, sems, x, y_fit, x_fit, n_samples]

 d_str = ['means, sems, xs, y_fit, x_fit, n_samples']

 d = list_to_dict(d_list, d_str)

 return d

def xtcks_krnls(xs, ax):

 xtcks = np.arange(1, max(xs)+1)

 ax.set_xticks(xtcks)

 ax.set_xlim([xtcks[0]-0.5, xtcks[-1]+0.5])

 xtcks_lbls = [str(x) for x in xtcks]

 xtcks_lbls[-1] = '6-10'

 ax.set_xticklabels(xtcks_lbls)

def get_opts_krnls(plot_opts, tag):

 opts = {k: x for k, x in plot_opts.items() if k.find('_a') == -1}

 opts['color'] = plot_opts['color'+tag]

 opts['linestyle'] = plot_opts['lstyle'+tag]

 return opts

def plot_reset_index(reset, ax, step=None, per=None, xs=0.5, **plot_opts):

 if step is None:

 if 'marker' not in plot_opts.keys():

 plot_opts['marker'] = '+'

 if 'color' not in plot_opts.keys():

 plot_opts['color'] = 'b'

 xs = [xs]

 else:

 plot_opts['marker'] = ''

104

 xs = np.arange(reset.shape[0])*step+per/2

 ax.plot(xs, reset, **plot_opts)

def plot_kernels(weights_ac, weights_ae, std_ac=None, std_ae=None, ac_cols=None,

 ae_cols=None, ax=None, n_stps_ws=20, ax_inset=None, inset_xs=0.5,

 regressors=['T++', 'T-+', 'T+-', 'T--'], **kwargs):

 plot_opts = {'lw': 1, 'label': '', 'alpha': 1, 'color_ac': naranja,

 'fntsz': 7, 'color_ae': (0, 0, 0), 'lstyle_ac': '-',

 'lstyle_ae': '-', 'marker': '.'}

 plot_opts.update(kwargs)

 fntsz = plot_opts['fntsz']

 del plot_opts['fntsz']

 ac_cols = afterc_cols if ac_cols is None else ac_cols

 ae_cols = aftere_cols if ae_cols is None else ae_cols

 if ax is None:

 n_regr = len(regressors)

 if n_regr > 2:

 ncols = int(np.sqrt(n_regr))

 nrows = int(np.sqrt(n_regr))

 figsize = (8, 5)

 else:

 ncols = n_regr

 nrows = 1

 figsize = (8, 3)

 f, ax = plt.subplots(ncols=ncols, nrows=nrows, figsize=figsize,

 sharey=True)

 ax = ax.flatten() if n_regr > 1 else [ax]

 ax_inset = plt.axes((0.79, 0.15, 0.1, 0.15))

 for a in ax:

 a.invert_xaxis()

 a.axhline(y=0, linestyle='--', c='k', lw=0.5)

 else:

 f = None

 kernel_ac_list = []

 kernel_ae_list = []

 for j, name in enumerate(regressors):

 ax[j].set_ylabel('Weight (a.u.)', fontsize=fntsz)

 ax[j].set_xlabel('Trials back from decision', fontsize=fntsz)

 # after correct

 kernel_ac, xs_ac = get_krnl(name=name, cols=ac_cols, weights=weights_ac,

 n_stps_ws=n_stps_ws)

 kernel_ac_list.append(kernel_ac)

 ax[j].set_title(name)

 if std_ac is not None:

105

 s_ac, _ = get_krnl(name=name, cols=ac_cols, weights=std_ac,

 n_stps_ws=n_stps_ws)

 else:

 s_ac = np.zeros_like(kernel_ac)

 opts = get_opts_krnls(plot_opts=plot_opts, tag='_ac')

 ax[j].errorbar(xs_ac, kernel_ac, s_ac, **opts)

 # after error

 kernel_ae, xs_ae = get_krnl(name=name, cols=ae_cols, weights=weights_ae,

 n_stps_ws=n_stps_ws)

 kernel_ae_list.append(kernel_ae)

 if std_ae is not None:

 s_ae, _ = get_krnl(name=name, cols=ae_cols, weights=std_ae,

 n_stps_ws=n_stps_ws)

 else:

 s_ae = np.zeros_like(kernel_ae)

 opts = get_opts_krnls(plot_opts=plot_opts, tag='_ae')

 ax[j].errorbar(xs_ae, kernel_ae, s_ae, **opts)

 # tune fig

 xtcks_krnls(xs=xs_ac, ax=ax[j])

 # PLOT RESET INDEX

 if ax_inset is not None:

 # compute reset

 ws_ac = np.nanmean(weights_ac[-n_stps_ws:, :, :], axis=0)

 ws_ac = np.expand_dims(ws_ac, 0)

 ws_ae = np.nanmean(weights_ae[-n_stps_ws:, :, :], axis=0)

 ws_ae = np.expand_dims(ws_ae, 0)

 xtcks = ['T++'+x for x in ['2', '3', '4', '5', '6-10']]

 reset, _, _ = compute_reset_index(ws_ac, ws_ae, xtcks=xtcks,

 full_reset_index=False)

 opts = {k: x for k, x in plot_opts.items() if k.find('_a') == -1}

 plot_reset_index(reset=reset, ax=ax_inset, xs=float(inset_xs), **opts)

 return f, kernel_ac_list, kernel_ae_list, xs_ac, xs_ae

def plot_expo_kernel(decays_ac, decays_ae, **kwargs):

 plot_opts = {'lw': 3, 'label': '', 'alpha': 0.1, 'color_ac': naranja,

 'fntsz': 10, 'color_ae': (0, 0, 0), 'lstyle_ac': '-',

 'lstyle_ae': '-', 'marker': ''}

 # plot_opts.update(kwargs)

 fntsz = plot_opts['fntsz']

 del plot_opts['fntsz']

 f, ax = plt.subplots(1, 1, figsize=(5, 5))

 ax.set_ylabel('T++ weight', fontsize=fntsz)

 ax.set_xlabel('Trial lag', fontsize=fntsz)

106

 # After correct

 opts = get_opts_krnls(plot_opts=plot_opts, tag='_ac')

 for decay in decays_ac:

 ax.plot(decay, **opts)

 decays_ac = np.array(decays_ac)

 mean_decay_ac = np.mean(decays_ac, axis=0)

 s_ac = np.std(decays_ac, axis=0)

 ax.errorbar(x=np.arange(6), y=mean_decay_ac, yerr=s_ac, linewidth=3,

 color=naranja, marker='.', alpha=1)

 # After error

 opts = get_opts_krnls(plot_opts=plot_opts, tag='_ae')

 for decay in decays_ae:

 ax.plot(decay, **opts)

 decays_ae = np.array(decays_ae)

 mean_decay_ae = np.mean(decays_ae, axis=0)

 s_ae = np.std(decays_ae, axis=0)

 ax.errorbar(x=np.arange(5), y=mean_decay_ae, yerr=s_ae, linewidth=3,

 color=(0, 0, 0), marker='.', alpha=1)

 ax.set_xticks([0, 1, 2, 3, 4, 5])

 ax.set_xticklabels(['6-10', '5', '4', '3', '2', '1'])

 ax.set_xlim([-0.5, 5.5])

 # ax.set_yticks([-1, 0, 1])

 ax.spines['top'].set_visible(False)

 ax.spines['right'].set_visible(False)

 # ax.set_ylim([-1, 1])

 ytckslbls = ['-1', '0', '1']

 ax.axhline(y=0, linestyle='--', color='k', lw=0.5)

 ylims = ax.get_ylim()

 ylims = [-np.max(np.abs(ylims)), np.max(np.abs(ylims))]

 ax.set_ylim(ylims)

 # ax.set_ylabel('')

 yticks = [ylims[0], 0, ylims[1]]

 ax.set_yticks(yticks)

 ax.set_yticklabels(ytckslbls)

def call_plot_kernels(ws_ac, ws_ae, ax, std_ac=None, std_ae=None,

 regrss=[['T++', 'T-+', 'T+-', 'T--'], ['L+', 'L-']],

 **plot_opts):

 # plot kernels

 kernel_d = {}

 for a, r in zip(ax, regrss):

 f, kernel_ac, kernel_ae, xs_ac, xs_ae = \

 plot_kernels(ws_ac, ws_ae, std_ac=std_ac, std_ae=std_ae,

 ax=a, n_stps_ws=2, regressors=r, **plot_opts)

 for re in range(len(r)):

 kernel_d[r[re]] = [kernel_ac[re], kernel_ae[re]]

107

 return kernel_d # dictionary with each kernel (ac, ae) associated to a reg

--- SECONDARY FUNCTIONS

def get_krnl(name, cols, weights, n_stps_ws):

 indx = np.array([np.where(np.array([x.startswith(name)

 for x in cols]))[0]])

 indx = np.array([x for x in indx if len(x) > 0])

 xtcks = np.array(cols)[indx][0]

 if len(xtcks) < 2:

 xs = [1]

 else:

 xs = [int(x[len(name):len(name)+1]) for x in xtcks]

 kernel = np.nanmean(weights[-n_stps_ws:, 0, indx], axis=0).flatten()

 return kernel, xs

def list_to_dict(lst, string):

 """

 Transform a list of variables into a dictionary.

 Parameters

 lst : list

 list with all variables.

 string : str

 string containing the names, separated by commas.

 Returns

 d : dict

 dictionary with items in which the keys and the values are specified

 in string and lst values respectively.

 """

 string = string[0]

 string = string.replace(']', '')

 string = string.replace('[', '')

 string = string.replace('\\', '')

 string = string.replace(' ', '')

 string = string.replace('\t', '')

 string = string.replace('\n', '')

 string = string.split(',')

 d = {s: v for s, v in zip(string, lst)}

 return d

108

def get_tag(tag, file):

 """

 Return value associated to a given tag in a file.

 Parameters

 tag : str

 tag to look for in the basename of file.

 file : str

 file with tag and value separated by _.

 Returns

 val : str

 value associated to tag.

 """

 # process name

 file_name = os.path.basename(file)

 start_val = file_name.find(tag)

 assert start_val != -1, 'Tag ' + tag + ' not found in ' + file_name

 val = file_name[start_val + len(tag) + 1:]

 val = val[:val.find('_')] if '_' in val else val

 return val

def get_repetitions(mat):

 """

 Return mask indicating the repetitions in mat.

 Makes diff of the input vector, mat, to obtain the repetition vector X,

 i.e. X will be 1 at t if the value of mat at t is equal to that at t-1

 Parameters

 mat : array

 array of elements.

 Returns

 repeats : array

 mask indicating the repetitions in mat.

 """

 mat = mat.flatten()

 values = np.unique(mat)

 # We need to account for size reduction of np.diff()

 rand_ch = np.array(np.random.choice(values, size=(1,)))

109

 repeat_choice = conc((rand_ch, mat))

 diff = np.diff(repeat_choice)

 repeats = (diff == 0)*1.

 repeats[np.isnan(diff)] = np.nan

 return repeats

def get_transition_mat(choice, conv_w=5):

 """

 Return array indicating the number of repetitions in the last conv_w trials.

 convolves the repetition vector to get a count of the number of repetitions

 in the last conv_w trials

 Parameters

 choice : array

 it is expected to be a repetition vector obtained from get_repetitions fn.

 conv_w : str, optional

 window to consider past trials (5)

 Returns

 np.array

 array is equal to conv_w/2 when there have been conv_w repetitions

 and -conv_w/2 when there have been 0 repetitions.

 """

 # selectivity to transition probability

 limit = -conv_w+1 if conv_w > 1 else len(choice)

 repeat = get_repetitions(choice)

 transition = np.convolve(repeat, np.ones((conv_w,)),

 mode='full')[0:limit]

 transition_ev = np.concatenate((np.array([np.nan]), transition[:-1]))

 transition_ev -= conv_w/2

 return transition_ev

def probit(x, beta, alpha):

 """

 Return probit function with parameters alpha and beta.

 Parameters

 x : float

 independent variable.

 beta : float

110

 sensitiviy.

 alpha : TYPE

 bias term.

 Returns

 probit : float

 probit value for the given x, beta and alpha.

 """

 probit = 1/2*(1+erf((beta*x+alpha)/np.sqrt(2)))

 return probit

def probit_lapse_rates(x, beta, alpha, piL, piR):

 """

 Return probit with lapse rates.

 Parameters

 x : float

 independent variable.

 beta : float

 sensitiviy.

 alpha : TYPE

 bias term.

 piL : float

 lapse rate for left side.

 piR : TYPE

 lapse rate for right side.

 Returns

 probit : float

 probit value for the given x, beta and alpha and lapse rates.

 """

 piL = 0

 piR = 0

 probit_lr = piR + (1 - piL - piR) * probit(x, beta, alpha)

 return probit_lr

def remove_borders(mask):

 """

 Remove the change steps (borders) of a mask.

111

 Refines mask by removing blocks' borders, which are detected by

 a change of 1 or -1 (from True to False or viceversa).

 Parameters

 mask : array

 array with 0s and 1s indicating a certain period (that should be of

 several steps).

 Returns

 mask : array

 same array the 1s in the border of the period made 0.

 """

 mask = 1*mask

 if np.sum(mask) < len(mask):

 inside_blk_indx_on = np.diff(mask) != 1

 inside_blk_indx_on = np.append(False, inside_blk_indx_on)

 inside_blk_indx_off = np.diff(mask) != -1

 inside_blk_indx_off = np.append(inside_blk_indx_off, False)

 mask = and_.reduce((inside_blk_indx_on, inside_blk_indx_off, mask))

 return mask

def template_match(mat, templ, plot=False):

 """

 Find the time points in an array where a given template occurs.

 Parameters

 mat : array

 array in which to find the template (the array is expected to have at least

 one occurrence of the template).

 templ : array

 template.

 Returns

 mask : array

 array with 1s at the time points right after the template has occurred.

 """

 mat = mat - np.mean(mat)

 temp_match = np.convolve(mat, np.flip(templ), mode='same')

 times = (np.where(temp_match == np.max(temp_match))[0] +

 np.ceil(len(templ)/2)-1).astype('int')

112

 mask = np.zeros_like(mat)

 times = times[times < mask.shape[0]]

 mask[times] = 1

 if plot:

 plt.figure()

 plt.plot(mat[max(0, times[0]-100):times[0]+10000], '-+', markersize=6)

 plt.plot(mask[max(0, times[0]-100):times[0]+10000])

 return mask

def get_average(mat):

 """

 Return average of arrays contained in mat.

 Averages across instances data contained in mat. If instances have different

 lenghts they are equalized by padding with nans.

 Parameters

 mat : array/list

 array or list containing containing the arrays to average.

 Returns

 average_matrix : array

 average of arrays.

 """

 # Remove empty instances from data

 a_mat = [x for x in mat if len(x) > 0]

 max_ = np.max([len(x) for x in a_mat])

 a_mat_ =\

 [conc((x, np.nan*np.ones((((int(max_-len(x)),)+np.array(x).shape[1:])))))

 for x in a_mat] # add nan to have same shape mats

 a_mat_ = np.array(a_mat_)

 average_matrix = np.nanmean(a_mat_, axis=0)

 return average_matrix

def get_std(mat):

 """

 Return std of arrays contained in mat.

 Averages across instances data contained in mat. If instances have different

 lenghts they are equalized by padding with nans.

 Parameters

113

 mat : array/list

 array or list containing containing the arrays to average.

 Returns

 average_matrix : array

 std of arrays.

 """

 # Remove empty instances from data

 a_mat = [x for x in mat if len(x) > 0]

 max_ = np.max([len(x) for x in a_mat])

 a_mat_ =\

 [conc((x, np.nan*np.ones((((int(max_-len(x)),)+np.array(x).shape[1:])))))

 for x in a_mat] # add nan to have same shape mats

 a_mat_ = np.array(a_mat_)

 average_matrix = np.nanstd(a_mat_, axis=0)

 return average_matrix

def get_median(mat):

 """

 Return median of arrays contained in mat.

 Averages across instances data contained in mat. If instances have different

 lenghts they are equalized by padding with nans.

 Parameters

 mat : array/list

 array or list containing containing the arrays to average.

 Returns

 average_matrix : array

 median of arrays.

 """

 # Remove empty instances from data

 a_mat = [x for x in mat if len(x) > 0]

 max_ = np.max([len(x) for x in a_mat])

 a_mat_ =\

 [conc((x, np.nan*np.ones((((int(max_-len(x)),)+np.array(x).shape[1:])))))

 for x in a_mat] # add nan to have same shape mats

 a_mat_ = np.array(a_mat_)

 average_matrix = np.nanmedian(a_mat_, axis=0)

114

 return average_matrix

--- PRIMARY FUNCTIONS

def compute_transition_probs_mat(data_mat, choices, block_n_ch,

 block_tr_hist, num_blocks=3,

 extra_condition=None):

 """

 Compute transition probs mat.

 Parameters

 data_mat : array

 array of choices from which the transition probs will be inferred.

 choices : array

 array of choices to consider.

 block_n_ch : array

 array with the number of choices 'active' for each trial.

 block_tr_hist : array

 array indicating the block at each trial.

 num_blocks : int, optional

 total number of blocks (3)

 extra_condition : array, optional

 mask that allows further filtering the trials (None)

 Returns

 trans_mat : array

 array with the transition probs between choices (rows: current choice,

 columns: next choice)

 counts_mat : array

 aray with the number of each type of transition (same as trans_mat but

 without normalizing).

 """

 if extra_condition is None:

 extra_condition = np.full(data_mat.shape, True, dtype=None)

 # get transition blocks

 blck_tr_hist_id = np.unique(block_tr_hist)

 blck_tr_hist_id = blck_tr_hist_id[:num_blocks]

 n_blcks_trh = blck_tr_hist_id.shape[0]

 # get number of choices blocks

 blck_n_ch_id = np.unique(block_n_ch)

 n_blcks_nch = blck_n_ch_id.shape[0]

115

 # get choices

 ch_bins = np.append(choices-0.5, choices[-1]+0.5)

 trans_mat = np.empty((n_blcks_trh, n_blcks_nch, choices.shape[0],

 choices.shape[0]))

 trans_mat[:] = np.nan

 counts_mat = np.empty((n_blcks_trh, n_blcks_nch, choices.shape[0],

 choices.shape[0]))

 counts_mat[:] = np.nan

 for ind_nch, bl_nch in enumerate(blck_n_ch_id):

 for ind_trh, bl_trh in enumerate(blck_tr_hist_id):

 for ind_ch, ch in enumerate(choices):

 # avoid blocks borders

 blk_nch_mask = block_n_ch == bl_nch

 blk_nch_mask = remove_borders(blk_nch_mask)

 blk_trh_mask = block_tr_hist == bl_trh

 blk_trh_mask = remove_borders(blk_trh_mask)

 condition = and_.reduce((data_mat == ch, blk_nch_mask,

 blk_trh_mask, extra_condition))

 indx = np.where(condition)[0]

 indx = indx[indx < len(data_mat)-1]

 next_ch = data_mat[indx + 1]

 counts = np.histogram(next_ch, ch_bins)[0]

 trans_mat[ind_trh, ind_nch, ind_ch, :] = counts/np.sum(counts)

 counts_mat[ind_trh, ind_nch, ind_ch, :] = counts.astype(int)

 return trans_mat, counts_mat

def get_probs(mat, val, mask, num_chs, prev_mat=None):

 """

 Compute counts of each choice at t+1 conditioned on ch at t being val.

 Parameters

 mat : array

 array with choices.

 val : int

 choice to condition on.

 mask : array

 array of booleans to filter trials.

 num_chs : int

 total number of possible choices.

 prev_mat : array, optional

 if not None, the previous choice will be conditioned on prev_mat

 instead of mat (this is used for the case in which mat is the ground truth

 but the conditioning is made on the actual choices (None)

 Returns

116

 counts : array

 array with the counts of each possible choice at time t+1 after the choice

 indicated by val has been selected at time t.

 """

 if prev_mat is None:

 inds_ch = mat[:-1] == val

 else:

 inds_ch = prev_mat[:-1] == val

 # t + 1 selected where choice at t == ch

 inds_ch = conc((np.array([0]), inds_ch))

 inds_ch = np.where(and_(inds_ch, mask))[0]

 counts, _ = np.histogram(mat[inds_ch], bins=np.arange(num_chs+1)+0.5)

 counts = counts[:num_chs].astype('float')

 counts[counts == 0.] = 1

 return counts

def plot_matrices(mat, ref_mat):

 """

 Plot a matrix and a reference matrix (gt) side by side.

 Parameters

 mat : 2D array

 matrix.

 ref_mat : 2D array

 reference matrix.

 Returns

 None.

 """

 plt.figure()

 plt.subplot(1, 2, 1)

 plt.imshow(mat)

 plt.title('Network')

 plt.subplot(1, 2, 2)

 plt.imshow(ref_mat)

def bias_psychometric(choice, ev, mask=None, maxfev=10000):

 """

 Compute repeating bias by fitting probit function.

117

 Parameters

 choice : array

 array of choices made bythe network.

 ev : array

 array with (signed) stimulus evidence.

 mask : array, optional

 array of booleans indicating the trials on which the bias

 # should be computed (None)

 Returns

 popt : array

 Optimal values for the parameters so that the sum of the squared

 residuals of probit(xdata) - ydata is minimized

 pcov : 2d array

 The estimated covariance of popt. The diagonals provide the variance

 of the parameter estimate. To compute one standard deviation errors

 on the parameters use ``perr = np.sqrt(np.diag(pcov))``.

 How the `sigma` parameter affects the estimated covariance

 depends on `absolute_sigma` argument, as described above.

 If the Jacobian matrix at the solution doesn't have a full rank, then

 'lm' method returns a matrix filled with ``np.inf``, on the other hand

 'trf' and 'dogbox' methods use Moore-Penrose pseudoinverse to compute

 the covariance matrix.

 """

 choice = choice.astype(float)

 choice[and_(choice != 1, choice != 2)] = np.nan

 repeat = get_repetitions(choice).astype(float)

 repeat[np.isnan(choice)] = np.nan

 # choice_repeating is just the original right_choice mat

 # but shifted one element to the left.

 choice_repeating = conc(

 (np.array(np.random.choice([1, 2])).reshape(1,),

 choice[:-1]))

 # the rep. evidence is the original evidence with a negative sign

 # if the repeating side is the left one

 rep_ev = ev*(-1)**(choice_repeating == 2)

 if mask is None:

 mask = ~np.isnan(repeat)

 else:

 mask = and_(~np.isnan(repeat), mask)

 rep_ev_mask = rep_ev[mask] # xdata

 repeat_mask = repeat[mask] # ydata

118

 try:

 # Use non-linear least squares to fit probit to xdata, ydata

 popt, pcov = curve_fit(probit_lapse_rates, rep_ev_mask,

 repeat_mask, maxfev=maxfev)

 except RuntimeError as err:

 print(err)

 popt = [np.nan, np.nan, np.nan, np.nan]

 pcov = 0

 return popt, pcov, rep_ev_mask, repeat_mask

def distance(len_my_list, idx1, idx2, sign=1):

 d1 = abs(idx1 - idx2)

 d2 = len_my_list - d1

 sign = sign if ((d1 < d2) and (idx1 < idx2)) or ((d1 > d2) and (idx1 > idx2))\

 else -sign

 return sign*min(d1, d2)

def get_trans_prob_mat(choice, mask, n_ch):

 """

 Compute entropy bias frm a choice array.

 The code can compute the absolute entropy (KLD from the uniform) of the choices

 probabilities conditioned on each choice or the KLD from the distribution of

 ground truth sides.

 Parameters

 choice : array

 array containing the choice from which to compute the entropy.

 mask : array

 array of boolean values indicating which elements to use for the

 Returns

 trans_mat : array

 array containing the transition probabilities

 """

 # Associate invalid trials (network fixates) with incorrect choice.

 invalid = and_(choice == 0, choice > n_ch)

 num_invalids = np.sum(invalid)

 # assign random choices to the invalid trials

 aux = np.random.choice(n_ch, (num_invalids,)) + 1

 choice[invalid] = aux

 # one entropy value calculated for trial t + 1 after choice ch

119

 trans_mat = np.empty((n_ch, n_ch))

 trans_mat[:] = np.nan

 aligned_mat = np.empty((n_ch, n_ch))

 aligned_mat[:] = np.nan

 for ch in np.arange(1, n_ch+1):

 probs = get_probs(mat=choice, val=ch, mask=mask, num_chs=n_ch)

 trans_mat[:, ch-1] = probs

 aligned_mat[:, ch-1] = np.roll(probs, -int(ch-n_ch/2))

 trans_mat = trans_mat/np.sum(trans_mat, axis=0)

 aligned_mat = np.sum(aligned_mat, axis=1)

 aligned_mat = aligned_mat/np.sum(aligned_mat)

 return trans_mat, aligned_mat

def get_trans_prob_mats_after_seq(data, n_ch=6, num_samples=None, ch_gt='choice',

 seq_prps={'templ_perf': [1, 1, 1, -1, 1],

 'templ_trans': np.array([1, 1, 1,

 np.nan,

 np.nan]),

 'start': 0}):

 """

 Compute entropy bias for passed conditions.

 Computes KLD from a uniform distr. of the choices probabilities conditioned

 on each choice or the KLD from the distribution of ground truth sides.

 It does so for each block type in tr_block, after_error and after_correct

 (Shape = (2, num_blocks))

 Parameters

 ch : array

 array with choices.

 ev : array

 array with stimulus evidence.

 perf : array

 array with choices outcomes.

 c_tr : array

 array indicating catch trials (correct choice but reward not given).

 tr_block : TYPE

 array with transitions block.

 gt : array, optional

 array with ground truth sides (None)

 nch_mask : array, optional

 array to further filter trials (None)

 plot_tr_mat : bool, optional

 whether to plot transition matrices (False)

 ev_perc : int, optional

120

 percetile of evidence used to filter trials bias calculation (5)

 plt_mask : bool, optional (for debugging)

 boolean indicating whether to plot mask with choices, perf.. (False)

 Returns

 biases : array

 array with bias values.

 """

 if num_samples is None:

 num_samples = 0

 ch = data[ch_gt][-num_samples:]

 sig_ev = data['putative_ev'][-num_samples:]

 perf = data['performance'][-num_samples:]

 print('Number of samples: ', perf.shape[0])

 # filter by number of choices

 indx = data['nch'] == n_ch

 ch = ch[indx].astype(float)

 sig_ev = sig_ev[indx].astype(float)

 perf = perf[indx].astype(float)

 # make nan all choices larger than nch

 indx = np.logical_or(ch > n_ch, ch == 0)

 ch[indx] = np.nan

 n_max_ch = np.nanmax(ch)

 sign = 1 if n_ch != 2 else -1 # this is probably not necessary

 trans = [distance(n_max_ch, ch[x], ch[x+1], sign=sign)

 for x in range(ch.shape[0]-1)]

 trans = conc((trans, np.array([np.nan])))

 # context

 templ_perf = seq_prps['templ_perf']

 templ_trans = seq_prps['templ_trans']

 start = seq_prps['start']

 # transition blocks

 # select evidence below ev_perc quantile

 ev_mask = np.abs(sig_ev) < 0.00001

 # get rid of first value in evidence

 # ev_mask = conc((ev_mask[1:], np.array([0])))

 # After error and after correct bias for each block.

 trans_mats = []

 al_trans_mats = []

 num_samples_mat = []

 perf_mat = []

 ind_ctx = 0

 for ind_ctx in range(0, len(templ_perf)):

121

 templ_perf_temp = templ_perf[:1+ind_ctx]

 print(templ_perf_temp)

 perf_mask = template_match(perf, templ_perf_temp)

 perf_mask = conc((np.array([False]), perf_mask[:-1]))

 if ind_ctx >= start:

 templ_trans_temp = templ_trans[:1+ind_ctx-start]

 print(templ_trans_temp)

 t_len = len(templ_trans_temp)

 t_comp = templ_trans_temp[~np.isnan(templ_trans_temp)]

 indx = np.array([i+t_len for i in range(len(trans)-t_len-1)

 if (trans[i:i+len(t_comp)] == t_comp).all()])

 trans_mask = np.zeros_like(perf_mask)

 if len(indx) > 0:

 trans_mask[indx+1] = 1

 else:

 trans_mask = np.ones_like(perf_mask)

 mask = and_.reduce((ev_mask, perf_mask, trans_mask))

 if False:

 plot_masks_cond(ch=ch, perf=perf, mask=mask, p_hist=perf_mask,

 repeat=sig_ev, trans=trans_mask, num=100,

 start=np.where(mask == 1)[0][0]-10)

 plt.title(templ_perf_temp+[1001]+templ_trans_temp.tolist())

 num_samples = np.sum(mask)

 print('Number of samples: ', num_samples)

 tr_mat, al_tr_mat = get_trans_prob_mat(mask=mask.copy(), choice=ch,

 n_ch=n_ch)

 trans_mats.append(tr_mat)

 al_trans_mats.append(al_tr_mat)

 num_samples_mat.append(num_samples)

 perf_mat.append(np.mean(perf[mask]))

 return trans_mats, al_trans_mats, num_samples_mat, perf_mat

def plot_masks_cond(ch, perf, mask, c_tr=None, general_mask=None, repeat=None,

 trans=None, p_hist=None, num=500, start=9200):

 """

 Plot mask with choices, performance and other variables.

 Parameters

 ch : array

 array with choices.

 perf : array

 array with choices outcomes.

 c_tr : array

122

 array indicating catch trials (correct choice but reward not given).

 mask : array

 array indicating which trials will be used.

 repeat : array, optional

 array with repeatitions (1 if repeating, 0 if alternating) (None)

 trans : TYPE, optional

 array indicating the number of past repetitions (None)

 p_hist : TYPE, optional

 array indicating the number of past correct (None)

 Returns

 None.

 """

 plt.subplots(figsize=(8, 8))

 plt.plot(ch[start:start+num], '-+',

 label='choice', lw=1)

 plt.plot(perf[start:start+num]-3, '--+', label='perf',

 lw=1)

 plt.plot(mask[start:start+num]-3, '-+', label='mask',

 lw=1)

 if general_mask is not None:

 plt.plot(general_mask[start:start+num] - 4, '-+',

 label='general mask', lw=1)

 if c_tr is not None:

 plt.plot(c_tr[start:start+num] - 4, '-+',

 label='catch trial', lw=1)

 if repeat is not None:

 plt.plot(repeat[start:start+num], '-+',

 label='repeat', lw=1)

 plt.plot(trans[start:start+num], '-+',

 label='transitions', lw=1)

 if p_hist is not None:

 plt.plot(p_hist[start:start+num], '-+',

 label='perf_hist', lw=1)

 for ind in range(num):

 plt.plot([ind, ind], [-3, 3], '--',

 color=(.7, .7, .7))

 plt.legend()

def psych_curves_props(x_values, y_values, bins=None, plot=False, num_values=7,

 **plt_opts):

 """

 Plot average values of y_values in x_values.

123

 Parameters

 x_values : array

 x values.

 y_values : array

 y values.

 color : tuple, optional

 color of the trace ((0, 0, 0))

 Returns

 None.

 """

 # conf = 0.95

 if bins is None:

 bin_edges = mstats.mquantiles(x_values,

 (np.arange(num_values)+1)/num_values)

 else:

 bin_edges = bins

 xss_bin = np.searchsorted(bin_edges, x_values)

 xss_unq = np.unique(xss_bin)

 mean_perf =\

 np.array([np.nanmean(y_values[xss_bin == x]) for x in xss_unq])

 std_perf = [np.nanstd(y_values[xss_bin == x]) /

 np.sqrt(np.sum(xss_bin == x)) for x in xss_unq]

 mean_indx = [np.nanmean(x_values[xss_bin == x]) for x in xss_unq]

 hist_1 = np.histogram(x_values[y_values == 1], bins=bin_edges)[0]

 hist_all = np.histogram(x_values, bins=bin_edges)[0]

 # plot

 props = hist_1/hist_all

 if plot:

 # plt_opts['alpha'] = 0.2

 # plt.plot(bin_edges[:-1]+np.diff(bin_edges)/2, props, marker='.',

 # **plt_opts)

 plt_opts['alpha'] = 1

 plt.errorbar(mean_indx, mean_perf, std_perf, marker='.', **plt_opts)

 # asdasd

 return props

def compute_ev_cum(times, ev):

 ev_cum = np.zeros(times.shape)

 prev_t = 0

 for ind_t, t in enumerate(times):

 ev_cum[ind_t] = np.sum(ev[prev_t:t])

 prev_t = t

124

 return ev_cum

def exp_results_process(file, step=5000, per=10000): # , **load_data_opts):

 # load_data_opts = {'bef_aft': 'before', 'tag': 'p4_', 'disc': 'False'}

 if file.find('.mat') != -1:

 sv_folder = file[:-4]

 if not os.path.exists(sv_folder):

 os.makedirs(sv_folder)

 data = loadmat(file)

 times = np.zeros_like(data['stim'])

 times[data['stim'].shape[0]-1, :] = 1

 times = times.T.reshape((-1, 1))

 times = np.where(times == 1)[0]

 ev = data['stim'].T.reshape((-1,))

 ev = compute_ev_cum(times, ev)

 ev = ev[:, None]

 ev = np.concatenate((np.zeros_like(ev), ev, np.zeros_like(ev)), axis=1)

 gt = data['categ'].reshape((-1,))

 perf = data['resptype'].reshape((-1,))

 perf[perf == -3] = 0 # make invalid trials error trials

 ch = data['resp'].reshape((-1,))

 invalid_fraction = np.sum(np.isnan(ch))/ch.shape[0]

 assert invalid_fraction < 0.01, str(invalid_fraction)

 ch[np.isnan(ch)] = 0 # make invalid trials miss trials

 else:

 sv_folder = file

 df_master = pd.read_pickle(file+'/df_master')

 ch = df_master['R_response'].values + 1

 # get mask

 indx_inv = ~np.isnan(ch)

 ch = ch[indx_inv]

 gt = df_master['rewside'].values[indx_inv]+1

 perf = df_master['hit'].values[indx_inv]

 # stimulus

 ev = df_master['evidence_1stfr'].values[indx_inv] +\

 df_master['evidence_rest'].values[indx_inv]

 ev = ev[:, None]

 ev = np.concatenate((np.zeros_like(ev), ev, np.zeros_like(ev)), axis=1)

 data = {'choice': ch, 'stimulus': ev, 'performance': perf,

 'gt': gt.astype(int)}

 np.savez(sv_folder+'/bhvr_data_all.npz', **data)

 params = {'task_kwargs': {'n_ch': 2}}

 np.savez(sv_folder+'/params.npz', **params)

 print('Number of trials: ', ch.shape[0])

 print('Performance: ', np.mean(perf))

125

def nanconv(vec_1, vec_2):

 """

 This function returns a convolution result of two vectors without

 considering nans

 """

 mask = ~np.isnan(vec_1)

 return np.nansum(np.multiply(vec_2[mask], vec_1[mask]))

def get_GLM_regressors(data, tau, chck_corr=False):

 """

 Compute regressors.

 Parameters

 data : dict

 dictionary containing behavioral data.

 chck_corr : bool, optional

 whether to check correlations (False)

 Returns

 df: dataframe

 dataframe containg evidence, lateral and transition regressors.

 """

 ev = data['signed_evidence'][START_ANALYSIS::] # coherence/evidence with sign

 perf = data['performance'].astype(float) # performance (0/1)

 ch = data['choice'][START_ANALYSIS::].astype(float) # choice (1, 2)

 # discard (make nan) non-standard-2afc task periods

 if 'std_2afc' in data.keys():

 std_2afc = data['std_2afc'][START_ANALYSIS::]

 else:

 std_2afc = np.ones_like(ch)

 inv_choice = and_(ch != 1., ch != 2.)

 nan_indx = np.logical_or.reduce((std_2afc == 0, inv_choice))

 ev[nan_indx] = np.nan

 perf[nan_indx] = np.nan

 ch[nan_indx] = np.nan

 ch = -(ch-2) # choices should belong to {0, 1}

 prev_perf = ~ (conc((np.array([True]), data['performance'][:-1])) == 1)

 prev_perf = prev_perf.astype('int')

 prevprev_perf = (conc((np.array([False]), prev_perf[:-1])) == 1)

 ev /= np.nanmax(ev)

 rep_ch_ = get_repetitions(ch)

126

 # variables:

 # 'origidx': trial index within session

 # 'rewside': ground truth

 # 'hithistory': performance

 # 'R_response': choice (right == 1, left == 0, invalid == nan)

 # 'subjid': subject

 # 'sessid': session

 # 'res_sound': stimulus (left - right) [frame_i, .., frame_i+n]

 # 'sound_len': stim duration

 # 'frames_listened'

 # 'aftererror': not(performance) shifted

 # 'rep_response'

 df = {'origidx': np.arange(ch.shape[0]),

 'R_response': ch,

 'hit': perf,

 'evidence': ev,

 'aftererror': prev_perf,

 'rep_response': rep_ch_,

 'prevprev_perf': prevprev_perf}

 df = pd.DataFrame(df)

 # Lateral module

 df['L+1'] = np.nan # np.nan considering invalids as errors

 df.loc[(df.R_response == 1) & (df.hit == 1), 'L+1'] = 1

 df.loc[(df.R_response == 0) & (df.hit == 1), 'L+1'] = -1

 df.loc[df.hit == 0, 'L+1'] = 0

 df['L+1'] = df['L+1'].shift(1)

 df.loc[df.origidx == 1, 'L+1'] = np.nan

 # L-

 df['L-1'] = np.nan

 df.loc[(df.R_response == 1) & (df.hit == 0), 'L-1'] = 1

 df.loc[(df.R_response == 0) & (df.hit == 0), 'L-1'] = -1

 df.loc[df.hit == 1, 'L-1'] = 0

 df['L-1'] = df['L-1'].shift(1)

 df.loc[df.origidx == 1, 'L-1'] = np.nan

 # pre transition module

 df.loc[df.origidx == 1, 'rep_response'] = np.nan

 df['rep_response_11'] = df.rep_response

 df.loc[df.rep_response == 0, 'rep_response_11'] = -1

 df.rep_response_11.fillna(value=0, inplace=True)

 df.loc[df.origidx == 1, 'aftererror'] = np.nan

 # transition module

 df['T++1'] = np.nan # np.nan

 df.loc[(df.aftererror == 0) & (df.hit == 1), 'T++1'] =\

 df.loc[(df.aftererror == 0) & (df.hit == 1), 'rep_response_11']

127

 df.loc[(df.aftererror == 1) | (df.hit == 0), 'T++1'] = 0

 df['T++1'] = df['T++1'].shift(1)

 df['T+-1'] = np.nan # np.nan

 df.loc[(df.aftererror == 0) & (df.hit == 0), 'T+-1'] =\

 df.loc[(df.aftererror == 0) & (df.hit == 0), 'rep_response_11']

 df.loc[(df.aftererror == 1) | (df.hit == 1), 'T+-1'] = 0

 df['T+-1'] = df['T+-1'].shift(1)

 df['T-+1'] = np.nan # np.nan

 df.loc[(df.aftererror == 1) & (df.hit == 1), 'T-+1'] =\

 df.loc[(df.aftererror == 1) & (df.hit == 1), 'rep_response_11']

 df.loc[(df.aftererror == 0) | (df.hit == 0), 'T-+1'] = 0

 df['T-+1'] = df['T-+1'].shift(1)

 df['T--1'] = np.nan # np.nan

 df.loc[(df.aftererror == 1) & (df.hit == 0), 'T--1'] =\

 df.loc[(df.aftererror == 1) & (df.hit == 0), 'rep_response_11']

 df.loc[(df.aftererror == 0) | (df.hit == 1), 'T--1'] = 0

 df['T--1'] = df['T--1'].shift(1)

 # shifts now

 # exponential fit for T++

 decay_tr = np.exp(-np.arange(10)/tau) # exp(-x/tau)

 regs = [x for x in model_cols if x != 'intercept' and x != 'evidence']

 N = len(decay_tr)

 for reg in regs: # all regressors (T and L)

 df[reg] = df[reg+str(1)]

 for j in range(N, len(df[reg+str(1)])):

 df[reg][j-1] = nanconv(df[reg+str(1)][j-N:j], decay_tr[::-1])

 # its j-1 for shifting purposes

 # transforming transitions to left/right space

 for col in [x for x in df.columns if x.startswith('T')]:

 df[col] = df[col] * (df.R_response.shift(1)*2-1)

 # {0 = Left; 1 = Right, nan=invalid}

 df['intercept'] = 1

 df.loc[:, model_cols].fillna(value=0, inplace=True)

 # check correlation between regressors

 if chck_corr:

 for j, (t, cols) in enumerate(zip(['after correct', 'after error'],

 [afterc_cols, aftere_cols])):

 fig, ax = plt.subplots(figsize=(16, 16))

 sns.heatmap(df.loc[df.aftererror == j,

 cols].fillna(value=0).corr(),

128

 vmin=-1, vmax=1, cmap='coolwarm', ax=ax)

 ax.set_title(t)

 return df # resulting df with lateralized T

def glm(df):

 """

 Compute GLM weights for data in df conditioned on previous outcome.

 Parameters

 df : dataframe

 dataframe containing regressors and response.

 Returns

 Lreg_ac : LogisticRegression model

 logistic model fit to after correct trials.

 Lreg_ae : LogisticRegression model

 logistic model fit to after error trials.

 """

 not_nan_indx = df['R_response'].notna()

 X_df_ac, y_df_ac = df.loc[(df.aftererror == 0) & not_nan_indx,

 afterc_cols].fillna(value=0),\

 df.loc[(df.aftererror == 0) & not_nan_indx, 'R_response']

 X_df_ae, y_df_ae =\

 df.loc[(df.aftererror == 1) & not_nan_indx,

 aftere_cols].fillna(value=0),\

 df.loc[(df.aftererror == 1) & not_nan_indx, 'R_response']

 if len(np.unique(y_df_ac.values)) == 2 and len(np.unique(y_df_ae.values)) == 2:

 Lreg_ac = LogisticRegression(C=1, fit_intercept=False, penalty='l2',

 solver='saga', random_state=123,

 max_iter=10000000, n_jobs=-1)

 Lreg_ac.fit(X_df_ac.values, y_df_ac.values)

 vals_ac = np.concatenate([Lreg_ac.intercept_,

 Lreg_ac.coef_.flatten()])

 smodel_ac = sm.Logit(y_df_ac,

 X_df_ac).fit(start_params=vals_ac[1::], max_iter=0)

 summary_ac = smodel_ac.summary().tables[1].as_html()

 summary_ac = pd.read_html(summary_ac, header=0, index_col=0)[0]

 p_z_ac = summary_ac['P>|z|']

 score_ac = cross_val_score(Lreg_ac, X=X_df_ac, y=y_df_ac, cv=5)

 Lreg_ae = LogisticRegression(C=1, fit_intercept=False, penalty='l2',

 solver='saga', random_state=123,

 max_iter=10000000, n_jobs=-1)

129

 Lreg_ae.fit(X_df_ae.values, y_df_ae.values)

 vals_ae = np.concatenate([Lreg_ae.intercept_,

 Lreg_ae.coef_.flatten()])

 score_ae = cross_val_score(Lreg_ae, X=X_df_ae, y=y_df_ae, cv=5)

 smodel_ae = sm.Logit(y_df_ae,

 X_df_ae).fit(start_params=vals_ae[1::], max_iter=0)

 summary_ae = smodel_ae.summary().tables[1].as_html()

 summary_ae = pd.read_html(summary_ae, header=0, index_col=0)[0]

 p_z_ae = summary_ae['P>|z|']

 else:

 Lreg_ac = None

 Lreg_ae = None

 return Lreg_ac, Lreg_ae, score_ac, score_ae, p_z_ac, p_z_ae

def time_delay(reaction_time, ev_vals, ev_abs):

 # react_filt = reaction_time[(reaction_time <= 0.3) * (reaction_time >= 0)]

 # bins of 10 ms (10, 20, 30, 40, ... , 280, 290, 300) ms

 # bins = 20

 reaction_time_filt = reaction_time[(0 <= reaction_time) * (reaction_time <= 0.5)]

 cdf_rt = []

 cdf_rt_sm = []

 for i, e in enumerate(ev_vals):

 indx = ev_abs[(0 <= reaction_time) * (reaction_time <= 0.5)] == e

 if i == 0: # reference CDF

 h_counts, rt_bins = np.histogram(reaction_time_filt[indx],

 bins=len(indx),

 range=[0, 0.3])

 cdf_rt.append(np.cumsum(h_counts) / np.sum(h_counts))

 cdf_rt_sm.append(mean_filt(cdf_rt[i], 30)[0])

 _, ind_ref = mean_filt(cdf_rt[i], 30)

 rt_shift = rt_bins[ind_ref]

 cdf_shift = np.zeros((len(ev_vals), len(rt_shift)))

 cdf_shift2 = np.zeros((len(ev_vals), len(rt_shift)))

 else:

 h_counts, rt_bins = np.histogram(reaction_time_filt[indx],

 bins=len(indx),

 range=[0, 0.3])

 cdf_rt.append(np.cumsum(h_counts) / np.sum(h_counts))

 cdf_rt_sm.append(mean_filt(cdf_rt[i], 30)[0])

 cdf_tog = np.zeros((2, len(ind_ref))) # (4,...) if smoothing

 cdf_rt = np.array(cdf_rt)

 cdf_tog[1] = np.nanmean(cdf_rt_sm[1:4], axis=0)

 cdf_tog[0] = cdf_rt_sm[0]

 for j in range(len(cdf_tog)):

 for k in range(len(cdf_tog[j])):

130

 if np.abs(cdf_tog[j][k] - cdf_tog[0][k]) < 0.012:

 cdf_shift[j][k] = 0

 else:

 cdf_shift2[j][k] = np.interp(cdf_tog[j][k],

 cdf_tog[0], rt_shift) - rt_shift[k]

 cdf_shift[j][k] = np.interp(rt_shift[k],

 rt_shift, cdf_shift2[j])

 cdf_shift[0] = 0

 cdf_shift_tog = np.zeros((2, len(ind_ref)))

 # cdf_shift_tog[1] = np.nanmean(cdf_shift[1:4], axis=0)

 cdf_shift_tog[1] = cdf_shift[1]

 cdf_rt_mn = np.zeros((2, len(cdf_rt[0])))

 cdf_rt_mn[0] = cdf_rt[0]

 cdf_rt_mn[1] = np.nanmean(cdf_rt[1:4], axis=0)

 return cdf_rt_mn, rt_bins[1::], cdf_shift_tog, rt_shift, reaction_time_filt

def plot_time_delay_cdf(cdf_tog, cdf_shift_tog, rt_bins):

 # plt.figure(60)

 # labels = [0, 0.05, 0.1, 0.2]

 # [plt.plot(rt_bins[1::]*1000, a, label=labels[ind]) for ind, a in

 # enumerate(cdf_rt_sm)]

 # [plt.plot(rt_bins[1::]*1000, a, label=labels[ind]) for ind, a in

 # enumerate(cdf_rt)]

 # plt.xlabel('Reaction time (ms)')

 # plt.legend()

 plt.figure(59)

 for e_ind, shift in enumerate(cdf_shift_tog):

 # if sum(cdf_shift_tog[1]) >= 0:

 # colour = 'blue'

 # else:

 # colour = 'green'

 plt.plot(1000*rt_bins, shift*1000, label='nonzero',

 color='k', alpha=0.4)

 plt.xlabel('Reaction time (ms)')

 plt.ylabel('Time delay (ms)')

 plt.xlim(0, 300)

 plt.axhline(0, linestyle='--', color='k')

 # plt.legend()

def tachometric_curves(perf, reaction_time, ev_vals, ev_abs):

 bins = 17 # 12

 # r_times = np.linspace(0, 0.3, bins+1)

 _, r_bins = np.histogram(reaction_time, bins=bins, range=[0, 0.321])

 acc_vs_rte = np.zeros((len(ev_vals), len(r_bins)))

 for i, e in enumerate(ev_vals):

131

 acc = []

 indx = ev_abs == e

 reac_times_e = reaction_time[indx]

 perf_vs_e = perf[indx]

 digitized = np.digitize(reac_times_e, r_bins)

 for u in range(bins+1):

 if u not in digitized:

 acc.append(np.nan)

 else:

 acc.append(np.mean(perf_vs_e[digitized == u]))

 acc_vs_rte[i, :] = acc

 return acc_vs_rte, r_bins

def cdf_comparison(ev, all_rt, ev_vals):

 for i in [0, 3]:

 indx = ev == ev_vals[i]

 if i == 0: # reference CDF

 h_count0, rt_bins0 = np.histogram(all_rt[indx],

 bins=len(indx),

 range=[0, 0.3])

 h_count0 = np.cumsum(h_count0)/sum(h_count0)

 else:

 h_count3, rt_bins3 = np.histogram(all_rt[indx],

 bins=len(indx),

 range=[0, 0.3])

 h_count3 = np.cumsum(h_count3)/sum(h_count3)

 pl = []

 ind_min0 = np.min(np.where(h_count0 != 0))

 ind_min3 = np.min(np.where(h_count0 != 0))

 ind_min = min(ind_min0, ind_min3)

 for i in range(ind_min+2, len(rt_bins0)):

 _, p = kstest(h_count0[0:i], h_count3[0:i])

 pl.append(p)

 if p <= 0.05:

 # print(rt_bins0[i]*1000)

 # break

 return rt_bins0[i]*1000

def mean_filt(cdf, w_size):

 cdf_f = np.copy(cdf)

 mnl = []

 ind = []

 for i in range(w_size//2, len(cdf_f) - w_size//2, w_size):

 mn = np.mean(cdf_f[i - w_size//2:i + w_size//2])

 mnl.append(mn)

132

 ind.append(i)

 # r_mn = rt_bins[ind]

 # plt.figure(4)

 # plt.plot(rt_bins[1::], cdf)

 # plt.plot(r_mn, mnl)

 return np.array(mnl), np.array(ind)

def plot_one_tachometric(ev_vals, acc_vs_rte, r_bins):

 plt.figure()

 [plt.plot(r_bins*1000, a, label=ev_vals[e_i])

 for e_i, a in enumerate(acc_vs_rte)]

 plt.axhline(y=0.5, linestyle='--', color='k', lw=0.5)

 plt.xlabel('Reaction time (ms)')

 plt.ylabel('Accuracy')

 plt.legend()

 # plt.xlim(100, 300)

def plot_all_tachometric(ev_vals, acc_rte, rte_bins):

 plt.figure()

 acc_total_i = np.zeros((len(acc_rte), len(ev_vals), 18))

 c = ['k', 'darkred', 'red', 'gold']

 # for subject in acc_rte.keys():

 # [plt.plot(rte_bins[subject][1::], a[1::], alpha=0.2,

 # color=c[e_i])

 # for e_i, a in enumerate(acc_rte[subject])]

 for i, a in enumerate(acc_rte.values()):

 acc_total_i[i, :, :] = np.array(a)

 acc_total = np.nanmean(acc_total_i, axis=0)

 r_bin_plot = [x for i, x in enumerate(rte_bins.values()) if i <= 3]

 [plt.plot(r_bin_plot[i], acc_total[i], alpha=1, color=c[i], linewidth=2.2,

 label=ev_vals[i]) for

 i, _ in enumerate(r_bin_plot)]

 err_tach = np.nanstd(acc_total_i, axis=0)/np.sqrt(np.nansum(

 ~np.isnan(acc_total_i), axis=0))

 [plt.fill_between(r_bin_plot[i], acc_total[i]-err_tach[i],

 acc_total[i]+err_tach[i], color=c[i], alpha=0.3) for

 i, _ in enumerate(r_bin_plot)]

 plt.legend()

 plt.xlim(0, 0.3)

 plt.axhline(y=0.5, linestyle='--', color='k', lw=0.5)

 plt.xlabel('Reaction time (s)')

 plt.ylabel('Accuracy')

 # plt.fill_between(x, y-error, y+error)

133

def stair_smoothing(x, y, n):

 poly = np.polyfit(x, y, n)

 poly_y = np.poly1d(poly)(x)

 return poly_y

def sigmoid(x, L, x0, k, b):

 y = L / (1 + np.exp(np.float64(-k*(x-x0)))) + b

 return (y)

def time_del_mean(subjects, reac_times):

 r_times = np.arange(0, 0.35, 0.0001)

 r_array = np.empty((len(subjects), len(r_times)))

 r_array[:] = np.nan

 for i_s, _ in enumerate(subjects):

 for i_rt, rt_s in enumerate(reac_times[i_s]):

 for i_bin, r_bin in enumerate(r_times):

 if rt_s == r_bin:

 r_array[i_s, i_bin] = time_delay[i_s][i_rt]

 td_mean = np.nanmean(r_array, axis=0)

 return td_mean

134

13.4 Legal documents

13.4.1 Consent

Information sheet for volunteer subjects

for the Informed Consent of their participation in the Study of
Psychophysics

1. Study title: Investigating sequential effects in humans performing a 2AFC task presenting trial-to-trial
correlations.

2. Promotors: Dr. Jaime de la Rocha Vázquez, Principal Investigator at Brain Circuits and Behavior
Laboratory. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS, Barcelona) is the
coordinator of this study financed by the European Research Council (ERC).

3. Introduction: we would like to invite you to take part in a psychophysical experiment consisting of an
auditory task run on an iPad. This research is conducted by Dr. Manuel Molano, investigator at IDIBAPS,
Debora Lombardo, Biomedical Engineering student and it is directed by Dr. Jaime de la Rocha, principal
investigator at IDIBAPS. Before you decide to participate it is necessary that you understand the reason
why this research is carried out and how it affects the participants. Please, take your time to read the
information included in this document. Do not hesitate to ask any questions if you do not understand
something or if you need more information. If you decide to participate in this study we will give you a copy
of this document and of the consent for you to keep it.

4. Study goals: the main goal of this research is testing how humans react when exposed to a perceptual
stimulus (auditory stimulus) investigating the extent to which perceptual decisions are influenced by
expectations built from recent experiences. This research will help to understand the mechanisms behind
perceptual decision making. The data collected in this study will be used solely for scientific and non-profit
purposes.

5. Descripción: we expect 10-20 people to take part in this experiment. The duration of this study is 2000
trials; it will take roughly two hour to complete them. The subjects can participate according to their time
and date availability: it will be possible to complete the task in one session or more. In every trial the
participants have to listen to a sound through headphones provided by the experimenter and respond to a
question about them.

6. Purpose of the data collected in the study: the data collected in this study will only have the purpose
of advancing research in neuroscience and in no case they will be used for commercial purposes. The
results of this study will be disseminated to the scientific community but in no case this entails the
revealing of the identity of the people who have participated in this study, since all data will be published in
a pseudonymised manner [1]. Since there is no scientific reason to preserve the identity of the participants,
all the data will be anonymized at the end of the study or in five years at the maximum, definitively
preventing the identification of any of the participating people. In this anonymous way, the data will be
saved for later analysis by our group or another collaborating research group, for a period of 10 more
years.

135

7. Risks and discomforts

There is no risk from participating in the study. Participants will be sitting in a chair and they will perform a
task run on an iPad wearing headphones. They will only have to listen to a sound and detect it.

8. Protection of confidentiality

The treatment, communication and transfer of personal data of all participants will comply with the
provisions of Organic Law 15/1999, of December 13, on the protection of personal data and the Royal
Decree that develops it (RD 1720/2007). Although the results obtained from the research carried out are
published in scientific fields, their identity will never be disclosed. Personal data will become part of the
Investigations and Clinical Trials File, which is responsible for the Consortium of the Institut de
Investigacions Biomèdiques August Pi i Sunyer and will be processed solely and exclusively within the
framework of your participation in this study. This file is registered with the Catalan Authority for the
Protection of Dades (APDCAT; June 6, 2012). All the data of this study will be stored in electronic format
and never in hard copies. The data collected will be pseudonymised, so that during its treatment, analysis
or publication in the scientific field, only those responsible for this study can identify the people who have
participated in this study. The pseudonymised data may be transmitted to third parties and to other
countries but in no case will they contain information that can identify you, such as name and surname,
initials, address, etc. In the event that this assignment occurs, it will be for the same purposes of the study
described or for use in scientific publications. The promoter undertakes to establish the necessary
measures to guarantee the same level of confidentiality as in Spain. You have the right of access,
rectification, cancellation and opposition to said data by contacting the person in charge of the study
indicated in this document in accordance with the LOPD.

9. Voluntary participation and right of participants to withdraw.

Participation in this research study is voluntary. You can refuse to participate and withdraw from the study
at any time. There is no type of penalty for doing so. Participation in the study will be rewarded with a
remuneration of €10 per hour.

10. Información de contacto.

If you have any question or comment about this study you can contact:

Dr. Jaime de la Rocha Vázquez

Email: jrochav@clinic.cat; Telf. 932275400 (4307).

Dirección postal: IDIBAPS, c. Rosselló 149-153, Barcelona 08036

We recommend you to keep a copy of this document to consult it in the future.

[1] Pseudonymization is the procedure by which the data collected is dissociated from the identity of the

person who has transferred the data so that any information derived from it cannot be associated with an
identified or identifiable person.

[2] Anonymized or irreversibly dissociated data refers to those data that cannot be associated with an

identified or identifiable person because the link with all information that identifies the subject has been
destroyed, or because said association requires an unreasonable effort, understood as the use of a
disproportionate amount of time, expense and work.

https://polimi365-my.sharepoint.com/personal/10654880_polimi_it/Documents/uni/TFG/consentimiento.docx#_ftnref1
https://polimi365-my.sharepoint.com/personal/10654880_polimi_it/Documents/uni/TFG/consentimiento.docx#_ftnref2

136

Informed consent form

1. Study title: Investigating sequential effects in humans performing a 2AFC task presenting
trial-to-trial correlations.

2. Promotors: Dr. Jaime de la Rocha Vázquez, Principal Investigator at Brain Circuits and
Behavior Laboratory. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS,
Barcelona) is the coordinator of this study financed by the European Research Council
(ERC).

I___

(participant’s name and surname)

With my signature at the end, I declare that:

● I talked to _______________ (name of researcher), who has explained the Information Sheet
point by point.

● I have read the Information Sheet.

● I have had the opportunity to ask questions about the study and they have been answered.

● I understand that my participation in this study is voluntary and that I can withdraw from the
study at any time, without the obligation to give explanations and without any prejudice.

● I authorize the use and transmission of the data as described in the Information Sheet.

● For all of which, I agree to participate in the study

Date and participant’s signature Date and experimenter’s
signature

137

13.4.2 Instructions

