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Abstract

The aim of this work is to study the foundations of cryptocurrencies and
blockchains technologies with a critical mindset in terms of ecosostenibility. We
begin with an an overview of how these emerging technologies work to then mo-
ve onto the mathematical basis that cryptocurrencies build upon. Here we stop
to study in-depth the Elliptic curve discrete logarithm ECDLP, a classical problem
in cryptography. We then study and give a concrete implementation of a novel
and more sustainable mining algorithm based in the ECDLP. We compare the re-
sults with bitcoin’s mining algorithm by providing metrics for our algorithm and
checking its feasibility. We then finish this work by giving an interface to this
newly developed algorithm an encouraging its deployment in the future.

2020 Mathematics Subject Classification. 94A60, 11Y16, 14H52



Resum

L’objectiu principal d’aquest treball és l’estudi dels fonaments de les criptomo-
nedes amb l’ull posat en l’ecologisme o la manca d’aquest a vegades. Comencem
el nostre treball fent un estudi sobre com aquestes tecnologies disruptives fun-
cionen per després moure’ns a estudiar les bases matemàtiques sobre les quals
funcionen. Aquí ens detindrem i farem un estudi més en profunditat del proble-
ma del logaritme discret sobre corbes el·líptiques abreujat ECDLP, un problema clàssic
de la criptografia. En acabat estudiarem i donarem una implementació concreta
d’un algorisme nou i més sostenible de minat basat en el ECDLP. Donem una
comparació dels resultats obtinguts sobre els de l’algorisme de minat que utilitza
bitcoin tot donant mètriques i comprovant que sigui factible en un futur. Aca-
barem el treball donant una interfície d’aquest nou algorisme incentivant la seva
futura aplicació.



Abstrakt

Das Ziel dieses Arbeit ist die Studium der Grundlagen von Kryptowährun-
gen mit der Berücksichtigung von Öko-nachhaltigkeit. Zunächst machen wir ein
Überblick über der Funktion diesen neuen Technlogien. Dann konzentrieren wir
uns auf dem mathematische Hintergrund, nämlich Kryptographie. Wir machen
hier eine kleine Pause um tiefer das Diskreter–Logarithmus–Problem der elliptisc-
hen Kurven zu studieren. Eine klassische Probleme in der Kryptographie Bereich.
Nach dieser Studium geben wir eine Umsetzung von einer neue Algorithmus, die
in dem ECDLP basiert ist. Später vergleichen wir die Ergebnisse mit dem Bitcoin
Abbauen algorithmus und wir definieren Metrische für das neue Algorithmus.
Zum Ende stellen wir zum Verfügung eine Interface und ermutigen wir das Ans-
tellung dieser Algorithmus in die Zukunft.
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Chapter 1

Introduction

Bitcoin is the biggest cryptocurrency in the world since its appearance back in
2009 [19]. Since its creation bitcoin and other cryptocurrencies have experienced
an exponential growth to the point that even governments are taking part in them.
One example of this is the state of el Salvador which accepted bitcoin as an official
currency back in September of 2021.

According to the Cambridge Center for Alternative Finance, Bitcoin currently
consumes around 110 Terawatt Hours per year. This is around 0.55% of the global
electricity production and even more than some developed countries such as Fin-
land consume. Without getting into ethical debates of how much a digital cryp-
tocurrency should consume, it is becoming day by day more apparent that eco-
friendlier and more sustainable cryptocurrencies should emerge.

These disrupting technologies, given its decentralized nature, usually rely
heavily on hash functions in order to achieve consensus across all the participants
of the network. These functions have the property that they are extremely hard
to invert and very fast to compute. Very importantly, they do a big amount of
bitwise operation that don’t carry any meaning in them after all.

The consensus mechanism used by Bitcoin, known as Proof of Work (PoW) is
the stage where cryptocurrencies spend most of their required energy consump-
tion to function. In the last years alternatives have appeared to PoW as a way
to achieve consensus. Examples of such are Proof of stake (PoS ) or Proof of space
(PoSpace) and they have been already found in successful cryptocurrencies such
as Nano1. These alternatives do solve the problem of energy consumption unfor-
tunately they don’t offer the robustness and decentralization that PoW does, and

1Nano is a new generation cryptocurrency based in Proof of stake.
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2 Introduction

they have been seen to carry some vulnerabilities with them 2.

1.1 Objectives

Given that this is a bachelor thesis in Mathematics and Computer science we
find ourselves in a perfect position to study cryptocurrencies from both perspec-
tives with an eye in the issue with electric energy consumpution:

Studying cryptocurrencies from a mathematical point of view means mostly
talking about cryptography, thus we impose ourselves the goal of studying pro-
foundly cryptography with an emphasis in elliptic curve cryptography. This type
of cryptography apart from being the basis of cryptocurrencies, will be important
given the implementation we will propose later.

As seen previously, Proof of Work based cryptocurrencies have the downside
of big energy consumption. For this reason we imposed ourselves also the goal of
studying alternatives to the nowadays used PoW algorithms and to try to provide
a better, or at least more sustainable alternative to such.

As we found out at the very beginning of this work there are some types of
special PoWs, the so called Bread pudding Proof of Work. These are Proof of Work
that search a sense utility when doing them, hence are more sustainable than the
usual ones. After we found out about them, a core goal became to study an actual
proposal, its feasibility, and to try to provide an actual implementation of one such
PoW. We also had in mind the objective of giving an interface to this implemented
PoW so it could be used in future cryptocurrencies easily.

In the quest of one possible Bread pudding PoW to put our atention to, Adri-
ana Moya proposed me a novel paper from 2020 [18]. In this paper the authors
Alessio Meneghetti, Massimiliano Sala and Daniele Taufer propose a Proof of
Work based in solving one of the two most studied problems in cryptography,
The Elliptic curve discrete logarithm problem (ECDLP). This problem together with
the problem of integer factorization are the classical problems that cryptography
builds upon. The authors stated that they implemented the algorithm although
in Magma a high level computer algebra system3. Given our goals of giving a

2Three Attacks on Proof-of-Stake Ethereum https://eprint.iacr.org/2021/1413.pdf
3Magma is a computer algebra system designed to solve problems in algebra, number theory,

geometry and combinatorics.

https://eprint.iacr.org/2021/1413.pdf
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real alternative to the usual PoW’s, we defined the clear goal of making an in-
depth study of this algorithm. Mathematically speaking, this meant analyzing
the efficiency of it and also studying the ECDLP and its robustness. And then
programmatically, by trying to give an implementation in a low-level cross com-
piled programming language, trying to replicate the results that the authors in the
orginal paper obtained.

1.2 Structure of the work

This work is divided in four big chapters. In the chapter 2 of this work we will
explain how cryptocurrencies and blockchain function. We will study the data
structures these technologies use and given its decentralized nature, we will study
the mechanisms they utilize for establishing order in the network. As already
commented in the motivation we will dive deep in the concept of consensus. This
chapter is useful and necessary for giving us the background we will need from
the chapter 4 and onwards.

In the chapter 3 we make an overview of cryptography, first with a more in-
formal approach and later introducing the classic cryptographic problem of the
Discrete logarithm problem before jumping on to the study of elliptic curves. There
we formalize the notion of the Elliptic curve group in order to finally study the
Elliptic curve discrete logarithm problem passing by an overview of different signing
schemes. This chapter is approached with a mathematical mindset, giving defini-
tions and proofs and a sense of completeness to all the statements we make.

In chapter 4, we begin by giving mathematical definitions to the concept of
Proof of Work and its associated refinement Bread pudding Proof of Work. We then
embrace the PoW model from Alessio Meneghetti, Massimiliano Sala and Daniele
Taufer [18] as a possible implementation of one such Bread pudding Proof of Work.
We start by making an overiew of the protocol, then explaining the implementa-
tion we made with its associated caveats and efficiency.

In the chapter 5 we expose the results we obtained from the implementation
of the previous chapter. We also compare our results with the metrics that bitcoin
PoW has. We then finally discuss the results highlighting the strenghts and weak-
nesses we found.

Finally, in the last chapter we conclude our work summarizing all that we have
seen and giving an overview of the main takeaways from the implementation of
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the algorithm we have implemented in the previous sections. In this direction we
also give the future work that is still left to be done and the questions that remain
unanswered.



Chapter 2

Cryptocurrencies and Blockchains

Digital cash solutions also known as cryptocurrencies emerged in 2009 as a
alternative to regular FIAT cash after the publication of the infamous paper of
Satoshi Nakamoto “Bitcoin: A Peer-to-Peer Electronic Cash System” [19]. In this
chapter we first begin by making an overview from a computer engineering per-
spective how these digital solutions work, we will be basing us in the general
model that Satoshi Nakamoto proposed which applies to all posterior blockchain
technologies. Across all this chapter we will be refering to cryptocurrencies specifi-
cally, because they are a use case of blockchain techonologies but the fundamentals
remain the same.

2.1 Fundamentals

All digital cash solutions are based on the idea that instead of relying in a
central trusted authority which usually are banks and institutions and are located
in servers, we now rely in cryptography as a means of assuring the security of the
coin, and not in a central authority.

All digital coins have at least three basic elements:

Private Key, Public Key and Coin Address we refer the reader to the chapter
on cryptography (chapter 3) in order to gain insight into what the Private key and
the Public key represent, in this chapter we will explain the philosophy behind
these abstractions.
The Coin address is formed from the Public Key and is what appears as the "re-
cipient" of the sent funds. It would be equivalent to the IBAN but in digital cash
solutions. The address is usually formed by applying a hash function to the public
key. For example in Bitcoin it is calculated as shown below:

5



6 Cryptocurrencies and Blockchains

Baseaddr = RIPEMD160(SHA256(Kpub)

as we see the the base of the address is 160 bit-long then the final address
would be the concatenation of the a checksum calculated using SHA256 hash
function and the first 4 bytes of Sha256(Sha256(Baseaddr)) and Baseaddr.1

Observe that as always the application of hash functions from a bigger space
to smaller (of finite cardinality) can produce collisions. In this case of course it
is not different. If two different public keys generate the same Coin address then
both users of the coin would be able to spend the money of the other person.
This scenario still, is highly unlikely. For instance taking the most used cryptocur-
rency nowadays, Bitcoin. And thus the most probable of having already collisions
we have that as of October of 2021 the Blockchain is 350Gbytes in size and if
we assume that the entire blockchain are diferent addresses then we would have
roughly 241 adresses. This space, compared with the space of possible addresses
is around 2160 following the contruction above. Thus the probability of collision
can be aproximated using the formula

p ≈ n2

2m

In bitcoin’s case:

p ≈ 282

2161 =
1

279

which is negligible and we were still very genereous with the number of Bitcoin
accounts.

2.2 Transactions

Transactions in digital cash solutions represent the abstraction of transferring
money between parties. The general data structure of a transactions is as follows:

1This address construction can vary more or less depending on the version of Bitcoin
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Size Field name Description

4 bytes Version Which version the transaction follows
1-9 bytes Input counter How many inputs are included
Not fixed Inputs the transaction inputs
1-9 bytes Output counter How many Outputs are included
Not fixed Outputs The transaction outputs

4 bytes Locktime Timestamp for being added to the blockchain

Table 2.1: Transaction data structure of Bitcoin

The inputs and outputs represent the coins which are going to be transferred.
And this is managed by what is known as unspent transaction output, or UTXO.
Intuitively these are funds that are lock to a specific owner (that is a specific Coin
address) and then recognized by the network so can be spent in another transac-
tion. The structure of the input and output are as follows.

Size Field name Description

32 bytes Transaction hash Pointer to the transaction containing
the UTXO

4 bytes Output Index The index number of the UTXO
referenced

1-9 bytes Unlocking Script size The lenght of the unlocking-script in bytes
Variable Unlocking Script A script that unlock the locking script
4 bytes Sequence number disabled

Table 2.2: Input data structure of Bitcoin

Size Field name Description

8 bytes Amount Bitcoin value in satoshi (10−8 bitcoin)
1-9 bytes Locking-Script size Locking-Script legth in bytes
Not fixed Locking-Script A script defining the conditions

needed to spend the output

Table 2.3: Output data structure of Bitcoin
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As we can see the table 2.3 and 2.2 we have the parameters Locking script
and Unlocking script. They refer in real world usage usually to the signature and
public key used to verify the signature. Still more complex and more than one
signature method can be employed.

In a real use case where Alice wanted to send to Bob say 0.1 bitcoin we would
have as the locking script, usually called a ScriptPubKey the public key of the
bitcoin sender. Then as the unlocking script we would have, the usually called
scriptSig, the signature of the transaction with the private key of the sender, that
is Alice. Then every bitcoin client would validate transactions by executing the
locking and unlocking scripts together. Still statement may sound a little vague
but it will become clear in the chapter 3 on cryptography.

As an additional information and not relating to this work note that there’s no
need to restrain ourselves in these scripting functions. More complex locking and
unlocking scripts could be used. This gave birth to smart contracts which are just
digital assets getting exchanged based on more complex conditions than the usual
signature base model.

2.3 Blockchain

One natural issue that one encounters when designing a currency is to be sure
that funds can’t be double spent by the same person. This situation with physical
money doesn’t make much sense but with digital cash it does. Logically the first
transaction that appeared is the one that counts and after this one all the succes-
sive ones should be incorrect. Thus a cryptocurrency has to be aware of all the
transactions that have been made in order to be sure if a coin has been already
spent by some participant.

In decentralized currencies as we don’t have any trusted authority who does
this work for us, the transactions have to be publicly announced and this high-
lights that we also need a system that creates consensus between all the partici-
pants of which transactions have been proposed and accepted by the network.

Blockchain and the more general concept distributed ledger 2 are the abstractions
that create this shared transaction record across the network. Blockchain for in-
stance refers to the chain that is formed by joining the blocks, which are basically
a set of transactions and a timestamp, by the hash of the previous accepted block.
Then the next block will include the hash of this block and so on. We shall focus
more in the concept of blockchain because the algorithm we present in chapter 4

2Blockchain is usually considered just one type of distributed ledger



2.4 Consensus 9

is thought as a blockchain. The data structure of a block is presented below:

Size Field name Description

4 bytes Block size The size of the block
80 bytes Block Header Header of he block
1-9 bytes Transaction Counter The number of transactions that come after
Variable Transactions The transactions themselves

Table 2.4: Block data structure of Bitcoin

The blockchain then would be graphically:

Block N

Block N + 1Block N − 1

header

Hash of

header BN−1

Time stamp

Nonce

Transactions

Figure 2.1: A general blockchain structure

Remark 2.1. In a public blockchain3 all the transactions and PoW solutions are
available to everyone, that means a public blockchain can be thought of as a public
database. This remark although maybe obvious interests us as we will see later.

2.4 Consensus

In anticipation to deciding which transactions are included in and also who
constructs the next block in the blockchain we are in the need of a method to
achieve consensus in the network. A Proof of Work (PoW) is usually the approach

3A public blockchain has no access restrictions. Anybody with an Internet connection can par-
ticipate in it. Either by actively mining or passively by sending transactions.
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here although other alternatives exist. A Proof of Work is informally a crypto-
graphic proof in which one participant (the prover) proves to others (the verifiers)
that some amount of computational effort has been expended, the verifiers should
be able to prove this work has been done easily.

Since the pioneer paper of Satoshi Nakamoto proposed a method for achiev-
ing consensus through the use of hash functions, all the blockchain have been
following his model. This method is really simple and consists of applying a hash
function over the block data being added to the database (Blockchain). It is indeed
added when this hash output is small enough as stated in the network configura-
tion. The nodes have to play with a variable called Nonce inside the block header
until this acceptance condition is met.

This process of getting new blocks added in the blockchain is usually named
mining and the nodes who attempt to mine are called miners.

In bitcoin for example it is used the hash function SHA256 two times searching
for a small enough result:

SHA256

SHA256

Block header + Nonce

output Smaller than
n(d)?

Yes

No

Valid block

Invalid block,
keep trying

n(d) ∈ N where d is the difficulty parameter

Figure 2.2: Mining diagram of bitcoin

We outline below how a cryptocurrency operates in order to incorporate a
transaction since its creation until the network accepts it:

1. A node broadcasts a new transaction to all the nodes

2. Each node that is mining collects the transactions into a block

3. Each miner tries to solve a Proof of Work
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4. A miner finds a nonce which solves the problem and then broadcasts the
block to all nodes

5. Nodes accept the block if all the transactions inside it are valid.

6. Nodes start working in a new block following the next accepted.

As can be seen from Table 1.4 the number of transactions that can be included
inside a Block is limited and thus the miner nodes have to decide which transac-
tions to include in the next block.

Fees, Incentives

Miners in order to actually want to mine in the original Bitcoin protocol recieve
a reward or incentive in the form of the coin itself. The Incentives are usually of
two types:

New coin creation: In this case the first transactions in a block is a special one
that creates/"mines" a new coin to the miner of that block.

Fees payed by the transactions senders: In this case the nodes that want to
get their transactions in the network usually leave a number of inputs bigger than
the number of outputs. Then by default the protocol assigns this unallocated
difference to the miner of the block containing that transaction. Thus makes sense
that the miners usually choose the transactions with higher fees as the transactions
to include in the mined block.
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Chapter 3

Cryptography

Cryptography comes from the Greek Kryptos which means hidden and is the
science which studies protocols that prevent third parties or the public from read-
ing private messages.

In the history of cryptography there are two marked periods. The first, before
the invention of the computer where cryptography was mostly the application of
substitution and translation ciphers. And later, with the invention of computers,
where newer and more sophisticated ciphers appeared based in the developing
mathematical field of number theory. We will focus more on the later one.

Modern cryptography can be categorized in two main categories: Private key
cryptography also known as asymmetric cryptography and public key cryptogra-
phy also known as symmetric cryptography.

Let us now asume we have two individuals, for example Bob and Alice who
want to communicate through a hostile medium. Let’s see how each type of
cryptography tries solves the problem of communication.

3.1 Private key cryptograhy

In Private key cryptography the premise is that Alice and Bob and just the two
of them share a key which we denote as K which can be used to encode messages
from the space of possible messages M and also decode messages from space of
ciphers denoted C.

Thus the encoding/encrypting function can be seen as the following:

e : K×M→ C

Where the domain are the pairs of possible keys with the possible messages

13



14 Cryptography

to encode. The range are the possible ciphertexts which the enconding function
results on. Similarly the decoding/decrypting function can be seen as:

d : C× K → M

This functions must share the property that they are one the inverse of the
other one. That means intuitively that the decoding function applied over the
encoding function with the same key must return the same encoded message:

d(k, e(k, m)) = m for all k ∈ K and all m ∈ M

It is important to comment that the security layer in this encryption scheme
resides exclusively in the key which should be only known by the encoder and
decoder. It has to be asssumed that the methods of encoding (and thus decoding)
are known by thirds. This principle is known as Kerckhoffs principle.

3.2 Public key cryptograhy

In Public key Cryptography or PKC we have as before the space of possible
keys K, the space of messages M and the space of ciphertexts C. The difference
with the previous type of protocols is that now an element in the space of keys is
actually a pair of keys (kpriv, kpub). The first one is called the private key and the
second one is the public key. The operating mode with these keys is the following:

1. For each public key kpub there’s its corresponding ekpub : M → C encryption
function

2. For each private key kpriv there’s its corresponding dkpriv : C → M decryption
function

3. If (kpriv, kpub) ∈ K then dkpriv(ekpub(m)) = m for all m ∈ M

As we can imagine from the three conditions above, the ecryption function
given a key should be easy and fast to compute but getting the inverse without
the private key should be really hard. This is known as a one-way trapdoor function
[11] pag. 63. Generally a one way function is an invertible function which is easy to
compute but has an inverse which is very difficult to compute. The term difficult
here is not rigorous but the idea is that computing the inverse should be complex
enough, requiring a computation equal to the age of the earth for example.

Secure PKC’s are built using one-way trapdoor functions. where kpriv acts as
the backdoor for the encoding function dpub and similarly kpub acts as the backdoor
for the decoding function kpriv.
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As a note the reader might be surprised to know that there’s still no proof on
the existance of such one way functions as described earlier and in fact proving
the statement is equivalent to proving the famous P = NP problem. [11]

3.2.1 Digital signatures

Digital signature refers to the process of giving authenticity to a message sent
across the network. That is, proving that the message has not been sent by some-
one else faking the sender identity.

The usual procedure when working with signatures is as follows:

1. The sender produces the signature S of a document M using a signing algo-
rithm

2. The receiver applies a verification algorithm which given M and S returns
TRUE if the message is authentical and FALSE otherwise

Logically only the sender has to be able to produce valid authentical messages
refering to him.

Digital signatures are usually approached using asymmetric cryptography.
Necessary conditions that a secure digital signature scheme must have are the
following:

1. Given kpub an attacker can’t determine the corresponding kpriv nor produce
another key that gives the same signatures as kpriv

2. Given kpub and a list of signed documents D1, ..., Dn with their corresponding
signatures S1, ..., Sn, an attacker cannot feasibly determine a valid signature
on any document D that is not in the list

Some comment about the second property, it refers to the intuitive fact that
if we have some documents and its signatures the attacker cannot determine any
pattern in order to deduce signatures of other documents. Very similar documents
should not produce very similar signatures.

Digital signatures as we have presented them here are a very big simplification
of what real life solutions look like. As we should study them in a rigorous math-
ematical way the formal way we have presented them is already good.

Still we would like to comment that usually signatures are applied not to the
documents entire data, because of the big size they might have. Usually a in
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between step is added where a digest function such as a hash function is applied.
The reason for this is the output being much smaller than the input. As we saw
with the problem of collision in address creation in cryptocurrencies the problem
of collision is usually negligible.

3.3 The Discrete logarithm problem

The discrete logarithm problem is a mathematical problem which arises in
many situations and can be used to our advantage in secure cryptographic sys-
tems.

The first publication in PKC was due to Diffie and Hellman and is based in the
discrete logarithm problem.

Let’s start our study of the discrete logarithm problem in a formal mathemati-
cal way:

Definition 3.1. Z/nZ where n ∈ N denotes the ring equiped withthe natural sum and
multiplication of the integers modulo n.

From now on we shall refer to Z/nZ as simply Zn

Lemma 3.2. Given p a prime number then Zp is a field and we denote it Fp.

Lemma 3.3. Let p be a prime, then the multiplicative group of Fp is cyclic of order p− 1.

Note that this actually implies Fermat’s little theorem. We give no proof to this
lemma’s as they were seen already in the bachelor classes.

Definition 3.4. Let G be a group, we say g ∈ G is a primitive root of G if for all x ∈ G
there exists h ∈N such that gh = x.

Remark 3.5. If G is a cyclic group then it has a primitive root by definition of cyclic
group.

Definition 3.6. Let g be a primitive root for Fp where p is prime and let h be a non zero
element of Fp. We denote as the Discrete Logarithm Droblem (DLP) the problem of finding
an exponent x ∈N such that

gx ≡ h mod p
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Thus the discrete Logartithm problem is the problem of finding the index in
Group theoretic terms. Assuming we are in Fp we can then define a function logg

depending on its associated primitive root g assigning, given an element x in Fp,
the index of that point.

logg : Fp →
Z

(p− 1)Z

The following calculation should give the reader the impression that the name
of such function has some meaning behind it:

let a, b ∈ Fp ; logg(a) + logg(a) by definition is the natural number h = ha + hb

such that gha = a and ghb = b thus multiplying we have gha ghb = ab so gha+hb = ab
and thus ha + hb = logg(ab). We have proved then that:

logg(ab) = logg(a) + logg(b) (3.1)

Resembling the distinctive property of the logarithm.

Of course we don’t have to limit ourselves to Fp, indeed we can further gener-
alize the discrete logarithm problem to a Group G. In general the only condition
that seems we have to ask is the group to be cyclic. Still if a Group G weren’t cyclic
we could define a discrete logarithm problem basing us just in the Base point and
multiples of it.

As we will see next we can study geometrical objects such as elliptic curves
with the structure of a group and work in the DLP over that group.

3.4 Elliptic curves

Definition 3.7. We define an elliptic curve as the set of solutions to a equation of the form
Y2 = X3 + AX + B satisfying 4A3 + 27B2 6= 0

Remark 3.8. By imposing that 4A3 + 27B2 6= 0 we force to the curve to not have
singular points, ie. the curve is smooth.

Observe that this definition is very general as we don’t restrict the coefficients
A, B of the equation in any set and we also don’t specify where the solution should
reside in, we will see where this coefficients should reside in a constructive way.

Remark 3.9. If P = (p1, p2) is a point in the Elliptic curve then Q = (p1,−p2) also
lies in the elliptic curve
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Figure 3.1: Elliptic curve y2 = x3 + 7 over R

We shall now give to this set a addition-like operation. The way we construct
such "+" operation is geometrical:

Let P, Q ∈ R2 such that P 6= Q we can consider the segment joining these two
points. We construct the sum point M of these two by finding the third intersec-
tion point of this line with the elliptic curve and then making a reflection in the
X-axis. That is multiplying the y-component by −1.

With this sum operation defined and the very general definition of elliptic curve
given several problems arise:

1. If the operation is well defined

2. If the operation is closed

3. What happens if we want sum P + P

4. What happens if we want to sum two X-axis reflected point P = (p1, p2) and
Q = (p1,−p2)

Lets study each one of the problems in order to refine first the sum "+" op-
eration given and second the kind of algebraic structure the set of solutions and
coeficients have to be in.



3.4 Elliptic curves 19

We begin considering the second problem. We can consider the line joining P
with itself as a limit like situation, thus the tangent line makes sense and so we
consider it as the line to search the new intersection with the elliptic curve and
then make the reflexion with the X-axis.

In the third poblem we have that the line associated is vertical ie. X = c, c
a constant and thus the third point does not exists because we substituing in the
equation of the elliptic curve we have Y2 = c3 + Ac + B which has just two solu-
tions. The solution to this issue is to add an extra point in the plane O resembling
the infinity of projective spaces such that O is the the solution of this sum. The
question now turns: How is a generic plane point P added with O? If we imagine
it as the infinity lying in (p1, ∞) then we can construct the line joining the two,
X = p1 and finally the other intersecting point which is (p1,−p2) after as defined
above we reflect it in X-axis giving P + O = Q = (p1, p2) = P. With this construc-
tion, the sum of any point P with the point O is equal to P. So O is the identity
element of this sum operation.

For the first problem we study the new intersection point explicitely:

Let P = (xp, yp), Q = (xq, yq), P 6= Q two points in the set of solutions of the
elliptic curve. We have that the slope of this segment joining the two is s = yq−yp

xq−xp
.

In order for (xq − xp)−1 to be well defined, the set of solutions has to be a field.
If we consider the line containing P and Q as y = sx + d then substituting in the
elliptic curve equation gives:

(sx + d)2 = x3 + ax + b (3.2)

We also know that the solution to this polynomial must be Xp, Xq, Xr where R
is the third point and xr its x-component. Thus 3.2 can be rewritten as:

(x− xp)(x− xq)(x− xr) = x3 + x2(−xp − xq − xr) + x(xpxq + xpxr + xqxr) = 0

Comparing the coefficients of x2 we arrive to the explicit expression of R:{
xr = s2 − xp − xq

yr = yp + s(xr − xp)

From the explicit expression we have that the operation is well defined if and
only if the set of the coefficients is contained in the set (and field) of the solutions.

From now on we will refer to elliptic curves as elliptic curves over a field K

in the sense that the coeficients A, B from the Weierstrass equation belong to the
field and also the set of solutions belong there.
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Theorem 3.10. The set of the solutions E of an elliptic curve together with the operation
"+" as defined in the paragraphs above forms a Group.

Proof. By the construction of the sum operation we have the existence of inverses
because given P we have that −P belongs to the curve. Also, the commutativ-
ity and the existence of a identity element are immediate by construction. The
closeness of the operation over the field has been seen explicitly. It reamins to be
proved just that the operation has the associativty property. For the sake of brevity
a proof is not posed here but the reader can find one in [9].

Definition 3.11. Let p ≥ 3 a prime. An elliptic curve over Fp is an equation of the form

E : Y2 = X3 + AX + B with A, B ∈ Fp satisfying 4A3 + 27B2 6= 0

The set of points on E with coordinates in Fp is the set

E(Fp) =
{
(x, y) : x, y ∈ Fp satisfy y2 = x3 + Az + B} ∪ {O}

Theorem 3.12. Let E be an elliptic curve over Fp and let P and Q be points in E(Fp)
then (E(Fp), +) is a group.

Proof. Just a special case of 3.10 considering the coefficients and solutions to be in
Fp.

3.4.1 The Elliptic curve discrete Logarithm problem (ECDLP)

In this subsection we shall study again the discrete logarithm problem but now
restraining ourselves to the group E(Fp,+). Remember that at the end of section
3.3 we saw that a necessary and suficient condition for having a well defined
Elliptic curve discrete logarithm problem was to have a cyclic group.

Definition 3.13. Let E be an elliptic curve over the finite field Fp. The Ellitptic Curve
Discrete Logarithm Problem (ECDLP) over P is the problem of finding an integer n such
that Q = nP for a given Q ∈ E(Fp).

By analogy with the general discrete logarithm problem of section 3.3 we de-
note this integer n by:

n = logP(Q)

and we call n the elliptic discrete logarithm of Q with respect to P.
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Figure 3.2: y2 = x3 − x over F61 source: Wikipedia

Remark 3.14. In the definition above we don’t require P to be a primitive root.
Thus there can be cases where elliptic discrete logarithm doesn’t exists. Still in
practical terms we actually we don’t need to have a primitive root. In the order
of things Alice and Bob would decide over a P in E(Fp) and then decide their
corresponding secrets as Q = nP. In this way, by construction, the existence of the
elliptic discrete logarithm is guaranteed.

Remark 3.15. As we also commented in 3.3 one solution to the elliptic discrete
logarithm is the index s of the Q in the base P over E(Fp). So it means that
actually the elliptic discrete logarithm is not unique as defined. But if we consider
the solutions of the problem to be defined in Zs then yes.

Proposition 3.16. logP : E(Fp)→ Zs as defined above is a group homomorphism

Proof. the fact that is well defined follows from the above reasoning and from (3.1)
it follows easily that it is a homomorphism.

3.4.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

We will present here the cyptographic foundations for signing transactions. As
we have seen with the discrete logarithm problem in 3.3 we can begin the study
in a more general way and then move to the Elliptic curves group.
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Elgamal scheme

DSA stands for Digital Signature Alforithm and it backs to the 80’s. We will
start by describing a previous and simpler signature algorithm based on the Elga-
mal scheme1.

Suppose Alice wants to sign a certain message M. Then she would choose a
large prime p and a primitive root g modulo p. Next Alice would choose a secret
signing exponent a and would calculate:

A ≡ ga mod p (3.3)

Then a together with p and g form Alice public key as we will see in a moment.
Alice now wants to sign a digital document say D, where D has to be an integer
satisfying 1 < D < p. If the document is bigger it can the be reduced by appying
modulo p over it. Alice would choose a random element 1 < k < p that satisfies
gcd(k, p− 1) = 1 and compute the following two quantities:

S1 ≡ gk(mod p) (3.4)

and

S2 ≡ (D− aS1)k−1(mod p-1) (3.5)

Then the signature of Alice would be the pair (S1, S2). How can Bob check that
only Alice, or anyone with the private key, can have signed the document D?

Lemma 3.17. AS1 SS2
1 ≡ gD (mod p) Where A is as defined in 3.3 and S1 and S2 as defined

in 3.4 and 3.5 respectively.

Proof. By a simple computation we have:

AS1 · SS2
1 ≡ gaS1 · gkS2 ≡ gaS1+kS2 ≡ gaS1+(D−aS1) ≡ gD (mod p)

As we have already seen if Bob or anyone can solve the discrete logarithm
problem 3.3 then the signature makes no sense, but as we have commented there
are not practical ways of attacking this problem. Still, it is not entirely clear if
someone could forge a signature of a document without knowing the private key

1The Elgamal scheme is a asymmetric key encription algorithm described by Taher elgamal in
1985
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a.

Given only the public key A defined in 3.3 the problem can be postulated as
finding integers x, y which satisfy:

Ax · xy ≡ gD (mod p) (3.6)

taking logg we obtain:

logg(A)x + y logg(x) ≡ D (mod p− 1) (3.7)

As of today the modular equation 3.7 has not a better solution than actually
tacking the discrete logarithm problem 3.3.

As an additional commentary, Elgamal signatures (S1, S2) consist of one num-
ber modulo p and the other one modulo p− 1. Usually to be secure against brute
force attacks, also known as index calculus attacks the prime p is taken to be
between 1000 and 2000 bits.

DSA

The Digital Signature Algorithm (DSA) actually works in a subgroup of F∗p of
prime order q and thus shortens the signature.

We explain in the same situation as before how the DSA works:

Alice would begin taking primes p and q so that:

p ≡ 1 (mod q)

Then she would choose an element g ∈ F∗p of exact order q. Note that this is
an easy task given a primitive root of the group we are working with. Then Alice
would choose his secret, or private key, namely a and she would compute

A ≡ ga (mod p)

Now the public key of Alice is the triplet (p, q, g). We are ready now to begin
the signing process itself:
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Suppose that Alice wants to sign a digital document D, where D is a integer
satisfying 1 ≤ D < q. She would choose a random element k such that 1 < k < q
and she computes:

S1 ≡ (gk mod p) mod q and S2 ≡ (D + aS1)k−1 (mod q) (3.8)

As we can see there are lots of similarities between the Elgamal scheme 3.4.2
and the DSA in how the signatures are constructed. The only difference is in the
construction of S1 where first we apply a modulo p and then modulo q. Bob would
check the signature by computing:

V1 ≡ DS−1
2 (mod q)

V2 ≡ S1S−1
2 (mod q)

And he would finally check if:

(gV1 AV2 (mod p)) (mod q) is equal to S1

Proof.

gV1 AV2 (mod p) ≡ gDS−1
2 − gaS1S−1

2 (mod p)

≡ g(D+aS1)S−1
2 (mod p)

(3.9)
Which is equal to gk (mod p)

ECDSA

The ECDSA2, Elliptic Curve Digital Signature Algorithm is similar to the DSA
signing algorithm. The construction is analogue. Now instead of working over F∗p
we are working in an elliptic curve E(Fp) and thus we are in an additive group
instead of the multiplicative one of the DSA.

3.4.3 Security of Elliptic curve cryptography

Refering to Discrete logarithm problem:

“All that can be said is that such and such a problem has been extensively
studied for N years, and here is the fastest known method for solving it” [11] pag.
323

2ECDSA is the signing algorithm that uses bitcoin [4]
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As of now we still don’t know the real difficulty of the general case of the
discrete logarithm problem, currently the problem seems to NP-hard. Together
with the fact that elliptic curves have not been found to have any other algebraic
structure apart from the structure of a group. Makes elliptic curves perfect to
work with discrete logarithm problems. That’s the reason they form the basis of
cryptography, as seen in ECDSA for example.

The best algorithm known to this day for the ECDLP is the Pollard ρ-method
[15] in the modified version proposed by Gallant, Lamber and Vanstone, combined
with Wiener and Zuccherato [15]. This algorithm takes O((

√
πn)/2) where n is

the order of the base point. If we denote b the bit representation of n we have
2b ≈ n. We then have O((

√
πn)/2) = O(22b−1) thus exponential, there exist other

algorithms that run in similar time such as the baby-step giant-step but Pollard-rho
remains the best option as it only requires O(1) storage [5]. Later in this chapter
we will expand this algorithm and give an overview.

Attacks

There are several special families of curves that allow us to break the ECDLP
in more efficient algorithms that run in polynomial time. For example the Pohlig-
Hellman algorithm allows us to reduce the determination of l, a solution of an
instance of ECDLP, to the determination of l modulo each of the prime factors
prime factors of who?.

Next if a curve has the property that #E(Fp) = p where p is prime we say
that the elliptic curve is prime-field-anomalous. For every prime-field-anomalous it has
been shown that it is possible to contruct an isomorphism between #E(Fp) and
the additive group Zp. Given that the additive group of Fp is Zp this structure of
field allows to have a polynomial time algorithm for solving the ECDLP. This type
of attack is called Semaev–Smart–Satoh–Araki attack.

Another attack uses the Weil-pairing to embeed the group E(Fp) in the multi-
plicative group of the field Fqk for some natural k. In order to be able to produce
this embedding is that n divides qk − 1. The minimum natural k that does this is
called the embedding degree of the curve E. Using this embedding it is possible
to solve the ECDLP in subexponential running time.

The discriminant of complex multiplication of Ellitptic curves over finite fields
(CM discriminant of E) refers to the discriminant of a field generated by adjoining
the roots of the characteristic equation of the elliptic curve to Q. These algebraic
definitions are out of the scope of this work but a introduction of them can be
found here [16]. It has been seen than one can speed up the pollard rho algo-
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rithm if the CM discriminant of E is small enough [22]. Still this possible attack
is highly unfeasible because this discriminant is usually large for large enough
elliptic curves [16].

Pollard rho algorithm

Next we give an overview of the Pollard rho algorithm to solve the ECDLP.
Given a ECDLP over the elliptic curve group E of cardinal q, we want to find the
integer n such that nP = Q. Let’s asume that E =< P >. In the Pollard rho
algorithm the goal is to solve the following problem:

find integers a, b, A, B such that aP + nQ = AP + BQ (3.10)

asuming we have (2.10) we can then obtain the solution to the ECDLP:

aP + bQ = AP + BQ

aP + bxP = AP + BxP where x is the ECDLP solution

(a + bx)P = (A + Bx)P

(a− A)P = (B− b)xP

taking P out we have the following modular equation:

a− A ≡ (B− b)x (mod q)

x = (a− A)(B− b)−1 (mod q)

which is well defined if an only if gcd((B− b), q) = 1. In order to achieve the
equation (2.10) the algorithm generates a pseudo-random sequence:

Xi = aiP + biQ

As the set of possible outcomes is finite we will reach a loop in the sequence
sooner or later, the downside with this approach is that we have to store all the
sequence elements. We can reduce the algorithm to O(1) space complexity in the
following manner:

If we denote i, j i ≤ j the two smallest integers such that Xi = Xj rewritting we
have that Xi = Xi+k for some natural k. We have the following theorem which we
present without proof:
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Theorem 3.18. (Knuth (1997)). For a periodic sequence X1, X2, ... there exists an integer
l > 0 such that Xl = X2l and the smallest such l lies in the range i ≤ l ≤ i + k

Using this theorem we can see that we can just store Xi and X2i for each i until
we find a colision. We then require only O(1) storage complexity.

The algorithm has a complexity O(
√

q). We won’t provide a demostration of
this statement but the proof is very elegant and based on the birthday paradox, the
reader can find the proof in the following article [20] by J. M. Pollard the author
of the algorithm.

3.5 Hash functions

As we have seen one quality that cryptocurrencies and specifically blockchains
rely on are functions which are easy and fast to compute but hard to invert. Such
functions are called Hash functions. We make a formalization of such functions in
order to give completeness to the work.

Generally a hash function H : N → M takes a message of n-Bits (N) and
converts them to a message of m-bits (M). Usually we have that m < n. Such
functions must have also the following properties:

1. H(message) must be easy to compute.

2. Given h ∈ M it must be difficult (exponential time) to find a n-bit long
message n such that H(n) = h

3. They have to be collision resistant which means that it has to be two entries
to the hash input which result in the same output.

A typical approach to construct such functions is as explained below:

Suppose we want to construct a hash function which takes a message of length
m and converts it to a message of length n. These functions make use of mixing
algorithms M that take sub messages of length say p and mix them to another
message of the same length. Thus these algorithms first append some bits to the
original message in order to make it divisible by p. If we denote D the original
message with the necessary bits appended we have:

D = D0 || D1 || ... || Dk

where Di are p-bit messages ∀i ∈ 0, ..., k. Then they start a iterative pro-
cess where they construct H0 = M(D0) and start iterating to construct Hi =

Hi−1 xor Di for all i ∈ 1, ..., k.
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Nowadays the most common used hash functions are called Secure hash algo-
rtithm (SHA) in its several variations, each one of them differs from the others
usually in the output size.



Chapter 4

Bread pudding PoW protocols

In this section we will take a deep look at Proof-of-Work protocols, fomalizing
this concept basing us in the paper from M Jakobsson [12] where he first fomalized
this concept and its variations.

4.1 PoW and Bread pudding protocols

We begin this chapter by giving a formal definition to what is a PoW protocol.
We start by denoting ts the start time of a PoW protocol and tc the completion time.
Then the aim of a PoW protocol is to enable to a person, say A to demonstrate that
she/he has performed a certain amount of computation in his execution interval
[ts, tc]. We assume too that the prover A is allowed to perform computations
previously, that is she/he can perform computations in the time interval [−∞, tc].
We give now two definitions that characterize the lower and upper bounds of a
PoW protocol.

Definition 4.1. We say that a Proof of Work PoW is (w, p)-hard if we have the following:
Suppose a prover P with a memory resource bounded by m performs an average, over all
coin flips by P and V, of at most w steps of computation in the interval [ts, tc]. Then the
verifier V accepts with probability at most p + o( m

poly(l) ), where l is a security parameter.

Note: poly(l) denotes set of polynomials in the variable l.
This first definition gives us an idea of the hardness of the PoW we are dealing

with. It tells us actually a bound for a number given of computation steps how
much success probability we have. We can follow in this direction with the fol-
lowing definition:

Definition 4.2. We say a PoW to be (w, p, m)-feasible if there exists a prover P with

29
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memory bounded by m such that an average of w steps of computation in the interval
[ts, tc]. Then the verifier V accepts with probability at least p.

Definition 4.3. We say a PoW is complete, if, for some w, the PoW is (w, 1, poly(l))-
feasible, where l is a security parameter.

Note that the last definition means that the Proof of Work can be solved (with
a probability of 1) in a l-dependent polynomial amount of memory and for a
number w of given computations. It certainy gives a sense that the PoW has com-
pleteness.
We now give two definitions that introduce us to the idea of a Bread pudding PoW
protocol:

Definition 4.4. Suppose that a PoW which we donete PoW1 is a (w,p)-hard Proof of
Work. Let also P1 denote the prover and V1 the verifier of this PoW. Suppose that P1 is
also a verifier in another PoW that we call PoW2 that is V2 = P1. We say that PoW2 is a
Bread pudding protocol for PoW1 if the following holds:

If P1 or equivally V2 verifies the PoW2, then P1 can perform w− ε computational steps
over the calculation of PoW1 for ε ≥ 0 and get a verification probability from V1 of at least
p.

Intuitively what this definition tells us is that the computation that we may
have done for PoW2 is recycled in the PoW1. Observe that trivially PoW1 is a
Bread pudding protocol for PoW1 itself. Still this observation is useful to gain
insight into what these definitions are telling us.

Although this definitions may seem very abstract in the last decade there have
been some implementation of some Bread pudding PoW protocol, the most no-
table were in the field of protein analysis or random mathematical problems [10],
[14].

4.2 An ECDLP Bread pudding PoW model

In this section we will outline a new ECDLP Bread pudding PoW model. This
model is entirely based in the article [18] from year 2020.

This model has a rather simple blockchain architecture where there are just two
types of blocks. The Epoch block and Standard block. The standard block contains
the usual information in a blockchain such as a header, a list of transactions and
the instance of PoW whereas the Epoch block is a standard block plus some other
information which allows us to generate a PoW that solves generic instances of
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the ECDLP as explained in 3.4.1.
We begin outlining the algorithms that generate the settings needed to have a
consistent ECDLP.

At the very first moment of setting an ECDLP we need a finite field to work
over, we are gonna work over a field in the form of Fp. We calculate p as follows:

Algorithm 1: prime_Gen

Require: d ≥ 1 , h
while p doesn’t satisfy security conditions do

h← H(h)
p← NextPrime(h mod(2, 2d))

end while

Note: d represents a difficulty parameter, observe that the bigger the d the big-
ger p and thus the harder the ECDLP becomes. h here represents a binary input
usually coming from a hash.

With the following security conditions:

Prime security conditions

1. p is not a Crandall prime that means is not of the form 2k − c for a
relatively small and positive c.

2. p is not a Generalized Mersenne prime nor a more generalized
Mersenne prime.

3. p is not Motgomery-friendly. That is it is not obtained in the form
2α(2β − λ)− 1 for smalls integers α, β, γ

Next we would determine the elliptic curve E: y2 = x3 + Ax + B over Fp:

With the following security conditions:
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Algorithm 2: E_Gen

Require: p, h
i← 0
while E doesn’t satisfy Security conditions do

i← i + 1
A← H(h + 1)
B← H(A)

end while

Elliptic curve security conditions

1. #E = q where q is prime and p 6= q.

2. The embedding degree of the ellitpic curve is greater than 20, that is
#E - pB − 1 for each 1 ≤ B ≤ 20

3. Let D be the field discriminant we require D ≥ 240

It is important to note that we impose the group of the elliptic curve to be
prime, which consequently means that its a cyclic group. Finally the node would
have to compute the Base Point P over E(Fp). Thus the ECDLP to solve is well
defined.

Algorithm 3: P_Gen

Require: h E
i← 0
N ← 0
while N = 0 do

i← i + 1
N ← Number of points in E with x-cord equal to h + i
B← H(A)

end while
y← y such that (h + 1, y) ∈ E and 0 ≤ y ≤ p/2
P← (h + i, x)
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Blockchain structure

As we briefly commented this ECDLP PoW model requires two types of block
in the blockchain, the standard block which we will denote [SB] and the epoch
block denoted [EB]. Next we outline the structure of this two types of blocks

1. Standard Block: They don’t have any other information apart from the
usual: Header, transaction list and PoW instance.

2. Epoch Block: Added to the standard block structure they contain the prime
p, the elliptic curve E over this prime field and two points N1, N2 ∈ E(Fp) .

The idea behind this model with two kinds of blocks is to be able to change
from time to from one elliptic curve to another. The original authors sets one [EB]
every 2015 [SB] but this choice seems to be arbitrary.

p, E, P
PoW

[EB]

PoW

[SB]

PoW

p, E, P
PoW

[EB][SB]

#0 #1 #2015 #2016

....

Figure 4.1: Blockchain structure of the proposed model

In order to generate the parameters for a given Epoch block B the calls would be
the following:

p = p_Gen(d, hprev)

E ≡ (AE, BE) = E_Gen(p, hprev)

P = P_Gen(p || AE || BE, E)

Where hprev is the hash of the previous Block header and d is a difficulty parameter
settled based on the wanted block confirmation time in the same spirit as bitcoin’s
mining dificulty parameter. With this all the special Epoch Block parameters are
defined.
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Now that we have exposed the blockchain model, the elliptic curve and base
point generating functions we just have left to define the actual PoW to be solved:

Definition 4.5. Given a Block Bi and a current Epoch Block parameters E, p, P and given
σk a deterministic digital signature with a given key k, we define the Proof of Work (PoW)
to the process of finding the two integers N1, N2 such that:

P_Gen(H(σk(hprev)), E) = N1P

P_Gen(H(M), E) = N2P
(4.1)

We should observe that by finding N1 we already force the miner to solve at
least a generic instance of ECDLP. Since E and P are determined by the epoch and
hprev as is based on the previous block the miner has no control over them. As σk

is deterministic each miner has to solve at least one instance.

One could argue that there might be collisions of the type: H(σk(h1)) =

H(σk(h2)) this can be easily avoided choosing a long enough hash function and
also avoided given the change of elliptic curve every 2016 blocks which ensures
that the finite possibilities of ECDLP for a given curve are not exhausted. Still we
add extra security by solving another ECDLP with the calculation of N2. As the
original author of this model comments this adds extra security but still with just
one ECDLP it would be enough.

The Epoch Block and Standard block will then have this structure:
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[SB]

Header

Transactions

T1 T2 Tn
...

PoW: (N1, N2)

[EB]

Transactions

T1 T2 Tn
...

Header

PoW: (N1, N2)

p = p_Gen(h, d)

E = E_Gen(p, h)

P = P_Gen(H(p||AE||BE), E)

Epoch data

Figure 4.2: [EB] and [SB] structure of the proposed model

4.3 An implementation

In this last chapter we explain an implementation of the above exposed Blockchain
mining model. The goal was to check if the above model is realistic in a real pro-
gramming language, not using specialized mathematical software and thus in the
future seeing it in a real life scenario.

The programming language of choice was C mainly due to optimization rea-
sons as we wanted the algorithm to be as fast and efficient as possible, we pre-
dicted we could have some efficiency issues (as we had) so the C as our pro-
gramming language choice is justified. Also we wanted an easily cross-compiled
language so it could be easy to make portable an implementation of a blockchain
with this PoW.

The following libraries are used in the implementation:

1. OpenSSL: An open source cryptography library. [1]
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2. Flint: A C library for doing fast number theory. [2]

3. GMP: A free library for arbitrary precision arithmetic, operating on signed
integers, rational numbers, and floating-point numbers. [3]

4. SEA: An implementation of the Schoofs-Elkies-Atkin.1 [21]

Our initial approach was to just use the OpenSSL library because we needed
an interface for working with the arithmetic elliptic curves and applying hash
functions mainly.

Later, as we will comment, we also found us in the need of working with
polynomials over finite fields and thus the Flint library was used which does use
underground the GMP library. Later we added also to our project an implemen-
tation of the SEA algorithm.

4.3.1 Details of implementation and problems

Firstly the code makes extensive use of hash functions we decided the algo-
rithm to be using the SHA256 hash function. Next we outline the core functions
of the algorithm and the problems we had with their implementation, please refer
to the chapter 4.2 in order to see the pseudocode and to https://github.com/
mariomoliner/TFG for the actual source code of the implementation.

prime_gen (algorithm 1)

/*
* INPUT: d, const unsigned char *
* OUTPUT: BIGNUM *
* given the difficulty parameter and a hash generates a prime number
*/
BIGNUM * prime_Gen(int d, const unsigned char * hash);

For the prime generation, we didn’t implement any of the Prime security checks due
to firstly time constraint and second because we considered this checks to not be of
critical importance for the algorithm. Prime security checks restrain us some types
of prime numbers from our choice. These kind of primes make multiplication over
their respective prime field faster but they don’t provide any vulnerability what-
soever when working in Elliptic curves over their prime field [22] pag. 114. Thus
from security standpoint it was not critical to implement those. The only possible

1The Schoofs-Elkies-Atkin (SEA) is an efficient algorithm to count points on elliptic curves over
finite fields.

https://github.com/mariomoliner/TFG
https://github.com/mariomoliner/TFG
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outcome when this is not implemented is that there might be some ECDLP that
are faster to compute, but for all participants in the network. Thus reducing the
block generating time, at this point is where the Epoch block frequency might be
useful as way to provide faster or slower frequency depending on how fast the
ECDLP are getting solved.

We want to highlight that we also had to implement, as OpenSSL doesn’t
include it, the function for computing the next prime following a given natural
number.

/*
* INPUT: BIGNUM *
* OUTPUT: BIGNUM *
* Given a natural number computes the bigger closest prime number
* and returns it
*/
BIGNUM * Next_prime(BIGNUM * num);

E_gen (algorithm 2)

/*
* INPUT: BIGNUM *, const unsigned char *
* OUTPUT: EC_GROUP *
* given a prime p and a hash calculates an elliptic curve and
* returns it
*/
EC_GROUP * E_Gen(BIGNUM * p, const unsigned char * hash);

For the Elliptic curve generation we had to implement three security checks, we
didn’t implement checking if the CM discriminant was big enough due to com-
plexity, as getting the square free part of a random integer was not available to us
in the flint library and in fact there is not known any algorithm to compute the
square free part of an integer in polynomial time [17]. As we also saw not check-
ing this property could only result in some cases getting the resolution of ECDLP
with pollard rho faster than the general case. Eventually a new Epoch block will
be generated and so we consider not to be a very important case.
Calculating the embedding degree of the curve was done without major compli-
cations. But computing the cardinal of the elliptic curve group brought us many
problems. We first approached this problem in a naive way, iterating trough all
the possible x ∈ Fp for the x-coordinate and adding the existing points. This
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approach was really impractical. As the difficulty parameter d was increased the
prime field got bigger and so elliptic curve, this approach made the computation
of the cardinal of the elliptic curve group exponential. For d > 10 the function
took too long.
We then implemented a better algorithm using the Hasse bound, a profound re-
sult of elliptic curves which gives a bound of the cardinal. This theorem tells us
that #E(Fq) lies in the interval (q + 1− 2

√
q, q + 1 + 2

√
q) by making use of this

theorem and Lagrange theorem for groups one can iterate over the range of pos-
sible cardinalities and if necessary by several points. With this approach one gets
an improvement in the efficiency although the algorithm still is exponential. We
could up the difficulty d, but for d > 14 we faced the same problem as before. It
was insufficient to produce in a reasonable timeframe elliptic curves for which the
ECDLP was difficult enough.
The faster algorithms to compute de cardinal of the group of elliptic curves are
the Schoofs algorithm and the improved version Schoof–Elkies–Atkin algorithm
(SEA) algorithm, both with a polynomial complexity. We implemented the Schoofs
algorithm which can be found in the file Utility_Flint.c but at the end we in-
corporated the SEA algorithm by Benjamin Wesolowski which also uses the Flint
library [21].

P_gen (algorithm 3)

/*
* INPUT: hash, size, EC_GORUP * E
* OUTPUT: EC_POINT *
* given the hash, its size and a pointer to a elliptic curve
* calculates the base point and returns it
*/
EC_POINT * P_Gen(const unsigned char * hash, int size , EC_GROUP * E);

The implementation of P_gen presented no problem. The only challenge is to
generate random numbers and check if an x-coordinate exists as a point in the
elliptic curve.

API interface

This implementations incorporates a series of abstractions and interfaces so
that the algorithm can be easily incorporated into any existing blockchain. We
give a brief overview of this API:

Utility_Flint.c
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EPOCH_PoW_INSTANCE EpochPoWInstance_new(const char * hash, int d);

This method generates for a given hash and difficulty parameter d the Epoch
block parameters, that is (p, E, P)

ECDLP_PoW_PROBLEM ECDLPPoWProblem_new(EPOCH_PoW_INSTANCE * instance,
const char * hash_prev, const char * M);

Generates the actual PoW to solve given the [EB] the previous hash and the
transactions bit data M.

ECDLP_PoW_SOLUTION ECDLPPoWSolution_new(ECDLP_PoW_PROBLEM * problem);

Does the PoW. (Computes Pollard-rho internally over the ECDLP’s of the
PoW).

bool ECDLPPoWCheckSolution(ECDLP_PoW_SOLUTION * solution);

Checks if a PoW is valid, that is if the ECDLP solutions are correct.

The source code of this methods and the type definitions can be found in the
file ECDLP_PoW.c

In the actual library files the main entry of the algorithm (file Main.c) consists
just for a given difficulty parameter a complete execution of the algorithm: [EB]
generation, PoW instantiation and PoW solution. For a detailed manual on how
to install the algorithm please refere to the appendix.

4.3.2 Efficiency

In this section we estimate the efficiency of our implmentation, we shall study
the efficiency in the two usual metrics separately: Time complexity and space
complexity. We study them using the conventional big O notation, for a good
reference in this notation we recommend the following reference [8].

Time Complexity

We give a concise analysis of the time complexity our implementation. For
clarity we divide the algorithm in two parts:

1. [EB] generation and PoW parameters generation

2. Actual PoW time

ECDLP_PoW.c
Main.c
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For the first part we have to analyze in the [EB] generation the prime genera-
tion first. We have that given our implementation of NextPrime(n) we iterate over
the odd integers with some properties such as not being congruent 4 modulo 6,
etc. By the prime number theorem one can argue that for a sufficiently big integer
the next prime is not more separated than a function in ln(n), we denote it f . As
we then check the primality of each prime candidate with the Miller-Rabin test
we obtain in a worst case scenario of time execution in the notation of the O that
we have O(k · f · ln3(m)) because Miller-Rabin has O(k · ln3(m)) complexity for k
checks. As m = n + ln(n) + c for a small constant c and n large. We have that the
prime generation has polynomial complexity.

For the Elliptic curve we do per each trial of Elliptic curve a computation of its
group cardinal with the SEA algorithm which has complexity O(log5(q) where q
is the prime of the prime field. As E(Fq) ≈ q for large q by the Hasse bound if one
wants and by the fact that the probability that the elliptic curve group cardinal
being prime approaches 1

logp as p increases [6]. We have to iterate a function of
logp times in order to reach an elliptic curve with prime order and different from
the prime p of the prime field, we note such function as g. For the embedding
degree we have a result from R. Balasubramanian and Neal Koblitz stating that
the probability of finding elliptic curves of low embedding degree is vanishingly
low [6]. Summarizing we have that for the Elliptic curve computation we have a
time complexity O(g · log5(n)) which is polynomial.

Finally for the base point generation as we just try to get a random point
in the curve first getting a random possible x-coordinate and then checking if it
belongs to the curve. With the Hasse bound taking the lower bound of the cardinal
(q + 1) − 2

√
q we have that the probability of a random x ∈ Fq as being the x-

coordinate of a point in the curve is approximately q+1−2
√

q
2q = 1

2 −
1−2
√

q
2q which is

approximately for q large 1
2 −

1√
q ≈

1
2 . Thus we would have O(2) time complexity.

As the three parameters have polynomial time complexity the generation of
the epoch block [EB] is polynomial. Finally for the generation of the actual PoW
recall from formula 4.1 that we require two calls to the function P_gen over some
hashes, as argumented before we have polynomial complexity.

For the second part of the algorithm, the actual PoW we implemented Pollard
rho and so we have a complexity of O(2

√
n) because we have to solve two generic

instances of the ECDLP where n is the cardinal of the elliptic curve.

All in all we proved that the actual PoW is exponential and the Epoch block
settings and PoW initialization runs in polynomial time. This is important be-
cause in a real live enviroment it encourages nodes to just worry about the actual
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PoW and not the Epoch Block, avoiding lazy miners in those blocks and making
the algorithm feasible.

Space complexity

The algorithm works with the BIGNUM type of the OpenSSL and the fmpz type
from the GMP library for long integer arithmetic. We consider these types as the
unit storage units. As before we study the storage complexity of the algorithm in
two parts:

1. [EB] generation and PoW parameters generation

2. Actual PoW time

for the [EB] generation in the prime generation we have simply O(1) as we
iterate the function just keeping in memory two BIGNUMs. For the elliptic curve
generation, again as before keeping a constant number of variables, such as the A
B. We have to run the SEA algorithm for each iteration which in our implemen-
tation has a space complexity O(ln2(q)) where q is the prime of the prime field.
[7]

for the Base point and PoW instantiation again we have just O(1) complexity.
All in all we have O(ln2(q)) complexity, thus polynomial.

For the second part of the algorithm, the actual PoW solution as we just run
two instances of Pollard rho we have O(1) space complexity as seen in the security
chapter 3.4.3.

Summarizing we have that the [EB] generation and PoW parameters genera-
tion has polynomial space complexity whereas the actual PoW has polynomial
space complexity also.
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Chapter 5

Results

In this section we present the results obtained from the implementation of the
algorithm. For a manual on how to install the software please refer to the appendix
where the reader can find step by step the installation process.

5.1 Results

All of the executions that are showed in this chapter have been produced over
the following hardware and software:

• RAM: DIMM DDR3 Synchronous 1333 MHz 8Gb Kingston

• Processor: Intel(R) Core(TM) i3-3220 CPU @ 3.30GHz

• OS: Ubuntu 20.04 LTS

The results of the algorithm were sucessfull starting from d ≥ 5. For d < 5 we
found out that the elliptic curve generation 2 failed due not finding one satisfying
the security conditions 4.2. This is in part normal because the space of possible
elliptic curves is much smaller and actually the ECDLP makes no sense in terms
of computational complexity. Thus we just care about executions from d = 5.

We give the output of two results of execution one with a difficulty parameter
d = 10 and another with d = 21. As the entry input to the algorithm requires
also the hash_prev and the transactions chunk data M they are both generated
randomly at each execution.

43



44 Results

Figure 5.1: Execution with d = 10

Figure 5.2: Execution with d = 21

Logically the prime p gets bigger as the difficulty parameter increases. Please
check out the table 1 of the appendix to see how the execution times evolve and a
more detailed execution results for each d.
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Figure 5.3: Execution times

In order to check the consistency of the results we also did some extensive
testing for all difficulties ranging from 5 ≤ d ≤ 20, and then checking if the ECDLP
was correct. These tests configuration can be found in Main_test.c. please refer
to the appendix in order to see how to execute it.

5.2 Benchmarks

In this section we shall give a comparison with the PoW algorithm of bit-
coin. For this we developed a very simple PoW that mimicks the one used
by bitcoin, it is available in the source code of the implementation in the file
Bitcoin_POW/Pow.c. Summarized this algorithm is just applying a double SHA256
until some criteria is met. Please check chapter 2.4 for a more in-depth explanation
of what this PoW does.

We executed this PoW and found out the following metrics using PowerTOP 1:

Hash/s PoWer consumption

1.16 GHash/s ca. 1 Watt

Table 5.1: mean Bitcoin PoW metrics (n=5)

1PowerTOP is a software utility that serves to measure, and monitor electrical PoWer consump-
tion of computer programs.

Main_test.c
Bitcoin_POW/Pow.c
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We repeat the same metrics but for our Elliptic curve based algorithm, note
that in this implementation the mining basic unit is not Hash/s as we are doing
Pollard-rho internally in the mining process not hash functions. We propose to
call the basic mining unit in our algorithm as Elliptic curve walks or abbreviated
ECW, this unit should refer to the number semi-random walks we do in the curve
as the defined in the Pollard rho algorithm in chapter 3.4.3. The metrics in our
implementation have been then:

ECW/s Watts

10.4 kECW/s ca. 1 Watt

Table 5.2: mean ECDLP based PoW metrics (n=5)

We observe how the number of Hash/s and ECW/s differ significantly but
this doesn’t tells us anything in terms of energy consumption. Still, this metric
may serve as a benchmark in the future if a more spezialized hardware/software
would be developed for Elliptic curve arithmetic or if a better solution to ECDLP
were to be found.

The Watt consumption of the algorithm does tells us than on quite generic
hardware settings the energy consumption of both algorithms is similar. This
is important because proves that our algorithm may be a viable alternative to the
one that Bitcoin uses.

Figure 5.4: Watts consumption of both PoWs

5.3 Discussion

As we expected from the complexity analysis in chapter 4.3.2 the [EB] time gen-
eration grows slow while the actual PoW grows exponentially (figure 5.3). This as
already commented is important because nodes in a real live enviroment only care
about the mining process, because they usually are incentivized with coin returns.
As the [EB] block generation time is negligible in comparison with the actual PoW
the lazy miners are avoided. This confirms what was stated in the original model
of this algorithm but now in a more low-level and applicable language such as C.

Taking for instance the average bitcoin block generation time which is around
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9 minutes [13]. We find from our results that a difficulty parameter d around 20
to be the best in order obtain this block mining time. This difficulty gives primes
with around 40 bit size. We want to remark that this is node-implementation de-
pendent and if a more eficient Pollard-rho implementation were to be found, this
difficulty parameter would have to go higher. This presents no problem as the
[EB] generation time worked correctly for any d, even ones higher to 40. see Table
2.

As we compared in the chapter of benchmarks 5.2 this novel PoW implemen-
tation seems to be somewhat similar to the PoW of bitcoin. At least from a energy
consumption standpoint, our implementation has the major difference that it car-
ries with it some intrinsic value. Supposing a mathematical research around the
ECDLP then this PoW solution in a public blockchain could serve as a public
database of known ECDLP’s as commented in chapter 2.1. This would serve the
researchers to have more information from the start and thus reducing some pos-
sible work. Indeed this PoW algorithm is a Bread pudding PoW as defined in
4.4.
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Chapter 6

Conclusions and future work

We started this work with the motivation of studying cryptocurrencies in order
to gain insight at the points where they might be improved in terms of ecososteni-
bility. As we made progress in our study, we identified the Proof of Work protocols
as the main culprit of their big energy consumption. We then checked the alter-
natives and found out that possible or at least more sustainable alternatives exist,
such as Bread pudding PoW protocols. From this point we had in our mind the
possible implementation of a better alternative in line with a Bread pudding pro-
tocol.

Later, having found the proposal of a Proof of Work based in the ECDLP [18],
We started studying the Elliptic curves in chapter 3. There we uncovered all the
complexity and thus security that these mathematical objects have to offer in terms
of cryptographical applications. As we found out the DLP and also the ECDLP
are used in a lot of signing algorithms and thus are a big area of mathematical
investigation. This made the aforementioned Proof of Work (4.2) even more in-
teresting being based on this critical problem. We found out that this protocol
was still not implemented in a low level applicable language so we decided to
try to implement it. As we progressed we found some problems expecially with
the elliptic curve generation (4.3.1). This required us to implement the best up to
date algorithm for tasks such as counting the cardinal of the elliptic curve group.
All in all we ended having a fully functional library of this PoW protocol, provid-
ing an interface so that it can be easily incorporated in future blockchain solutions.

We have high hopes with the implementation given here, we consider the re-
sults good enough to answer the main question we had in the beginning of this
work. We consider as proven the algorithm to be a feasible and efficient enough
and to be a real alternative to the traditional PoW mining models.

49
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Still, there are some questions that remain unanswered such as what would
be the best Epoch block frequency strategy? Or if the prime security conditions,
which weren’t implemented in this work, may become a challenge in terms of ef-
ficiency of the algorithm. Also the third security condition of the elliptic curve 4.2
stating the the CM discriminant to be high couldn’t be implemented. As argued
in 5.3 in the discussion, this shouldn’t suppose a big issue.

Another big unknown that we in part answered is in the metrics department.
As we found in 5.2 the energy consumption was found to be similar to the one of
bitcoin, this was done in a generic hardware but there is still the interrogation if
maybe in a large scale deployment of this algorithm keeps being similar. Never-
theless we consider the preliminary results promising.

Concluding thoughts, we view this work as a necessary starting point for a
real life implementation of this PoW model, which we consider comparable to
the one that uses bitcoin. And given its research applicability, a better and more
sustainable choice.
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Appendix

Results

We present detailed tables and screenshots from the execution results of the
implementation provided.

We begin with a table describing the computation times of the different parts
of the algorithm for different values of d:

d prime_gen E_gen P_gen [EB] generation PoW solution
5 0.001780 0.023609 0.001365 0.026754 0.007589
6 0.001648 0.018227 0.001380 0.021255 0.005994
7 0.001513 0.032428 0.032428 0.066369 0.021581
8 0.001885 0.014570 0.001423 0.017878 0.026716
9 0.002001 0.048787 0.001459 0.052247 0.143009
10 0.001840 0.016735 0.001455 0.02003 0.021660
11 0.002248 0.023011 0.001577 0.026836 0.349596
12 0.002321 0.024308 0.001670 0.028299 1.025723
13 0.001978 0.126582 0.126582 0.255142 2.229151
14 0.002445 0.143358 0.003201 0.149004 2.828037
15 0.002057 0.019242 0.002681 0.02398 6.348178
16 0.002314 0.057190 0.001900 0.061404 8.778656
17 0.001875 0.030198 0.004450 0.036523 26.921133
18 0.002715 0.220471 0.004818 0.228004 131.960876
19 0.002337 0.042459 0.005091 0.049887 236.030474
20 0.001395 0.068363 0.004278 0.074036 545.357499
21 0.001507 0.232374 0.009795 0.243676 1619.273101

Table 1: mean execution times for different diffciulties in seconds (n=5)

Next we provide a table describing the increasing number of bits of the prime
generated number, p for Fp, as d increases:
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d prime num_bits

5 10

7 14

9 18

11 21

13 24

15 29

17 34

19 38

21 42

23 46

25 50

27 53

29 57

31 61

33 64

35 70

37 74

39 77

Table 2: mean prime p number of bits for different d (n=5)

Some execution examples

Below the reader can find some execution examples:

1. Main compiled from https://github.com/mariomoliner/TFG/blob/main/Main.
c. Executions of the main entry point of the algorithm, for a given difficulty
[-d], executes a normal instance of the PoW, from beginning to end.

Main
https://github.com/mariomoliner/TFG/blob/main/Main.c
https://github.com/mariomoliner/TFG/blob/main/Main.c
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Figure 1: Execution with d = 2 (failed)

Figure 2: Execution with d = 14

Figure 3: Execution with d = 17
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2. Main https://github.com/mariomoliner/TFG/blob/main/Main_test.c. Ex-
ecutions of the tests of the algorithm, check the documentation provided in
https://github.com/mariomoliner/TFG for a better understanding of the
execution modes

Figure 4: Test iterative -i 6 (pt1)

Main
https://github.com/mariomoliner/TFG/blob/main/Main_test.c
https://github.com/mariomoliner/TFG
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Figure 5: Test iterative -i 6 (pt2)



58 Appendix

Figure 6: Test repetitive -d 10 1
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Installation and execution

We refer the reader to the main repository: https://github.com/mariomoliner/
TFG where the source code is hosted and detailed instructions on how to install
the dependencies and execute the software can be found.

https://github.com/mariomoliner/TFG
https://github.com/mariomoliner/TFG
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