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Abstract 

Neuroscience is a field in constant evolution, searching for better ways to understand human brains 

and behaviour. Challenged by the complexity and difficult accessibility of the brain, neuroscience 

must constantly be at the edge of scientific and technical developments, learning new ways to 

obtain and understand neural data. 

The approach of this project departs from one such novel findings, human single neuron signal 

recordings, an emerging technology with a great many applications in research fields but currently 

limited by the lack of extensive data and previous research. Invasive cell-level recording techniques 

have been extensively used since its inception in animal brain studies, where they have contributed 

to wide-ranging research and count with consistent and standardized procedures for its application 

and analysis. On the other hand, its potential use in theoretical human research is still 

underdeveloped and does not count with a comprehensive and systematic data analysis 

framework. However, human single neuron data has the potential to path the way for state-of-the-

art research focusing on the behaviour of deep neural processes, such as learning and cognition.  

The main objective of the project is to adapt pre-existing single-neuron data-analysis software for 

animal studies to human recordings, creating a continuous dataflow from the obtention of the data 

to its ultimate analysis.  
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1. Introduction 

Research background 

Sleep is a universal human need and the lack of it severely impairs cognition and every aspect of 

our life. One of the main purposes of sleep is linked to synaptic plasticity and homeostasis. Cortical 

neuronal activity is significantly influenced by wakefulness and sleep. Sustained wakefulness, 

represented by sleep pressure, has been shown to increase the firing rate of cortical neurons in all 

behavioural states (Vyazovskiy et al., 2009). On the other hand, sleep and thus low sleep pressure 

induces decreased firing rate of cortical neurons, as a function of sleep homeostasis.  This 

dependence of firing rate on sleep pressure is observed systematically in all behavioural states, 

from wakefulness to REM sleep to NREM sleep (Vyazovskiy et al., 2009). 

Slow wave activity (EEG power between 0.5 and 0.4 Hz) is a main indicator of sleep depth, and it 

plays a key role in sleep regulation and sleep homeostasis (Riedner et al., 2007). Synaptic 

homeostasis has been proposed to oppose synaptic strengthening produced by wakefulness, thus 

allowing for synaptic plasticity. Increased synaptic strength is highly energy consuming and 

requires great cellular supplies, causing cellular stress (Tononi & Cirelli, 2014). For this reason, a 

continued strengthening of synapses leads to saturation of the ability to learn. During sleep, 

synaptic plasticity is enabled by renormalizing synaptic strength (Tononi & Cirelli, 2014). More 

importantly, synaptic plasticity is thought to be a key mechanism in memory processing, learning 

and cognition (Hughes et al., 2010). A great number of studies have linked short to long periods of 

sleep with processing and retention of declarative and procedural memory, with little to no evidence 

of reducing memory formation. Sleep has a function in the consolidation of emotional information 

as well (Diekelmann & Born, 2010). 

Two main hypotheses for mechanisms explaining synaptic plasticity have been formulated. On the 

one hand, the active system consolidation hypothesis suggests that during slow wave sleep (SWS) 

there is a repeated re-activation of the encoded memories, which leads to the affected memories 

being accentuated. On the other hand, the synaptic homeostasis hypothesis prompts the idea that 

during wakefulness a net increase in synaptic activity takes place, which needs to be downscaled 

during the night in order to sustainably provide the rain with synapses to reuse for the following 

waking period. Thus, the reduction in amplitude of SWS during the night would result in selective 

strengthening of already significant synapses, while nullifying weaker ones, obtaining a higher 

signal-to-noise ratio in reinforced memories (Kanthida van Welzen). 

SWS play a significant role in both hypotheses and are therefore considered a key element of sleep 

and synaptic plasticity. It has been formulated that SWS respond proportionally to periods of sleep 

and wakefulness, having larger intensities in sleep sessions occurring after longer waking times, 

which enact lower sleep pressure, with respect to shorter prior waking times. On the same lines, 

prolonged sleep periods after sleep deprivation leads to a continuous reduction of SWS intensity. 

In cases of SWS sleep disruption, following periods show and increased initial strength of SWS, 

indicating a lack of intensity reduction in the previous session (Borbély et al., 2016). 
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The processes that control and regulate synaptic plasticity are widely unknown. However, among 

several hypotheses, some studies have linked overnight slow wave slope with anti-N-methyl-D-

aspartate receptor (NMDAR) (Lau & Zukin, 2007; Shepherd & Huganir, 2007). Central to 

neurological functions is synaptic dependence in excitatory NMDA and AMPA receptors. In 

humans, the effects of the presence or lack of these receptors have been demonstrated to impact 

memory, learning, cognition, and psychosis from indirect approaches, like pharmacological trials 

(Gunduz-Bruce, 2009). More directly, it has been studied the effect of anti-NMDA receptor 

encephalitis, in which antibodies against NR1-NR2 heteromers of the NMDA receptor are targeted, 

producing a characteristic neuropsychiatric syndrome, including behavioural symptoms, rapid 

memory loss, seizures, abnormal movements, hypoventilation and autonomic instability (Dalmau 

et al., 2008). Interestingly, many symptoms have been observed to be reversible, receding when 

the concentration of NMDAR increases again due to treatment of the disease (Ishiura et al., 2008). 

Overall, symptoms grow in severity with the increased removal of surface NMDA receptors, which 

indicates a relation between NMDAR, and cognitive stability and preservation (Hughes et al., 2010). 

In a 2007 study (Lau & Zukin, 2007), the proposed model of reduction of SWS during sleep, which 

in linked to memory consolidation and learning, was tested using EEG recordings from humans. 

NREM sleep from the beginning of the night and NREM sleep from the end of the night were 

compared, with every other parameter normalized and no significant disturbance in sleep or the 

recording. SWS were identified measuring the slope waveforms of the EEG as a marker for synaptic 

activity. As expected, SWS signals showed a marked decline from early to late night in spectral 

power analysis, which is represented in Figure 1. The maximum slope measurements were mainly 

in the first part of the night, with median declines of approximately 19% across all slope 

measurements. Early sleep SWS was associated with higher-amplitude waves and in larger 

proportions. 

 

Figure 1. Left figure: mean EEG power spectra in NREM sleep at the beginning and the end of the night. Right figure: measuring 

method for spike amplitude and statistics. (Riedner et al., 2007) 
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In a more recent study (Kanthida van Welzen), a similar approach has been considered for studying 

the evolution of SWS during the night. However, this time EEG data from humans was not 

considered only during early- and late-night periods but was taken as a continuous parameter to 

quantify SWS intensity. Additionally, control patients have been compared with schizophrenia and 

anti-NMDAR encephalitis, to analyse the effect of synaptic plasticity blockage due to NMDAR 

reduction in illness with SWS intensity reduction. Similar to the other study, wave amplitude was 

measured using slope criteria and pre-processed to remove noise. Then, instead of choosing 

fragments from specific parts of the night, all NREM 3 stage fragments were analysed, preferring 

N3 over N2 stage due to the main presence of slow waves in N3. Finally, all SWS were represented 

continuously, to observe SWS amplitude progression during the entirety of the night. 

The results showed a clear slope decrease overnight, but slope 

change pattern was significantly dependant on age. As opposed 

to previous models and studies, younger participants had a 

marked increase in slope at the beginning of the night, with later 

diminution leading to homeostatic reduction of synapsis 

strength. Such pattern was less prominent with age and was only 

present until around 30 years old, as can be observed in Figure 

2. Moreover, comparing control results of schizophrenia and 

anti-NMDAR encephalitis patients, the latter demonstrated less 

step declines in SWS slopes, resulting in lower reductions of 

slow waves during the night. 

The slow intensity results compared with age, which was a not-

intended outcome of the research, fits earlier studies using discreet approaches, such as described 

above. In both cases, difference in SWS amplitude from the beginning to the end of the night had 

similar results for all ages. However, in younger participants this new study found that slow waves 

periods showed a marked increase in intensity during the beginning of the night, following 

wakefulness, which then led to a steeper reduction in general amplitude towards the end of the 

night. These findings support both hypotheses of synaptic plasticity in SWS. The synaptic 

homeostasis hypothesis is reinforced by the confirmation of synapse renormalization leading to 

reduction in amplitude, while the early night potentiation observed in younger participants indicate 

a reactivation of synaptic paths to encode and consolidate memories, supporting the active system 

consolidation hypothesis. However, the presence of such reactivation solely in children and young 

adults could also indicate a developmental need of larger synaptic plasticity transformations, 

reflected in structural as well as functional changes. 

Technological background and market analysis 

Non-invasive brain recording techniques are limited by the general scope of the methods and the 

lack of specificity. In order to study detailed processes in the brain, invasive techniques with better 

spatial and time resolution are needed. In this field, it is of special interest the use of human single-

neuron recordings, which provides direct information at the cellular and intercell level. Single-

neuron data is decisive to develop our scientific hypothesis concerning brain plasticity due to the 

need of cell-level firing recordings to study cell connectivity (Kubska & Kamiński, 2021). 

Figure 2. Top figures: slow wave sleep 
intensity as a function of time during the 
night. Bottom figures: SWS slope overnight 
depending on age. (Kanthida van Welzen), 
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The main limitation of invasive brain recording is the obligation to implant needle-like electrodes 

into the human brain, which cannot be pursued due to medical and ethical reasons. The most 

common situation nowadays in which such research can be undertaken is in cases of 

pharmacologically intractable epilepsy, where the introduction of electrodes into the brain is justified 

on the grounds of health monitoring and preparation for surgery (localization of focus for seizure 

onset) (Quiroga et al., 2005). In such cases the so-called “Behnke-Fried” electrodes are used, 

which were developed in the 1990s and consist of depth electrodes with microwires protruding from 

the end. Each electrode has eight microwires at the extreme, which obtain direct recordings from 

single neurons (Kubska & Kamiński, 2021). 

The design of depth electrodes is limited by its application in humans and thus has several 

constraints. The main one is the characteristics of the microwires, which by reason of their small 

dimensions and the problematic environment in which they are inserted, do not have a fixed shape 

but, as wires usually behave, can bend and change position. This matter adds an additional level 

of difficulty to the analysis of single neuron data, since position is usually unknown and can shift 

over time. Another concern about microwire depth electrodes is the lack of specific methodological 

procedures for successful recording implementations and troubleshooting, which has led to the 

technology being restricted to a few clinical sites worldwide and consequently to limited availability 

of single neuron data (Misra et al., 2014). 

Despite still being an emergent technology in humans, spike detection in single neuron recordings 

has been used in rat and mouse research for a longer period. Lower ethical constraints allow for 

the implantation of more complex electrode devices and distributions, which support large scale 

recordings with high numbers of channels. To properly interpret this data and automatize the spike 

sorting process, a scalable and accurate software is required, which minimises time spent in 

manually analysis raw data. Among such applications, KiloSort was developed in 2016 to 

“implement an integrated template matching framework for detecting and clustering spikes from 

multi-channel electrophysiological recordings” (quote) (Kilosort Documentation). KiloSort is mainly 

aimed at mouse recordings or similar research, due to its development around invasive single-

neuron-recording devices. It boasts an intuitive and straightforward graphical user interface and a 

series of parameters that can be modified in order to increase accuracy and adaptability of the 

spike detection and sorting. 

Kilosort consist of a template-matching algorithm which detects neuron spikes in different channels 

from brain activity recordings. One of the main applications is identification and grouping of neuron-

firing patterns to study how such neurons inter-behave and evolve over time. Kilosort is optimally 

used together with Phy, an open-source manual clustering Python library with a graphical interface 

designed to improve manual refining of automatic spike sorting (Phy Documentation). Kilosort 

output data is arranged to be directly collected by Phy, with the results files of Kilosort containing 

all information needed to implement the manual interface of Phy. 

Both are developed by Cortexlab, a GitHub collection of repositories with several popular scientific 

software for the visualization and analysis of brain signals. Cortexlab is powered by the University 

College of London (UCL) and combines experiment and computational analysis to understand 

sensory perception and decision-making mechanisms in the brain. Apart from Kilosort, Phy also 
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supports data sorted with Spyking Circus, klusta and klustakwik2. The current version of Phy (2.0 

beta) was first released on February 2020 (Phy Documentation). 

As opposed to Kilosort, Phy does not allow for automatic analysis of data, but rather offers a set of 

visualization and statistical tools to understand the results of spike sorting and try to manually refine 

the automatic algorithm, handling exception or anomalies and adding a human layer of expertise 

to the process. As such, Phy goes hand in hand with Kilosort and both are usually considered 

together, even if they could be used separately and even paired with external software. The general 

idea is to let the automatic algorithm do the time-consuming and massive tasks, while investing 

expert human resources on the improvement of output data in an optimized and advantageous 

environment. 

Moreover, regarding physiological signal recordings, many programming languages have specific 

packages available to study, process and analyse such data. Among these, MATLAB® is a matrix-

based programming language and built-in programming graphics environment, with extensive tools 

to work with computational mathematics and many types of data (Matlab Documentation). Its 

effective combination of tools and the graphical interface have made Matlab increasingly popular 

among data scientists and boasts a resourceful and highly technical user community. Mainly 

operating in desktop applications, it can also be combined with other programming languages in 

online as well as offline settings. Matlab was created by MathWorks, a company specialized in the 

development of mathematical computing software for researchers, scientists, engineers and 

mathematicians. Apart from Matlab, MathWorks also produces Simulink, a graphical environment 

for simulation and model design systems. The purchase of MathWorks products is based on 

licenses, which can be perpetual or annually acquired (Matlab Documentation). 

One of the most enticing aspects of Matlab is the wide availability of additional toolboxes, called 

Add-Ons, which provide additional functionality for specific tasks and applications, extending the 

capabilities of the system. Packages can be obtained directly from the Add-On Explorer of Matlab 

or added manually from external providers. Their usage is independent of Matlab and as such can 

be free of charge or requiring additional purchases (Matlab Documentation). 

Scientific objective and technical question 

Following aforementioned research on synaptic plasticity as a function of SWS intensity during the 

night, this project developed from an initial scientific objective. As recent studies have shown, 

synaptic plasticity is highly dependent on slow wave activity, even if the source of this relation is 

not completely well-known, and SWS has been observed to decrease during the night. Such 

decrease in intensity is theorized to foster memory consolidation by enhancing memory pathways 

encoded in synaptic connections, while nullifying less predominant memories, thus obtaining both 

memory preservation and synaptic homeostasis by the end of a regular extended sleep period. 

However, most of these studies have been developed using whole brain imaging techniques, such 

as EEG, and thus offer statistical interpretations to explain SWS behavioural changes in specific 

brain regions. 

With the development of human single neuron recording techniques, researchers now have access 

to data from singular neurons, allowing the study of specific synaptic parameters in a direct way, 
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instead of through statistical inference. Taking advantage of this relatively new technology, the 

initial scientific objective for this project aimed to characterise synaptic plasticity changes during 

the night using neuron connectivity data instead of whole-region information. To do so, the synaptic 

homeostasis hypothesis was considered: we wanted to analyse whether SWS intensity decrease, 

exposed by multiple studies, was effectively related to selective activation of specific neuron 

pathways, thus leading to memory fixation. Hence, we hypothesized that neuron connections 

during the night would evolve differently according to whether each neuron synapsis was reinforced 

or nullified. 

In order to support or invalidate our hypothesis, we needed to obtain single neuron data from a 

whole night of sleep using micro-wire electrodes, extract all firings present in the recording and sort 

them into specific neurons, group the obtained neurons into synaptic pathways using correlation 

mechanisms, and analyse how each pattern evolved through the night. Ideally, data obtained from 

NREM 3 stage fragments of the night (since it the stage containing most slow wave activity) would 

contain pairs or groups of connected neurons, and the firing rate of such groups could be 

interpreted to represent synaptic strength during the sleep period. 

However, the technical realization of this objective incurs in several difficulties. Firstly, the structural 

instability of human single neuron recording devices can lead to unstable data, in which the position 

of electrodes shifts at different points during the night, thus removing the continuity attribute of 

detected neurons necessary for the progression analysis. Moreover, considering the small number 

electrodes of which we disposed, it would be highly improbable to find signals obtained from 

different specific neurons, and even more so to be able to correlate enough of them with the 

purpose of obtaining experimentally significant results. 

However, the most prevalent limitation is the scarce or lack of software, documentation and 

research of spike detection and sorting of human single neuron recordings. Being a novel and still-

developing technology, little research about the data that can be obtained or how to process it is 

available. Additionally, any software capable of spike detection and sorting using single neuron 

data has been developed for and specialized in animal recordings, without tools to adapt it to the 

characteristics of human recordings devices or the features of human signals. Such limitations were 

the source for the technical question which this project is based on: the development of a complete 

pipeline for the extraction, detection and sorting of action potential spikes from single neuron 

recordings. The objective was to ideate and implement a series of methods which, employing 

priorly-developed high-input techniques from other fields (such as animal single neuron 

recordings), would provide an ordered and consistent pipeline for the management of data from 

raw recordings to neuron-sorted spikes information, which can be directly applied in scientific 

research. 
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2. Methods 

Concept engineering 

The processing software is divided in three main methods: preprocessing and filtering, spike 

sorting, and manual refining. Each of these is developed in different applications, which may require 

separate environments. 

Preprocessing and filtering are carried out in Matlab, using specialized toolboxes. Matlab is 

specialized in operating with whole matrices and arrays, so basic methods include creating 

variables, array indexing, arithmetic, and data types (Matlab Documentation). Matlab releases new 

versions of the software annually, including bug fixing; Matlab R2019a was used for this part of the 

project. A Matlab script has been developed, which comprises all the necessary methods to read 

raw data, pre-process the signal, filter noise and prepare the output data for the spike sorting 

procedure. Matlab offers a number of Add-Ons which can extend the functionalities of the basic 

interface, presented in Figure 3, allowing for the usage of many Toolboxes at the same time. 

 

Figure 3. Example of Matlab interface while executing the pre-processing code. The interface is divided in several windows, which 

can be distributed freely. The four windows shown in this Figure, in from top to bottom and from left to right are: Editor, Command 

Window, Variables, Workspace. 

For this project, two toolboxes are employed: Fieldtrip and DSP System Toolbox. Fiedtrip is an 

open-source free of charge software released under the GNU general public license. It is dedicated 

to MEG, EEG and other electrophysiological data analysis, using Matlab implementation. It includes 

algorithms for every level of analysis and allows the adequate manipulation of data with high 

efficiency and preventing information loss. Mainly Fieldtrip was used to read the raw data, structure 

it properly, and obtain spike-sorting-oriented files. DSP System Toolbox, a licensed toolbox 

integrated in Matlab, provides algorithms and visualization tools for signal analysis. It contains a 

wide variety of functions, but for the purpose of our data the main interest is the filtering methods 

(DSP System Toolbox Documentation). 
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Regarding spike sorting, as mentioned before Kilosort is an automatic spike sorting software 

developed in 2016 by Cortexlab, that uses a template matching framework to identify and group 

neuron signals from raw single neuron recordings. Kilosort is specifically designed to process data 

from mouse and rat recordings, due to the well-established characteristics of such research and 

the large number of signals they usually deal with. However, the same algorithm can be applied to 

any kind of single neuron data. In this project, the parameters of the analysis are adapted to 

respond optimally to human single neuron data, which tends to be significantly smaller-scale and 

of lower quality due to the characteristics of the electrodes. 

Four versions of Kilosort have been released since its initial development, mainly focused on 

improving drifting clusters’ tracking and the creation of a graphical user interface (GUI) from Kilosort 

2.0 onward, which can be seen in Figure 4. However, some improvements can prove detrimental 

in the analysis of specific recording configurations, such as tetrodes or single-channel recordings, 

and thus empirical testing of a specific version to assess any possible shortcomings is 

recommended (Kilosort Documentation). 
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Figure 4. Top figure: Kilosort 1 interface. Bottom figure: Kilosort 2.0 and onward GUI (bottom). Both interfaces of Kilosort are 

captured after charging a 16-channel DAT file. 

After thorough investigation of the methods available and possible prior experience from other 

researchers in the human single neuron field (with very limited results), the preference of KiloSort 

1 over more updated versions of the software was decided based on the characteristics of our 

recordings and direct recommendation from source developers, considering only Kilosort 1 and 2.0 

suitable for our data. The main limitation was the lack of a defined structure and geometrical 

distribution of microwires, since they can freely bend and move. Hence, a map of channel allocation 

cannot be confidently provided and improvements heavily relying on channel map would be 

severely affected. 

Data can be manipulated in Kilosort either by modifying the source code, developed entirely on 

Matlab, or using the graphical user interface (GUI). The GUI is intended as a launcher for Kilosort 

and is only available from version 2.0 onward. Consequently, working with Kilosort 1, the source 

files were directly accessed in order to analyse the data. Kilosort offers a number of parameters 

related to spike detection and sorting which can be modified in the files to alter the software’s 

behaviour. We mainly focused on the adjustment of channel selection attributes and sensitivity of 

neuron identification. 

Lastly, in conjunction with Kilosort, the spike sorting is completed by Phy. Also developed by 

Cortexlab, Phy does not involve any kind of automatic analysis as the two previous steps but is 

actually meant to be used as a manual refining tool. To do so, it provides a graphical user interface 

containing a wide variety of data visualization tools and representations of statistic magnitudes. In 

this way, the user is able to detect problems or ambiguities in the automatic sorting, as well as to 

correct them performing merges and splits of spike clusters, without any kind of algorithm 

supervision. Additionally, neuron clusters containing all spikes sorted together can be classified 

and labelled for later study. Neuron clusters are usually groupings of spikes generated by the same 
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neuron, but there can also be instances of MUA or noise, which are the main labels available in 

Phy. 

The graphical user interface of Phy, as can be observed in Figure 5, is divided into several windows 

which can be selected independently. Each window contains a calculation or data plot meant to 

address one aspect of spike sorting, and also incorporates a series of parameters which can be 

modified to obtain more accurate or diverse visualizations. The main three types of windows 

available in Phy, divided according to their function and source, can be classified as: 

• Spike sorting results and cluster manipulation: windows aiming to represent the clustering 

results of the spike sorting, most importantly the ClusterView with a list of all present 

clusters, and tools for directly comparing between clusters. 

• Data visualisation: direct representation of the raw data or specific characteristics of it, 

such as the waveform, the amplitude or the spike position in time. 

• Calculations: another key aspect of the software, it performs statistical and arithmetic 

calculations to better compare different clusters and understand how they fit into one 

category or the other. Some examples of calculations can be the auto- and cross-

correlograms or the feature comparison, based on the principal components analysis. 

 

Figure 5. Graphical user interface of Phy. 

On top of the available predetermined windows, Phy offers the possibility to add plugins to the 

software, extending the GUI or modifying certain aspects. Plugins are written by users in Python 

programming language following pre-set templates and must be integrated into the Phy 

configuration files and activated. Plugins are an easy and accessible ways to customize the 

interface and add more functionality to the software. Plugins can access virtually any element of 

Phy, so they can significantly improve the versatility of its features and enable new actions to be 

performed, such as emitting events, extracting waveforms, creating new views, adding the number 

of spikes in views, defining a custom cluster metrics and so on. 
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In order to curate the automatic spike sorting executed by Kilosort, Phy allows the user to perform 

two basic actions: merging/splitting and labelling. Merging and splitting are Phy operations which 

allow to respectively combine two clusters or divide a cluster into two, in order to unify spikes from 

the same neuron or separate spikes from distinct neurons. These actions are performed manually 

on any of the views that represent spikes temporally, such as the AmplitudeView or the 

FeatureView (in depth explanation of each view in the Detail engineering), by selecting groups of 

spikes and merging or splitting them. Labelling, on the other hand, lets the user classify each cluster 

by its contents, inferred by the user from observation of parameters in Phy and their own 

experience. Those labels can be used to discard noise clusters and for post-analysis research. By 

default, Phy offers four classification labels: 

• “good”: for clusters containing spikes identified as produced by the same single neuron. 

• “mua”: for clusters with spikes belonging to different neurons which cannot be split due to 

lack of differentiating features. 

• “noise”: for clusters containing exclusively or mostly noise. 

• “unsorted”: for other types of clusters which cannot be classified or are deemed unfitting 

for any of the prior categories, the user can choose to leave the unsorted. 

 

Detail engineering 

As described before, the software is divided into three methods, which need to be run 

independently and are directly connected, that is each output is readily prepared to be imported 

into the next step of the procedure. Each method consists of a pipeline of actions, comprising code 

execution, parameter definition and interactive visualization, which are optimized to simplify and 

enhance the analysis of human single neuron data. 

The three methods are described together with the software application that enables its 

performance: 

 

The input data that goes initially into the preprocessing step are CSC files, terminating in .ncs. CSC 

files are produced by any Neuralynx adquisition software, like Cheetah or Pegasus, and encode 

Continuously Sampled Channels (Marius Pachitariu et al., 2016). Each file is divided into two 

sections: the File Header, which contains the system settings and data attributes of the signal 

acquisition, and the File Data, stored in binary format. The output data are a series of files 

containing spectral, temporal and statistical information about the spikes found, as well as 

information about the sorting. 

Pre-processing 
and filtering

• Matlab

Spike sorting

• Kilosort

Manual refining

• Phy
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Preprocessing and filtering – Matlab 

Data is imported into Matlab using the Fieldtrip toolbox, which encompasses a series of functions 

designed to open electrophysiological signal files, among which is CSC. All information about the 

data, such as sampling frequency and length of the data, is included in the file’s header. The 

function “ft_preprocessing” imports the data as a Matlab struct. The importing, preprocessing and 

filtering methods must be applied independently to each file, so that the whole procedure is iterated 

for every set of data available using Matlab loops. 

One limitation of Matlab is the availability of memory, which defines the maximum size of data that 

can be worked with. This constraint can lead to memory errors when working with large datasets 

and scripts that create many substantial variables. Additionally, this error can only be solved either 

by maximising variable-definition efficiency or by increasing the system’s available memory. In case 

of adapting the hardware to dispose of more memory, some parameters need to be changed in 

Matlab as well to put the adaptation into effect: Matlab array size limit, which defines the maximum 

size that an array of data can be, must be increased, as well as the Java heap size limit, which 

determines how much memory is available for Java objects. However, signal recordings can be 

very long, so for memory reasons or any other, fragmentation can be done using Fieldtrip. Similar 

functions, like resampling or redefining timestamps can also be obtained from Fieldtrip but were 

unnecessary for this data, especially considering the reduced physical and temporal dimensions of 

neuron firings, which require high sampling frequencies to have enough resolution to conduct the 

spike sorting and thus a down-sampling would be detrimental. 

Once all preprocessing functions have been applied, before structuring the data for spike sorting, 

it must be filtered. Single neuron recordings have been observed to incur a significant number of 

artifacts and noise signals, which need to be removed for efficient post-processing. Artifacts can 

be identified using whole-brain imaging techniques, or as in the case of this project can be dealt 

with in later steps, since they are mostly discarded during the automatic spike sorting. External 

noise signals on the other hand, occurring at specific frequencies, can be most efficiently removed 

using a notch filter. The function employed is “iirnotch()” from the DSP System Toolbox, which 

implements a second-order IIR notch filter. The inputs of the function are the notch frequency (Wo) 

and the 3 dB bandwidth (BW). 

Before implementing the filter, a spectral analysis of the data is performed to identify potential noise-

derived frequency alterations, represented as a function of their power spectrum calculated via 

discrete Fourier transform. Noise has been considered to be especially significant at lower 

frequencies, so filtering is limited to the range between 2.7304 and 273.0665 Hz. This range has 

been defined experimentally, observing the first noise signals at around 30Hz (with generally a 

significant peak at 50Hz) and still substantial noise frequencies up to 250Hz and 266Hz 

approximately. As such, this range can be modified depending on the data and the characteristics 

of the signal. 

Considering the high resolution of single neuron data, the manual identification of noise frequencies 

has been deemed too imprecise, hence relying on the development of an iterative algorithm which 

automatically detects and implements the notch filter. All the parameters of this algorithm are 

variable and calculated with statistical features of the signal, so that both peak identification and 



16 
 

power reduction due to the filter are tailored to the characteristics of the frequency and the overall 

recording. The Wo parameter refers to the frequency that is required to be removed and is 

calculated as the notch frequency divided by the Nyquist frequency, which is equivalent to half the 

sampling frequency of the signal: 

𝑊𝑜 =
𝑓𝑛𝑜𝑡𝑐ℎ

𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔/2
 

The BW parameter, on the other hand, concerns the amplitude reduction power of the filter, and is 

calculated as Wo divided by Q, the quality factor of the filter: 

𝐵𝑊 =
𝑊𝑜

𝑄
 

Modifying Q, the intensity of the filter can be adjusted, in order to remove only the necessary 

amplitude of the notch frequency without altering the surrounding frequencies. It should be noted 

that an increase in Q leads to a decrease in BW, which diminishes the attenuation of the filter, and 

vice versa. After a process of trial and error observing discrepancies in several different signals, 

the preferred algorithm to calculate the Q value was defined as: 

𝑄 =
𝑓𝑛𝑜𝑡𝑐ℎ ∗ 35 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑜𝑤𝑒𝑟

𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑠𝑎𝑚𝑝 − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑝𝑜𝑤𝑒𝑟
 

In the presented formula, que Q depends on the notch frequency and the difference between the 

power of the notch frequency and the median power of the signal in a window of +-3000 samples 

the notch frequency, multiplied by 35 times the average power of the signal in the same +-3000 

samples window. The “35” constant of proportionality was decided on experimentally as the most 

suitable value for all the data evaluated, optimizing the trade-off between acceptable notch 

frequency removal and no excessive alteration of the baseline data. The objective of this algorithm 

was to be as general as possible, so that the same expression could be applied to all the data. 

However, the constant value can be used to tune the effects of the filter and should be modified in 

every defined set of signal recordings on which the software is implemented. Then the filter is 

implemented using the “filter” function of Matlab. The output signal, examined with a post-filtering 

spectral analysis, presents significantly or completely decreased power of noise signals, without 

alterations of the non-filtered frequencies. 

Afterwards, the data is structured according to the characteristics required by the spike sorting 

software. In case of having several electrodes or channels working parallelly in the same time frame 

and same sampling frequency, there are grouped and merged together in the same array with a 

common time series, using the Fieldtrip function “ft_appenddata”. This way, all metadata and 

recording information about the signals is kept. On the other hand, for multiple fragments of data 

belonging to different time parts of the same recording, hence with equal sampling frequency, scale 

and preprocessing but different time stamps, they must be manually appended in the correct order, 

also in a single array with all necessary information. Additionally, an initial iterative loop has been 

developed to help extract exact fragments of the data in case of needing to process only a part of 

the recording (such as in the case of sleep periods during the night). This piece of code is meant 
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to help users find positions in the data using time stamps and is integrated in the main loops of the 

script so that data defined in this way is processed correctly. 

Ultimately, the resulting array with data from different channels and fragments must be stored in 

DAT format, a generic data file typically containing data in binary or text format. This is the file 

format required by Kilosort, however in case of another spike sorting software being used, it can 

be modified to adapt to its individual requirements. For the case of Kilosort, the data must be saved 

specifically in integer 16 format (signed 16-bit integer). For research purposes, all plots obtained 

during the processing of the data, namely power spectrum of the data prior to and after the filtering, 

have also been saved. The chosen formats have been FIG image format and PDF document. 

Spike sorting – Kilosort 

Kilosort installation requires the compliance with precise steps to ensure all data is adequately 

processed and stored. Firstly, Matlab can be downloaded as a ZIP file or directly installed from the 

Git repository at https://github.com/cortex-lab/KiloSort. Then, the “master_file.m” present in the 

folder should be copied to the local directory of the data and changed for each experiment carried 

out, in order to keep any modification made during each. We also added to the local directory the 

“StandardConfig.m” file, because this is the Matlab script containing all the parameters used in 

spike sorting, and hence the one that will be modified for each signal analysed. Moreover, for the 

writing of Kilosort output files, “npy-matlab" must be downloaded in the working directory. This code 

allows Kilosort, running in Matlab, to read and write NumPy’s NPY format (“.npy” files), which is 

native of Python programming language (Kilosort Documentation). 

As explained above, due to the high computational requirements of Kilosort, a GPU is certainly 

recommended, as it will run substantially faster than on a CPU. GPU stands for Graphical 

Processing Unit and it provides unprecedented computing power by exploiting extreme parallelism 

which can achieve very high speeds. GPU needs to be implemented in the system and is mainly 

realized in CUDA, a specialized parallel computing application programming interface which has 

established itself as the de-facto GPU programming standard for over a decade. CUDA was 

developed by NVIDIA, a corporation founded in 1993 as a graphics chips company with an 

outstanding history as a computing units and components developer, being especially noteworthy 

the invention of the GPU in 1999. To employ the GPU in Matlab, CUDA must be installed, 

considering which version is more suitable depending on the version of Matlab operating 

(Oostenveld et al., 2011). Then, mex compilation of CUDA files needs to be set up by executing 

“mexGPUall” in the Matlab console. As a result, a “mex_CUDA_glnxa64.xml” file or similar will have 

been created in a Matlab root folder along the lines of 

“matlabroot/toolbox/distcomp/gpu/extern/src/mex/”, which must be copied to the Kilosort folder. 

Kilosort source code already includes a similar file but that is not compatible with the local 

environment unless internal paths are modified, so it is important to copy the CUDA file in the 

corresponding path. 

Once installation is complete, the “master_file.m” file located in our local folder with the data must 

be run to execute Kilosort. However, in order to run Kilosort all the necessary parameters must be 

specified beforehand in the “StandardConfig.m” file, including the source paths of the data to 

https://github.com/cortex-lab/KiloSort
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analyse and the features of the spike sorting. Additionally, a channel map file must be created to 

introduce necessary data distribution information in Kilosort. Input data must contain at least 16 

channels for the same time period and be coded in binary integer 16 in a DAT file. In case of 

recordings with less channels, a proposed solution to the minimum 16 channels problem is to create 

duplicates of channels or to generate simulated new channels. Later on, in the Kilosort 

configuration, these additional channels can be opted out of the analysis, thus considering only the 

correct channels. 

Kilosort source code includes a Matlab script (“createChannelMapFile.m”) to specify the 

characteristics of the data and generate a format-appropriate channel map file. The information 

about the channels introduced in this file is: 

• Number of channels: total number of channels present in the recording, including mock or 

duplicated channels. Row list of the number of each channel, from 1 to the total number of 

channels. 

• Index of the channels: calculated automatically from the number of channels. Same 

distribution, row list of serial numbers, but starting from 0 instead of 1. 

• Connected: channels that will be considered for the analysis. This variable defined which 

channels are going to be taken in the spike sorting, so in case of containing mock or 

duplicate channels, they must be left out in this step. The variable is introduced as a column 

list of the length of the total number of channels, where active channels are marked True 

(represented as 1 in Matlab) while not-to-be-considered channels are marked as False 

(represented as 0). 

• Sampling frequency: sampling frequency of the signal, it is the same for all channels. 

• Kcoords: it indicates relation between channels, basically for the case of electrodes 

containing several microwires, in which case each group of channels belonging to the 

same electrode will have assigned a different number (for example, for the case of having 

two electrodes with eight recordings each, this variable will be a list of eight instances of 1 

followed by eight instances of 2). The information is introduced in a column list of numbers, 

which will be repeated for channels in the same electrode. This variable is designed to help 

Kilosort separate electrodes and adequately sort neurons only among close-positioned 

channels, since long-distance recordings cannot physically perceive the same neuron. 

However, experimental observation has shown that Kilosort is capable of sorting together 

spikes from channels belonging to different electrodes even when specified as two different 

electrodes in Kcoords, so that distance between channels seems to be more dominant 

than Kcoords in determining whether two spikes can belong to the same neuron in Kilosort. 

In case of Kilosort mixing independent electrodes in the analysis, it would be convenient 

to create different channel maps for each electrode where only the channels contained in 

this electrode are active (indicated in the Connected parameter) and running Kilosort 

separately for each electrode, using its own channel map. For such procedure to be 

effective, a different folder for each electrode must be created, containing in every case 

the same original data and the respective channel map. 

• Xcoords: it refers to the localization of each channel in the X axis, and along with Ycoords 

defines the geometrical distribution of the signals. It is expresses as a column list of the 
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channel deviations from a 0-centered vertical axis. They are the most important measure 

in the channel map and play a significant role in spike sorting and the posterior analysis. 

However, in human single neuron recordings the position of microwires is unknown, so 

these variables cannot be established. There is no solution for this limitation, and the 

recommended course of action is to define a simple distribution of channels avoiding any 

special conformation that could misguide Kilosort, generally on the lines of linear or square 

organization. That way, no additional information is obtained from the channel map, as 

opposed to mouse recordings where electrode information is key to study the behaviour of 

neurons, but at the same time the scope of this inaccuracy is limited (and further reduced 

by the choice of Kilosort 1 over other versions which attribute more weight to channel 

location). 

• Ycoords: analogous to Xcoords, it defines the position of each channel in the Y axis. It is 

expressed as a column list of the channel deviations from a 0-centered horizontal axis. It 

is also unknown and must be inferred as a low-impact distribution analysis-wise. 

Every time Kilosort is executed (running the “master_file.m” file), the configuration parameters in 

the “StandardConfig.m” file must be indicated appropriately. The Kilosort configuration contains 

many customization parameters with generic default values which tend to be convenient in most 

analyses, so the focus of this step is to describe parameters that need to be changed to optimize 

the spike sorting process. Firstly, all paths containing necessary files have to be adequately 

introduced in “ops.fbinary", “ops.fproc”, “ops.root” and “ops.chanMap”: the path of the DAT file to 

analyse, the path of the general working directory, the path of the folder containing the DAT file to 

analyse and the path of the channel map design specifically for the DAT file to analyse, respectively. 

The channel map can be stored in any location, it is not necessary to be kept on the working 

directory, although recommended. For the case of the “ops.root”, the selected folder will contain 

the results of Kilosort, a series of output files containing the sorting. Considering these results will 

be later on supplied to Phy, it is of the utmost importance to specify “ops.root” as the same folder 

of the DAT file to analyse, since Phy requires the original DAT file and the Kilosort results to be in 

the same folder. 

Furthermore, some parameters concern the structure of the data and are mainly the same values 

contained in the channel map, which need to be specified also in the Kilosort configuration. Among 

these we have “ops.fs”, “ops.NchanTOT”, “ops.Nchan”, “ops.Nfilt” and “ops.nNeighPC”, which refer 

to the sampling frequency of the signal, the total number of channels present in the data (even 

those that will be left out of the spike sorting), active channels (channel that will be considered by 

Kilosort for the spike sorting), the number of clusters to use, and the number of channels to mask 

the PCs, respectively. The last two parameters depend on other prior ones and must be calculated 

according to the provided information. The maximum number of clusters to use to sort the spikes 

(“ops.Nfilt”) should be 2 to 4 times more than Nchan and a multiple of 32. However, for large 

datasets with few channels and extended time length, it can be desirable to increase this value 

over 4 times the Nchan, so as to provide more room for adequate sorting. The number of channels 

to mask the PCs is a criterion relevant in Phy visualization and, despite being noted in the source 

script that it can be left empty to skip, a value equal or lower than the number of active channels 

(usually around 3/4 of “ops.Nchan”) should be assigned, since leaving it empty leads to error in 

other fragments of the code. 
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At last, a few more parameters are related to the characteristics of the spike sorting method and 

thus affect the quality of Kilosort’s outcome. The most relevant one, having distinct effects on the 

analysis, is the “ops.Th”, which sets the threshold for spike detection in the analysis of the signal. 

For the data examined, belonging to human single neuron recordings of eight channels at a 

sampling frequency of 32kHz, the threshold with best quantity-quality trade-off in spike sorting was 

found to be [-8 -2 -2]. Changes in “ops.Th” alter the threshold on a per spike basis. The first number 

corresponds to the threshold spike detection used during the optimization and the second number 

(equal to the third) are used during the final pass. Both thresholds are applied to template 

projection, not to the voltage. 

Once all the parameters in the “StandardConfig.m” file are specified, the last step is to introduce 

the correct file and folder paths in “master_file.m” in order to begin with the analysis. At the 

beginning, both the folders containing Kilosort and npy-path but be added to the Matlab path. Then 

in “pathToYourConfigFile” the path to the working directory, where the “StandardConfig.m” is 

present, must be written. Finally, the code is executed running the “master_file.m” file. The ordered 

steps present in the analysis are: 

• Loading of raw data 

• Computing of channel-whitening filters 

• Application of filters to raw data  

• Writing of whitened data and final preprocessing 

• Optimization of templates 

• Analysis of all found batches 

• Final template matching pass 

Manual refinind – Phy 

The objective of Phy is exclusively that of offering a series of tools for the user to manually curate 

the automatic spike sorting effectuated by Kilosort. In order to do this, a list of steps can be followed 

to ensure that all important information has been considered and the best decisions are taken. For 

this last method of the project, a complete pipeline with recommendations from the software’s 

documentation, developers and other specialists is described, in order to obtain high quality results. 

This is also the complete set of instructions employed in order to analyse the data that is exposed 

in the Results section as an evaluation of the software, and also for additional research purposes 

undertaken by the developing team of this project. 

Phy has two main requirements: a GPU to accelerate computationally intensive processes and a 

recent Python distribution (Phy Documentation). Therefore, it is implied that it would be suitable to 

carry out Phy manual refining in the same system that has hosted Kilosort spike sorting. It is 

specially so considering that Phy needs data from a variety of files created by Kilosort during the 

analysis, so avoiding data movement problems related to file loss can be prevented. The output of 

Kilosort is directly the data that is imported into Phy. It is of the utmost importance that the same 

folder (the working directory) contains all results from Kilosort and the original DAT file, otherwise 

Phy cannot render the data. Furthermore, Phy is executed from the system Terminal in Linux or 
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the Command Prompt in Windows. It is necessary to execute the commands in the working 

directory’s path, in order to access the correct files. 

The Phy repository must be downloaded from the Cortexlab GitHub page. Phy is free of use and 

open source, sharing many developers with Kilosort. Also, in case of needing the addition of a 

Plugin, it should be written and installed before opening the data. Before opening Phy, the 

command “phy extract-waveforms params.py” must be executed from the Terminal. This command 

generates the necessary waveforms in Phy, which otherwise would be vacant due to a discrepancy 

between Kilosort3 and Phy. Such discrepancy could be solved in future instances of the software 

or in other versions, consequently making this step unnecessary. Afterwards, the command “phy 

template-gui params.py” can be executed to start the Phy GUI. 

The Phy GUI is composed of a series of windows and each one represents an aspect of the data. 

 

c) a) 

a) 

b) 

d) e) 
g) 

h) 

f) 

i) j) 
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Figure 6. Every visualization available at Phy, representing data about a specific cluster or the entire dataset. 

In Figure 6 all views available at Phy can be observed, each one involving a different feature of the 

data and with its own parameters and visualization (Phy Documentation): 

a) ClusterScatterView: represents all clusters in a scatter plot, as a function of the depth and 

the amplitude. 

b) ClusterView: shows the list of all clusters produced by the Kilosort sorting algorithm. Each 

cluster has a unique id number which only identifies that specific cluster; any modification 

in the spike contents of the cluster will lead to a new id being adopted. It also offers 

additional general information about the cluster such as number of spikes or channel and 

depth where the spikes of the cluster are more prominent. 

c) ProveView 

d) SimilarityView: visualization equivalent to the ClusterView, also showing a list of all 

clusters, but now they are distributed in order of similarity to the main cluster selected in 

ClusterView. It adds a similarity column, which indicates the degree of feature proximity 

between the two cluster. 

e) WaveformView: represents the waveform of the spikes present in the cluster. In this case, 

the average of all spikes in shows. 

f) WaveformView representing a large number of the cluster’s spikes superimposed, instead 

of an average. 

g) ISIView or ClusterStatisticsView: histogram of the selected cluster, including inter-spike 

intervals and instantaneous firing-rate. 

h) FeatureView: visualization composed of different windows, presenting plots of the principal 

component features of the spikes. The selected cluster’s spikes are marked in blue colour, 

k) 

n) 

l) m) 

o) p) 
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while the rest of spikes from every other cluster remains in grey. The diagonal windows 

represent each principal component in relation to time. 

i) CorrelogramView: shows the auto-correlogram of the cluster’s spikes. The horizontal line 

markes the baseline firing rate and vertical lines identify a default refractory period of 2 ms. 

j) Comparison of two clusters in the CorrelogramView, with the white correlograms 

corresponding to the cross-correlogram between the two clusters. 

k) AmplitudeView: plots the spikes of a cluster (in blue) as a function of the amplitude and the 

timestamp, with all other cluster’s spikes in grey. 

l) TemplateView: shows all templates of the session, and their position depends on the 

cluster order in ClusterView. 

m) RasterView: representation of all clusters in a raster plot. The order of the rows depends 

on the order of clusters in the ClusterView. 

n) TraceView: shows the raw signal marking in colours where and when each spike takes 

place. 

o) FiringRateView: histogram representing the firing rate of spikes in a cluster as a function 

of time. 

p) TraceImageView: represents the same information as in TraceView but as a textured 

image. 

In the following part, a step-by-step guide is developed to manually refine Phy data using 

information from software manuals, advice from developers and specialists' instruction. The 

procedure is meant to offer a practical approach to Phy, where the trade-off between output data 

quality and time expenditure is balanced according to research standards. It represents a series of 

steps which are recommended to be taken in a specific order, so as to cover as many aspects of 

the software as possible. However, such description is only a navigation tool, which needs to be 

accompanied by a multifeatured approach to the data and preferably a brief training in order to 

increase the versatility and decision-making capabilities of the user. 

In order to correctly handle the data, all windows need to be considered at different steps during 

the refining. For the study of these steps, the main documentation of Phy has been consulted, 

which already includes a manual for sorting in Phy and additional information about the GUI and 

the different parameters that can be modified. Furthermore, specialists in the field of single neuron 

recordings in mice were consulted for guidance, and supplementary tools and advice offered by 

the developers in several sources were also taken into account. 

The following pipeline is meant as a series of ordered recommendations to be undertaken with the 

purpose of refining spike sorting output data from Kilosort with optimal results and time expenditure: 

1) Identification and labelling of noise clusters. 

Clusters containing predominantly or exclusively noise should be discarded right away for clearer 

classification of the remaining clusters. To identify a cluster as noise, several criteria from different 

views can be considered. Firstly, the general characteristics of the clusters can be taken into 

account to decide whether that cluster is considered, such as the number of spikes it contains. In 

case of small clusters, with under 1000 spikes, even if other aspects seem promising and indicate 

a possible neuron, it is usually unnecessary to keep that cluster because it cannot be used for 
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research purposes, due to the small magnitude. It can also be considered that low number of spikes 

leads to not useful statistical generalisation, so commonly in these cases most of the views are too 

irregular or look like stochastic processes, which makes them particularly hard to classify. 

Then, its spatial and temporal distribution must be considered to identify sources of noise or 

artifacts. The presence of artifacts is signalled by high amplitudes and repeated firing concentrated 

at a precise time. Also, due to the refractory period a neuron cannot fire multiple spikes at the same 

time, so that accumulation of them at specific points in time can only represent noise. Hence, 

columns of high amplitudes in the AmplitudeView or vertical distributions of spikes in the diagonal 

windows (which represent each feature with respect to time) of the FeatureView indicate noise 

signals, as is represented in Figure 7. 

 

Figure 7. Example of an AmplitudeView (left) and a FeatureView (right) of a cluster containing noise, where vertical distributions 

represent large firings in the same time window, an indication of artifacts or similar disturbances. 

Apart from artifacts and other visually significant alterations, some 

spikes can just be the result of random or periodical noise, in which 

case typical wave parameters must we analysed. The two most 

representative views are WaveformView and CorrelogramView. As 

mentioned, the refractory period is a basic element of any neuron 

which should be easily identifiable in an auto-correlogram, which 

should have a dip around 0, meaning that most of the spikes did 

not fire at the same time. However, it is also common to see a dip 

in the middle but with two high peaks at both sides of the 0, which 

indicate that the identified neuron could have a pattern of fast firing, 

releasing several spikes one after another in a short time span. In 

general, flat or anomaly-shaped correlograms are an indication that 

the selected cluster could be noise. An example of this effect can 
Figure 8. Example of mostly flat 
waveform, almost certainly attributable 
to noise. 
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be observed in Figure 8. Additionally, the cluster represented in this figure was composed of 

104243 spikes, which supports the idea that it is composed mainly of noise. 

On the other hand, the waveform of a neuron is very characteristic and should comply with a series 

of features to be considered a natural shape produced by an action potential. Generally speaking, 

the waveform is represented by a short depression followed by the refractory period (in many cases 

unappreciable). For spikes in different channels to be considered generated by the same neuron, 

their waveforms must have very similar shapes and usually different intensities. This constraint 

comes from the fact that the distance between microwires does not allow for many channels to 

record the same neuron, and thus any identifiable waveform shape present in many channels at 

the same time with the same intensity is most probably the result of artifacts or other higher-scale 

activity. An example of this situation can be observed in Figure 9. For clusters containing single 

neuron spikes, typically a characteristic waveform shape is present at highest intensity in one 

channel and at decreasing intensity in two or three more channels, with the rest showing alterative 

shapes or none. 

 

Figure 9. Phy WaveformView of a typical waveform shape (left) against a waveform with a regular shape but unnatural channel 

distribution (right). 

2) Splitting clusters of different neurons and cleaning. 

Splitting can be used to separate groups of spikes from a cluster, usually with the intention of 

dividing spikes belonging to two different neurons. However, splitting can also be used to remove 

noise-related spikes from otherwise acceptable clusters. Splitting is done manually drawing a 

polygon around the spikes that are meant to be separated (with the “Ctrl” key pressed and selecting 

each point of the polygon using the device’s mouse) and then pressing the “k” key. This drawing 

can be made in any view that represents individual spikes, like the AmplitudeView or the 

FeatureView, and thus in each window the parameter defining distance between spikes and spike 

distribution will vary. 

In general, splitting a cluster into two different neurons is a complicated process that necessarily 

involves information from different views. The main tool employed in identifying clusters with 

possible multiple neurons is the FeatureView, in which data is distributed in several ways according 

to different features and also temporally. In case a cluster contained spikes from more than one 

neuron, in at least one of the windows in FeatureView this cluster would show two distinct groups 

of spikes, which could be manually separated. However, it is important to take into account that 



26 
 

FeatureView represents original data from spikes, while Kilosort implements filters to optimize the 

spike sorting process, so that it is reasonable to assume that the sorting effectuated by Kilosort is 

probably more complex and accurate, since it considers a wider array of variables and a higher 

number of dimentions. For this reason, splitting a cluster into two neurons is often discouraged. 

However, in case a splitting is intended for two groups of spikes in the same cluster, additional 

views can be considered to make this decision. Basically, if two groups of spikes are already 

separated by a feature in FeatureView, then characteristics of the possible neuron they each relate 

too should be considered. Should they belong to different neurons, the WaveformView of both of 

them would most probably show different distributions and waveform shapes. Similarly, in the 

CorrelogramView, the cross-correlogram of both groups can be studied to analyse their differences. 

A cross-correlogram with a central dip, similar to the auto-correlograms of each, would indicate that 

they are actually the same neuron. Otherwise, a flat cross-correlogram means that there is no 

relation between the firing patterns of both groups of spikes, and thus belong to separated neurons. 

On the contrary, splitting can also be used to clean a cluster and remove spikes clearly related to 

noise, while keeping otherwise normal spikes (possibly related to neurons), such as in Figure 10. 

In this case, the two most useful visualizations are again AmplitudeView and FeatureView, where 

data is represented with respect to time. Vertical cumulations of spikes in the AmplitudeView, 

characterized by large amplitudes, and similar distributions in the time windows of the FeatureView, 

in which many spikes are present at the same time, are clear noise situations, as described in the 

above section. Therefore, the splitting tool can be employed to separate these cumulations without 

removing the low amplitude spikes present in the same time range, which can be attributed to 

normal action potentials. This technique can help during the classification of complicated clusters, 

but at the same time is burdensome and time expensive. For this reason, this step is generally 

unnecessary in cases of abundant data, where such inconclusive clusters are discarded or counted 

as MUA, considering that later in the analysis only the neuron spikes will be relevant. 

 

Figure 10. Example of a splitting procedure applied to a cluster to remove vertical columns in AmplitudeView, dividing it into two 

new clusters. The most significant windows represented are the ClusterView, AmplitudeView, CorrelogramView and FeatureView. 
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3) Merging clusters 

In some cases, Kilosort can separate into different clusters spikes belonging to the same neuron. 

Therefore, it can be useful to merge such clusters together. Merging is done by selecting the two 

desired clusters in the ClusterView and pressing the “g” key (for grouping). 

 

Figure 11. Parallel representation of two clusters with equivalent characteristics, suggesting that both belong to the same neuron 

and should be merged. 

Before merging, however, it is important to compare similar clusters. In order to do so, Phy presents 

the SimilarityView, which has the main purpose of encompassing the comparison of all analytic 

parameters between two clusters in a “similarity” value, which goes from 1 (all parameters match) 

or 0 (there is no similarity between the clusters). Using this tool, for each cluster the most similar 

options can be considered, comparing the aforementioned behaviour in WaveformView, 

CorrelogramView and FeatureView to decide whether their spikes belong to the same neuron. As 

can be observed in Figure 11, cross-correlograms with clean refractory periods indicate no spike 

overlapping and thus a high probability of having the same neuron, as well as similarly shaped 

waveforms. Similarly, overlapping of two clusters in most of the FeatureView windows indicates 

that they have many features in common in several dimensions. Overall, many parameters have to 

be considered collectively to determine whether two clusters are suitable for merging, as is the 

case for Figure 11. In cases of having resembling waveforms but one of them is clearly more 

chaotic, one could be dealing with multiunit clusters, in which case it would be better to not merge 

and be classified as MUA. Usually, similarity values below 0.6 are regarded as to not having enough 

correlation, so they can be excluded of the comparison or can be included at the expense of longer 

curating times. 

Some other cases that could require merging include Drifting and Burst adaptation, both graphically 

exemplified in Figure 12. Drifting consists in the displacement of the electrodes during the recording 

period, so that spikes produced by the same neuron are detected by different channels at two 
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different time ranges (or more if several electrode shiftings occur during the recording). This 

phenomenon, which Kilosort would automatically sort into two separate clusters, can be easily 

observed in the AmplitudeView or the FeatureView, where each cluster would only have spikes 

present in a portion of the recording, but represented at the same time they would cover the whole 

period. Also, their cross-correlogram should perfectly match the individual auto-correlograms. 

Burst adaptation, on the other hand, is created by adaptative firing in neurons, which produce 

different types of spikes due to the dynamic characteristics of their waveforms. As such, Kilosort 

also sorts them into different clusters. They are more difficult to detect, and several parameters 

should be considered. Firstly, the AmplitudeView, when the two clusters are compared, would show 

spikes from both of them during the entire length of the recording, but at different amplitudes, so 

that they are separated in the y axis of the representation. Also, the waveforms would have a similar 

shape but with different amplitude and extensions, and the WaveformView would show both of their 

waveforms in the same channels. Finally, the cross-correlogram between the two would be highly 

asymmetric, with one side being mostly flat at 0. If such case arises where all these parameters 

match the description, it can be concluded that despite the different waveform characteristics they 

belong to the same neuron and a merging can then be undertaken. 

 

Figure 12. Images of drifting (top) and burst adaptation (bottom) from 2020 Lecture 2.05 - Using Phy to curate spike sorting by 

Nick Steinmetz (UW) (YouTube). The views represented are WaveformView, AmplitudeView and CorrelogramView. 
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Regarding the asymmetrical cross-correlograms in clusters 

generated by burst adaptation, a similar effect can be observed in 

clusters containing independent neurons where the cross-

correlograms are mainly flat on all sides except on the centre, 

which is divided in a depression similar to a refractory period and 

an elevation. This asymmetry, however, is limited to the central 

part of the correlogram, so it has no connection with burst 

adaption, but it is often interpreted as a sign of two independent 

neurons linked, that is firing one after the other. For this reason, 

the cross-correlogram identifies a firing correlation in a short time 

difference, while other wave parameters are unrelated. 

 

Nevertheless, it must be noticed that, similarly to what was described in the splitting process, 

merging is in every case a nonessential procedure, which can be decided not to be applied. This 

decision can be made contemplating a variety of reasons, the most important ones being the 

uncertainty of merging judgement, the lack of added value for posterior analysis and the fact that it 

is severely time-consuming. Alternatively, this procedure can be omitted for lack of clear 

classification metrics, especially in cases where future analysis of the data will employ more 

advanced statistical methods (such as in spike correlation between neurons). Then, the later 

analysis can help clarify the uncertain sorting of specific clusters, which can lead to a second cycle 

of Phy labelling before the results are purposed for scientific or clinical research. 

4) Difficult decisions and final labeling 

The last step for data curation in Phy resolves around using all prior steps described to tackle 

difficult decision and enact the final labeling that will be used for subsequent studies. In many cases, 

this labeling can be inconclusive, in order to not risk losing information, at the expense of having 

less defined results. Such results could be enough for high-input research or statistical studies, in 

which the presence of marginal noise is systematically rendered inconsequential, and sorting 

anomalies such as unnatural division of single neuron spikes or multiunit provide useful and label-

appropriate information. 

Troubleshooting and alternative steps 

Troubleshooting and error solving 

During the previously described methods, several situations are prone to missteps which lead to 

errors. Such errors usually arise from the software system employed, either Matlab or Python, and 

can encompass many libraries and nested scripts, making them difficult to identify. 

In Matlab, due to the development of the entire script and the use of especially precise libraries, if 

followed correctly there is little window for errors. It is important to ensure the data introduced is in 

Figure 13. Example of a cross-correlation which presents an asymmetry, with a 
possible interpretation being that the two clusters are two connected neurons firing 
consecutively. 
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the appropriate format (NCS Neuralynx file) and that any parameters regarding structure of the 

data are modified only in its definition at the beginning of the script, to avoid inconsistencies. The 

whole script is designed to be mostly automatic and self-regulatory, so that values inside the loops 

should not be changed. However, in case of processing alternative data, such as different file types 

or data structures, the main parameters can be modified without risk of encountering errors. This 

is mainly the case for channel structuring using Fieldtrip, since it is capable of reading a wide array 

of file formats and importing the data to a standard configuration, and notch filtering, which has 

been tested with a variety of statistical parameters to adapt to each situation and peak detection 

as well as attenuation can both withhold a broad range of values. 

On the other hand, Kilosort’s algorithm is more complex and involves more levels of 

computationally intensive functions, so small digressions from the described steps can readily turn 

into errors. The following lines of text are an example of the kind of an error produced by Matlab 

while running Kilosort: 

Error using  /  

Not enough input arguments. 

Error in preprocessData (line 69) 

ops.sampsToRead = floor(d.bytes/NchanTOT/2);  

Error in master_file (line 19) 

[rez, DATA, uproj] = preprocessData(ops); % preprocess data and extract spikes for 

initialization 

The first line describes the error, with a more or less identifiable explanation, and the rest indicates 

which files and functions are affected, in order to pinpoint the source of the malfunctioning. In this 

case, the error originates as a result of an incorrect introduction of the DAT file’s path in the 

“StandardConfig.m” file (in the variable “ops.fbinary”). A similar error is produced when, in the same 

file, the variable “ops.nNeighPC” is left blank or as a “null”. For this reason, it is important to assign 

a numerical value below the total number of active channels.  

Another example of a Kilosort error as observed in the Command Window of Matlab: 

Error using gpuArray 

Encountered unexpected error during CUDA execution. The CUDA error was: 

CUDA_ERROR_ILLEGAL_ADDRESS 

Error in fitTemplates (line 198) 

        dataRAW = gpuArray(dat); 

Error in master_file (line 20) 

rez                = fitTemplates(rez, DATA, uproj);  % fit templates iteratively 

This error can appear in several circumstances and is related to CUDA. Experimentally, this error 

has been found to appear in successive executions of Kilosort, without seemly altering relevant 

parameters, and probably has no connection to the files used as input for the software. The most 
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basic course of action in this case is to restart Matlab, which solves the error without requiring any 

additional manipulation, and Kilosort can be used again regularly. 

The standard GUI of Phy has a limited array of options, which limits the type of actions that the 

user can perform. Hence, it is hardly possible to encounter errors while working with the basic Phy 

interface. The main two situations that can lead to malfunction of the software are no prior extraction 

of waveforms and defective plugins. As mentioned before, executing the command “phy extract-

waveforms params.py” in the system’s console is necessary before working with Phy in order to 

have access to its full functionally. Otherwise, some option will not be present and trying to generate 

specific visualization windows will lead to error. On the other hand, since plugins are independent 

from the main software and created by users, they can interact in many different ways with Phy 

and could cause internal inconsistencies which would have a detrimental effect on basic functions, 

thus creating errors in the GUI. 

Alternative steps 

The decision to employ Kilosort 1 instead of more developed versions was supported by 

recommendations from developers and a deep understanding of our data. However, as recording 

devices improve and human neural activity studies evolve, new technologies could soon allow the 

obtention of higher quality signals, closer to the type of recordings that can be collected nowadays 

in mouse research. Hence, in a near future later versions of Kilosort could prove more useful and 

advanced in human single neuron spike sorting. For this reason, in this section it will be explained 

how to perform the same analysis described before but in Kilosort3, the latest update of the 

software. 

Kilosort3 was first developed in 2018 and includes several improvements with respect to the prior 

versions. Compared to Kilosort 1, the main difference is the presence of a GUI, which allows the 

modification of analytic parameters directly on the interface and the visualisation of channel data 

prior to the spike sorting. All functions described in Kilosort 1 are now accessible either by changing 

specific parameters in the GUI or by handling the graphical representation of channels (such as 

channel inclusion or exclusion, which can be selected directly on the visualization window). 

Compared to other versions, Kilosort3 improves the drift correction introduced in Kilosort2 and 

introduces a new more sophisticated clustering algorithm. 

Similar to Kilosort 1, Kilosort3 must be executed by running the “kilosort.m” file present in the main 

folder to the repository. Matlab automatically opens the GUI, and in case it has been used 

previously it resumes the files and configurations set. Otherwise, using the “Select data file”, “Select 

working directory” and “select results output directory” buttons, the necessary paths and files must 

be selected. Also, in the “Select probe layout” drop-down, the channel map can be browsed from 

a selection of predefined distribution, or a previously created channel map file can be added using 

the option “other...”. Additionally, it is possible to create a channel map directly in the GUI, by 

selecting the option “[new]”. In this case a new window opens for the user to introduce the channels’ 

parameters, which are the same as described for Kilosort 1. 

The rest of necessary parameters are to be written in the respective blank box below. It is important 

to introduce correctly the “Number of channels” and the “Sampling frequency (Hz)” as those are 
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necessary to correctly read the data. Moreover, “Threshold” can also be selected, which is by 

default set to “10 4”, as well as other determinants of the analysis which are however generally 

unchanged, like “Lambda” and “AUC for splits”. Finally, as mentioned above, the active channels 

which will be considered later for the spike sorting can be selected directly in the “Probe view” or 

the “Data view” by right clicking the respective representation. Also, the fragment of the data to 

analyse can be truncated by changing the upper and lower limits set in “Time range (s)”, which 

defaults to “0 inf”. 

The procedure is the same and contains roughly the same steps as in Kilosort 1, resulting in parallel 

output files which have equal characteristics adapted to Phy visualization. However, the GUI makes 

it more difficult to identify new errors which are easier to appear, due to more complex processes 

taking place during the spike sorting. The main ones and how to solve them are explained below. 

Kilosort stopping at the “Computing whitening filter” step indicates problem at the data importing 

level and are related to the format of the data or the channel map. The situation where this issue is 

most prevalent is in cases where the data has not been adequately formatted. For this reason, it is 

very important to use correct functions in the preprocessing of the signal. Data needs to be encoded 

as binary integer 16 in a DAT file, which for the case of Matlab is optimally done using the “fwrite” 

function. 

Afterwards, if the analysis stops at the “Preprocessing” step, it can have a wider array of possible 

explanations. A common error is related to the shift correction algorithm introduced in this version 

of Kilosort. Different data interacts in a variety of ways with this algorithm, and some can lead to 

errors. However, the files affected are usually printed in the Matlab Command Window, where an 

analogous error to the one appearing in Kilosort is described. An example would be a description 

similar to: 

Error: a interp1, "Sample points must be unique." 

Then, the best course of action is to deactivate the drift correction for this session, changing the 

“ops.nblocs” parameter in “main_kilosort3.m” from 0 to 5. 

Finally, a particular error can occur in the the “Extracting spikes for clustering” level, which gives 

out the following message in Matlab: 

Error:a gpuArray/subsasqn, "An unexpected error occurred trying to launch a kernel. The 

 CUDA error was: invalid configuration argument" 

In this case, there are two files that need to be modified. First, in the “extract_spikes.m” file (inside 

the “clustering” folder of the respository) a try/catch function must be added surrounding line 97. If 

only this correction is made, still problems arise in the “First clustering” step, so also the 

“template_learning.m” file (in the same “clustering folder) must be added another try/catch function 

in line 71. This way, Matlab avoids certain paths that would lead to inconsistencies in the sorting. 
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3. Results 

The main results of the project are obtained at the end of the entire pipeline, when the files 

containing information about spike firing and sorting into neurons is produced by Phy, which is the 

ultimate goal of the software. However, it is composed of several methods divided into individual 

steps, each of which is meant to modify the data in a specify way or add a layer of pre-processing. 

Considering every step as its own process, the results of each method can be quantitatively and 

qualitatively analysed and evaluated to ensure optimal functionality and efficiency. 

In the following sections, the individual results of each method will be exposed, along with 

comparisons of similar results obtained applying differential parameters or calculations. 

Pre-processing and filtering 

Since the steps involved in pre-processing and filtering have been developed for this software and 

must prepare the data for the ensuing analysis, it comprises a series of complex tools intended to 

optimise the quality of the signal. To do so, Matlab loops are implemented in order to generalize 

the procedure and make it more autonomous, while applying external Toolboxes for the tackling of 

specific tasks. 

A mentioned before, data must be imported from CSC files (Neuralynx). The Fieldtrip toolbox 

makes this operation possible, by introducing the path of the file. Then, all the data in the file is 

imported in as a Matlab struct (structure), a type of variable which can include subfolders to 

organize data. As can be observed in Figure 14, the information of the signal is stored as five sub-

variables: 

• “hdr”: header of the file 

• “label": name of the signal’s channel 

• “time”: list of numbers with the timestamps of the entire recording 

• “trial”: containing the signal data 

• “fsample”: frequency sample 

• “sampleinfo”: information regarding dimensions of the data 

• “cfg”: Fieldtrip parameters used in the importing process 

 

Figure 14. Example of structure containing data from an CSC file. 
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Then, the most important part of the Matlab script is the filtering. In order to remove noise 

frequencies, a notch filter from DSP Toolbox is implemented. The notch filter is applied to every 

signal recording using independently calculated parameters. Such parameters depend on 

statistical calculation of the signal as well as the data fragment surrounding the notch frequency. A 

function using the difference between notch frequency power and median power of a +-3000 

samples window, the average power in the same window, and the frequency of the notch frequency 

was decided on as the best-performing combination of parameters, with a constant parameter 

which should be altered for entire datasets to tune attenuation intensity. 

The main challenges faced were the lack of attenuation and the disproportionate attenuation of 

notch frequencies in the same signal according to frequency or spectral power. In order to supply 

a balanced algorithm that would take all of these aspects into account, several statistical factors 

had to be considered. Firstly, an uneven distribution of attenuations between initial and posterior 

frequencies was observed. For this reason, the frequency of the notch frequency was included in 

the formula. Then, most importantly, the different between the median power and the power of the 

notch frequency is directly proportional to the attenuation that must be applied to that frequency.  

Additionally, it must be noted that noise frequencies were not only determined by one single spike 

at a specific frequency but were surrounded by series of high-power frequencies. For this reason, 

part of the looping was dedicated to identifying only the highest spike in a cluster of high-power 

frequencies, to determine the notch frequency that was meant to be filtered. Furthermore, this 

accumulation of high-power frequencies led to elevated values of average power around the notch 

frequency, even with large sample windows, for this reason the formula includes both the average 

power and the median power in different places, to obtain the best context-dependant performance 

according to the specific characteristics of each value. The median was generally lower and closer 

to the baseline power. 

In Figure 15, the first 273.0665 Hz of the same signal are represented before and after the 

implementation of the recurring notch filter, named “Pre 2-1" and “Post 2-1" respectively. The first 

plot of each representation (top) belongs to a simple Matlab 2-D line plot representing spectral 

power as a function of the frequency. The second plot (bottom) represents the same data using a 

semi-log plot, in order to better discern differences in power. It can be observed how several noise 

frequencies showed high-power spikes in the pre-filtered data. After the implementation of the filter, 

all noise frequencies are removed with an attenuation equivalent to the original spike’s spectral 

power, so that no visible spikes remain while not altering significantly the surrounding frequencies. 
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Figure 15.. Example of fragment before (left) and after (right) the notch filter, using Matlab functions plot and semiology. 

Afterwards, the last steps in the pre-processing are directed towards unifying all filtered data into a 

single struct variable, with the distribution and characteristics of the original struct created by 

Fieldtrip, in order to exported in the desired binary “int16” DAT file format which is required by 

Kilosort. The main differences between the final struct and the original one from Figure 14 are the 

“label”, “trial” and possibly “time” categories. The “trial” array will have added as many rows as 

channels have been concatenated. All channels must have the same sample frequency and length. 

Additionally, trial might have also added more columns, in case consecutive fragments of the data 

have been added together. The same situation of fragment concatenation is the only case in which 

“time” can change, with the added columns after the initial timestamps list. It must be noted that 

despite including several channels in “trial”, all of them have the same timestamps, since the 

sample frequency and the length do not change, so “time” will remain being composed of only one 

row. Finally, “label” will have increased from a single cell containing the name of the source channel 

to an array of label names where the rows represent channels, and the columns represent 

fragments. Moreover, different fragments of the same channel will not have the same label name 

if they come from different recordings, as is the case for Figure 16, where several channels from 

separate whilst consecutive recordings of the same individual have been merged a struct which be 

exported as a single output DAT file. 

 

Figure 16. Example of ”label” sub-variable in output struct, containing a series of channels with several fragments concatenate, 

each of them imported from a different source file with an identifying label name. 
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Spike sorting 

Kilosort compiles a series of steps to process the data and extract the appropriate information. 

However, since all of the procedure is undertaken in a single execution, none of the intermediate 

results can be visualised, only the resultant output. On the other hand, variations in analysis 

parameters greatly affect the results of Kilosort, and as such a series of trial-and-error processes 

were implemented during the study of many of them in order to determine the optimal value. 

One of the most important inputs of Kilosort, which needs to be precisely defined and attuned to 

the data characteristics, is the channel map. Most of its content are list of values which can be 

automatically defined by the “createChannelMapFile.m” file included in the software repository. 

Manual generation or modification should take into account the presentation of such lists and the 

type of variables that they contain. A particular example is the “kcoords” element, which appears 

to contain 1 and 0 values, but they are simply representations of true and false, the adequate 

variables for this parameter. However, for the case of human single neuron, the most difficult 

element to consider is the geometrical distribution of channels, defined by “xcoords” and “ycoords”. 

Despite the employment of Kilosort 1, which is supposed to minimise the impact of channel 

organization on the analysis, a comparison of different models was still undertaken in order to 

ensure sorting stability. 

 

Figure 17. Different micro-wire distribution as observed in the Kilosort GUI. 

Among the many options available, since according to the data analysed there is no actual limitation 

regarding position and even distance is simply uncertain, the most common geometries were 

attempted. In Figure 17 some channel map distributions are shown. The first two are geometries 

specifically tried during our project, finally deciding of the leftmost one, while the last two are 

example geometries included in the source Kilosort repository. 

Additional parameters which have an impact in the analysis are the “ops.Nfilt” and the “ops.Th”. 

Nfilt refers to the limitation of clusters into which spikes are sorted. It is recommended to be set to 

2 to 4 times the number of channels to process (Nchan). However, in cases of long recordings with 

few channels, where large amounts of spikes are extracted, it would be useful to increase the value 
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of Nfilt in order to give more room for spike classification. In an example carried out with a large 

whole-night dataset containing only 8 channels, with Nfilt=32 most of the 32 clusters produced 

included vast numbers of spikes and were exceedingly general, so that barely any neuron cluster 

was identifiable. Increasing Nfilt to 64 or even 128, led to more diverse clusters, with a range from 

a dozen spikes to several hundred thousand, so that noise, multiunit and good neurons were more 

easily discernible. 

On the other hand, “ops.Th” contains the variables used in spike identification and extraction, 

working as an amplitude threshold. The default Kilosort threshold is set to [10 4] or [10 4 4], with 

the second and third number referring to the same value. However, this threshold has been found 

to be excessively high for the type of recordings that were analysed, so it was decided to lower it. 

The idea was to keep an appropriate distance between the two values, while alternatively changing 

both of them to obtain diverse results. The output of each threshold analysis was then observed in 

Phy. The table in Figure 18 represents all thresholds attempted, as well as some features of the 

results as studied in Phy, superficially scanning the dataset to decide on a few probable neurons 

(without following the whole refining pipeline described before, in order to limit the time expenditure, 

considering only clusters with good waveform, spatial and temporal distribution, and refractory 

period). 

Threshold 

Total 

number of 

clusters 

Number of 

spikes in 

largest cluster 

Number of 

probable 

neurons 

Average number of spikes 

in selected probable 

neuron clusters 

[0 –6 –6] 31 6488 2 2990 

[0 –8 –8] 31 2946 0 0 

[2 –4 –4] 31 35323 5 5361 

[–4 2 2] 31 611541 1 123957 

[–4 –12 –12] 31 1961 0 0 

[–6 0 0] 31 220671 5 8120 

[–8 0 0] 31 33425 4 7355 

[–12 –4 –4] 29 14685 3 1777 

[10 4 4] 31 60330 2 8460 

[–8 –2 –2] 31 23365 5 6620 

[–6 –2 –2] 31 23485 5 5850 

[–8 –4 –4] 31 119319 2 5097 

Figure 18. Table with various numerical features about the Kilosort results obtained using each of the evaluated threshold values. 

The thresholds with best results are marked in coloured bands. The main parameters to establish 

a threshold as good is good classification power, identifiable in the number of probable neurons 

that were identified. The number of spikes present in the largest cluster is also interesting, as it can 

be considered an estimate for the general number of spikes obtained with that threshold. Large 

numbers of spikes are usually desirable, but without incurring in extremely high values, in which 

case it would be mostly composed of noise and no significant results would be obtained (such as 
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in the [-4 2 2] threshold). It can be considered that having more spikes makes classification easier, 

since most of the parameters in Phy are statistical and thus larger populations obtain clearer 

visualizations. 

Similarly, the average number of spikes in the selected probable neuron clusters offers best results 

when it has significant dimensions, in the order of several thousand. At the same time, however, it 

is interesting to have neurons not only in big clusters but also smaller ones. This is because larger 

clusters have a higher tendency of accumulating noise, so that the more spikes a cluster contains, 

the most probable a large percentage of it could be noise. So having only large clusters makes for 

more insecure classification. 

In the end, thresholds of first values around –6 and -8 showed good results, paired with second 

values closer to positive numbers, like –2 or 0. Qualitatively, [–8 –2 –2] was chosen due to better 

clarity of clusters (more defined waveforms shapes and refractory periods, for the case of the 

individual recording considered). Nevertheless, this analysis is remarkably dependant on the 

source data (optimal values would widely change from one sample to another), so this was chosen 

to simplify procedures while still obtaining good results. 

Ultimately, the files produced by Kilosort are stored in the selected folder alongside the source DAT 

file containing the raw data, which will also be necessary for the Phy analysis. Each file contains 

different information regarding the sorting effectuated by Kilosort, such as the number of spikes, 

their characteristics, timestamps, label, etc. The necessary files for manual refining are 

automatically detected and opened by Phy, so there is no need for accessing any of them after the 

automatic sorting. However, in some situation is might be useful to use the results structures 

obtained from Kilosort, saved in the “rez.mat” file, a Matlab type of file which encodes a series of 

variables stored together. It must be opened with Matlab and includes several important parameters 

which can be analysed (Kilosort Documentation): 

• Information regarding channel distribution and contents, mostly the same parameters 

defined in the channel map, such as “xcoords”, “ycoords” or “connected”. 

• “st”: composed of four columns, with each column expressing one characteristic of each 

spike, namely the length of the spike in samples, the template matching spike shape, the 

extracted amplitude, and the final cluster in case of applying auto-merging. 

• “mu”: the mean amplitude of each template used. 

• “ops”: with all the configuration used in the automatic clustering. 

• “Wrot”, “WrotInv” and “Wraw”: containing information about Kilosort pre-processing and 

filtering in the whitening matrix. 

• “U” and “W”: low-rank components of the temporal and spatial masks applied to each 

template. They are the low-rank decomposition of “dWU”, consisting of a subset of spikes 

for each template. 

• “simScore”: correlation between all pairs of employed templates. 

• “cProj”, “iNeigh”, “cProjPC”, “iNeighPC” and “cProjPC”: regarding information about 

principial components of each template and spike projections. 
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Figure 19. All files produced by Kilosort 1, as observed alongside the source DAT file. 

Manual refining 

As opposed to Kilosort, the procedure in Phy is completely manual and thus every step of the 

process can be observed and analysed. As mentioned above, the main actions that can be 

undertaken in Phy are splitting and merging. However, splitting of clusters is uncommon, since 

evident differentiations between spikes are mostly already detected by Kilosort, so even specialized 

observation rarely leads to splitting. On the other hand, merging is a time-consuming process which 

is often left out of the method, unless for exceptionally obvious same-neuron clusters, in favour of 

other cleaning techniques and post-processing, which can mostly determine and correct unmerged 

clusters. The main step that is regularly pursued to obtain better visual results and clean the data 

is the removal of parallel high-amplitude spikes, which are commonly related to noise and artifacts. 

In Figure 20, a typical procedure can be observed, where such distanced spikes are isolated first 

from the FeatureView and then from the AmplitudeView. The results show a quality improvement 

in many of the available views, such as in the WaveformView, where waveform shape is more 

natural and following a more regular pattern. More remarkable is the change in the auto-

correlogram, which presents a more interesting shape, with the indication of a possible refractary 

period at the center and thus is closer to be considered a candidate for a single neuron cluster, 

whereas the initial auto-correlogram would probably be discarded as noise right away. 
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Figure 20. Images of a regular procedure to eliminate artifact noise using mostly FeatureView and AmplitudeView. 

Apart from manually cleaning and improving signal-to-noise ratio in the data outputted by Kilosort, 

the other main objective of Phy is to assign labels to each cluster, which will be used for later 

analysis. In Figure 21, an example of ClusterView after manual labelling of all clusters can be 

observed. Most of the clusters in this example have been classified as Noise. This does not have 

to be a ground rule, but it is a likely outcome considering the amount of noise that human single 

neuron recordings are exposed to, even after pre-processing and filtering. Among Noise clusters 
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there can also be found clusters with few spikes and 

undetermined clusters which are not considered clean 

enough to be labelled as anything else. Clusters in 

green are classified as Good neurons are the main goal 

of this method. As can be seen, however, the number 

of neuron clusters is relatively small (only 3 clusters) for 

an array of 72 clusters. It is a common result for the 

type of data that was dealt with in this project but can 

vary according to the characteristics of the recordings. 

The other two labels are MUA and Unsorted. MUA 

refers to clusters containing spikes from more than one 

neuron, but which cannot be effectively separated. In 

practice, MUA was additionally used as a label to 

classify clusters in which only some views showed 

signs of a possible neuron, while the others opposed 

the possibility. Unsorted, on the other hand, is the 

default state of clusters before labelling, so the 

objective is to classify all Unsorted clusters. 

Experimentally, some clusters can effectively be left as 

Unsorted to be considered in the following analysis, 

since it will be valued as a fourth label in the output 

data. It can be suitable for clusters which are too 

complicated or ambiguous to classify, with the notion 

that they could prove useful in post-processing when 

more specific and power tools are employed. 

 

 Ultimately, the files obtained in Phy are added to the output of Kilosort, as shown in Figure 22, 

which has also been modified to adequate the clusters to the new classification realized in Phy. For 

the post-processing analysis, the most important information that is needed are the spike times and 

their classification in each cluster and label. This information is saved in three files: 

• “spike_times.npy”: list of spike time of all spikes in samples. It must be divided by the 

sampling frequency to obtain timestamps of the spikes. 

• “spike_clusters.npy”: list of assigned clusters of all spikes. 

• “cluster_group.tsv”: table of all clusters with the assigned label. 

As can be noticed, two of these files are in a NPY format, which needs the npy-matlab toolbox to 

be generated by Kilosort in Matlab but can be easily read in Python using the Numpy library. 

Figure 21. ClusterView visualisation after all clusters 
are manually curated and labelled. 
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Subsequent analysis 

The results of Phy can be opened and read in Python with the Numpy library. Data on spikes 

timestamps, label and sorting cluster can be used in research to obtain information about the firing 

patterns of neurons. In Figure 23, the spike times of all good neurons detected in a recording, 

belonging to clusters 34, 40, 41, 47, 65 and 78 as compiled by Kilosort and Phy, are represented 

using histograms, along with a histogram of all spikes included in Good, MUA, Noise and Unsorted 

clusters. 

Figure 22. All files produced by Kilosort and Phy. 
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Figure 23. Histograms representing all spike times for all clusters and clusters 34, 40, 41, 47, 65, 78 respectively for the duration 

of a night of sleep. 

Additionally, the firing times of each neuron can be observed plotting the spike times using 

“matplotlib”, specifically the “pyplot.eventplot” function, which results in a plot like in Figure 24. In 

this way, firing patterns can be compared between different neurons to interpret the results. 

 

Figure 24. Event plot presenting all spikes during a short period of time of all clusters and clusters 14, 53 and 73. 
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4. Discussion 

Project objective and results overview 

The initial objective of the project was to develop a complete pipeline of software applications to 

analyse single neuron recordings from raw data up to the spike sorting results, linking an array of 

different methods. After developing and evaluating each of the required methods and being able to 

implement them in the scientific question posed at the beginning, it can be determined that resulting 

software has been proved to be successful in managing the data from its raw source to the eventual 

spike sorting intended. About the methods, it is worth noting that only the pre-processing and 

filtering was fully developed for the project (except the toolboxes employed). The rest of the 

methods involved included already developed software and applications. In these cases, the scope 

of the research was directed towards identifying the best parameter values and developing an 

application strategy, in order to adapt such pre-established software to the specific requirements 

of the data. 

The pre-processing developed in Matlab has been successful in managing to extract human single 

neuron data from raw recordings and preparing it for later analysis. Considering the versatility 

necessary for this kind of method, which is aimed to generalise the method for data importing and 

standardize its structure, the results have been optimal. With an interface easy to understand and 

accessible for external developers, it is designed so that the whole script can adapt to new types 

of data thanks to the powerful Fieldtrip toolbox. More importantly, it is completely scalable and 

allows for merging of multiple recordings in both the spatial and temporal dimensions. Aside from 

more efficient memory managing methods, the main limitation of the Matlab script resides in the 

filter. Due to the long filtering times of this process, a reiterative algorithm that automatically 

calculates the parameters necessary to apply the notch filter for every frequency is fundamental to 

accelerate the procedure and improve performance. However, the algorithm developed, based on 

statistical calculations on the data, is far from perfect. Using spectral as well as additional statistical 

techniques to study the behaviour of the filter, this method could be improved to more adequately 

respond to specific characteristics of the data. The main reason why such study has not been 

implemented, aside from lack of time, is the necessary linkage between this step and all 

consecutive events of the project, which entails that any far-reaching effects on the data need to 

be evaluated at several stages of the software. Therefore, such in-depth study would considerably 

increment the magnitude of the project. 

Kilosort has been the main challenge in the matter of software research and adaptation of priorly 

developed methods. The initial objective to reuse already standardized techniques such as Kilosort 

of Phy, which had been used in research for years, was severely hampered by the characteristics 

of human single neuron recordings. The type of data obtained was extensively different from typical 

mouse or rat recordings, and as such the general methods had to be adapted to them. It has not 

only been a matter of modifying analytical parameters to obtain better results, but of understanding 

the complexities of the software (and its different versions) in order to comprehend how our data 

would respond to certain features. Specially at initial steps, the goal was not to improve the output 

of the sorting, but to obtain any kind of understandable sorting at all. By cause of extensive research 

on any modification being designed for the software in the last several years, as well as direct 
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contact with developers, a strategy that optimizes the resources of Kilosort was formulated in order 

to be able to process human single neuron signals. 

Finally, the last method was the least time expensive, but also the one that required more previous 

research. In this case, it has been easier to adapt already established methods, since the results 

of the spike sorting in Kilosort are homogenised for every type of data. However, Phy is such an 

expansive tool, with so many resources for visualization and manipulation, that a step-by-step guide 

is needed to make sense of the data and be able to analyse different datasets systematically. The 

exposed manual aims to simplify a series of processes explained by researchers and developers 

online, as well as by field specialists, while adjusting the procedure for certain characteristics of our 

type of data. In the end, it is important to note the manually refining the results of a powerful 

software such as Kilosort is not trivial, and many features need to be considered at the same time. 

For this reason, I consider that the best predictor of an optimized application of Phy is experience: 

the ability to discern details or patterns in the data’s characteristics which are difficult to be 

described experimentally, as well as the knowledge of prior examples of the same situation. Hence, 

this manual also intends to provide examples and practical cases in order to offer a larger overview 

of what can be considered good practices in manual refining of spike sorting. 

Limitations and future development 

This project was developed from limited existent software and tackled a scientific demand that is 

just now starting to be put forward. For this reason, some steps along the way are mostly 

experimental and would benefit from in-depth studies of their behaviour to improve performance 

and overall results. An effective applicability of this project that would lead to further development 

remains to be seen, but certainly there is plenty of room for improvement. 

Nevertheless, there is one specific development that would significantly enhance the chances of 

this software being used in future research: the unification of the pipeline in a single software, 

capable of running the whole analysis. A significant portion of the time spend right now in the 

execution of the software is devoted to transferring data from one system to another for each 

specific method. This could be avoided by developing all necessary software in the same 

environment and unifying the code, so as to not have to access intermediate processes’ output. 

Additionally, the simplification of the procedure would make future software developments easier, 

since whole-pipeline performance could be evaluated much faster. Especially parameters present 

in the initial steps, which would be benefited by being able to faster and more accurately predict 

their impact of later results. 

However, taking into account that the different methods arise from completely independent 

environments and have a variety of requirement, such unification is highly improbable unless the 

whole software is developed from scratch. Alternatively, considering that the pre-processing and 

Kilosort are both run on Matlab, at least these two methods could be combined in a single pipeline, 

which would only need to be executed once to obtain directly the spikes sorted from raw data. This 

merging of software was not undertaken in this project due to time limitation and the fact that their 

different system requirements made it impossible to run them simultaneously in the same device. 
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More precise limitations in specific steps of the process can also lead to future development in 

order to increase efficiency. For instance, one of the most troublesome aspects of the data are the 

artifacts, results of noise, disconnections from the device or medical conditions. During the pre-

processing, it has been hypothesized that artifacts could be identified in the data using whole-brain 

imaging techniques (where movement or other alterations could be observed), and then removed 

alongside the notch frequencies in the filter (or using specific Fieldtrip functions). This would lead 

to cleaner data and theoretically to better sensitivity in the spike sorting step, since it would remove 

a lot of noise. However, as mentioned above, many of such artifacts are directly removed during 

the automatic spike sorting and the remaining clusters of noise activity can be relatively easily 

discarded in the manual refining, so that the classification improvements derived from their removal 

are debatable and possibly insignificant. Another way to improve the pre-processing and filtering 

methods would be by testing them with other registrations and even for different types of data, to 

ensure that the established parameters stand or, alternatively, whether they should be defined 

manually before each new dataset. 

Additionally, the pre-processing and filtering method is a high-demanding computational process 

which must be met with specific system requirements. Apart from the CUDA requirement, which 

could be avoided but is highly recommended due to the significantly shortening of waiting times, 

the RAM available memory necessary to execute the script, above 100 GB to be run smoothly, 

cannot be matched by most conventional personal computers. Moreover, even in research 

environments where such systems are at use, this large occupation of memory can be detrimental 

to other processes and represent an inconvenience. Due to time limitation and the readily 

availability of large memory systems in our working environment, an adaptation of the software for 

less favourable systems was deemed unnecessary. However, there are many methods natively 

available in Matlab to optimise memory consumption, as well as external toolboxes, that could be 

implemented to reduce this requirement. Similarly, it is probable that a deep study and 

restructuration of the data organization could lead to more efficient memory usage. 

Regarding the notch filter, necessary for the cleaning of data before being inputted to Kilosort, could 

see significant improvement and future development with better studying its features and inner 

working. The filter parameters proposed in this project are an approach to make the filter more 

intelligent and flexible, mainly from an experimental point of view. Specifically studying the 

behaviours of the filter and its parameters could lead to finer tuning of results and even improve 

the following methods, in particular the automatic Kilosort spike sorting. Furthermore, such study 

would be greatly aided by the unification of the software in a single process, as explained before, 

which would accelerate its various analysis and thus offer more detailed results in shorter times. 

Similar to the filter approach, the main parameter in Kilosort which affects sorting results is the 

detection threshold. In this case, a superficial study was carried out so as to discern which was 

broadly the best combination of values for the extraction of spikes in our data. However, an in-

depth analysis of the impact of this parameter, especially in diverse settings and with different 

inputs, would provide more accurate analytical power and probably better sorting results. Moreover, 

many aspects of the Kilosort and Phy applications are implemented experimentally, after many 

layers of adaptation and trial and error. In such cases, experience and further development could 

only improve their performance and optimize the procedure. 
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Economic study and budget 

Due to the heavy processing needs of some functions, the system used to implement the software 

should have two main characteristics: it must possess a graphics processing unit (GPU), such as 

CUDA NVIDIA, in order to enable high-performance computationally intensive operations (Baig et 

al., 2020), and it must include at least around 50 gigabytes of RAM memory. 

Note that both these characteristics are not truly requirements, as the software could be 

implemented in more simple environments as well, however then the most computationally 

demanding processes would take exceptionally long times to be carried out (for more basic 

systems, it could take weeks to execute a given task in Matlab or Kilosort). Additionally, these 

requirements are needed separately for independent tasks, so they can be split between different 

systems with different computational capabilities. Specifically, data preprocessing and filtering 

requires large RAM memory due to the parallel allocation of significant amounts of data, whilst 

Kilosort is very computationally demanding, so a GPU is needed to greatly reduce execution times. 

In our case, for instance, all Matlab processes where run in a centralized server with over 500 

gigabytes of RAM memory and the rest of the pipeline was developed in a CUDA-enabled portable 

computer. Nvidia offers a wide range of GPUs to choose, each with different capabilities. On this 

project a GeForce model was employed, which have a price range of 439 to 2249€. 

Similar to the hardware requirements, software is also divided among different applications, each 

of which implies a fixed cost in terms of licenses. Of the three main software applications needed, 

only Matlab requires a license, since Kilosort and Phy both are open-source software. Matlab 

licenses can range from 35 to 800€ in annual licenses, and up to 2000€ in perpetual licenses. 

Moreover, during the filtering the DSP System Toolbox is employed, which is linked to Matlab but 

needs to be purchased separately. The DSP System Toolbox has a cost of 500€ (annual) or 1250€ 

(perpetual). 

Apart from the basic costs of hardware and software, the cost of development must be taken into 

account, including coding and evaluation times. It is calculated that the total time spend on the 

writing of the code, analysis, evaluation and implementation for use amounts to roughly 200 hours. 

However, in case the software was meant to be exported for commercial purposes, additional time 

should be invested in documentation preparation and further adaptation of the code to a user-

friendly interface. Considering only the current time expenditure, and an average salary rate of 

around 12€ per hour, the total development cost is equal to 2400€. 

Overall, the entire cost of the project, including hardware, software and developmental costs, would 

range from 3374 to 7899€. Considering only the software and development, it would have an 

average cost of around 4300€. In case a software package was assembled distributed as a product, 

it could include all licenses to the software plus the development cost, or only the additional 

software that is implemented on Matlab. Leaving the Matlab license out, the cost of the product 

could be reduced to 3300€ on average. 
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Confidential aspects 

The entirety of the software employed for the project is open source and public, so its usage did 

not require any type of confidentiality accord, since no exchange of information was needed to 

access the software. Furthermore, we had limited contact with other companies or research groups, 

so no discussion of sensitive information was involved. 

During the development of the project and specially in testing, data from human single neuron 

recordings were employed. The data was provided by health institutions and mainly contained 

clinical information. As such, the topic of medical confidentiality is relevant to this question. 

Privacy and confidentiality are fundamental rights and have to be particularly looked after and 

protected in research settings. Participants in any kind of research must have the right to allow the 

use of their personal data and have control over it for the entirety of the study’s duration. It is 

considered an ethical duty of researchers to protect patient information restricting unlawful access, 

modification, usage, disclosure or loss. The Canadian Institutes for Health Research (CIHR), the 

Natural Sciences and Engineering Research Council of Canada (NSERC), and the Social Sciences 

and Humanities Research Council (SSHRC) have suggested a series of categories defining which 

type of data could be used to identify a research participant and thus deserves more protection 

(Harnett, 2021): 

• “Directly identifying information—the information identifies a specific individual through 

direct identifiers (e.g., name, social insurance number, personal health number). 

• Indirectly identifying information—the information can reasonably be expected to identify 

an individual through a combination of indirect identifiers (e.g., date of birth, place of 

residence or unique personal characteristic). 

• Coded information—direct identifiers are removed from the information and replaced with 

a code. Depending on access to the code, it may be possible to re-identify specific 

participants (e.g., the principal investigator retains a list that links the participants’ code 

names with their actual names, so data can be re-linked if necessary). 

• Anonymized information—the information is irrevocably stripped of direct identifiers, a code 

is not kept to allow future re-linkage, and risk of re-identification of individuals from 

remaining indirect identifiers is low or very low. 

• Anonymous information—the information never had identifiers associated with it (e.g., 

anonymous surveys) and risk of identification of individuals is low or very low” 

According to these categories, the type of data that we use can be classified as Anonymized 

information, due to the fact that at least from the point of view of our connection to the data, it is not 

linked to direct or indirect identifiers that could lead to the individual’s identity. It remains to be seen 

the kind of information about the data that is kept by the providers, to study the actual privacy risk 

in case of tracing back the data (Harnett, 2021). 
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Execution chronogram 

 

 Nov Dec Jan Feb Mar Apr May 

Preprocessing and filtering        

 Software research        

 Data structure analysis        

 Toolbox research        

 Preprocessing methods        

 Multichannel looping        

 Output data structure        

 Filtering        

 Performance improvement        

 User-oriented interface        

Spike sorting        

 Software research        

 Version examination        

 Parameter research        

 Error solving        

 Parameter optimization        

 Spike sorting        

 Troubleshooting        

Manual refining        

 Software research        

 Specialist approach        

 Error solving        

 Pipeline development        

 Data refining        

 Result analysis        
Figure 25. Execution chronogram of the entire project, subdividing the three methods into main tasks including all steps involved in 

the development and testing of the software. 

The main aspect to consider is the fact that due to the lineal behaviour of the whole software, also 

its different methods were developed according to a workflow in which the results of one method 

were necessary to make progress in the next one. Using a sample dataset to write the code around 

it also made this type of lineal development necessary, since only data that had already been 

through the prior method could be applied to the following one. At the same time, however, most 

of the time spent in the project revolved around researching possible software and the behaviour 

of their parameters, as well as error solving and troubleshooting, which limited the progress of the 

workflow due to the need to correct such issues before being able to advance. Such research was 

often undertaken parallel to other processes, so that many steps overlap. 
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Processes that were inherently limited by prior developments and had to wait for results from 

previous methods are marked with a red line. Among this, there can be found the spike sorting and 

the manual refining effectuated on the test data, to evaluate the performance of the methods. These 

steps necessarily relied on data that had already undergone the previous stages of the procedure, 

so until the figuring out of the output data structure and the spikes sorting were effectuated, 

respectively, they could not be started.Regarding the Matlab code, other steps that could not be 

started until the end of previous processes include the pre-processing methods and defining the 

output data structure, since both of them depended on the initial data structure analysis and toolbox 

research. Similarly, filtering could not be started until the pre-processing of the data was 

undertaken. Also pre-processing and filtering, the user-oriented interface could not be developed 

priorly to the multichannel looping, since this is the base code that was modified. Multichannel 

looping and user-oriented interface are directly related, because user-oriented interface also 

includes looping and automatic algorithms to make the process easier. However, the first is meant 

to increase efficiency and speed, while the latter is meant to make the user experience more 

accessible. Finally, in spike sorting the parameter optimization required to have decided on a 

specific software version and an initial parameter research. 

Overall, the later a method was needed for the whole procedure, the later it was begun to be 

developed, and in every case each method started with an in-depth software research of the 

possible options available nowadays and the most suitable approach for the specificities of our data 

analysis, for this reason each research included different mechanism. For instance, the software 

research in Kilosort included consulting developers and well as community discussions on 

experimental results. Additionally, it is worth noting that all the methods have been developed until 

the end, because modifications at later stages revealed new aspects in which prior steps could be 

improved to optimise the results, so a constant activity of adaptation was undertaken. 

SWOT analysis 

The main objective of the project was to develop a research tool that could be implemented in 

human single neuron studies. As such, it was developed in a research environment with specialists 

in the brain imaging and neuroscience fields. In case of this project being used in future research 

or further developed, in this section a SWOT analysis is presented. 

A SWOT analysis is a strategic planning technique for assessing four key values of a project: the 

Strength, Weaknesses, Opportunities and Threats. Strengths and Weaknesses refer to the intrinsic 

characteristics of the project, while Opportunities and Threats represent the position that the project 

occupies in a specific environment and its relationship with other projects. 

• Strengths 

During the development of the software, many different ways to approach the process were tackled, 

denoting a high degree of specialisation to the type of data, since most parallel paths were 

unfeasible or led to poor results. 
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Additionally, considering the focus on parameter study and optimization, a pipeline for quality 

enhancement based on better adjustment of analytic values would be easy to develop. This way, 

the project has a large capacity for growth in future instances. 

• Weaknesses 

Working with external software, instead of an entirely self-developed code, implies that some of the 

features required to consider for the analysis might not be fully compliant with the needs of our 

project or our data. For this reason, communication with and dependability on developers has been 

a key aspect in the understanding and improvement of software capabilities, which has involved 

an additional expenditure of time and resources. Moreover, such expenditure might be further 

needed if future development of the project is ever fostered. 

• Opportunities 

A unification of methods as contemplated priorly, combining all software into the same system, 

would increase efficiency and reduce the significant processing times, making it more competitive 

than any alternative software. Alternatively, only considering the pre-processing and filtering and 

the spike sorting methods being merged in a unified package fully developed in Matlab would 

already prove highly beneficial. Similarly, any post-processing analysis could be paired with Phy to 

simplify all methods developed in a Python environment. 

The main advantage that would arise from such configuration would not only be the reduction in 

preparation time, since the current assembling demands the data to be moved between systems 

after every method, but also remove possible errors emerging from the loss or mismanagement of 

data during the migration process. 

On the other hand, human single neuron being an emerging technology, it could see its range of 

application significantly broadened in the near future. 

• Threats 

As it is not a compact software but a juxtaposition of analytical steps, any external unified package 

that could arise, providing the same methods in an integrated interface, would be remarkably more 

convenient and thus it would obviate the need for the present software. 

This fact is reinforced by the need for independent systems in the execution of different steps and 

the high requirement needs of some methods. 

Additionally, the lack of research on human single neuron signals makes it an uncertain technology 

with limited predictability. Future developments could make this technology obsolete or simply 

unnecessary, as a result of improvement of alternative technology as much as abandonment of 

this research field.  
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