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Abstract 

The main goal of this thesis is to study the circuit for working memory 
maintenance from a mechanistic perspective. To do so, I combine 
behavioral experiments with neuroimaging techniques and neuronal 
recordings under the framework of the bump attractor model for 
visuospatial working memory. The work performed during this thesis is 
encapsulated in two main chapters, one focusing on describing the 
topography of the working memory circuit, and the other focusing on how 
distractors interfere with the working memory content. 

In the Chapter Topography of the working memory circuit, I test the 
Sensory Recruitment Theory by evaluating whether encoding and 
maintenance have the same topographical signatures, as expected if they 
share the same neural circuit. I provide behavioral, modeling, and 
electrophysiological data supporting the idea that prefrontal working 
memory maintenance is separated from encoding processes and 
mediated by attractor dynamics. Furthermore, I will extend the bump 
attractor model to cover the radial dimension and provide a mechanistic 
explanation for the compression of the visual field (foveal bias) with delay. 

In the Chapter Distractor filtering in the working memory circuit, I evaluate 
how distractors interfere spatially and temporally with working memory 
maintenance at the behavioral and fMRI levels. I evaluate the results in 
the framework of the bump attractor model, and I explore different 
control strategies to deal with distracting information. Furthermore, in this 
chapter I re-analyze two electrophysiological datasets (Suzuki & Gottlieb, 
Nat. Neurosc., 2013 and Qi et al., Cell Reports, 2021) to test some 
predictions of the model and to mechanistically explain cholinergic 
improvement of working memory in a distractor-filtering task when 
stimulating the Nucleus Basalis of Meynert.  
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Working memory: first words 

When I asked my mom to give me an example of “memory”, she told me 

an event about her childhood. When I then asked her if she would consider 

as an example of memory when our rabbit “Yuri” always hided in the same 

place when any new guest came home, she doubted and decided to call it 

“instinct”. When I finally asked her if she would consider as an example of 

“memory” the signature she wrote on a playing card for one of my magic 

tricks, she basically ignored me and told me not to bore her with stupid 

questions. This personal experience illustrates to what extent people tend 

to associate memory with a complex and exclusively human cognitive 

ability, while ignoring that a broad definition of memory would refer to the 

capacity for storing information; and animals, plants or even materials can 

do that.  

And what about short-term memories? Afraid of my mom, I decided to ask 

my dad for an example of it, and he mentioned the last time he had to 

remember a telephone number and he kept repeating it in his mind until 

he could write it down… After interviewing my family, I remembered that 

when I started to be interested in Neuroscience, back in high school, 

understanding how we store information for just a few seconds attracted 

me more than understanding how we store information for years… and 

why? First, because, as opposed to brain, non-biological structures do not 

have different mechanisms for storing information at different timescales: 

a stone does not have one mechanism to hold color pigments for millennia 

and another to hold them for just a few seconds. And second, because it 

initially felt redundant: if we already have a mechanism to remember in 

the long-term, why do we need something else? is it just a failure of the 

main mechanism? The biological singularity and the apparent futility of 

this type of memory motivated a journey that started some years later 

with one term: “working memory”. 

Working memory (WM) is defined as the ability to maintain and 

manipulate information in the short-term. Chess is a great example of a 

continuous use of WM. During the 9th game for the world championship 

2021, the defending champion Magnus Carlsen probably thought 

something like this: “if he moves the pawn to c5, then I can trap his bishop 

in b7 by moving my pawn to c6 and take that bishop with my rook three 

moves later”. Magnus was running a kind of visual simulation and needed 
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WM to remember all the simulated moves. As usual, he excelled in using 

his WM, and found the simulated scenario that led him to win the game 

and, few games later, retained the title.  

The term “working memory” was originally coined in 1960 by George 

Miller, Eugene Galanter and Karl Pribram. However, Alan Baddeley is the 

psychologist who defined it in its most common usage in the early 1970s 

(Baddeley & Hitch, 1974). He posited three components of WM: one 

responsible for storing verbal information (phonological loop), one 

responsible for storing visual information (visuospatial sketch pad), and 

one central component coordinating the other two (central executive). 

When Magnus Carlsen is remembering chess positions, he is using the 

visuospatial sketch pad; and when my father is remembering the 

telephone number, he uses the phonological loop. To coordinate them, 

the central executive comes in handy.  

WM has shown to be very correlated with problem-solving abilities and 

intelligence. The amount of information that we can retain in the short 

term is called WM capacity, and several studies have correlated it to 

intelligence quotient (IQ) or general fluid intelligence (gF) (Alloway & 

Alloway, 2010; Gignac & Weiss, 2015; Kyllonen & Christal, 1990; Salthouse, 

2014; Shipstead et al., 2016). However, these correlations are not 

straightforward, and many psychologists differentiate short-term memory 

and WM depending on the necessity to manipulate information 

(Klingberg, 2009). This ongoing debate expose one of the problems of 

defining cognitive processes from the psychological perspective: they 

usually rely on human interpretations and precise definitions instead of 

mechanistic observations of the brain function. In this thesis, I am not 

making a distinction of both terms and I am always referring to WM, as I 

studied it mechanistically through the development of computational 

models.  

Computational models of WM? If explaining WM to my relatives is 

challenging sometimes, explaining that my thesis consisted in developing 

mathematical equations that reproduce how the brain stores memories, 

was epic. Furthermore, there was always the same follow up question: 

“what is it for?” and I must admit that I failed to transmit the relevance of 

the computational work until I watched a F1 race with my brother-in-law. 

When I was 12, I was a big fan of Fernando Alonso, and I spent several 

hours playing a F1 videogame with his official wheel and pedals. I used to 
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play the “championship mode”, which replicated the whole year 

competition, and I used the Friday’s practice sessions to get used to the 

circuit and make changes in the car. When my brother-in-law explained 

that the practice sessions were now much shorter and that some pilots 

just took a few laps, I was shocked. Apparently, drivers prepare the race in 

a simulator, getting used to the circuit and adjusting the parameters of the 

car in this virtual environment (MercedesBenz, 2020). By doing so, they 

avoid deteriorating the tires and do not expose the car to a crush. I 

suddenly realized this was a perfect analogy to computational modeling; 

F1 pilots can do that because they have extremely realistic simulators, and 

every change in the parameters of the car (aerodynamics, suspension, 

breaks, etc..) translates into the real world very accurately. That way, they 

can try more car configurations in less time and chose the ones that work 

better in that circuit. Computational modeling of WM is basically the same: 

instead of modeling a car in a circuit, we model the brain network 

responsible for storing information in the short-term. Although 

neuroscience is still far from making a model of the whole brain where the 

effect of a drug could be tested or the efficacy of a learning protocol 

evaluated, my work here goes in the same direction: describing the 

mechanisms of WM to develop models that contribute to a better 

understanding of the brain. 

 

Working memory limitations 

WM definition is circumscribed by its limitations. First, WM can just 

maintain a limited amount of information and, second, it maintains this 

information for a limited amount of time.  

In the previous section I have already introduced the limitation in the 

amount of information: WM capacity. In his 1956 article “The magical 

number seven, plus or minus two” (G. A. Miller, 1956), George Miller 

hypothesized a fixed capacity for the human ability to receive information, 

and that this limit was around seven items. Posterior experiments using 

WM change-detection tasks (instead of memorizing multiple items, 

detecting changes in their features when seeing them again), found a 

much lower capacity of between 3 and 4 items (Cowan, 2001; Luck & 

Vogel, 1997).  
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Wilken & Ma (2004) observed that precision to remembered items 

decayed with WM load (number of items to remember) and proposed that 

WM consisted of a pool of resources that can be allocated flexibly to 

provide either a small number of high-resolution representations or a 

large number of low-resolution representations (Frick, 1988; Wilken & Ma, 

2004) – the “resource model”-. An alternative hypothesis proposed that 

WM stores a limited set of discrete, fixed-resolution representations -the 

“slot model”. As an analogy, consider “resource model” as three cups 

(items to remember) and a bottle of juice (WM resources), so most of the 

juice could be poured most into a single cup, leaving only a few drops for 

the other two cups. In the “slot model”, WM resources are like a set of 

prepackaged juice boxes, so a cup could never receive just “a few drops” 

(W. Zhang & Luck, 2008). In 2008, two studies simultaneously published 

convincing evidence towards each model (Bays & Husain, 2008; W. Zhang 

& Luck, 2008). While Zhang & Luck (2008) found that the “slot model” 

fitted behavioral data more accurately when cuing one specific stimulus 

(Figure 1A-B), Bays & Husain (2008) commented that the previous 

Figure 1 WM capacity  
A) Schematic view of a load 3 trial (3 stimuli to remember) in the WM task of Zhang & Luck (2008), 

where participants had to remember the color at each location. B) When previously cuing one of the 

stimuli (70% of the time the subject will be asked to report the cued stimulus), no dramatic change in 

the standard deviation (std) is observed between the cued stimulus (item) and the rest (invalid and 

neutral), which is not consistent with the “resource model” but it is with the “slot model”. C) From 

Bays & Husain (2008). Response probability as a function of the size of the change to the stimulus for 

different numbers of items. The curves become flatter with increasing number of items, corresponding 

to changes in the Gaussian distributions of error. 
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experiment needed to control for eye movement, which was critical to 

observe that, indeed, the “resource model” explained better the precision 

for very high loads (Figure 1C). 

The other source of limitation regards to the fidelity of WM with time. The 

interval of time from the last time the WM content is available to the 

senses and the time to make use of it to guide behavior is called delay. The 

first experiments measuring how WM precision decayed with increasing 

delay were done by Friederich Hegelmaier during the XIXth century 

(Laming & Laming, 1992). And from there, many studies have replicated 

Figure 2 ODR task and delay effects 
A) Schematic view of the oculomotor delayed response task (ODR task) in a monkey experiment. The 

monkey must fixate, a stimulus appears in the periphery and the monkey must remember its location 

during the delay time. When the fixation point disappears, the monkey makes a saccade to the 

remembered location to receive reward (juice). B) Precision of the saccades with increasing delay 

length in White et al. (1994). End points of remembered saccades are less accurate and more scattered 

than those of control saccades (visually-guided: no delay, p<0.01). C) Precision of the saccades with 

increasing delay length in Funahashi et al. (1989). 
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similar effects with delay length (Barrouillet et al., 2012; McKeown & 

Mercer, 2012; Pertzov et al., 2013; Vergauwe et al., 2010). In this thesis, I 

will evaluate visuospatial WM (vsWM), and the most classical task to test 

it is the oculomotor delayed-response (ODR) task. In it, subjects must fixate 

on a central stimulus while a target appears in the peripheral space. 

Subjects must memorize the location of the target, and after a varied delay 

period, the fixation cue disappears. The disappearance of the fixation 

point cues the participant to make an eye movement to the location in 

which the target had appeared. The simplicity of this task made it suitable 

for experiments both in humans and animals (Funahashi et al., 1989, 1991, 

1993; Goldman-Rakic et al., 1990; Ploner et al., 1998; White et al., 1994). 

Figure 2A shows a schematic view of the ODR task and Figure 2B-C the 

decrease in precision with increasing delay lengths in White et al. (1994) 

and Funahashi et al. (1989), two experiments made in monkeys.  

WM is related  to attentional processes (De Fockert et al., 2001; Fougnie, 

2008; Konstantinou et al., 2014; Spinks et al., 2004). Spinks et al. (2004) 

showed that only under high WM demands (complicated mathematical 

operations), activation in early sensory areas was impaired, demonstrating 

modulatory top-down effects. On the other hand, bottom-up effects of 

saliency influencing information processing are well described (Itti & Koch, 

2001; Posner, 1980; Wolf & Lappe, 2021). The relation between attention 

mechanisms and WM is clear when introducing distractors in WM tasks. A 

good example of this balance is the “cockatil party effect”. When you are 

standing in the middle of a group of chatting people, you concentrate your 

WM on the person to whom you are talking, and attention filters out all 

Figure 3 Distractor filtering and WM capacity 
Modified figure from Vogel et al. (2005). A) Participants were asked to remember the colors in the top 

left hemisphere. They were tested 1s later with a test array that was either identical (example) or 

different. B) Correlation between the efficiency in filtering out distractors and the WM capacity: 

individuals from the high WM capacity group filtered out distractors more efficiently. 
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the conversations going on around you. However, if someone behind you 

mentions your name, you cannot avoid being distracted. Illustrating the 

tight relation between attention and WM, people differ in how they 

perform in the cocktail party situation depending on their WM capacity: 

those with the lowest WM capacity are the most easily distracted (Conway 

et al., 2001). Figure 3 shows how this results have been replicated in vsWM 

tasks (Vogel et al., 2005), showing that in individuals where WM fails due 

to low WM capacity, distractors take over easily (Kane et al., 2017; 

Klingberg, 2009).  

In this thesis, I will explore how the WM content is affected by capacity, 

delay, and distracting information. To do so, I will simultaneously 

manipulate the spatial and temporal domains with relevant (target) and 

irrelevant (distractor) stimulus. Regarding the spatial domain 

manipulations, I will study how the distance to the fixation point 

(eccentricity) affects WM content. Previous studies showed a compression 

of the visual space along the radial dimension (foveal bias) during steady 

eye fixation (Cai et al., 1997; Honda, 1993, 1995; Kerzel, 2002; Mateeff & 

Gourevich, 1983; Mewhort & Campbell, 1978; Mitrani & Dimitrov, 1982; 

Osaka, 1977; Ross et al., 1997; Townsend, 1973). This effect consists of 

systematic mislocalizations towards the fixation point in estimating the 

position of briefly presented targets. This effect gets magnified with 

eccentricity, so the farther the target is presented from fixation, the higher 

the mislocalization is (Müsseler et al., 1999). Sheth & Shimojo (2001) 

deeply explored this effect and discovered that it was not restricted to 

perception. They observed that mislocalizations towards fixation 

increased with delay length (Sheth & Shimojo, 2001).  

One of the most consistent findings in WM capacity limitations is that high 

featural overlap between memories generates more memory impairment 

than low featural overlap. This has sometimes been defined as “similarity” 

or “congruency” effects (Lorenc et al., 2021), and it is observed, for 

example, when WM for faces is more impaired by other face distractors 

than by scene distractors (Yoon et al., 2006). The spatial distance 

separating visual stimulus is also a domain of similarity, but previous 

studies showed some complexity on it. Manipulating the distance 

between presented items (target-target distance and target-distractor 

distance) showed the remembered locations could be biased towards 

each other (Memory averaging, Figure 4) (Barbosa et al., 2020; Brady & 
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Alvarez, 2011; Elmore et al., 2011; Herwig et al., 2010; Hubbard, 1995, 

1998; Hubbard & Ruppel, 2000; Johnson et al., 2009; MacOveanu et al., 

2007; Stein et al., 2020; Van Der Stigchel et al., 2007) in different spaces 

such as the color-space (Barbosa & Compte, 2020; Teng & Kravitz, 2019) 

or the orientation-space (Chunharas et al., 2019; Lorenc et al., 2018; 

Rademaker et al., 2015, 2019) but also repelled (Bae & Luck, 2017; Fritsche 

et al., 2017; Kerzel, 2002). In a very important study for this thesis, Almeida 

et al. (2015) described both attractive and repulsive biases (Figure 4C) 

between simultaneously presented targets depending on the distance: 

attraction for close-by locations and repulsion for distant ones (Almeida et 

al., 2015).  

Figure 4 Distance effect in memory reports 
A) Modified figure from Herwig et al. (2010). On the left, probability maps of the saccades’ landing 

positions for targets as a function of distractor condition. On the right, the deviation towards the 

distractor is shown, just for distractors located in the same sector (±20° around the target). B) Figure 

from Rademaker et al. (2015), where they showed attraction towards the orientation of a distracting 

grating presented during the delay period. C) Figure from Almeida et al. (2015), showing attraction 

between simultaneously presented target during the delay period when they were located close (<4.2° 

of visual angle) and repulsion when this distance increased.  
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Regarding the temporal domain, in this thesis I manipulate the delay time 

to compare perceptually-related errors at vanishing delays to WM-related 

errors. Furthermore, I vary the time between the stimulus presentations 

to define the dynamics of distractor interference in WM. When the time 

between the target and the distractor was studied parametrically, 

distractors presented short time after the target presentation -short 

target-distractor onset asynchrony (TDOA)- had more distracting effect 

than those with long TDOA (Suzuki & Gottlieb, 2013). Literature regarding 

the temporal manipulation of the distractors is rare (Jolicœur & 

Dell’Acqua, 1998; McNab & Dolan, 2014; Pasternak & Zaksas, 2003; Suzuki 

& Gottlieb, 2013; Van Ede et al., 2018; Vogel et al., 2006), but still 

consistent regarding short TDOAs being more distracting. To my 

knowledge, Murray et al. (2017) is the only one proposing a mechanism 

for this specific effect mediated by frontal and parietal regions that 

explains this effect, although previous studies supporting an attentional 

“gate mechanism” mediated by the basal ganglia could also explain it 

(Frank et al., 2001; McNab & Klingberg, 2008). Combining the temporal 

with the spatial manipulation provides comprehensive constraints for a 

computational understanding of the circuit mechanisms of WM 

maintenance and robustness to distraction.  

 

Working memory in the brain 

Studying the effects of brain lesions on behavior is one of the most 

established and influential methods in neuroscience, and constituted the 

foundation of cognitive neuroscience in the mid to late 20th century 

(Vaidya et al., 2019). A vast number of independent studies, both in 

humans and monkeys, show that lesions in prefrontal cortex (PFC) impair 

WM (Chao & Knight, 1998; Fuster, 1988; Goldman‐Rakic, 1987; Jacobsen, 

1936; Lara & Wallis, 2015; Milner, 1963; Karl H. Pribram et al., 1952; 

Voytek & Knight, 2010; Warren et al., 1957). In 1971, two independent 

groups published the results of monkeys trained to perform a WM task 

while recording the activity of PFC neurons using micro-electrodes 

previously introduced into their brains (Fuster & Alexander, 1971; Kubota 

& Niki, 1971). Both studies found that during the delay period some 

neurons fire constantly at an elevated firing rate (persistent activity, PA), 

providing the first evidence of a neural correlate of WM. The 
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Figure 5 Persistent activity and selectivity to spatial locations  
Figure from Funahashi et al. (1989). A) Neuron recorded in PFC during a vsWM task. Each panels shows 

the neural activity of the same neuron when a stimulus is presented in one of the 8 possible 

configurations (0°-315°). The neuron presented PA during the delay period just when remembering 

the 270° location. In each panel, the first two vertical lines indicate the presentation of the stimulus 

and the las one, the response time. The histograms sum the neural activity in the different trials (raster 

plots on top of each). B) Histogram of the sum neural activity at the preferred location of 46 neurons 

with excitatory directional delay period activity aligned at the cue presentation.  
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interpretations of both groups, however, were slightly different. While 

Fuster & Alexander (1971) identified the pattern of activity as the neural 

correlate of the memory, Kubota & Niki (1971) thought that the activity 

was related to motor plan (future monkey’s movement). Twenty years 

later, the laboratory Patricia S. Goldman-Rakic addressed this controversy 

by changing the motor plan on a trial-by-trial basis with saccades towards 

the remembered location and saccades in the opposite direction and still 

found PA in the same prefrontal neurons (Funahashi et al., 1993). This 

insight was possible because of the advancement that had supposed, a 

few years before, the introduction of the finely controlled ODR task for the 

investigation of the neural bases of WM (Funahashi et al., 1989).  In this 

work, they trained two monkeys to perform an ODR task, with the visual 

stimulus placed at one of 8 possible different spatial locations. This time, 

apart from observing PA, they found selectivity to the memorized 

Figure 6 Reviews of WM-related PA 
A) From Christophel et al. (2017). Summary of all areas showing delay activity depending on the WM 

content. The left plot shows the findings in the monkey brain and, the right one, the findings in the 

human brain. B) From Leavitt et al. (2017). Meta-analysis confronting negative (blue) and positive (red) 

findings of PA in the monkey brain. Results reveal that robust PA is mainly found in downstream areas 

such as parietal and frontal cortex. 

 



18 
 

locations (Figure 5). The finding of tuned PA and the insights from lesions 

study establish PFC as a candidate area for WM maintenance. However, 

WM-related PA has also been observed in many other brain regions 

(Chelazzi et al., 2001; Gnadt & Andersen, 1988; Pesaran et al., 2002; Supèr 

et al., 2001). In 2017, two extensive reviews summarized these findings 

(Christophel et al., 2017; Leavitt et al., 2017). Christophel et al. (2017) 

nicely showed, qualitatively, how different WM content has been 

observed in different brain regions while Leavitt et al. (2017) quantitatively 

reviewed more than 90 studies studying PA associated to WM, observing 

PA is a much more stable correlate of WM in frontal areas compared to 

sensory areas.   

Evidence from functional magnetic resonance imaging (fMRI) and the 

application of decoders to neuroimaging data (Figure 7), questioned the 

direct electrophysiological recordings of PFC, as they reveal that visual 

perception and WM maintenance of a visual object elicit qualitatively 

similar patterns of neural activity in early sensory regions (Albers et al., 

2013; Christophel et al., 2012; Gayet et al., 2017, 2018; S. A. Harrison & 

Tong, 2009; Serences et al., 2009; Serences, 2016). Using refined 

neuroimaging techniques such as the inverted encoding models (IEM), 

which reconstruct WM content from patterns of Blood Oxygenation Level 

Dependent (BOLD) activity, highlighted the importance of sensory areas in 

vsWM (Figure 7B- D), correlating reconstruction strength with behaviour 

(Emrich et al., 2013; Ester et al., 2013; Hallenbeck et al., 2021; Lorenc et 

al., 2018; Rademaker et al., 2019; Sprague et al., 2014, 2016). These results 

motivated a new theory for WM maintenance: the Sensory Recruitment 

Theory (SRT), which states that the same areas responsible for the 

encoding are also responsible for the maintenance in vsWM. However, not 

all fMRI data is consistent with this theory. Bettencourt & Xu (2016) 

showed that although information about the target can be extracted from 

visual areas (V1-V4) during the delay period, it disappear from visual 

cortex when distractors are introduced during the delay, with information 

remaining in the parietal cortex (Bettencourt & Xu, 2016). Some critiques 

regarding the efficiency of the distractors were made (Gayet et al., 2018; 

Scimeca et al., 2018) and other experiments indeed found decoding in 

visual cortex under distraction (Hallenbeck et al., 2021; Lorenc et al., 2018; 

Rademaker et al., 2019), so the role of these regions during WM 

maintenance under distraction is still under debate. In this thesis, I 
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Figure 7 fMRI data in support of the Sensory Recruitment Theory 
A) Figure from Harrison & Tong (2009), showing the time course of mean BOLD signal (n=6) in early 

sensory areas (V1–V4) during a WM task. The shaded area indicates an interval inside the delay period, 

which started at 2s and lasted 11s. B) Figure from Rademaker et al. (2019), showing the time course 

of the reconstruction of an orientation in V1 using an IEM. C) Figure from Sprague et al. (2016), 

showing the reconstruction during the delay period of two simultaneous memories in different 

regions. D) Figure from Hallenbeck et al. (2021) showing a positive correlation between the 

reconstructed error and the actual error in early sensory areas. 
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evaluate the SRT, first by reconstructing target-related and distractor-

related WM content from fMRI signals in different regions and distracting 

conditions and, second, by testing a fundamental point of the theory, 

which is the predicted interference based on the shared neural circuit 

(Fischer & Whitney, 2014; W. J. Harrison & Bays, 2018; Teng & Kravitz, 

2019): as a neural circuit is shared, perceptual responses based on 

immediate reaction upon incoming information should present the same 

topographically-based biases as responses in delayed paradigms that 

require WM.  

 

Computational models of working memory 

Developing computational models of cognitive processes is one of the 

ultimate goals of neuroscience, as they contribute to a mechanistic 

explanation of the human brain. The previously presented literature 

supporting that PA in frontal regions is a neural correlate of WM 

(Funahashi et al., 1989, 1993; Fuster & Alexander, 1971; Goldman-Rakic, 

1995; Kubota & Niki, 1971) supported the postulations of Lorente de Nó 

and Donald Hebb about a central neural mechanism for the maintenance 

of information during the delay period mediated by reverberatory activity 

in synaptic feedback loops (Hebb, 1949; Seung, 2000). This framework 

motivated models to explain WM maintenance through reverberatory 

activity within a local recurrent neural network that displays bistability 

between a resting state -no memory- and a structured activity state -

maintenance- (Amari, 1977; Amit, 1995; Amit & Brunel, 1997; Wilson & 

Cowan, 1973).  

The bump attractor model (Compte et al., 2000) has been very successful 

in replicating both behavioral and electrophysiological data (Almeida et 

al., 2015; Wimmer et al., 2014). Simulations of the bump attractor model 

(Figure 11, Methods-Computational modeling) reveal that activity in the 

network behaves as a continuous attractor. The activity peak, or “bump”, 

formed by the firing rate of the population of neurons organized according 

to neuronal memory selectivity survives the disappearance of the 

stimulus, but the location it represents diffuses slowly in time away from 

that of the original location of the stimulus (Burak & Fieted, 2012; Compte 

et al., 2000). The model has been able to replicate many of the previously 
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presented limitations of WM. When the WM load increases, a localized 

persistent activity bump may either fade out or merge with another 

nearby bump (Z. Wei et al., 2012). Interference effects have also been 

through the connectivity of excitatory and inhibitory neurons (Almeida et 

al., 2015; Nassar et al., 2018), and the loss of precision with delay is 

explained by the diffusion of the bump during the delay period. In this line, 

Wimmer et al. (2014) showed that the reported saccades of monkeys in a 

vsWM task deviate consistently in the direction of the bias decoded from 

neuronal activity recorded from single neurons at the end of the delay 

period. The bump attractor has a very defined topographical 

configuration: “a ring”, where each neuron memory field covers different 

angular locations in the visual field at a constant distance from the fovea. 

Therefore, the previously reported effects have never been studied in 

computational model for different distances from the fovea. In this thesis, 

I will extend the topographical interpretation of the circuit in the angular 

dimension, by exploring angular effects in interference and diffusion at 

different eccentricities; but also in the radial dimension, by developing a 

new radial model where memories drift not in the angular dimension but 

the radial dimension, aiming to mechanistically explain, for the first time, 

the documented compression of the visual field in WM (Sheth & Shimojo, 

2001). 

Alternative mechanistic explanations for memory maintenance have also 

been proposed. Neuroscientists defending the SRT, for example, need 

alternative explanations for memory maintenance, as PA in visual regions 

has been seldomly reported, and when observed it is usually very weak 

(Leavitt et al., 2017; Supèr et al., 2001). Some models of WM rely on 

synaptic processes -activity silent (no PA)- such as changes in presynaptic 

calcium levels, or fast Hebbian synaptic plasticity (Mongillo et al., 2008; 

Sandberg et al., 2003; Sugase-Miyamoto et al., 2008). Experiments using 

retro-cues (a cue during the maintenance period that indicates which of 

multiple items is the relevant one) provided some indirect evidence for 

activity silent mechanisms of WM for memories that are not in the focus 

of attention. Two independent studies (Rose et al., 2016; Wolff et al., 

2017) showed that WM decoding from brain activity is much stronger 

when the remembered stimulus is in the focus of attention than when it is 

not. When a remembered stimulus leaves the focus of attention, decoding 

drops but, critically, it recovers when the stimulus comes back into the 

focus of attention. More powerful analyses suggest that unattended 
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memories are characterized by weaker, not absent decoding  (Barbosa et 

al., 2021; Christophel et al., 2018), which is consistent with analysis of 

spiking activity showing significant PA or decoding for unattended stimuli 

or distractors (Jacob & Nieder, 2014; E. Miller et al., 1996; Panichello & 

Buschman, 2021; Rainer et al., 1998; Spaak et al., 2017; Watanabe & 

Funahashi, 2014). This weakens the value of this data as evidence for 

activity-silent WM, but interaction between PA and synaptic storage 

mechanisms could still be at the basis of the difference in neural activity 

between attended and unattended memories. Indeed, computational 

models of PA have been shown to benefit of other mechanisms of 

maintenance or of the regulatory action of other areas to explain behavior. 

One example of this, is the interference occurring between previous 

responses and the forthcoming stimuli (Underwood, 1957), with similar 

attractive and repulsive effects as the previously presented “similarity 

effects” (Bliss & D’Esposito, 2017; Fischer & Whitney, 2014; Fritsche et al., 

2017; Papadimitriou et al., 2015). To successfully replicate this behavioral 

effect, the bump attractor model needs to incorporate slower cellular or 

synaptic mechanisms, such as cannabinoid-mediated disinhibition (Carter 

& Wang, 2007)  or short-term synaptic plasticity (STP) (Barbosa et al., 

2020; Kilpatrick, 2018; Stein et al., 2020). In this line, previous studies 

explored the combination of STP and PA mechanisms, showing that while 

short-term facilitation (STF) decreased diffusion with delay and biases 

towards distractors, short-term depression (STD) increased them (Hansel 

& Mato, 2013; Itskov et al., 2011; Seeholzer et al., 2019). Another example 

is the frontoparietal circuit model proposed by Murray, Jaramillo et al. 

(2017), where they explain the TDOA effects of distractors (early 

distractors interfering more than late distractors through TDOA) 

through  the mechanisms of interaction with other brain areas (Murray, 

Jaramillo, et al., 2017). In this thesis, I explore and develop new versions 

of the bump attractor model to explain behavior under different scenarios: 

with and without distraction, single and multiple stimuli, different 

eccentricities, varying delay length, interleaved-trial vs block design and 

under electrical stimulation. By doing so, I will show the flexibility of the 

bump attractor model and its biological fitness. Furthermore, I collect 

behavioral, electrophysiological and neuroimaging evidence that suggest 

that frontal areas and not early sensory areas are being responsible for the 

final memory readout through attractor dynamics.     
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2.Goals 
 

The main goal of this thesis is to study the circuit for WM maintenance 

from a mechanistic perspective. To do so, I combine behavioral 

experiments with neuroimaging techniques and neuronal recordings 

under the framework of the bump attractor model. The work performed 

during this thesis is contained in two main chapters, one focusing on 

describing the topography of the WM circuit, and the other focusing on 

how distractors interfere with the WM content mechanistically.  

In the Chapter Topography of the working memory circuit, I test 

assumptions of the Sensory Recruitment Theory (SRT) by focusing on an 

analysis of the topography of WM. My goals are: (1) to determine if 

topographical relationships are maintained through encoding and 

maintenance periods of WM, as expected if they share the same neural 

circuit. This will be done by changing the eccentricity, the angular 

separation between memoranda and the delay length in a parametric way; 

and (2) to extend the bump attractor model to incorporate topographical 

features of WM on the radial dimension. This will be accomplished by 

using computational modeling to reproduce and interpret the behavioral 

results obtained in Goal 1. Thus, this chapter test the SRT, it will provide 

evidence towards memory maintenance mediated by attractor dynamics, 

and it will propose a biologically plausible mechanistic explanation for 

memory effects both in the angular and the radial dimension.  

In the Chapter Distractor filtering in the working memory circuit, my goals 

are: (3) to evaluate the effect of distractors in the similarity and temporal 

domains in behavior and neuroimaging. These results will be interpreted 

in the context of the SRT and previous literature on WM decoding using 

IEMs; (4) to propose mechanisms for distractor filtering in WM using a 

computational network model framework; and (5) to test predictions 

arising from computational models in neural datasets. To this end, I 

analyze different datasets following predictions from the models.  
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3.Methods 
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Paradigms and analysis 

In this thesis, I run two different psychophysics paradigms to test vsWM. 

The first one was designed to study the topography of the circuit and its 

delay-dependence (Chapter 1: Topography of the working memory circuit) 

while the second was designed to study distractor filtering in vsWM 

(Chapter 2: Distractor filtering in the working memory circuit). Data 

acquisition, data processing and data visualization and statistical analysis 

were done using python2 and python3 open-source libraries and custom-

made code. 

 

Paradigm Topography of vsWM 

I developed a vsWM task in which 18 fixating subjects (11 female) had to 
remember the spatial location of a set of stimuli (colored dots) and report, 
after a delay period, the location of one of them (Figure 35, in Results). 
Each trial consisted of fixation, stimulus presentation, delay, and response 
periods.  

 
The stimuli consisted of different colored dots with a radius of 0.4cm. The 
colors were chosen randomly in each trial from a palette of 5 colors: red, 
blue, green, white, and gold.  Stimulus location was specified based on 
polar coordinates (radius, angle) with fixation as origin. The stimuli were 
displayed on a computer screen (38,61cm x 28,96cm), on a grey 
background for 500ms and they could be placed at one of the three 
different radii from fixation (radius1: 7.78cm, radius2: 10.70cm and 
radius3: 13.68cm). Depending on the number of dots to be remembered 
in each trial, I distinguish between two types of trials: multi-item trials (two 
dots presented simultaneously) and single-item trials (one dot presented 
alone). From a total amount of 8186 trials, 3396 were single-item trials and 
4790 were multi-item trials. In both types of trials, subjects just reported 
the location of one of them. The location to report was cued at the end of 
the delay period, when the fixation point changed color to match one of 
the presented stimuli. 
 
In multi-item trials, stimuli could be separated in the angular dimension 
(same radius, different angle: 2403 trials) or in the radial dimension 
(different radius, same angle: 2387 trials, not used for the thesis). When 
stimuli were separated in the angular dimension, I used 2 radii (radius 1: 
7.78cm and radius 3: 13.68cm) and 3 angular distances (12°, 16° and 20°). 
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In half of the trials, subjects had to report the clockwise (cw) stimulus and 
in the other half, the counterclockwise (ccw) stimulus. When stimuli were 
separated in the radial dimension, I used the same angular distance, but 
different radii (radius1, radius2 and radius3). In all types of trials, I had a 
delay 0 condition, where the participants were asked to respond just after 
the presentation period finished, and a delay 3 condition, where just the 
fixation point was visible for 3 seconds before the response time (they did 
not see the stimulus during the response time in either case). Trials were 
randomly interleaved, so participants could not predict either the 
locations of the stimuli nor the delay period duration. 
 
Participants completed the task in 3 different days. To avoid fatigue, 
participants completed 3 sessions of 58 trials per day, with breaks of ~10 
min in between. Each round lasted ~15min. Before the experiment, the 
experimenter explained the task and the subjects could practice in pilot 
trials until they understood it. During the experiment, the participant's 
head was supported using a chinrest situated at ~47cm from the screen. 
They were seated in front of the screen, and they were asked to fixate the 
central black square during the fixation period, stimulus presentation and 
delay period. Participants were asked to break fixation during the 
response period. An eye tracker (pupillabs®, pupil w120 e200) was used to 
control for fixation. If participants broke fixation, the trial was invalidated. 
To avoid a massive loss of trials, invalidated trials were presented again 
later in the same session. If a trial was invalidated twice, it was removed. 
Participants used a pressure-sensitive tablet and a pen to respond. The 
movement of the pen was reproduced in the visual display as a cursor. To 
start a trial, participants had to set the pen in the visual display. A black 
square appeared on the visual display when they did it. They had to drag 
the black square to the fixation point and fixate on it. During stimulus 
presentation and delay period, participants were asked not to move the 
pen as well as not to break fixation. In the response period, the black 
square colored with the color of one of the presented stimuli. Participants 
reported the position of the asked stimulus by dragging the colored square 
to the remembered position and, once there, releasing the pen from the 
tablet. To limit possible pattern encoding strategies, I presented stimuli in 
the 60° around the diagonal of each quadrat, so that the geometrical 
symmetries or cardinal directions were avoided (Zelinski, 2016). 
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Paradigm Distractor filtering 

I developed a vsWM task in which 27 fixating subjects (19 female) had to 
remember the spatial location of a set of 3 stimuli (targets) and ignore 
another set of 3 stimuli (distractors) presented separately. Distractors 
could be presented prospectively (order 1) or retrospectively (order 2) to 
the targets and the time between the targets and the distractors -target-
distractor onset asynchrony (TDOA)- was also manipulated. The task had 
a short-TDOA condition of 200ms and a long-TDOA condition of 7000ms 
(Figure 43, in Results). Order and TDOA manipulations were combined and 
randomly interleaved, giving four different temporal conditions: order 1 – 
short TDOA, order 1 – long TDOA, order 2 – short TDOA and order 2 – long 
TDOA. 
 
The task consisted in a sequence of trials, each one starting when the 
subjects moved the mouse on top of the fixation point. The fixation point 
was placed in the middle of the screen (diagonal=23.7cm, 1920x1080px), 
on a grey background. It consisted in an empty black square subdivided in 
four (side length of each sub-square = 0.3cm). Subjects were instructed 
that each sub-square represented the corresponding quadrant (top-right: 
first quadrant (0°-90°), top-left: second quadrant (90°-180°), bottom-left: 
third quadrant (180°-270°), bottom-right: fourth quadrant (270°-360°)). 
Once the subject fixated, a digit (order cue) indicating the set of stimuli to 
be remembered appeared. A 1 indicated subjects to remember the 
location of the first set of 3 stimuli (targets) and ignore the second set 
(distractors) while a 2 indicated subjects to ignore the first set of stimuli 
(distractors) and remember the location of the second set (targets). The 
order cue was presented for 500ms. If subjects missed or forgot the cue 
during the task, they were instructed not to move the cursor during the 
response period. Out of 6874 trials, this occurred in 112 trials (1.63%), 
which were excluded from the analysis. 
 
All the stimuli (targets and distractors) consisted of black dots with a radius 
of 0.5cm. The stimuli were displayed on a computer screen on a grey 
background for 350ms. All the stimuli were presented on top of a black 
circle (r=8cm). All three targets were presented in different quadrants and 
they were never presented close to the cardinal axes (20°) to prevent from 
any perceptual confusion of the quadrant presentation and to avoid 
strategies based on references (Zelinski, 2016). Distractors were also 
presented in three different quadrants with equal restrictions to cardinal 
axes. The distance between targets and distractor were manipulated the 
following way: one distractor was in the same quadrant of one target, 
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separated by 10°-20°. Another distractor was in the same quadrant of 
another target, separated 20°-30°. The remaining distractor was in the 
quadrant without target. That way, two quadrants had both a target and 
a distractor and the remaining two quadrants had one target and one 
distractor alone, respectively. Besides controlling for the distance, I also 
controlled for the cw and ccw disposition of the distractors. For each 
target-distractor distance, the distractor was placed cw to the target in 
half of the trials and ccw in the other half. In each trial, the cw and ccw 
disposition of the distractors were randomly assigned (not all three 
distractors were cw or ccw).  
 
The maintenance period of the vsWM task was 12s in all the conditions. In 
order 1 conditions, distractors were presented during the 12s of the delay 
while in the order 2 conditions, distractors were presented before the 12s 
of delay start. At the end of the delay period, one of the squares of the 
fixation point turned yellow, instructing the subject to report the location 
of the target located in that quadrant. Simultaneously, a yellow bar 
appeared on top of one of the closest cardinal axes (vertical or horizontal, 
randomly chosen in each trial). By using the scroll of the mouse, 
participants had to adjust the position of the bar and make a left click to 
confirm. Participants had a maximum time of 10s to respond.  
 
21 participants (16 female) completed the task in the laboratory facility for 
psychophysical experiments and 6 participants (3 female) completed the 
task inside the scanner. Although the task was the same, the target 
separated 20°-30° to a distractor was never the one cued for response in 
the scanner setting. Participants doing the task in the laboratory facility 
made a total of 7 runs of 10-15min each, divided in two different days to 
avoid fatigue. Between runs, participants could make a break of 5-10min. 
Before the experiment, the experimenter explained the task and the 
subjects could practice in pilot trials until they comprehended it. During 
the experiment, the participant's head was supported using a chinrest 
situated at ~60cm from the screen. Participants were asked not to break 
fixation during the trial period. If they needed to rest between trials, they 
could move the cursor out of the fixation point and break fixation. 
Whenever they wanted to continue with the task, they were instructed to 
fixate their eyes in the fixation point and moved the cursor to it. 
Participants doing the task in the scanner made 3-4 runs of the task in each 
scanning session. In this setting, participants viewed a screen (30x48cm, 
960x600px) through a mirror installed in the head coil. Stimulus sizes, 
fixation squares and radius were rescaled to compensate for the increased 
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distance subject-screen (laboratory facility: 60cm, scanner facility: 108cm 
approx.). In the laboratory facility, 21 participants completed a total of 
4813 trials. 50 of them were excluded for wrong responses (no movement 
or wrong quadrant, 1.04%). Besides removing the wrong trials, outliers in 
each subject were removed using the interquartile range (IQR) method:  
Q1 – 1.5·IQR and Q3 + 1.5·IQR. 288 extra trials were removed (6.05%), 
leaving a total of 4475 trials. In the scanner facility, 6 participants 
completed a total of 2061 trials. 62 of them were excluded for wrong 
responses (3.01% -some subjects reported feeling sleepy due to the lying 
position inside the scanner) and 112 were outliers (5.6%). In total, the 
combined dataset consisted of 6362 trails in 27 subjects (70.33% obtained 
in the laboratory facility and 29.66% obtained in the scanner).  
 
Measure of interference 

In this thesis, I analyze behavioral vsWM in ring disposition. Previous 

studies showed that in this type of tasks, responses are systematically 

biased depending on the position of the visual space on which they appear 

(Girshick et al., 2011; Huttenlocher et al., 1991, 2004; Jastrow, 1892; 

Lipinski et al., 2010; Merchant et al., 2004; Pratte et al., 2017; Shin et al., 

Figure 8 Axis effects on reports 
A) Figure modified from Lipinsky et al. (2010). They observed reports biased away from the vertical axis 

(positive errors) when the targets were near this axis (±22° from vertical), and toward the vertical axis 

(negative errors) when the targets were near the horizontal axis (±67° from vertical). All quadrants showed 

a similar patter but, for clarity, just one is presented. B) Behavioral data of single-item trials of the paradigm 

Topography of the WM circuit showed a similar, with a general repulsion from the vertical axis (negative 

error) in the no-delay condition (grey) and an attractive effect towards the diagonal in the memory 

conditions (green line) that builds on top of the no-memory error. A mixed linear model revealed a 

significant interaction of axis effects with delay (linear mixed model, n= 3396 trials N= 18 subjects, 

dependent variable: attraction to vertical, intercept (β=-0.743, z=-2.790, ci=[-1.265, -0.221], p=0.005), 

diagonal distance (β=0.0, z=0.014, ci=[-0.027, 0.028] ,p=0.988), delay (β=-0.020, z=-0.346, ci=[-0.132, 0.092], 

p=0.730), interaction delay*distance diagonal (β=0.015, z=2.230, ci=[0.002, 0.028], p=0.026) 
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2017; Spencer & Hund, 2002; X. X. Wei & Stocker, 2015). Figure 8 shows 

an example of this effect in Lipinsky et al., (2010) and in one of my 

datasets. Although there is no consensus regarding the origin of these 

biases, plausible explanations have been proposed from the Bayesian 

framework (Girshick et al., 2011; X. X. Wei & Stocker, 2015), which state 

that previous information regarding the spatial disposition of presented 

stimuli generate a prior of more probable dispositions that could bias 

future perceptions and response. Taking into account that the stimuli of 

the vsWM tasks used are not completely uniformly distributed in the space 

(I avoided the cardinal axes to avoid any strategy based on using external 

references (Zelinski, 2016), like the screen frame), it was essential to use a 

measure of error that corrects for any possible systematic bias.  

Figure 9 illustrates the importance of removing axis effects to correctly 

interpret interference effects. It shows that measuring interference as a 

signed error (target-response signed positive if the error goes towards the 

other item or signed negative if the error goes in the other direction) lead 

to misinterpretation of the data.  

 

Figure 9 Error-misinterpretation due to cardinal axes effects 
Measuring interference as a signed target–response measure leads to interpretation 

errors (left column) if axis effects are not removed (right). The red dot represents the 

target location; the yellow one represents the stimulus that interferes with it; and the 

blue crosses represent the responses. The first row shows an example of 

misinterpreting attractive effects as repulsion and the second row a misinterpretation 

of attractive effects as swap errors. 
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Previous works removed these biases by fitting non-linear functions and 

analyzing the residuals (Barbosa et al., 2020; Stein et al., 2020) or by some 

parameter of the fit as a measure of precision (Pratte et al., 2017). In this 

thesis, I developed a measure of interference based on the angular 

distance to the mean distributions of the errors when the reference item 

(the one to interfere with) is located cw or ccw to the target. Figure 10 

illustrates this measure. Figure 10A shows the distribution of errors in the 

dataset of Topography of the working memory circuit when the non-target 

(NT) item is located cw or ccw. A difference between those distributions 

indicate interference, because the lack of interference would lead to 

completely overlapping distributions. Figure 10B shows the measure, 

which consists in aligning all the trials and then computing the angle error 

of each cw trial to the mean of the ccw distribution and dividing it by 2, 

and vice versa (Equation 1 and Equation 2).  

 

 

 

 

 

Figure 10C-D showed examples of surrogate data where the same 

interference attractive error of 5° was incorporated into a dataset with no 

effect of the axis (A) and to a dataset with a 10° repulsion from the vertical 

axis. In each plot, the interference error and the interference corrected by 

this method is shown. While standard measures of interference fail to 

calculate the real effect in data with systematic biases, the method that 

relies on the distance between the cw and ccw distributions successfully 

captured the real error in both scenarios.  

Equation 1 

Equation 2 
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Figure 10 Measure of interference correcte. 
A) Distribution of errors in the dataset with two simultaneous items in the dataset Topography of the 

working memory circuit. Significant difference between cw and ccw distribution is observed (t=18.13, 

p<0.001), indicating the presence of interference. B) Measure of corrected interference. Error in each 

cw trial is calculated by subtracting the mean of the ccw trials distribution and vice versa. C) Surrogated 

data with an interference error of 5°. Both the standard method of interference and the corrected 

method correctly estimated the real interference error when no systematic bias is imposed. D) 

Surrogated data with an interference error of 5°. Just the corrected method correctly estimated the 

real interference error when a systematic bias is imposed.  
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Computational modeling 

Models of WM have been developed on different levels of abstraction 

(Durstewitz et al., 2000): purely psychological models, as the classical 

Baddeley-Hitch model (Baddeley, 2010; Baddeley & Hitch, 1974); highly 

abstract connectionist models, which neglect the temporal and spatial 

dynamics of neurons and synapses (Minami & Inui, 2001); firing rate 

models incorporating some biophysically meaningful time constants 

(Masse et al., 2019); and biophysically detailed models of spiking neurons 

(X.-J. Wang et al., 2004). In this work, I developed and extended a firing 

rate model formulation of the bump attractor model of Compte et al. 

(2000) to explain precision, interference, and distractor effects in vsWM.  

The bump attractor model consists of a network of excitatory and 

inhibitory neurons (Wilson & Cowan, 1973) with spatial selectivity. 

Neurons selective for the to-be-remembered location present elevated 

activity during the delay period, forming a bump that diffuses during the 

delay period and it is maintained through reverberatory activity (Figure 

11). Neurons with similar selectivity are strongly co-excited, while far away 

neurons are not. Since neurons with similar selectivity are modeled as 

close by neurons, a ring structure emerges (Figure 12A). This structure 

allows sufficient strong focal excitation to be kept in the form of a bump, 

even when the stimulus disappears. 

 

Figure 11 The bump attractor model 
Example of a simulation of a vsWM trial with 

the bump attractor model. Activity of the 

neural network, in which the color represents 

the level of activity (blue: low activity; yellow: 

high activity). The bump of activity represents 

the evolution of the remembered location 

during the delay period. When the stimulus is 

presented (180°), neurons selective to this 

spatial location start to fire. When the 

stimulus is no longer present, activity is 

maintained thanks to reverberatory activity 

during the delay period. Due to noise 

fluctuations, the bump diffuses such that the 

final location of the bump is 10° away from the 

initial position of the stimulus. 
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In Chapter 1: Topography of the working memory circuit, I propose a 

plausible explanation for the topographical expansion of the model, both 

in the angular and the radial dimensions. In Chapter 2: Distractor filtering 

in the working memory circuit, I propose different control mechanisms to 

deal with distracting information in this model. One of them incorporates 

short-term synaptic plasticity to the model (Barbosa et al., 2020; Kilpatrick, 

2018) and the other models the effects in distractor filtering of 

external  cholinergic activation. 

 

Network model in the angular dimension 

I simulated a bump attractor network model in a firing-rate neuron 

formulation (Edin et al., 2009; Wimmer et al., 2014). The model consists 

of a population of excitatory neurons (NE=512) connected to a population 

of inhibitory neurons (NI=512). Neurons of both populations present 

selectivity for specific angles (θi for i=1..N), and neurons with similar 

selectivity are more strongly connected than those coding for distant 

locations. Since neurons with similar selectivity are located adjacent in the 

network, a ring structure emerges (Figure 12A). This connectivity follows 

a von Mises distribution (Equation 3, I0 is a modified Bessel function of 

order 0), both for the excitatory and inhibitory populations. WEX refers to 

the connectivity where the presynaptic unit is excitatory while in WIX, the 

presynaptic unit is inhibitory. The combination of the connectivity profile 

Figure 12 Connectivity of the bump attractor model 
A) Ring structure of the model. Neurons with similar selectivity are strongly connected. The 

combination of the connectivity profile of the excitatory and the inhibitory population generate an 

overall Mexican hat connectivity, with inhibitory tails. B) The presence of inhibitory tails causes 

attractive or repulsive interference depending on the similarity distance. For close distances, attraction 

is expected. For far distances, repulsion is expected. In further distances, no interference is expected. 
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of excitatory and inhibitory connections generates an overall Mexican hat 

connectivity between excitatory neurons, with effectively inhibitory tails 

(Figure 12A). The attractor network allowed multiple memories to 

interfere during the delay period. The ring structure generates attractive 

effects for close-by memories and repulsive effects for distant ones (Figure 

12B), as described in Almeida et al. (2015). 

 

 

 

I modeled two different eccentricities: radius 1 and radius 3. To model a 

loss of tuning with increasing eccentricity as the data revealed, I set a 

larger κ (1/κ is an analogous of variance in the normal distribution) for 

radius 1 (κE=300 and κI=30) compared to radius 3 (κE=225 and 

κI=15). Dynamical equations of the model describe how the rates of both 

populations decay in the absence of external current with a time constant 

τ (tE=9, tI=4). A white Gaussian noise (ξ) input to both populations, makes 

the bump diffuse randomly during the delay period (σE=0.5, σI=1.6) 

(Equation 4). The model transforms currents (In, n=excitatory or inhibitory) 

into rates (r) through a neural transfer function f(I)=0 for I≤0, f(I)=I2 for 

0<I<1, and f(I)=√(4I-3) for I≥1. 

 

The network couplings between excitatory and inhibitory neurons in the 

model (Equation 5 and Equation 6) are modulated by conductance 

parameters (GEE=0.025, GIE=0.01, GEI=0.025, GII=0.1). During stimulus 

presentation, an external current (I0
n) is applied for 350ms to excitatory 

and inhibitory neurons with intensity peaking at the angular location of 

the stimulus according to a von Mises distribution (Equation 3), with 

κstim=150. If multiple stimuli are presented, external currents for each 

stimulus are summed. 

 

Equation 5 

Equation 6 

Equation 3 

Equation 4 
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The final readout -behavioral response (θ)- of the simulation was 

computed by extracting the population vector (Equation 7) of the activity 

of the excitatory population at the end of the delay, where rj is the firing 

rate of the neuron j, and θj is its preferred selectivity, i is the imaginary unit 

(√-1) and arg the argument function in complex analysis.  In the multi-item 

trials, more than one bump survived at the end of the delay. In this 

condition, I fitted a mixture of two von Mises functions and extracted the 

peak of each of the fits as independent readouts. Simulations where the 

bump died before the end of the delay or more bumps than stimuli 

appeared were discarded (7%). The measure of error was computed by 

subtracting the readout of the simulation from the initial position of the 

target. In the multi-item conditions, I measure interference towards the 

NT, which considers if the error with respect to the target was in the 

direction of the NT (positive: attraction) or not (negative: repulsion). As 

this network does not have cardinal axes effects, the measure of 

interference did not require correction. 

 

 

 

 

Network model in the radial dimension 

This firing-rate formulation of the bump attractor model consisted of 

interconnected excitatory and inhibitory neurons (NE=512, NI=512) which 

presented selectivity for specific eccentricities (λi = iR/N for i=1..N with R 

as maximal radius) for a fixed angular coordinate. As a result, this was not 

a ring model. Neurons with similar selectivity were more strongly 

connected than those coding for distant locations. The connectivity 

strengths Wij (Equation 8, where i and j are different neurons and x and y 

are excitatory and inhibitory neurons) followed a Gaussian distribution 

that changed with eccentricity as a function of Sx(λ) (Equation 9).  

Equation 7 

Equation 8 
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This change followed an exponential function with different parameters 

for the excitatory and inhibitory profiles (aE= 0.0033, bE=1.7, cE=0.05 and 

aI=0.016, bI=1.6, cI=0.2). 

 

Stimulus presentation is modeled as an external current applied for 250ms 

to the excitatory population, with intensity peaking at the location of the 

stimulus according to a Gaussian distribution (Equation 8). Once this 

external input is no longer present, reverberatory activity maintains the 

information in the form of self-maintained selective elevated activity (a 

bump). The general equations that define how the rates evolve with time 

in both the excitatory and inhibitory populations are the same as for the 

angular model: Equation 4,Equation 5, Equation 6, with changes in the 

values of the parameters.  

Time constants: τE=9, τI=4 
White Gaussian noise: 𝜎E=0.8, 𝜎I=1.7 
Conductances: GEE=0.022, GIE=0.01, GEI=0.019, GII=0.1 
 
The memory readout of each simulation (L) was decoded from the firing 

rates of excitatory neurons at the end of the delay period using a 

population decoder for the radial dimension (Equation 10). To measure 

the attraction to fixation, I subtracted the final readout of the simulation 

to the initial position of the stimulus presentation.  

 

 

 

  

Equation 9 

Equation 10 
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Network model for distractor filtering 

I implemented the bump attractor network model with short-term 

synaptic plasticity (STP) (Mongillo et al., 2008; Tsodyks et al., 1998), in line 

with the models of Kilpatrick (2018) or Barbosa et al. (2020). Figure 13 

illustrates the dynamics of the STP mechanisms implemented. STP is 

modeled with two variables: x and u (Mongillo et al., 2008). The x variable 

denotes the fraction of resources that remain available after 

neurotransmitter depletion while the parameter u variable represents the 

fraction of available resources ready for use (release probability). 

Upon a spike, some resources are used to produce the postsynaptic 

current, thus reducing x. This process mimics neurotransmitter depletion. 

The spike also increases u, mimicking calcium influx into the presynaptic 

terminal and its effects on release probability. When there is a spike, the 

amount of accumulated calcium increases by U(1-u) while the amount of 

available resources x is reduced by xu. In the rate version of the model, 

these dynamics are expressed as in Equation 11 and Equation 12. Between 

spikes, x and u recover to their baseline levels (x =1 and u = U) with time 

constants τX and τU, respectively. When τX > τU, the synapses mostly show 

short-term synaptic depression (STD) and when τU > τX, the dominant 

effect is short-term synaptic facilitation (STF).  

 

 

Figure 13 Example of postsynaptic 
response. 
Figure form Mongillo et al. (2008). Example of 

the postsynaptic response to a train of 

presynaptic action potentials in the case of a 

facilitating connection. During the train, u -

fraction of resources that remain available 

after neurotransmitter depletion (facilitation)- 

increases and x -fraction of available resources 

ready for use (depression)- decreases.  

Equation 11 

Equation 12 
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STP mechanisms with the parameters τU=7000 τX=80 and U=0.4 are 

incorporated into the equations that describe the current of excitatory 

neurons (Equation 13), so synaptic efficacy is modulated by the product of 

x and u. STP mechanisms are not incorporated into the equations that 

describe the current of excitatory neurons  (Equation 6). The time constant 

parameters of the STP induce an initial STD followed by STF.  

The current of each population is modulated by conductance parameters 

(GEE=0.016, GIE=0.012, GEI=0.015, GII=0.007), time constants (τE=60, τI=10), 

uncorrelated Gaussian white noise (𝜎E=0.06, 𝜎I=0.04) and κ values (κE=100, 

κI=1.5, κstim=20) for the connectivity (Equation 3).   

 

With these parameters, the network maintains reverberatory bump 

attractors following a transient tuned input to the network. The elevated 

firing during stimulus presentation induced a large drop in x (STD) that 

takes a certain time to recover. Then, as τu>τx, STF prevails, and the 

synaptic efficacy is increased gradually until it reaches a stable firing. The 

combination of synaptic depression and facilitation at the onset of 

persistent activity in this network model induces a dip in the firing rate of 

memory selective neurons in the early delay period (Figure 14).  

Equation 13 

Figure 14 Example 
of rate dynamic. 
The combination of 

rate dynamics and the 

temporal parameters 

used for STP induces a 

dip in the firing rate in 

the early delay period 

that slowly recovers 

until it reaches a stable 

state.  
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In this model, I also incorporated a control mechanism to differentiate 

relevant from irrelevant information (target-distractor). In these attractor 

networks, small increases in nonspecific external currents can make the 

network transition from nonstable regimes, in which uniform baseline 

activity is robust to transient stimulation, and bistable regimes, in which 

transient inputs destabilize baseline activity and trigger bump solutions. 

This gives a dynamical mechanism to control whether the network stores 

or not inputs through changes in external currents (I0
E). I externally 

modulated I0
E to switch between stable resting and spatially structured 

states (I0
E= 0.5 and sI0

E = 1.2, respectively) depending on whether the 

presented stimulus was the target or the distractor (Equation 14). The 

network always started in resting state, and it switched to the spatially 

structured state whenever a target was presented.  

 

 

Network model of NB stimulation (rate model) 

I developed a bump attractor network model in a firing-rate formulation 

as in the Model of the angular dimension. I did not model different 

eccentricities, and the connectivity followed Equation 3 with κE=45 and 

κi=0.3 for excitatory and inhibitory connections respectively. Visual stimuli 

were modeled as an external current applied for 100ms to excitatory 

neurons during stimulus presentation, with intensity peaking at the 

location of the stimulus according to a Von misses distribution with 

κstim=40. In addition, I simulated an “expectation signal” concomitant with 

the stimulus presentation as an additional non-specific input to the 

excitatory network with strength (as in Equation 14). This represented an 

internal signal that predicted the regularly timed stimulation presentation 

events in the task, and it was relevant to simulate the emergence of 

phantom bumps when the stimulus was not presented (Figure 70).  

The general equations that define how the rates evolve with time in both 

the excitatory and inhibitory populations are the same as for the angular 

model (Equation 4, Equation 5 and Equation 6) with changes in the values 

of the parameters.  

Equation 14 
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Time constants: τE=20, τI=10  
White Gaussian noise: 𝜎E=9.2, 𝜎I=6.6 
 
I modeled the remember-first or remember-second conditions of the 

experiment with slightly different connectivity parameters and input 

(Compte et al., 2000) to reflect top-down influences in the specific blocks 

of these conditions. Specifically, I modulated GEE (1st=0.068, 2nd= 0.064), 

GII (1st=0.13, 2nd=0.01196), GEI (1st=0.13, 2nd=0.1482), and GIE 

(1st=0.042, 2nd= 0.045), and I0
E (1st=-3.5, 2nd=-2).  

To model the Nucleus Basalis stimulation (ON condition), I assumed that 

release of acetylcholine (Ach) in PFC would result in blockade of 

hyperpolarizing intrinsic currents in excitatory neurons, so I increased the 

excitability of this population through an increase of I0
E (ΔI0

E, 1st=3.55, 

2nd=2.05). For all conditions I0
I was set to 0.5. 

 

Network model of NB stimulation (spiking model) 

I simulated a bump attractor network model using the spiking network 

model of Hansel & Mato (2013), implemented in Brian1. The network 

consists of 20,000 integrate and fire neurons (16,000 excitatory) sparsely 

connected but maintaining the network architecture of the ring model by 

means of a translationally invariant Gaussian probability of connection 

that depends on their distance on the ring (Hansel & Mato, 2013). 

Excitatory synapses onto excitatory neurons displayed short-term synaptic 

plasticity, with effective facilitation dynamics as described above. A 

detailed explanation of both the single neuron dynamics and the 

connectivity of the network can be found in Hansel & Mato (2013). I 

slightly modified the parameters of the synaptic interactions and the 

external current to reproduce the regime of the experiment with a single 

bump.  

Modified parameters of the synaptic interactions from the original in 

Hansel & Mato (2013): 

GEE (AMPA) = 490 mV/ms 

GEE (NMDA) = 490.64 mV/ms 

U=0.04 
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Modified parameters of the external current from the original in Hansel & 

Mato (2013): 

stimE (stimulus input) = 0.24 mV.  

II
b (baseline external current inhibitory) = 1.54 mV 

The total time of the simulations was 7 seconds, with a single stimulus 

onset at second 2. The stimulus presentation duration was 1 second. For 

the computation of the bump diffusion as well as for quantifying the 

tuning curves, the individual stimulus could be presented in 25 different 

positions covering the space 0°-360° (separation of 14.4°). I modeled NB 

stimulation as a general increase in the excitability of prefrontal neurons 

by slightly increasing the external input to excitatory units in the network. 

In the OFF condition, IE
b (baseline external current excitatory) was set to 

0.0 while in ON trials it was set to 0.5mV.  
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Magnetic resonance imaging (MRI) 

Data acquisition 

I scanned 6 participants for multiple sessions (8h approx.). Two of the 

participants were scanned more times to pilot the different tasks (11 and 

17 sessions respectively). The remaining 4 participants were scanned for 

at least 4 sessions, each of them lasting 1.5 – 2h. In those sessions, 5 

different types of tasks were used: polar retinotopy, eccentricity 

retinotopy, encoding task, working memory localizer, and working memory 

task. The first four tasks were presented in runs of 5min and the working 

memory task was presented in runs of 10min. After each task, participants 

rested 1-5min.  

The eccentricity retinotopy and the polar retinotopy were used to define 

the visual ROI (region of interest). The first one (Figure 15A) consisted in a 

5min task with cycles of 30s where a flickering ring (flickering rate=4Hz, 

max. radius=20cm) expanded from the fixation point to the periphery 

(eccentricity retinotopy out) or contracted towards fixation (eccentricity 

retinotopy in). The polar retinotopy task (Figure 15B), consisted in a 5min 

task where a wedge of 45 degrees (flickering rate=4Hz, radius=20cm) 

continuously rotated cw or ccw (polar retinotopy cw and polar retinotopy 

ccw). A complete rotation (cycle) took 30s. For both tasks, participants had 

to maintain fixation and indicate with a click when the fixation point 

changed color, which happened four times per cycle. 

The encoding task was initially used for training the IEM (Sprague et al., 

2014) but it was later discarded as the IEM was trained in the working 

memory task. The encoding task (Figure 15C) consisted in a 5 min task 

where participants had to remember the spatial location of a black dot 

(radius=1cm, presentation period=500ms) located at a radius of 16cm 

during a delay period of 3s. During the delay period, a flickering circular 

checkerboard (flickering rate=4Hz, radius=5.4cm was displayed on top of 

it (not completely centered). At the end of the delay period, subjects had 

to report whether another black dot was at the same position or if instead 

it was slightly displaced.  

The working memory localizer task (Figure 15D) consisted in a 5 min task 

where participants were initially presented for 13s with a flickering band 

(6Hz, internal radius=14cm, external radius=18cm) of 90 degrees covering 
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a whole quadrant. After the 13s and with the band still flickering, two 

consecutive WM trials were displayed. In these trials, participants had to 

remember the spatial position of a black (radius=1cm, presentation 

period=500ms) dot appearing in the quadrant for 3 seconds (appeared at 

16cm from fixation). After the delay period, participants had to report 

whether a green dot (same dimensions) was located upper or lower 

Figure 15 Spatial mapping and localizer tasks. 
A) Eccentricity  retinotopy task. Cycles of 30s of a flickering ring expanding from fixation (out, showed 

here) or contracting from periphery (in) This task was used to identify visual regions. B) Polar 

retinotopy task. Rotating wedge flickering at 4Hz (cw rotation in the figure). A whole rotation of 360° 

was accomplished in 30s. This task was also used to identify visual regions C) Encoding task. This task 

was initially used to train the inverted encoding model (IEM) as in Sprague et al., (2014). This task was 

later discarded as the IEM was trained in the actual WM task. Participants had to remember the 

location of a black dot, and, during the delay period, a flickering circle (4Hz) was presented on top. At 

the end of the delay period (3s), participants had to judge whether a black dot was at the same position 

or not. D) Working memory localizer task. A flickering band (6Hz) of 90 degrees covered a whole 

quadrant alone for 13s. Then, on top of it, two consecutive WM trials were displayed were participants 

had to remember the spatial position of a black dot appearing in the quadrant for 3 seconds and report 

whether a following green dot was located upper or lower respect the black dot (two lower trials 

displayed). This task was used to define the parietal and frontal regions. 
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respect the black dot (two lower trials displayed. Flickering is constant 

during the whole trial). This task was used to define the parietal and frontal 

regions. The working memory task is described in the Results section of 

WM and distractor filtering (Figure 43). 

All six participants were scanned on a 3 T General Electrics MRI system 

equipped with a using a 32-channel receiver only head coil at the MR 

Centrum of the Karolinska Institutet, Stockholm. A head holder was used 

to prevent head movements, and earplugs were used to attenuate the 

scanner noise. As participants had to provide reports, they were taught to 

use a scanner-compatible mouse. Anatomical high-resolution three-

dimensional T1-weighted scans were acquired for each participant 

(TR=6.4ms, TE=2.8ms, 256 slices, flip angle=90°, voxel size =1 x 1 x 1mm). 

 

Functional magnetic resonance imaging (fMRI) data was acquired using a 

gradient echo planar imaging (EPI) pulse imaging pulse sequence. For the 

retinotopy tasks (eccentricity retinotopy and the polar retinotopy) I used 

the following scanning parameters: TR=1600ms, TE=30ms, 30 slices, flip 

angle=130°, voxel size =2 x 2 x 3mm. For the rest (encoding task, working 

memory localizer and working memory task), I used the following scanning 

parameters: TR=2335ms, TE=30ms, 46 slices, flip angle=90°, voxel size =2 

x 2 x 3mm). The associated task paradigms were programmed in with the 

python library Psychopy (Peirce et al., 2019), and were initiated by a trigger 

sent by the scanner. Participants viewed a screen through a mirror 

installed in the head coil. The screen (30x48cm, 960x600px) was located 

at 105cm from the mirror. As the working memory task was previously ran 

in the laboratory facility, stimulus size and radius were doubled (stimulus 

size of r=0.5cm to r=1cm and radius of presentation of 8cm to 16cm) to 

compensate the increased distance subject-screen and maintain the visual 

angle constant (laboratory facility: 60cm approx., scanner facility: 110cm 

approx.). The same correction was applied for the encoding task and the 

working memory localizer.  

Figure 16 Anatomical scan. 
Example of the T1 high- definition 

anatomical scan of one of the 

participant (explicit consent was 

obtained to publish this picture).  
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Data preprocessing 

Preprocessing was carried out either with SPM8 (Statistical Parametric 

Mapping, http://www.fil.ion.ucl.ac.uk/spm) or with FreeSurfer 

(FreeSurfer Software Suite, https://surfer.nmr.mgh.harvard.edu). SPM8 

was used to preprocess volume fMRI data that did not need to be 

transform into surface (encoding task and the working memory task) while 

FreeSurfer was used to preprocess volume fMRI data that was 

transformed into surface to extract the ROIs (eccentricity retinotopy, polar 

retinotopy and working memory localizer).  

 

Volume preprocessing 

1- Realignment 

Although participants are instructed not to move, 

there are always unavoidable head movements, and 

thus the data becomes corrupted with motion related 

artifacts. Thus, head motion correction should be 

performed on all fMRI data (Figure 17). Motion 

correction was performed by registering all volumes 

to a reference volume (middle volume of the whole 

dataset) via a rigid-body transformation (Park et al., 

2019).  

2- Slice timing 
 
Slice timing correction is performed to correct the time differences at 

which each slice is acquired. To do so, slice timing correction uses 

interpolation, which causes a temporal smoothing effect, with a possible 

loss of information 

(Park et al., 2019). 

Slice timing is not 

recommended if the 

TR is short (<1 s) 

(Bijsterbosch et al., 

2017) but I decided 

to apply it as the TR 

was 2.335s.   

Figure 17 Realignment 
Schematic view of head motion 

correction. Figure from Park et 

al. (2019). 

Figure 18 Slice timing correction. 
Example of slice timing correction where the time of the signal evoked at slice 8 
is shifted toward that of slice 4 to match the starting time. Figure from Park et al. 
(2019). 

http://www.fil.ion.ucl.ac.uk/spm
https://surfer.nmr.mgh.harvard.edu/
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3- Corregistration to T1 

Corregistration is the process of aligning 

images from the same subject, for 

example an anatomical and a functional 

image (similar process as the 

realignment, finding x,y, and z 

parameters for translation and rotation). 

Low-resolution fMRI data is corregistered 

onto high-resolution preprocessedT1-

weighted structural MRI data of the same 

subject via a rigid-body transformation 

(Park et al., 2019).  

 

4- Corregistration to a single-subject fMRI template 

The analysis was conducted in the subject space, so no normalization to 

standard spaces like the Montreal Neurological Institute (MNI) was 

applied. Instead, all fMRI data from the same subject was resliced to a 

common fMRI template image (one for each subject, coming from the 

encoding task). This step was needed because the ROIs were obtained 

from fMRI data in the surface, and they were later transformed into 

volume using the same fMRI template. I did not directly corregister to the 

fMRI template because adding the intermediate step of corregistering to 

a high-resolution MRI signal (T1 weighted) increased the accuracy of the 

final corregistration compared to a direct one.  

 

5- Spatial Smoothing 

Spatial smoothing (Figure 20) is achieved by calculating the weighted 

average over neighboring voxels using a Gaussian. The full width at half 

maximum (FWHM) of the kernel was 4 x 4 x 4mm (Worsley & Friston, 

1995). Spatial smoothing offers 

the advantage of reducing noise, 

but it also can lower the intensity 

of the signal (Park et al., 2019).   

Figure 19 Corregistration 
fMRI data is registered onto structural MRI data 

of the same subject via a rigid-body 

transformation. Figure modified from Park et al. 

(2019). 

Figure 20 Spatial Smoothing 
Figure from Park et al. (2019). 
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Surface preprocessing and ROI definition 

I applied surface preprocessing using FreeSurfer for the eccentricity 

retinotopy, polar retinotopy and working memory localizer. The 

preprocessing included Realignment, Corregistration (to the surface space 

of the anatomical image) and Spatial Smoothing (5 x 5 x 5mm). In this case, 

I decided not to apply Slice timing, because the TR for the eccentricity 

retinotopy and polar retinotopy was shorter (TR=1600ms).  

I used FreeSurfer to create a retinotopic 

mapping of the visual areas. 

Retinotopic areas of the visual system 

were identified by fitting a linear model 

of the expected pattern of activation to 

the measured BOLD signal in the 

eccentricity retinotopy and the polar 

retinotopy tasks (Arcaro et al., 2009; 

Brewer et al., 2005; Dougherty et al., 

2003; Engel et al., 1994).  

In the case of the polar retinotopy task, 

for example, where a rotating wedge is 

presented, for a voxel representing the 

0° location, the measured BOLD signal can be model by a cosine (starting 

at maximal response). The other polar locations can be modeled with 

cosines of same frequency but different phases. As successive visual areas 

alternate with a mirror or non-mirror representation of the visual field, 

borders between these areas can be delineated when a reversal of the 

map is detected. To obtain a better mapping, the model combines the 

expected pattern of BOLD signal produced by an expanding ring (Figure 

15A) with the expected pattern produced by a rotating wedge (Figure 

15B). An example of the retinotopic analysis is presented in  Figure 21. For 

the final ROI definition of V1, the retinotopic analysis was combined with 

the FreeSurfer Atlas.  

The ROI definition of parietal and frontal areas was accomplished through 

the working memory localizer. Although retinotopic mapping also was 

useful for the ROI definition in parietal regions, I wanted ROIs to be defined 

based on the BOLD signal of a WM task, to select voxels that present 

elevated activity during the delay period. To do so, after surface 

Figure 21 Retinotopic mapping 
Result of retinotopic mapping in the right 

hemisphere surface of one subject. 
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preprocessing the fMRI data from the working memory localizer, I created 

a design matrix with two events: baseline and WM. The event WM had a 

duration of 3s, coinciding with the delay period in each trail (Figure 15D). 

The analysis was also run in FreeSurfer and the significant voxels were 

combined with a FreeSurfer Atlas (Figure 22) of cortical labeling (Desikan–

Killiany–Tourville protocol) to extract the ROIs in inferior parietal, superior 

parietal and superior frontal cortex (Klein & Tourville, 2012). The 

significance level was varied from subject to subject to get similar ROIs in 

each subject. Once the ROIs were identified in the surface space, they 

were defined using the FreeSurfer visualization tool TkSurfer. Figure 23 

shows an example of the final ROIs in the surface space in visual, parietal, 

and frontal cortex for one subject. Finally, the masks were transformed to 

volume space using the same fMRI template as for the volume 

preprocessing corregistration (volume preprocessing: 4- Corregistration to 

fMRI template). 

Figure 22 FreeSurface 
atlas of cortical regions 
Lateral (A) and medial (B) 

views of the inflated cortical 

surface. I combined inferior 

parietal, superior parietal, 

and superior frontal with the 

WM localizer task to extract 

parietal and frontal ROIs. 

Figure from Lein & Tourville 

(2012). 
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The specific codes an extra documentation for the volume and surface 

preprocessing of the data (either in SPM or FreeSurfer), the retinotopy 

analysis, the baseline vs WM analysis, and the instructions to create the 

masks can be found in the following GitHub repositories:   

https://github.com/davidbestue/Preprocessing-functional-images 

https://github.com/davidbestue/Retinotopy 

https://github.com/davidbestue/WM-localizer  

  

Figure 23 ROI in the surface space 
Visual, parietal, and frontal ROIs for one subject in the right and left hemispheres  

https://github.com/davidbestue/Preprocessing-functional-images
https://github.com/davidbestue/Retinotopy
https://github.com/davidbestue/WM-localizer
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Inverted encoding model (IEM) 

I implemented an inverted spatial encoding model to reconstruct WM 

content using the pattern of BOLD signal during each TR of the task 

(Brouwer & Heeger, 2009; Ester et al., 2013; Sprague et al., 2014). This 

method assumes the BOLD signal reflects an approximately linear 

combination of neural responses (Figure 24A) that changes in each voxel 

(Figure 24B). It also assumes voxel stability in the response, so the BOLD 

pattern for the training dataset is maintained in the testing dataset. 

Previous works used an independent task to train the model (Ester et al., 

2015; Sprague et al., 2014, 2016) while others used also TRs of the actual 

WM task (Hallenbeck et al., 2021; Lorenc et al., 2018; Rademaker et al., 

2019). Although I started by training the model on an independent task, 

the results presented in this thesis are obtained with the IEM trained in 

the same WM task. 

 

As the stimuli in the WM task were disposed in a ring, we changed the 

typical structure of the model (Sprague et al., (2014): a grid of 36 

information channels) to a ring structure with 36 information channels 

(Figure 25A) gaining precision in the angular dimension (peaks at 5°-355° 

every 10°). The model response followed Equation 15, where r is the 

distance from the stimulus position to the center of the channel function, 

Figure 24 Voxel’s relation to spatial selectivity 
A) Each voxel contains neurons with different spatial selectivity, so the final firing response is a 

combination of them. B) Selectivity changes from voxel to voxel due to neural heterogeneity. 
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and s is a size constant which corresponds to the distance from the 

channel function center at which the function reaches zero (s=48.518°).  

 

Channels are spaced by 10°. Figure 25B shows the response of two 

adjacent channels to stimulus located at 175° and 185°. Figure 25C shows 

the channel response to the 4 axis positions (0°, 90°, 180° and 270°).  

 

For training the IEM, I measured the BOLD signal of each voxel and 

modeled it as a linear combination of the 36 channels (Equation 16), where 

Bvx is the observed BOLD signal in each voxel on each trial (i voxels  x n 

trials), Ctrials is the predicted response of each channel to the stimulus 

location in each trial (j channels x n trials) and Wvx are the weights of each 

channel to explain BOLD signal (i voxels x j channels).   

Figure 25 Training the IEM 
A) The IEM disposed 36 information channels along the angular dimension, separated by 10°. B) 

Response of the model (36 channels) to stimuli separated by 10° (175° and 185°). C) Channel responses 

to stimuli located at the axis.  

Equation 15 

Equation 16 
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The contribution of each channel (Wvx) to the observed response in each 
voxel is estimated through an ordinary least-squares regression (Equation 
17). This step is performed on each voxel individually. 
 

Once the weight matrix is estimated, we can apply it to reconstruct the 

WM content from the BOLD signal of the WM task in the ROIs (BROI) 

(Equation 18, Figure 26A). The resulting estimated channel responses (Crec) 

(Equation 19) reflect the response of each channel that is most likely to 

have given rise to the observed pattern of activation across all voxels 

within an ROI, given the observed BOLD signal. 

 

 

As the reconstruction in each trial was very noisy as multiple stimuli were 

presented (3 targets and 3 distractors), the estimated channel 

reconstruction in each trial was rotated so the channel coding for the 

target position was always at 180° (Figure 26B, up). To avoid 

reconstructing the distractor information instead of the target 

information, training and testing was done aligning to the target or the 

distractor that was presented alone in the quadrant (Methods-Paradigm 

distractor filtering). As both training and testing data came from the WM 

task, I cross-validated each reconstruction. To do so, I trained the model 

in a single scanning run and tested it in the remaining ones (leave-one-run-

out). I did that for all the scanning runs and I computed the final average 

reconstruction. Figure 26C shows the mean reconstruction for one subject 

in the condition order 1 -long TDOA. The x axis shows the different TRs and 

the y-axis the angle. Reconstruction around 180° is stronger (brighter 

colors mean stronger channel signal) because target information was 

aligned to it. The grey triangle illustrates the target presentation time, the 

red one shows the distractor presentation time and the yellow one the 

response.  

Equation 17 

Equation 18 

Equation 19 
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Figure 26 Testing the IEM 
A) Reconstructing WM content in different ROIs using the trained IEM. B) Schematic view 

of the reconstructed channel activity for a certain TR in a trial. Reconstructions were 

aligned to a reference (180°) to calculate the mean signal or randomly aligned to an axis 

position for a posterior subtraction of baseline activity. C) Mean reconstruction of aligned 

targets for the order 1 -long TDOA condition. D) Decoding strength for a certain TR is the 

weighted sum with a high-resolution model (720 channels) and the decoding value is 

calculated by subtracting the activity in the shuffled reconstructions for the position 180°.  
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To avoid confounding baseline activity with WM content, I also computed 

the reconstruction but, instead of rotating the channel reconstruction so 

the channel coding for the target position was at 180°, I rotated the 

channel reconstruction so one of the 4 axis positions (0°, 90°, 180°, 270°) 

was at 180º. I used this method instead of a pure random assignment of 

angles because, as previously exposed, up to 6 visual stimuli that could 

elicit a WM related response were presented and a complete shuffle 

would capture WM related response as baseline activity, compromising 

the signal to noise ratio. For each condition, I ran 100 of these 

reconstructions (shuffles) by randomly assigning which axis position was 

aligned to 180° (Figure 26B, down).  

Finally, for each TR, I calculated the reconstruction strength for both the 

target and the shuffles as the weighted sum of each channel activity with 

a high-resolution model. To do so, I created a high-resolution model with 

720 channels instead of 36 (same Equation 15). For each channel, I 

multiplied the reconstructed activity by the expected signal of the high-

resolution model when a stimulus was presented at the location mapped 

by channel. Then, I summed all these 36 arrays of 720 values to get a single 

array of 720 values (Figure 26D), which is the high-resolution 

reconstruction of a TR (Figure 26C). The final decoding value is obtained 

by getting the activity at 180° (channel 360 of 720) and subtracting the 

Figure 27 Reconstruction of target angle 
A) As three different targets were simultaneously presented, I restricted the decoding to 90° centered 

to the target to avoid contamination. B) A standard population vector was computed to extract the 

reconstructed angle. 
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mean activity at the same location for the shuffles.  Subtracting the mean 

decoding of the shuffles is needed to avoid any possible decoding coming 

from averaging noise.  

Alternatively, I also used another method to decode the exact angle 

(Figure 27). To do so, after creating the high-resolution reconstruction of 

each TR, I restricted the analysis to the range -45° to 45° around the 

reference (Figure 27A) and computed the population vector in it (Figure 

27B). The rest of the visual space was neglected to avoid confounding the 

decoding with the one of the targets or the distractors presented in other 

quadrants.   
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Electrophysiology 

Electrophysiological datasets of monkeys performing vsWM tasks were 

used in each chapter of the results section. For the chapter Topography of 

the working memory circuit, I analyzed the Dataset1 and for the chapter 

Distractor filtering in the working memory circuit, I analyzed the Dataset2 

and the Dataset 3. 

 

Dataset 1: O’Scalaidhe & Goldman-Rakic, unpublished 

Unpublished neurophysiological dataset from O’Scalaidhe and Goldman-

Rakic, referenced in Arnsten (2013), where two monkeys performed an 

ODR task. Unfortunately, this dataset lacked the behavioral responses of 

the monkey, but I could still analyze relevant aspects of the neuronal 

tuning. The task consisted in remembering the spatial location of a square 

during a delay period of 3s and then reporting its location with a saccade. 

The stimuli could be located at 24 different spatial locations (Figure 28) 

divided in three eccentricities -8 locations in each- (Arnsten, 2013). 516 

neurons were individually recorded from the PFC when doing the task. I 

used a linear regression 

with the firing rate during 

the presentation period as 

the dependent variable and 

each angular location as an 

independent regressor to 

get the neurons with a 

significant angle tuning. 

From the total of 516 

neurons, 153 presented 

angular selectivity. I then 

assigned a preferred 

eccentricity based on the 

maximum firing rate in each 

of the 24 positions, so the 

153 angle-tuned neurons 

were split in the three 

eccentricities (53 in radius 

1, 64 in radius 2 and 43 in 

Figure 28 O’Scalaidhe & Goldman-Rakic dataset 
Figure 4 in Arnsten (2013). This figure shows the disposition of 

the presented stimuli in three different radii. This figure was 

ised in a Goldman-Rakic presentation for Yale undergraduates 

and it was used with her consent. 
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radius 3). Once each neuron was assigned to an eccentricity, I calculated 

the z-scored tuning curve for neurons in each eccentricity. To quantify the 

differences between tuning curves, I calculated the circular standard 

deviation of the tuning curve of each neuron. 

 

Dataset 2: Suzuki & Gottlieb (2013) 

Neurophysiological dataset from Suzuki & Gottlieb, (2013) where two 

monkeys performed a modified version of the ODR task with distractors 

(Figure 29A). After a variable fixation period (300-800ms), monkeys were 

presented with a 100-ms flash of a peripheral target and, after a 1600ms 

delay period, made an eye movement to the remembered location. On 

two-thirds of the trials, a 100ms distractor was flashed during the delay at 

a randomly selected TDOA of 100ms, 200ms, 300ms or 900ms. Distractor’s 

location was also randomly selected to be near (45° angular separation) or 

far from the target location (135° or 180° separation). The target and 

distractor were identical in appearance and duration, so that monkeys had 

to remember the location of the first stimulus and suppress the 

subsequent distractor. Both monkeys had near perfect performance for 

the long TDOA condition (900ms) at near or far locations (Figure 29B). 

Figure 29 Behavioral results Suzuki & Gottlieb (2013). 
Figure from Suzuki & Gottlieb (2013). A) Task structure. An array of eight placeholders remained continuously 

on the screen and a trial began with a variable period of central fixation. This was followed by a 100ms flash 

indicating the target location. After a variable TDOA, a distractor flashed after target presentation. The 

distractor was identical to the target in appearance and duration but appeared at either a near-target or far 

locations. After an additional delay (bringing the total delay period to 1600ms) the fixation point disappeared 

(Go) and monkeys were rewarded for making a saccade to the target location. B) Performance for each 

monkey as a function of distractor distance and TDOA (mean and sem across all recording sessions, n=89 

sessions in monkey S, n=47 sessions in monkey M) 
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However, errors became increasingly more common as distractors 

became more similar to the target in both time and space. Statistical 

analysis revealed significant effects of distance and TDOA, and a significant 

interaction, such that the largest fraction of errors was found for near-

target, short TDOA conditions (Suzuki & Gottlieb, 2013).  

Neural recordings were collected from 77 spatially tuned neurons in the 

dorsolateral prefrontal cortex (dlPFC) (51 in monkey S, 26 in monkey M) 

and from 59 neurons in lateral intraparietal area (LIP) (38 in monkey S, 21 

in monkey M, not analyzed in this thesis). All the neurons selected had 

spatial receptive fields as determined by preliminary testing with the 

memory-guided saccade task (further details in Suzuki & Gottlieb, (2013), 

online Methods).  

  

Figure 30 Single neuron analysis 
Analysis of an individual neuron spike train (red) in a trial (2600ms). Mean 

firing rate is shown with a dotted black line in 1/ms units. The green shows a 

convoluted firing rate using the default kernel of the library Elephant with a 

sampling period of 25ms. The yellow line shows the convoluted firing rate with 

the specificities of Suzuki & Gottlieb, (2013): Gaussian kernel with sampling 

rate of 2ms and sliding window of 15ms. 
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From the spike times of each neuron (Figure 30, red), I computed the 

convoluted firing rate. As in Suzuki & Gottlieb, (2013), I used a sampling 

period of 2ms and a Gaussian kernel with a sliding window of 15ms (Figure 

30, yellow). The analysis was computed with the python library Elephant 

(Denker et al., 2018).  

To measure distractor responses, the firing rates of each neuron were also 

normalized by dividing by the peak target–evoked response (T in receptive 

field, no-distractor). The replication of the analysis gave equivalent results 

as the original paper (Figure 31). 

 

 

I evaluated the stability of the memory circuit by training and testing a 

decoder of the remembered angle in the rates of the recorded neurons 

every 100ms of the task (Murray, Bernacchia, et al., 2017; Stokes et al., 

2013). As a decoder, I used a multivariate regression with the sin and the 

cos of the target location (yi1 = sin(θ) and yi2 =cos(θ)) as dependent 

variables and the firing rate as independent variable (Equation 20 and 

Equation 21). 

Equation 20 

Equation 21 

Figure 31 Replication analysis of Suzuki & Gottlieb, (2013) 
Replication of the neural responses in dlPFC for the condition where the distractor was in the receptive 

field (RF) and the target was located far. Colored lines showed the average normalized firing rates in 

PFC aligned on the onset of the target. The grey line is the peak target-evoked response, and the 

different colors represent the neural response to the distractor for the different TDOA conditions. On 

the left, I illustrate the original plot from Suzuki & Gottlieb (2013) and, on the right, my replication 

analysis of the same data, both showing equivalent results. Differences may be originated by the 

libraries used for the neural analysis. 
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Dataset 3: Qi et al. (2021) 

I modeled the behavioral and electrophysiological results of Qi et al., 

(2021). In this paper, the authors implanted two adult male rhesus 

monkeys (Macaca mulatta) with two 20-mm-diameter recording cylinders 

(arrays of two to four microelectrodes in the cylinder). One cylinder was 

located over the areas 8a and 46 of the dlPFC -used for the study- and the 

other over the PPC -not used for the study-. The anatomic location of 

electrode penetrations was determined based on MR imaging (Figure 

32). Once the cylinders were implanted, a second surgery was performed 

to implant the stimulating electrode in the center of the anterior portion 

of the Nucleus Basalis of Meynert (NB).  

 

The monkeys were trained to perform a variation of the ODR task, where 

two visual stimuli appeared in sequence. The monkeys had to remember 

and make an eye movement to the location of either the first or the second 

visual stimulus depending on the color of the fixation point (Qi et al., 

2021). The task (Figure 33A) was administered in blocks, so some blocks 

had prospective distractors (Remember 1st: remember the first stimulus 

and ignore the second) and other blocks had retrospective distractors 

(Remember 2nd: ignore the first and remember the second stimulus). The 

monkeys were trained to saccade to the location of the remembered 

visual stimulus according to the color of fixation point (white/blue). Once 

the monkey fixated at the center of the screen for 1s, two white squares 

were displayed sequentially for 0.5s, with a 1s stimulus onset asynchrony 

(SOA) (-1s or +1s TDOA depending on whether the distractor was the first 

or the second stimulus presented). Each stimulus was displayed at one of 

eight possible locations arranged along a circular ring (spaced 45 degrees). 

Figure 32 MR implant location 
Anatomical MR scan representing the cortical 

region sampled with neurophysiological 

recordings (yellow dotted area) and the 

approximate location of the NB-stimulation 

electrode (red). Figure from Qi et al. (2021). 
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The angular distance between the stimuli could then be 0°, 45°, 90°, or 

180°. Two ‘‘null’’ conditions were included, in which either the first or the 

second stimulus was omitted. After the presentation of the second 

stimulus, a delay period of 1s was introduced -delay2-. The monkeys were 

rewarded with juice after making a correct saccade. Deviating gaze beyond 

fixation window led to the immediate termination of the trial without 

reward. Intermittent stimulation of the NB was applied for 15s at 80 pulses 

per second, followed by approximately 45s with no stimulation. The 

stimulation was applied during the inter-trial interval (IT) (Figure 33B). 

Extra details regarding the task structure can be found in the original 

article (Qi et al., 2021). 

 

  

Figure 33 vsWM task of Qi et al. (2021) 
Figure from Qi et al. (2021). A) Schematic view of the two types of trials of the behavioral task: Remember 1st and  

Remember 2nd. The type of trial was imposed by the color of the fixation point. White fixation point indicated the 

monkey had to remember the first visual stimulus presented, and a blue fixation point indicated it had to remember 

the second one. The duration of the different periods of the trials are indicated in the figure. At the end of the trial, 

the fixation point turned off, and the monkey had to perform a saccade toward the remembered location to receive 

a liquid reward. B) Top: schematic diagram of a single trial of the task. Bottom: Blocks of the same type of trial 

(Remember 1st or Remember 2nd) were presented successively, separated by an ITI. NB stimulation, when delivered, 

always occurs during the ITI. Successive trials, each lasting approximately 10 s, were followed by 15 s of stimulation.  
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4.Results 
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4.1. Topography of the working 
memory circuit 
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In this chapter, I addressed goals (1) and (2) through the investigation of 

the topographical features of the vsWM circuit both in the angular and the 

radial dimensions in behavioral experiments. First, I tested a fundamental 

point of the SRT (1), which is the predicted interference between encoding 

and maintenance processes based on the shared neural circuit (Fischer & 

Whitney, 2014; W. J. Harrison & Bays, 2018; Teng & Kravitz, 2019): “as a 

neural circuit is shared, perceptual responses based on immediate 

reaction upon incoming information should present the same 

topographically-based biases as responses in delayed paradigms that 

require WM”. I used the bump attractor model (2) to propose a 

mechanistic explanation for the observed topographically-based biases in 

the angular dimension (Figure 34, red) and I also provided 

electrophysiological evidence supporting it (Methods-Electrophysiology, 

Dataset 1). Besides explaining topographically-based biases in the angular 

dimension, I also developed a computational model (2) to explain 

topographically-based biases in the radial dimension (Figure 34, blue). The 

latter model explained mislocalizations in the radial dimension towards 

the fixation point, which is a well-documented behavioral effect (Müsseler 

et al., 1999; Osaka, 1977; Sheth & Shimojo, 2001; Townsend, 1973) lacking 

a detailed mechanistic explanation.  

Altogether, in this chapter I developed computational models for both the 

angular and radial dimensions, and I provided topographically-based 

behavioral, modeling, and electrophysiological evidence for prefrontal 

attractor networks being responsible for the final WM readout.  

  

Figure 34. Topography and modeling 
Schematic view of the dimensions covered by each of the developed 

computational model. One explains WM maintenance in the angular 

dimension (red) and the other in the radial dimension (blue). The solid 

blue dot represents a target stimulus and the transparent blue a drifted 

response in the radial dimension. Solid red dots represent target stimuli 

at different eccentricities and the transparent ones, the diffused 

responses (cw or ccw) in the angular dimension. 
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 Angular dimension 

 

To test the convergence of the memory circuit and the encoding circuit 

proposed by the SRT, I first investigated how the precision of sensory-

guided and memory-guided reports depended on the eccentricity of the 

reported location. To do so, I ran a behavioral experiment with 18 

participants where single or multiple stimuli needed to be remembered at 

different eccentricities with variable delay periods (Figure 35, Methods-

Paradigms and analysis).  

I first analyzed the precision of responses in single-item trials (Figure 36). 

I considered both the angular distance (measured as degrees of azimuthal 

angle) and the Euclidean distance (measured in cm) between the response 

endpoint and the target locations. As expected, absolute Euclidean errors 

grew with eccentricity but the evidence was not strong for them being 

larger for memory (delay 3s) than for no-memory (delay 0 s) trials (Figure 

36A), mixed linear model, N=18, n=3275, β eccentricity=-0.091,  z=14.044, 

ci=[0.078,0.103], p<0.001; β delay=0.052 , z=1.537 , ci=[-0.014, 0.118], 

p=0.124; β delay X eccentricity=0.002, z=0.594, ci=[-0.004, 0.008], 

p=0.553).  

Figure 35 vsWM task to study the topography of the WM circuit. 
Trial structure (left). Participants had to fixate at the center of the screen (both looking and dragging 
the cursor) to start the trial. Stimuli were presented for 500ms. When multiple stimuli were presented, 
each had a different color. A variable delay of 0s or 3s was introduced before the fixation point 
changed to one of the colors of the stimulus presented, indicating the subject had the report its 
location. There were three different possible spatial configurations of trials (right): Single-item trials 
(right, single item), multi-item angular (right, multi-item, left) and multi-item radial (right, mulit-item, 
right). The last ones were not not analyzed in this thesis. Stimuli were always presented in one of three 
radii (7.78cm, 10.7cm, 13.68cm) and, in multi-item angular trials, they were located at either radius1 
(7.78cm) or radius 3 (13.68cm) and separated by one of three angular distances (12°, 16°, 20º). More 
details in Methods-Paradigms and analysis. 
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Because I wanted to interpret these results on the basis of the bump 

attractor model, I was specifically interested in the modulation by 

eccentricity of precision in the angular domain. I wondered if changes of 

absolute Euclidean precision with eccentricity could merely reflect a radial 

scale change on otherwise identical precision in the angular dimension. 

This would correspond to the absence of a main effect of eccentricity 

when applying the mixed linear model to the angular error. Instead, I 

found a significant interaction between eccentricity and delay (Figure 36B, 

N=18, n=3275, β delay=0.730, z=4.995, ci=[0.443, 1.016], p<0.001; β 

eccentricity=-0.028, z=-0.998, ci=[-0.083, 0.027], p=0.318;  β delay x 

eccentricity=-0.038, z=-2.825, ci=[-0.064, -0.012], p=0.005). The 

interaction reflected a decreasing absolute error with eccentricity in the 

Figure 36 Single-item trials show memory-specific increase of angular precision with eccentricity. 
A) Euclidean distance grows with eccentricity and shows a non-significant trend with memory (delay 0 vs. delay 

3). Each small point is the mean error of each subject at the indicated radius (random x-scatter introduced only 

for visualization purposes). Line-connected dots show population means and 95% bootstrapped cis. B) Same for 

angular errors reveals interaction between eccentricity and delay for absolute angular error. C)  Distribution of 

angular errors in the delay 0 condition shows similar accuracy for radius 1 and radius 3, as estimated through std 

of Gaussian fits (4.2° (sem=0.29°) and 3.8° (sem=0.23°), Levene’s test W=0.86, p=0.35). D) Angular errors in the 

delay 3 condition reveal higher dispersion of responses in radius 1 than radius 3 (5.4° (sem=0.19°) and 4.6° 

(sem=0.25°), Levene’s test W=17.98, p<0.001). 
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memory condition (n=1595 trials in the delay 3 condition, β eccentricity=-

0.142, z=-4.384, ci= [-0.206, -0.079], p<0.001) and no effect of eccentricity 

in the delay 0 condition (n=1680 in the delay 0 condition, β eccentricity=-

0.028, z=-1.143, ci=[-0.075, 0.020], p=0.253). In the no-memory condition 

(delay 0), I observed no difference in the distribution of errors at different 

radii (Figure 36C, Levene’s test W=0.86, p=0.35), consistent with absolute 

Euclidean errors reflecting a radial scaling of identical angular error 

distributions in the absence of memory requirements. However, in the 

memory condition (delay 3s), I observed an unexpected increase in 

angular accuracy with radius (Figure 36D, Levene’s test W=17.98, 

p<0.001). I thus found that the Euclidean precision of memory reports 

decayed with eccentricity (Figure 36A), but the angular precision increased 

with eccentricity (Figure 36B). This last effect was specific to memory 

processes because it was not verified in no-memory trials (significant 

interaction). This different scaling of angular accuracy with eccentricity for 

the no-memory and memory conditions points towards neural circuitries 

with different topographical arrangements for encoding and WM.  

A model based on a retinotopic map with RF sizes increasing linearly with 

eccentricity, consistent with the neurophysiology of visual cortex, would 

explain the results in the no-memory condition. For the task, this would be 

conceptually modeled as identical concentric rings of neurons for each of 

the radii considered, with identical angular tuning of neurons in all rings. 

However, the decrease in response errors with eccentricity for the 

memory condition points towards a different topography for the circuit 

responsible for memory maintenance. To accommodate these findings, 

the memory model must incorporate eccentricity-dependent changes in 

the parameters of the concentric ring models. In order to gain more 

intuition on the topography of the memory-maintenance model, I 

analyzed the pattern of interference between multiple stimuli (Almeida et 

al., 2015; Nassar et al., 2018) located at different eccentricities in our 

multi-item trials (Figure 35, right). I regressed the angular report errors 

around the target stimulus (Methods-Paradigms and analysis) against the 

delay duration and the eccentricity and distance between presented 

stimuli, and I found a significant triple interaction (mixed linear model, 

n=2291, β eccentricity x delay x distance=-0.011, z=-2.556, ci=[-0.020, -

0.003], p=0.011). This indicated the existence of differences in how 

multiple memory items interfere at different eccentricities for memory 

and no-memory trials.   
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Figure 37 Repulsive interference in multi-item trials has a memory component that depends 
qualitatively on eccentricity. 
A) Mean response bias towards the location of the NT item in no-memory trials (delay 0) for different 

absolute distances between stimuli (3 discrete values on x-axis, additional horizontal scatter was 

introduced for better visualization) and for two different radii (orange and blue). Positive (negative) 

interference effect indicates attraction (repulsion) between items. Line-connected dots show population 

means and 95% ci. Data show overall perceptual repulsion between items, larger for small than large 

eccentricities, and opposing effects with inter-item distance at different radii.  B) Same for memory-

dependent interference effect, defined as additional mean bias towards NT item in delay-3 trials 

compared to the mean of corresponding delay-0 trials. Memory-dependent interference was repulsive 

for small radius and attractive for the large one. Interference diminished for both radii with target-NT 

distance. C) Distributions of errors towards the location of the NT item for delay-0 and 12° inter-item 

separation trials (n=201 for radius 1, n=191 for radius 3, collapsed across 18 participants) show repulsive 

bias for both radii. D) Distributions of memory-dependent interference biases in delay-3 and 12° target-

NT distance trials show an overall repulsive bias in radius 1 and an overall attractive bias for radius 3. 
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I analyzed separately the pattern of interferences in no-memory trials, 

reflecting interferences that occur with minimal involvement of the 

memory maintenance circuit. In this case, I observed that the interference 

between target and NT stimuli was consistently repulsive (Figure 37A). 

This overall repulsive effect showed an eccentricity-dependent pattern: 

the larger the distance between target and NT, the stronger the repulsive 

effect in radius 1 and the weaker in radius 3 (mixed linear model, N=18, 

n=1169, β intercept=0.388, z=0.267, ci=[-2.457, 3.233], p=0.789; β 

eccentricity=-0.275, z=-2.161, ci=[-0.524, -0.026], p=0.031; β distance=-

0.033, z=-3.82, ci=[-0.497, -0.160], p<0.001; β eccentricity x 

distance=0.031, z=3.991, ci=[-0.016 -0.046], p<0.001). Repulsive effects at 

the perceptual level have been described before (Fritsche et al., 2017; 

Gibson & Radner, 1937; O’Toole & Wenderoth, 1977; Stein et al., 2020) 

and probably reflect biases affecting inputs to the memory areas (Bliss & 

D’Esposito, 2017; Stein et al., 2020).  

Because my interest was in characterizing memory processes, I analyzed 

biases in memory trials that added to these perceptual repulsions. To this 

end, I subtracted the mean bias in no-memory trials from response errors 

in memory trials, in order to remove the perceptual effects from those 

that belong to memory processes. I observed that there was still an overall 

repulsive effect for radius 1 but an overall attractive effect for radius 3 

(Figure 37B). Furthermore, there was an interaction between distance 

target - NT and eccentricity: The larger the distance between target and 

NT, the weaker the repulsive effect in radius 1 and the weaker the 

attractive effect in radius 3  (mixed linear model, N=18, n=1122, β 

intercept=0.388, z=0.267, ci=[-2.457, 3.233], p=0.789; β 

eccentricity=0.739, z=4.346, ci=[0.406, 1.073], p<0.001; β distance=0.361, 

z=3.153, ci=[0.136, 0.585], p=0.002; β eccentricity x distance=-0.035, z=-

3.342, ci=[-0.055, -0.14], p=0.001). Figure 37C-D show the distribution of 

errors of a representative condition (distance target-NT of 12°) to illustrate 

the patterns of perceptual and memory interferences at different radii. In 

line with the accuracy results in single-item trials presented above, the 

distinct pattern of eccentricity-dependent interferences between 

simultaneous items in no-memory and memory trials points towards 

different neuronal circuitries being responsible for perception and 

memory. Specifically, the data suggest that the perceptual circuit 

generates systematic repulsive biases between simultaneously presented 
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items, which then serve as input to a separate memory circuit that builds 

an attractive bias on top with distinct topography.  

I hypothesized that eccentricity-dependent changes in the connectivity 

parameters of the bump attractor model could account for the effects of 

single-item and multi-item trials for two main reasons. First, delay-

dependent loss of memory precision occurs naturally in bump attractor 

models because activity bumps are susceptible to noise fluctuations, and 

this susceptibility is modulated by  connectivity parameters (Compte et al., 

2000). Second, attractive and repulsive regimes between simultaneously 

memorized items, as seen behaviorally, was previously modeled (Almeida 

et al., 2015; Nassar et al., 2018) via changes in the connectivity parameters 

in these types of models. I thus tested how the general widening of the 

connectivity in these models affected the precision of an individual 

memory, and the pattern of interference between two simultaneous 

memories, in order to compare with our experimental findings. I built a 

ring attractor network of excitatory and inhibitory rate-model neurons, 

recurrently connected through translationally-invariant Gaussian-like 

connectivity profiles (Methods-Network model in the angular dimension), 

which was able to maintain up to two stable memory bumps during the 

delay period through reverberatory activity. Based on my hypothesis, I 

modeled angular memory at different eccentricities (radius 1 and radius 3) 

by introducing changes in the connectivity parameters leading to wider 

connectivity profiles for larger eccentricities. As a result of this different 

connectivity, model simulations produced a broader bump (on angular 

terms) in radius 3 compared to radius 1 (Figure 38A).  

I first analyzed memory precision in simulations with a single memory 

bump for each of the two networks (radius 1 and radius 3). I reasoned that 

a broader activity bump in radius 3 would be more effective in averaging 

out noise fluctuations and explain the unexpected increase of angular 

accuracy from radius 1 to radius 3 (Figure 36D). Indeed, the distribution of 

errors in the simulated behavior was more precise for radius 3 than for 

radius 1 (Figure 38B). At first sight, this might look paradoxical, as a 

broader activity bump results in a narrower distribution of angle readouts 

from the bump (higher precision, Figure 38C). However, this can be 

explained by the fact that a larger bump is more efficient at averaging out 

noise fluctuations, so bump diffusion during the memory period is reduced 

and precision increased. The greater efficacy of a broad bump for 
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averaging out noise fluctuations and increase precision can be specifically 

assessed by running simulations for increasing amplitudes of external 

noise fluctuations (Figure 38D): the steeper dependency of angular error 

with noise amplitude for radius 1 than for radius 3 is consistent with 

narrower bumps being less effective at averaging out noise. 

Memory errors found in behavior are not just a consequence of noise. In 

multi-item trials, errors occur because of the interference between the 

target and the NT item. Ring attractor models can produce the pattern of 

Figure 38 Model shows that the increased angular precision with radius can be explained 
by reduced angular tuning at larger eccentricities. 
A) Sample single-item simulations of two network models, for stimuli presented at radius 1 (top), or 

radius 3 (bottom), differing just in connectivity parameters. B) End-of-delay error distribution (3275 

simulations) was narrower for radius 3 than radius 1 (std of Gaussian fit: 4.48º radius 1, 3.88º radius 

3), in contrast to broader activity bump in radius 3 during the delay. C) Opposite trends of angular 

error (left y-axis) and tuning width (right y-axis) with network connectivity broadening (x-axis) in model 

simulations. D) Steeper dependency of angular error with input noise amplitude for radius 1 than 

radius 3 shows that broader bumps (radius 3) are more robust to noise. 
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interference of simultaneous memories, where the effective connectivity 

that accounts for feedback excitation and feedback inhibition to excitatory 

neurons through the local network (Mexican-hat connectivity) can explain 

attraction for close-by locations and repulsion for longer inter-item 

distances (Almeida et al., 2015). I wondered how the widening of the 

connectivity for radius 3 affected this pattern of interference. To this end,  

I ran 5,800 simulations with two simultaneous memory bumps initialized 

at random locations on the network, and I analyzed the pattern of memory 

errors at the end of a 1.5s delay period as a function of the distance 

between target and NT. For both radii, our simulations showed that 

memories are attracted for close-by locations and repelled for more 

distant locations (Figure 39A). However, changes in connectivity cause a 

displacement in these curves and I found a range of inter-item angular 

distances where interference was repulsive for radius 1 but attractive for 

radius 3 (Figure 39A-B). 

The cross-over from repulsion to attraction upon connectivity widening 

can be understood on the basis of the effective Mexican-hat feedback 

connectivity onto excitatory neurons. Each item stored in the network 

contributes a feedback current, and the signed overlap between the 

feedback currents caused by the two items determines their attractive or 

repulsive interaction. For a fixed distance between two items, a widening 

of the Mexican-hat connectivity can make an overall negative overlap turn 

positive, and thus explain the qualitative change in interference effect. 

This is illustrated in our simulation data in Figure 39C-D. I extracted the 

average current inputs impinging onto excitatory neurons in the network 

(bump feedback currents) at the end of the delay for a single item in each 

of our networks (for radius 1 and 3) and plotted them twice, separated by 

22º (corresponding to repulsion in radius 1 and attraction in radius 3, Fig. 

5A), thus schematically assessing the effect in multi-item trials of this 

distance. For radius 1 networks, the positive overlap of the excitatory 

lobes of both bump feedback currents (pink shaded area) was smaller than 

the negative overlap between the inhibitory lobes of one bump feedback 

current with the excitatory lobe of the other (green shaded area), 

explaining the overall repulsive effect (Figure 39C). Instead, broader bump 

feedback currents in radius 3 networks led to larger positive than negative 

overlaps for the same inter-item distance, thus explaining the cross-over 

to an overall attractive effect (Figure 39D).  
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Figure 39 Reduced angular tuning at large eccentricities predicts interference effects in 
multi-item network simulations. 
Interference effect in simulations with 2 simultaneous bumps for the two network models (radius 

1/radius 3) of Figure 38. Interference effect (y-axis), measured as end-of-delay bump displacement in 

the direction of the other bump, versus distance between the two simultaneous bumps (x-axis) 

(n=15,000 simulations). For both networks, an attractive regime is followed by a repulsive regime that 

vanishes with distance (Almeida et al., 2015), but different connectivity widths lead to a window of 

stimulus distances (ca. 18º-24º) with qualitative different behaviors in the two networks: repulsion for 

radius 1 and attraction for radius 3. B) Distribution of errors in n=268 simulations with inter-item 

distance of 22° shows systematic attraction towards the NT bump in radius 3 networks (mean=8.6°) 

but systematic repulsion in radius 1 networks (mean=-11.7°). C, D) Explanation of cross-over from 

repulsive (C) to attractive (D) behavior as the network connectivity widens. Individual curves are delay-

period current input to network neurons in corresponding single-item simulations and are 

superimposed here at the distance used for two-item simulations in B. Overlap of positive currents 

marked with pink shading, overlap of positive and negative currents marked with green shading. 

Smaller (larger) positive than negative overlap explains repulsion (attraction) in the simulations of 

panel B. 
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Network simulations suggest that the specific feature that distinguishes 

neural circuits responsible for memory maintenance from neural circuits 

responsible for sensory processing is a broadening of neuronal angular 

tuning for increasing eccentricities. In the visual cortex, neuronal receptive 

fields are known to increase size linearly with eccentricity (Burkhalter & 

Van Essen, 1986; Desimone & Schein, 1987; Felleman & Van Essen, 1987; 

Gattass et al., 1981; Toet & Levi, 1992), thus keeping a constant angular 

tuning. This invariant angular topography is consistent with the minimal 

eccentricity modulation of angular behavioral outputs in my delay-0 trials 

(Figure 36B and Figure 37A). Instead, memory requirements in delay-3 

trials should engage a different network, with a topography characterized 

by tuning broadening with eccentricity. I tested this prediction by 

analyzing single-unit recordings in the PFC of 2 macaques performing an 

oculomotor delayed response task (Methods-Electrophysiology). Monkeys 

had to remember during a 3-second delay the location of a dot presented 

briefly at one of 8 fixed angles and one of 3 different eccentricities from 

the fixation point. Out of 516 single neurons recorded 153 showed 

significant angular tuning. I divided these 153 neurons according to their 

preferred radius (max firing rate) and calculated the angular tuning curve 

of each neuron at its preferred radius. The average tuning curves of 

Figure 40 PFC single neurons show supralinear scaling of angular memory fields with 
preferred radius, as predicted by the computational model. 
A) Average angular tuning curves for neurons with maximal responses in the smallest (radius 1, n=53) 

and largest (radius 3, n=43) radii tested reveal a small loss of angular tuning with preferred radius. The 

y axis represents z-scored firing rate, the x axis the angular distance of the stimulus to the neuron’s 

preferred angle. B) Supra linear increase of PFC memory field size with preferred radius. The pink line 

shows broader tuning sorted by preferred eccentricity. The broader tuning as a function of radius 

(β=0.1307, t=2.420, ci=[0.024, 0.237] and p=0.017, n=153) shows a supralinear increase of memory 

fields with eccentricity in PFC. 
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neurons preferring each of the three radii showed broader tuning for the 

larger compared to the smaller radius (Figure 40A). Furthermore, a 

regression analysis showed that the widths of the neurons’ tuning curves 

(circular standard deviation) increased with preferred radius (linear 

regression: n=153, β intercept=94.45, t=14.62, ci=[81.68, 107.21], 

p<0.001; β eccentricity=0.1307, t=2.420, ci=[0.024, 0.237], p=0.017, Figure 

40B).  

This confirms the prediction extracted from the computational model that 

motivated this analysis. In sum, electrophysiological recordings of PFC 

cortex concur with behavioral and modeling results in supporting different 

neural circuits for sensory and memory processing. While visual 

representations maintain a polar representation of the visual field, 

memory circuits are characterized by the known topography of visual 

areas (linear) could not account for the observed memory results, PFC 

topography (supra-linear) agrees both with behavioral and modeling 

evidence.  
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Radial dimension 

 

In this section, I explored the topographical features of the vsWM circuit 

in the radial dimension. I analyzed the single-item trials of the vsWM task 

(Figure 35, Methods-Paradigms and analysis) and developed a radial 

implementation of the bump attractor model to explain the observed 

behavior. Therefore, instead of analyzing behavior in the angular 

dimension (as I did in Results-Angular dimension), I evaluated how the 

precision in the radial dimension depended on the eccentricity in both the 

no-delay and delay condition. The distribution of responses along the 

radial dimension (Figure 41A-B) clearly showed a decrease in precision for 

more eccentric trials for both the no-delay and the delay condition. 

Levene’s test indicated differences in precision between radius (t=20.64, 

p<0.001 in the no delay condition and t=32.94, p<0.001 in the delay 

condition) and a mixed linear model with the individual standard deviation 

as dependent variable and eccentricity as independent variable confirmed 

this impairment with eccentricity in each condition (no delay: β 

eccentricity=0.046,  z=9.93, ci=[0.037,0.055], p<0.001; delay: β 

eccentricity=0.080,  z=5.86, ci=[0.083,0.107], p<0.001). As expected, the 

precision of the responses decreased with eccentricity, probably due to 

the fact the visual resolution in the fovea is higher than in the periphery.  

Figure 41 Behavioral compression of the visual space: eccentricity-delay interaction 
A) Distribution of responses in the radial dimension for the no delay condition. Data show overall attraction 

towards fixation as well as a decrease in precision with eccentricity. B) Distribution of responses in the radial 

dimension for the delay condition. Both the decrease in precision with eccentricity and the attraction towards 

fixation are increased compared to the no delay condition. C) Quantification of the compression of the visual 

space for delay and eccentricity. The y axis represents the attraction toward the fixation point in the responses 

and the x axis the eccentricity of the targets. The small dots show the mean error in the radial dimension of 

each subject. I observed an overall attraction towards fixation and a significant interaction between delay and 

eccentricity (stats in main text). Results show an augmented compression of the visual space with delay. 
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Besides analyzing precision, I also checked for biases in the responses, as 

they could reveal topographical characteristics of the circuit. The 

distribution of responses showed a general mislocalization of the 

responses in the direction of the fixation point. For all the different 

conditions, I fitted a gaussian distribution and compared the center of the 

distribution with the actual target location. Figure 41A-C clearly show how 

this mislocalization was present for all the eccentricities in both the no 

delay and the delay condition. In Figure 41C, I quantified this attraction 

towards the fixation point as a function of both eccentricity and delay. The 

mixed linear model showed a significant interaction between eccentricity 

and delay (mixed linear model, N=18, n=3396, β intercept=-0.163, z=-0.82, 

ci=[-0.55, 0.225], p=0.412; β eccentricity=0.088, z=9.07, ci=[0.069,0.107], 

p<0.001; β delay=-0.078 , z=-1.554 , ci=[-0.177, 0.020], p=0.120; β 

eccentricity x delay=0.013, z=2.865, ci=[0.004, 0.022], p=0.004). I analyzed 

this interaction with independent mixed linear models for each delay 

condition. There was a significant effect of eccentricity for both the no-

delay and delay condition (pvalues<0.001) but the slope for the 

eccentricity for the delay condition was higher than in the no-delay 

condition (no-delay: β eccentricity=0.088, ci=[0.071, 0.105]; delay: β 

eccentricity=0.128, ci=[0.107, 0.149] ). Results show a compression of the 

visual space that gets stronger with eccentricity when the delay period is 

longer.  

I hypothesized that a network with eccentricity-dependent changes in the 

connectivity parameters could explain behavioral results. I built an 

attractor network of excitatory and inhibitory rate-model neurons, 

recurrently connected through translationally-invariant Gaussian-like 

connectivity profiles (Methods-Network model in the radial dimension). 

This network was able to maintain the memory in the form of a stable 

bump during the delay period through reverberatory activity. Based on the 

hypothesis, I modeled the radial dimension by introducing changes in the 

connectivity parameters, leading to broader connectivity profiles for 

larger eccentricities (Figure 42A). This pattern of connectivity generated 

an attraction towards highly tuned neurons (fixation point) that evolved 

with delay (Figure 42B). The model reproduced the interaction between 

eccentricity and delay observed in behavior (Figure 41C), with a stepper 

mislocalization towards fixation with eccentricity for longer delay periods. 

I then evaluated the topographical structure of the network that produced 

this drift towards fixation. I observed that the key parameter of the model 
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was the exponent that determined the change of connectivity with 

eccentricity for both populations (bX, Methods-Network model in the radial 

dimension). When this exponent was higher in the excitatory connections 

than in the inhibitory ones, I observed this mislocalization towards fixation 

that evolved with delay (Figure 42C). This attractive effect was stronger for 

further eccentricities when the difference between the exponents 

increased. Figure 42D-F show examples of simulations at different 

eccentricities to exemplify how this mislocalization towards fixation 

increases with eccentricity. Modeling analysis reproduced behavior and 

explained how the compression of the visual space evolved with delay due 

to a broadening of the connectivity profiles with eccentricity. 

Figure 42 The bump attractor model predicts the eccentricity-delay interaction in the 
compression of the visual space. 
A) Connectivity profiles for excitatory and inhibitory neurons coding for different eccentricities. Both 

profiles decay exponentially with eccentricity. B) Simulation results of the compression of the visual 

space with delay show an interaction between eccentricity and delay. Longer delays present increased 

attraction towards fixation with eccentricity (four different delay times -0s, 1s, 2s, 3s- and 9 different 

positions between 2cm and 4cm, n simulations=18000). The mechanistic explanation of this effect is 

illustrated in C) where I manipulated the exponential decay of the connectivity profile of excitatory 

neurons (simulations without noise to explore how the bE parameter was responsible for the attractive 

or repulsive evolution of the effect. 4 different positions (2cm, 3cm, 4cm and 5cm; n simulations=100 

with fixed delay of 1s). I observed that when this decay is stronger than the decay of the inhibitory 

neurons (fixed at 1.6), the compression of the visual space is present. D, E and F) Show examples of 

3000ms simulations at increasing eccentricities. I clearly observe broader bumps with larger drift 

towards fixation for the most eccentric positions (F) compared to the less eccentric (E).  
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4.2. Distractor filtering in the working    
memory circuit 
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In this chapter, I addressed goals (3), (4) and (5) through the investigation 

of how distracting information interferes with the WM content in 

behavioral, neuroimaging and electrophysiological data.  

Although a “distractor” could be literally defined as “something that 

distracts”, in this thesis distractors are defined as irrelevant information 

coexisting in the same task with the relevant information (targets). Among 

all the different domains where distractors can be manipulated (number, 

time, similarity, saliency…) I decided to explore similarity, by 

parametrically manipulating the angular distance between the target and 

the distractor; and time, by parametrically changing the time between the 

target and the distractor presentation -target-distractor onset asynchrony 

(TDOA)- and the order of appearance (target first or distractor first). I 

studied (3) the behavioral effects of this manipulations as well as their 

neural correlates in BOLD signal. These results are also related to the SRT 

by interpreting if the observed reconstructions using IEMs are compatible 

with this theory or if, alternatively, they support WM maintenance in 

frontal regions. Goal (3) is mainly explored in the sections Distractor 

filtering: TDOA and order effects and Target and distractor reconstruction 

from BOLD signal. 

The manipulation of distance, order and TDOA allowed me to explore 

different mechanisms for distractor filtering using the bump attractor 

model (4). I approached this on two fronts. For one, I simulated explicitly 

the utilized vsWM task and developed a control mechanism based on 

excitability control. Secondly, I analyzed the behavioral and the 

electrophysiological results of Qi et al. (2021) and developed a control 

mechanism based on neuromodulatory control. Goal (4) is mainly 

explored in the sections Mechanistic explanation for distractor filtering 

and Distractor filtering under NB stimulation. 

The developed computational models to explain distractor filtering had 

some predictions that could be tested in neural activity (5). This final goal 

was addressed by analyzing neural recordings in two different datasets 

(Methods-Electrophysiology, Dataset 2, and Dataset 3) and it is presented 

in the sections Distractor filtering: electrophysiology and Distractor 

filtering under NB stimulation.  
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Distractor filtering: TDOA and order effects 

 

In this section, I developed a vsWM task where participants had to 

remember the spatial location of three stimuli during a delay period of 12s 

while ignoring distracting information (Figure 43). Distractors were 

parametrically modulated in time (order & TDOA) and similarity (angular 

distance target-distractor). Further details of the task can be found in 

Methods-Paradigms and analysis. Regarding the temporal domain, the 

task had 4 different conditions: order 1-short TDOA, order 1-long TDOA, 

order 2-short TDOA and order 2-long TDOA. Regarding the similarity 

domain, although the distance between targets and distractors was 

parametrically modulated, I will present the results in close trials 

(distractor in the same quadrant) and far trials (distractor in another 

quadrant).   

Figure 43 vsWM & distractor filtering task 
Schematic view of a trial. Participants had to fixate at the center of the screen to start the trial. The 
fixation point consisted in 4 empty squares. Then, a cue indicating the order appeared (1: order 1, 
participants had to remember the first set of stimuli. 2: order 2, participants had to remember the 
second set of stimuli. TDOA was also manipulated (short TDOA=0.2s and long TODA=7s). In all four 
conditions (order 1 TDOA=0.2, order 1 TDOA=7, order 2 TDOA=0.2, order 2 TDOA=7) participants 
remembered the relevant information for 12s. The spatial distance between targets and distractors 
was also controlled. One distractor was located 10-20° away from the target in the same quadrant 
(close). Another was located 20-30° away from the target in the same quadrant (close). The last one 
was located 40-180° away from the target in a different quadrant (far). At the end of the delay period, 
one of the for squares of the fixation point turned yellow, indicating subjects had to report the location 
of the target that appeared in that quadrant. To report the exact location, subjects had to adjust a 
yellow bar that randomly appeared at one of the adjacent vertical or horizontal axis. More details in 
Methods-Paradigms and analysis. 
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I first investigated if distractor had an effect in the precision of the final 

reports depending on the temporal condition (order-TDOA). To do so, I 

calculated the angular error (target-response) in each condition and 

calculated both the mean and the standard deviation of the error 

distributions (Figure 44). Distractors were presented cw to the target in 

half of the trials and ccw to the target in the other half, so no systematic 

bias in the mean of the distributions was observed (paired ANOVA: n=26, 

independent variable: angular error, dependent variable: temporal 

conditions (order x TDOA), F=0.17, p=0.92). When checking the precision 

however, I observed a significant effect of the condition (Levene’s test: 

W=4.66, p=0.003). Precisely, this difference came from the condition order 

1 – TDOA short, which showed larger variance compared to the other 

Figure 44 Distribution of errors per condition 
Distribution of errors in all four temporal conditions (order 1-2 x TDOA 0.2-7s). Top row shows the 

distribution of errors in order 1 conditions (target presented before distractor) and the second row shows 

the distribution of errors in order 2 conditions (distractor presented before the target). Short TDOA 

conditions (0.2s) are represented in blue while long TDOA conditions (7s) are represented in red. I fitted a 

gaussian kernel for each distribution and calculated the mean and the standard deviation. Order 1 – TDOA 

short presented the larger variance. 
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conditions (Levene’s test order 1-TODA long: W=6.61, p=0.01; order 2-

TODA short: W=5.44, p=0.02; order 2-TODA long: W=12.95, p<0.001). 

Analyzing the absolute error with a mixed linear model provided 

analogous results (Figure 45), being again the order 1 – TDOA short the 

condition with larger error compared to the others (mixed linear model 

with random intercept per subject, N=27, n=6362, with the condition 

order 1 – TDOA 0.2  in the intercept: β order 1 – TDOA 7  =-0.513 , z=-2.503 

, ci=[-0.914, -0.111] , p=0.012; β order 2 – TDOA 0.2 =-0.420 , z=-2.044 , 

ci=[-0.823, -0.017] , p=0.041; β order 2 – TDOA 7  =-0.718 , z=-3.526 , ci=[-

1.118, -0.319] , p<0.001). The analysis of precision showed distractors had 

a differential impact when manipulating the temporal domain, being the 

order 1 – TDOA short condition the most distracting one.  

 

Then, I investigated if distractors interfered with the targets differently 

depending on the spatial distance separating them. At this point, it is 

important to remind that this dataset is a combination of two, as the initial 

dataset was obtained by running the paradigm in the laboratory facility for 

psychophysical experiments (n=4475, N=21) and the other dataset was 

posteriorly obtained from running the paradigm inside the scanner 

(n=1887, N=6). In the first dataset, I parametrically modulated the 

separation in three different regimes (10-20° in the same quadrant, 20-30° 

in the same quadrant and 40-180° in a different quadrant). I then 

calculated the direction of the interference (attractive: responses are 

biased in the direction of the distractor, repulsive: responses are biased in 

the opposite direction of the distractor) in each regime (Figure 46) and 

observed attraction for the regimes of distraction in the same quadrant 

Figure 45 Absolute error per 
condition 
Absolute errors in all four temporal 

conditions (order 1-2 x TDOA 0.2-7s). 

Each point is the mean absolute error 

of each subject (N=27). The box shows 

the population mean and the sem. 

Larger absolute errors were observed 

in the Order 1 – TDOA short. 
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(close trials: 10-20° and 20-30°) and repulsion for the regime of distraction 

in a different quadrant. A mixed linear model with the attraction towards 

the distractor as dependent variable and the three different regimes as 

independent variable (10-20° regime in the intercept, N=21, n=4475) 

showed a small increase of attraction in the 20-30° regime (β 20-30°=0.407 

, z=1.991, ci=[0.006, 0.809] , p=0.05) and a strong difference with the 40-

180° regime (β 40-180°=-4.099 , z=-21.345, ci=[-4.475, -3.722] , p<0.001). 

Based on these results, when I posteriorly ran the same task inside the 

scanner, the intermediate regime was eliminated used (scanner: 10-20° in 

the same quadrant and 40-180° in a different quadrant). In sum, 

distractors interfered in an attractive way when the distractor was located 

close to the target and in a repulsive way when they were located far away. 

 

When I ran a mixed model with order, TDOA and distance as regressors, I 

observed significant interactions between distance-order and distance-

TDOA (mixed linear model with random intercept per subject, N=27, 

n=3920,  β intercept= 3.627, z=8.474, ci=[2.788, 4.466], p<0.001; β 

distance= -5.782, z=-8.945, ci=[-7.049, -4.515], p<0.001; β order=-0.882, 

z=-3.477, ci=[-1.379, -0.385], p=0.001; β TDOA=-0.222, z=-2.758, ci=[-

0.379, -0.064], p=0.006; β distancexorder=1.221, z=2.988, ci=[0.420, 

2.021], p=0.003); β distancexTDOA=0.447, z=3.452, ci=[0.193, 0.701], 

p=0.001); β orderxTDOA=0.081, z=1.608, ci=[-0.018, 0.181], p=0.108); β 

Figure 46 Attractive interference for close distractors and repulsive for distant ones  
A) Distribution of interference towards the distractor in 4475 trials. Box showing the mean and the 

95% ci. B) Same as A, but each point is the mean interference towards the distractor per subject. 

Attractive interference is observed for 10-20° and 20-30° distances (“close trials”: inside the same 

quadrant) and repulsive interference is observed for 40-180° distances (“far trials”: outside the 

quadrant). 
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distancexorderxTDOA=-0.127, z=-1.559, ci=[-0.288, 0.033], p=0.119), 

indicating I should differentiate between close and far trials to correctly 

evaluate the different temporal conditions (order 1-short TDOA, order 1-

long TDOA, order 2-short TDOA and order 2-long TDOA). Figure 47A shows 

interference towards the distractor for close trials (distracted in the same 

quadrant) while Figure 47B does it for far trials (distracted in a different 

quadrant). For close trials, I observed an effect of order, where presenting 

the distractor after the target (order 1) had larger attractive interference 

than presenting it before target presentation (order 2). I also effect an 

effect of TDOA, where short time (0.2s) between the target and the 

distractor had larger attractive effects than longer times (7s). A linear 

mixed model showed a trend towards and interaction order-TDOA, where 

the effect of TDOA is more noticeable in the order 1 condition (mixed 

linear model with random intercept per subject, N=27, n=3920,  β 

intercept= 3.528, z=6.285, ci=[2.428, 4.628], p<0.001; β order=-0.849, z=-

3.725, ci=[-1.295, -0.402], p<0.001; β TDOA=-0.216, z=-2.985, ci=[-0.357 -

0.074], p=0.003; β orderxTDOA=0.083, z=1.831, ci=[-0.006, 0.173], 

p=0.067). For far trials, I observed and effect of TDOA, where short time 

(0.2s) between the target and the distractor had larger repulsive effects 

than longer times (7s). I did not observe any difference in order nor in the 

interaction order-TDOA (mixed linear model with random intercept per 

subject, N=27, n=2442,  β intercept= -2.357, z=-3.456, ci=[-3.694, -1.020], 

Figure 47 Interference effects towards distractors for distance, order and TDOA 
A) Overall attractive interference toward the distractor for close trials. The box shows the population 

mean and the 95% ci. Each dot is the mean of a subject (n=27). Effect of order (larger attraction in 

order 1) and effect of TDOA (larger attraction for short TDOAs). Trend in the interaction order-TDOA 

(p=0.067) B) Overall repulsive interference against the distractor for far trials. Effect of TDOA, with 

larger repulsion for short TDOAs. 
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p=0.001; β order=0.359, z=1.181, ci=[-0.237, 0.955], p=0.238;  β 

TDOA=0.204, z=2.118, ci=[0.015, 0.393], p=0.034; β orderxTDOA=-0.048, 

z=-0.795, ci=[-0.168, 0.071], p=0.427). 

Figure 48 shows the effects of order and TDOA in all datasets, connecting 

the mean of each subject. Figure 48A-B shows the average of the datasets 

(same as in Figure 47), Figure 48C-D shows the results in the dataset 

obtained in the laboratory facility for psychophysical experiments 

(n=4475, N=21), and Figure 48E-F shows the results in the dataset 

obtained inside the scanner (n=1887, N=6).  In both datasets, analyzing the 

results differently for close and far trials was justified after running a mixed 

linear model with distance, TDOA and order as regressors and observing 

significant effects in the interactions of distance with either order or TD0A 

(mixed model laboratory facility: N=21, n=4475,  β TDOAxdistance= 0.321, 

z=2.034, ci=[0.012, 0.630], p=0.042; β orderxdistance= 0.681, z=1.358, 

ci=[-0.302, 1.664], p=0.174; mixed model scanner: N=6, n=1887, β 

TDOAxdistance=0.799, z=3.544, ci=[0.357, 1.241], p<0.001; β 

orderxdistance= 2.027, z=2.908, ci=[0.661, 3.393], p=0.004). 

In the dataset obtained in the laboratory facility, I observed attractive 

interference and significant effects of order and TDOA, but no interaction 

for the close trials (mixed linear model with random intercept per subject, 

N=21, n=2981,  β intercept= 3.972, z=6.079, ci=[2.691, 5.252], p<0.001; β 

order=-0.911, z=-3.534, ci=[-1.417, -0.406], p<0.001; β TDOA=-0.168, z=-

2.076, ci=[-0.327, -0.009], p=0.038; β orderxTDOA =0.052, z=1.024, ci=[-

0.048, 0.153], p=0.306). For the far trials, I observed repulsive interference 

and significant effect of TDOA once the no-significant interaction TDOA-

order (β orderxTDOA =0.074, z=0.951, ci=[-0.078, 0.227], p=0.341) is 

removed from the model (mixed linear model with random intercept per 

subject, N=21, n=1494,  β intercept= -2.467, z=-3.465, ci=[-3.862, -1.071], 

p=0.001; β order=-0.019, z=-0.072, ci=[-0.537, 0.499], p=0.942; β 

TDOA=0.182, z=4.637, ci=[0.105, 0.259], p<0.001). In the dataset obtained 

in the scanner, I observed attractive interference and significant effects of 

order and a trend for the interaction order-TDOA for the close trials (mixed 

linear model with random intercept per subject, N=6, n=939,  β intercept= 

2.028, z=2.158, ci=[0.186, 3.870], p=0.031; β order=-0.664, z=-1.375, ci=[-

1.610, 0.283], p=0.169; β TDOA=-0.387, z=-2.453, ci=[-0.696, -0.078], 

p=0.014; β orderxTDOA =0.192, z=1.946, ci=[-0.001, 0.385], p=0.052). For 

the far trials, I observed significant effects of order, TDOA and the 
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interaction (mixed linear model with random intercept per subject, N=6, 

n=948,  β intercept= -1.928, z=-1.981, ci=[-3.834, -0.021], p=0.048; β 

order=1.362, z=2.829, ci=[0.419, 2.306], p=0.005; β TDOA=0.410, z=2.653, 

ci=[0.107, 0.713], p=0.008); β orderxTDOA=-0.238, z=-2.438, ci=[-0.430, -

0.047], p=0.015).  

Figure 48 Behavioral effects in all the experimental settings (combined, laboratory and scanner) 
A) Behavioral results in close trials. The plot is the combination of two datasets (dataset 1: obtained in the 

laboratory facility for psychophysical experiments, dataset 2: obtained inside the scanner). The box shows the 

mean interference and the 95% ci. Each point is the mean interference of each subject. The grey line connects 

the behavior of the same subject in each order condition. B) Behavioral results in the far trials (combination of 

both datasets). C) Behavioral results in the close trials for the dataset 1 (laboratory facility for psychophysical 

experiments). D) Behavioral results in the far trials for the dataset 1. E) Behavioral results in the close trials for 

the dataset 2 (inside the scanner). F) Behavioral results in the far trials for the dataset 2.  
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Target and distractor reconstruction from BOLD signal 

 

In this section, I used an inverted encoding model (IEM) to generate 

model-based reconstructions of both the remembered (target) and 

ignored (distractor) angles from the BOLD signal patters in visual, parietal, 

and frontal areas. The visual area was defined by combining and atlas with 

retinotopy procedures while parietal and frontal areas were defined by 

combining and atlas with a localizer task (detailed description of the model 

and ROIs definition in Methods-MRI). I decided to evaluate the strength of 

the reconstructions in these three regions based on previous studies (Ester 

et al., 2015; Rademaker et al., 2019; Serences, 2016; Sprague et al., 2014).  

 

Target reconstruction 

I first focused on reconstructing the remembered angle during the delay 

period of each of the four temporal conditions (order 1-short TDOA, order 

1-long TDOA, order 2-short TDOA and order 2-long TDOA). Figure 49A 

show a schematic view of all the temporal conditions of the task (Figure 

Figure 49 Schematic view of the vsWM task periods 
A) Schematic view of all four temporal conditions of the vsWM task. From top to bottom: order 1- 

TDOA=0.2s; order 2-TDOA=0.2s; order 1-TDOA=7s and order2-TDOA=7s). In all the conditions, the 

delay period after the target presentation was of 12s. To avoid confusion, the second delay of the 

condition order 2-TDOA=7s appears broken, as its duration was 12s. B) Training protocols. When 

reconstructing the target, the IEM was trained in the first delay period of the condition order 1-

TDOA=7s (target delay period) and it was tested in all the other conditions (cross-validating) When 

reconstructing the distractor, the IEM was trained in the first delay period of the condition order 2-

TDOA=7s (distractor delay period) and it was tested in all the other conditions (cross-validating). 
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43). As fMRI has a low temporal resolution compared to other 

neuroimaging techniques (electrophysiology, EEG), I could not evaluate 

the reconstruction of the remembered angle in the TDOA of the TDOA-

short conditions (Figure 49A, top two rows). On the other hand, a long 

TDOA of 7s was used to evaluate the reconstruction in this period (Figure 

49A, bottom two rows). I was interested in evaluating the reconstructions 

under two different training protocols (Figure 49B): training in the target 

delay period (first delay of the condition order 1-long TDOA) and training 

in the distractor delay period (first delay of the condition order 2-long 

TDOA). I decided to use these periods for training as they were the only 

ones where either the target or the distractor were presented with no 

concomitant information. By doing so, I was able to evaluate the existence 

of a shared code for the target and the distractor in different regions of 

the cortex. 

When training in the target delay period I could systematically reconstruct 

the remembered angle during the delay period in all four temporal 

conditions in visual, parietal, and frontal areas. Figure 50A shows the 

average reconstruction strength (decoding) during the delay period in 

each condition. For the condition order 1-TDOA=0.2s, I averaged the TRs 

comprising the delay period following the distractor presentation until the 

response time (Figure 49A, top row, delay). For the condition order 2-

TDOA=0.2s, I averaged the TRs comprising the delay period following the 

target presentation until the response time (Figure 49A, second row, 

delay). For the condition order 1-TDOA=7s, I averaged the TRs comprising 

the delay period following the target presentation until the distractor 

presentation (Figure 49A, third row, first delay). For the condition order 2-

TDOA=7s, I averaged the TRs comprising the delay period following the 

target presentation until the response presentation (Figure 49A, bottom 

row, second delay). Decoding was evaluated individually for each subject 

and its value is the difference between the reconstruction of the 

remembered angles with the reconstruction of no information (Methods-

MRI). Significance was tested independently for each subject using 

permutation tests.  
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In visual (Figure 50A, left), when decoding the target training in the target 

delay period, I observed a significant reconstruction of the angle in the 

delay period of three out of the four conditions (order 1-short TDOA 

(t=3.415, p=0.002), order 1-long TDOA (t=3.822, p=0.002), order 2-short 

TDOA (t=3.91, p<0.001), order 2-long TDOA (t=1.637, p=0.115). In parietal 

(Figure 50A, middle), when decoding the target training in the target delay 

period, I observed a significant reconstruction of the angle in the delay 

period of all four conditions (order 1-short TDOA (t=4.695, p<0.001), order 

1-long TDOA (t=9.422, p=<0.001),  order 2-short TDOA (t=5.382, p<0.001), 

order 2-long TDOA (t=5.218, p<0.001). In frontal (Figure 50A, right), when 

decoding the target training in the target delay period, I observed 

significant reconstruction of the angle in the delay period of all four 

conditions (order 1-short TDOA (t=5.078, p<0.001), order 1-long TDOA 

(t=6.170, p=<0.001),  order 2-short TDOA (t=4.864, p<0.001), order 2-long 

TDOA (t=5.029, p<0.001). 

When training in the distractor delay period I could just systematically 

reconstruct the remembered angle during the delay period in frontal 

areas, and not in visual and parietal (Figure 50B). In visual (Figure 50B, left), 

when decoding the target training in the distractor delay period, I did not 

observe significant reconstruction of the angle in the delay period of any 

of all four conditions (order 1-short TDOA (t=0.459, p=0.650), order 1-long 

Figure 50 Target decoding based on training paradigm 
A) Decoding of the target in all four temporal conditions in visual, parietal, and frontal areas when training 

the IEM in the target delay period. The box shows the mean decoding and the 95% ci. Each dot is the mean 

decoding of each subject. When training in the target delay period, the target could systematically be 

reconstructed in all the regions and all the conditions. The condition where the target was presented with 

no concomitant information (order 1-TDOA=7) presented higher decoding values. B) Decoding of the target 

in all four temporal conditions when training the IEM in the distractor delay period. Just frontal areas allow 

training in the distractor delay period to systematically reconstruct the target.  
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TDOA (t=1.275, p=0.228), order 2-short TDOA (t=0.882, p=0.387),  order 2-

long TDOA (t=0.767, p=0.451). In parietal (Figure 50B, middle), when 

decoding the target training in the distractor delay period, I did not 

observe significant reconstruction of the angle in the delay period of any 

of all four conditions order 1-short TDOA (t=1.432, p=0.166),  order 1-long 

TDOA (t=-0.19, p=0.852), order 2-short TDOA (t=0.751, p=0.460),  order 2-

long TDOA (t=0.093, p=0.926). In frontal  (Figure 50B, right), when 

decoding the target training in the distractor delay period, I observed 

significant reconstruction of the angle in the delay period of all four 

conditions (order 1-short TDOA (t=2.824, p=0.009), order 1-long TDOA 

(t=2.846, p=0.016), order 2-short TDOA (t=3.889, p<0.001), order 2-long 

TDOA (t=3.04, p=0.005).  

Figure 51 Time evolution of target decoding when training in the target delay period 
Target decoding in all four temporal conditions when training in the target delay period. Boxes 

represent the different events: grey box represent the presentation of the target; the red box 

represents the presentation of the distractor and the yellow box the response time. All the events 

consider a 4s delay due to the hemodynamic response and present a window of 3s to correct for 

individual variability. The three lines show the mean decoding of the six participants with a 95% ci in 

the three ROIs (visual, parietal, and frontal areas).   
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Despite the low temporal resolution of fMRI, I could still analyze the 

temporal evolution of the decoding in each condition. I used a fixed TR of 

2.335s, meaning each recording is spaced by this period. Figure 51 shows 

the decoding of the target when training in the target delay period. For all 

conditions, the decoding is higher during the first interval of the delay, 

which is consistent with the training protocol (first delay of order 1 – long 

TDOA). The figure shows the mean decoding of all six participants in the 

three regions of interest, with a 95% ci. As the measure of decoding is the 

difference between the reconstruction of the remembered angles with the 

reconstruction of no information (Methods-MRI), just positive significant 

positive values indicate a positive reconstruction. Results show the 

remembered angles can be reconstructed in all three regions, peaking at 

the beginning of the delay period and slowly decaying as the delay evolves. 

Extended results regarding the percentage of significant TRs during the 

delay period in each subject can be found in Table 1-Table 4. Results of 

Figure 51 are extended in Figure 52 and Figure 53. Figure 52 shows the 

time evolution of the decoding in each participant for the order 1 

condition. On the other hand, Figure 53 shows it for the order 2 condition. 

The size of the dots represent the number of subjects that presented 

significant decoding in that specific TR, using a permutation test. For both 

the order 1 and order 2 conditions, subjects presented similar patterns, all 

presenting the peak of decoding at the beginning of the delay period. 

 

training target visual parietal frontal 

s1 100% 100% 100% 

s2 75% 75% 75% 

s3 50% 50% 75% 

s4 75% 100% 100% 

s5 25% 50% 25% 

s6 75% 75% 75% 

training distractor visual parietal frontal 

s1 0% 50% 50% 

s2 100% 50% 75% 

s3 0% 75% 50% 

s4 25% 25% 75% 

s5 100% 50% 75% 

s6 75% 75% 75% 

Table 1 Decoding target order 1 - short TDOA 
Decoding of target information training in the target and the distractor delay period in the 
condition order 1 -short TDOA. Percentage of significant TRs in each subject during the 
delay period using a permutation test. 
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training target visual parietal frontal 

s1 50% 100% 100% 

s2 100% 100% 100% 

s3 100% 100% 100% 

s4 100% 100% 100% 

s5 100% 100% 50% 

s6 50% 100% 100% 

training distractor visual parietal frontal 

s1 0% 100% 50% 
s2 50% 50% 50% 
s3 50% 0% 100% 
s4 0% 50% 100% 
s5 50% 0% 50% 
s6 100% 50% 50% 

Table 2 Decoding target order 1 - long TDOA 
Decoding of target information training in the target and the distractor delay period in the 
condition order 1 -long TDOA. Percentage of significant TRs in each subject during the delay 
period using a permutation test. 

 

 

 

training target visual parietal frontal 

s1 100% 100% 75% 
s2 75% 50% 100% 
s3 75% 75% 75% 
s4 100% 100% 100% 
s5 25% 75% 50% 
s6 50% 100% 75% 

training distractor visual parietal frontal 

s1 25% 50% 50% 
s2 25% 50% 50% 
s3 25% 75% 50% 
s4 75% 0% 100% 
s5 0% 50% 75% 
s6 75% 50% 75% 

Table 3 Decoding target order 2 -short TDOA 
Decoding of target information training in the target and the distractor delay period in the 
condition order 2 -short TDOA. Percentage of significant TRs in each subject during the 
delay period using a permutation test. 
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training target visual parietal frontal 

s1 25% 50% 75% 
s2 50% 100% 100% 
s3 100% 50% 50% 
s4 75% 100% 100% 
s5 50% 100% 75% 
s6 100% 100% 100% 

training distractor visual parietal frontal 

s1 100% 50% 50% 
s2 50% 0% 100% 
s3 25% 50% 50% 
s4 0% 50% 25% 
s5 50% 0% 50% 
s6 100% 50% 75% 

Table 4 Decoding target order 2 -long TDOA 
Decoding of target information training in the target and the distractor delay period in the 
condition order 2 -long TDOA. Percentage of significant TRs in each subject during the delay 
period using a permutation test. 

 

The use of IEM allowed me to evaluate whether the pattern of BOLD signal 

associated with WM maintenance was consistent with a dynamic coding 

of WM or, alternatively, with a stable coding (Barbosa, 2017; Spaak et al., 

2017). While a dynamic coding of WM would suggest different BOLD 

patterns from trial to trial and across temporal conditions, a stable coding 

would suggest a shared pattern of BOLD signal associated with memory 

maintenance. As the IEM was trained in a specific period of just one of the 

temporal conditions (first delay or order 1-long TDOA), the results 

presented in Figure 50A and Figure 51 suggest a stable coding for WM 

maintenance, as the pattern of BOLD signal of one condition successfully 

decode the remembered angles in other temporal conditions. Besides 

studying the stability of WM content, I could also inspect whether the 

patterns of BOLD signal during the delay could be used to reconstruct the 

remembered angles during other intervals of the task. Figure 52 and Figure 

53 showed that decoding was mostly restricted to the delay period, so 

training in the BOLD signal of the delay period was not useful to 

reconstruct the remembered angles during neither the stimulus 

presentation nor the response time.  
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Figure 52 Individual target decoding in order 1 when training in the target delay period 
Target decoding in order 1 conditions. Small linewidth lines show the individual decoding, and the 

large linewidth line shows the mean of them with 95% ci. Boxes represent the different events: grey 

box represent the presentation of the target; the red box represents the presentation of the 

distractor and the yellow box the response time. The dots on top of the TRs shows the number of 

subjects with significant decoding. The size of the dot linearly increases with the number of subjects 

with significant decoding (permutation test, α=0.05). 
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Figure 53 Individual target decoding in order 2 when training in the target delay period 
Target decoding in order 2 conditions. Small linewidth lines show the individual decoding, and the large 

linewidth line shows the mean of them with 95% ci. Boxes represent the different events: grey box 

represent the presentation of the target; the red box represents the presentation of the distractor and 

the yellow box the response time. The dots on top of the TRs shows the number of subjects with 

significant decoding. The size of the dot linearly increases with the number of subjects with significant 

decoding (permutation test, α=0.05). 
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Then, I also analyzed the time evolution of target decoding when training 

in the distractor delay period (first delay of order 2 – long TDOA). Figure 

50B showed just frontal regions could decode the target under this 

training protocol, especially in the short TDOAs conditions. Figure 54 

shows the mean decoding of all six participants in the three regions of 

interest, with a 95% ci. While visual and parietal did not present significant 

decoding during the delay period following the target presentation, frontal 

regions did it, again showing the better reconstruction in the initial TRs of 

the delay period.  

I observed significant decoding for the target before it is presented in the 

condition order2-long TDOA. As the training-testing protocol controlled 

for any possible contamination even within the same running session (I 

Figure 54 Time evolution of target decoding when training in the distractor delay period 
Target decoding in all four temporal conditions when training in the distractor delay period. Boxes 

represent the different events: grey box represent the presentation of the target; the red box represents 

the presentation of the distractor and the yellow box the response time. All the events consider a 4s 

delay due to the hemodynamic response and present a window of 3s to correct for individual variability. 

The three lines show the mean decoding of the six participants with a 95% ci in the three ROIs (visual, 

parietal, and frontal areas).   
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tested in different scan sessions than the trained ones), I interpreted this 

signal as an anticipation of the position of the target combined with a low 

spatial resolution of the IEM. Anticipating the approximate position of the 

target stimulus that I would later try to decode was easy in this specific 

trial type, as stimuli were always presented in three different quadrants 

and, after the presentation of the distractors, the remaining quadrant 

without stimulus after the presentation of the distractors would always 

present one of the targets. Although it would only be the one the 

participants had to report one third of the times, the target presented 

alone is the one I try to decode in this analysis (to avoid confounding the 

decoding of the target with the decoding of the distractor).  

Both the results of the reconstruction of the target during the delay period 

in each condition (Figure 50) and the time evolution of this decoding under 

different training protocols (Figure 51 and Figure 54) illustrate a clear 

difference between frontal areas and visual or parietal. While 

reconstructing the remember angle in frontal regions was independent of 

the training protocol, in visual and parietal regions, the reconstruction was 

only possible when training in the target delay period. Figure 55 shows the 

mean decoding of the target during the delay period following the target 

presentation depending on the training protocol (visual: t=3.25, p=0.001; 

parietal: t=7.11, p<0.001; frontal: t=1.42, p=0.16). As opposed to Figure 

50, it averages the TRs of the different temporal conditions because, as 

observed in the time evolution of the decoding, barely any difference is 

observed in the dynamics after the target presentation.  

 

 

Figure 55 Frontal areas can decode 
the target independently of the 
training protocol. 
Decoding of the target in visual, 

parietal, and frontal areas when 

training the IEM either in the target 

delay period or in the distractor delay 

period. The box shows the mean 

decoding of all six subjects and the 95% 

ci. Each dot is the mean decoding of 

each subject during the delay period 

following the target presentation.  
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Distractor reconstruction 

In the previous sub-section, I presented the results of trying to reconstruct 

the remembered relevant information for the task (target). In this section, 

I show the results of reconstructing the irrelevant information 

(distractors). I present both the time evolution of the reconstructions and 

the mean decoding in the delay periods following the distractor 

presentation. In this last scenario, I take different times depending on the 

condition: for order 1-TDOA=0.2s, I averaged the TRs comprising the delay 

period following the distractor presentation until the response time 

(Figure 49A, top row, delay). For the condition order 2-TDOA=0.2s, I 

averaged the TRs comprising the delay period following the target 

presentation until the response time (Figure 49A, second row, delay). For 

the condition order 1-TDOA=7s, I averaged the TRs comprising the delay 

Figure 56 Time evolution of distractor decoding when training in the target delay period  
Distractor decoding in all four temporal conditions when training in the target delay period. Boxes 

represent the different events: grey box represent the presentation of the target; the red box 

represents the presentation of the distractor and the yellow box the response time. All the events 

consider a 4s delay due to the hemodynamic response and present a window of 3s to correct for 

individual variability. The three lines show the mean decoding of the six participants with a 95% ci in 

the three ROIs (visual, parietal, and frontal areas).  
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period following the distractor presentation until the response 

presentation (Figure 49A, third row, second delay). For the condition order 

2-TDOA=7s, I averaged the TRs comprising the delay period following the 

distractor presentation until the target presentation (Figure 49A, bottom 

row, first delay). Decoding was evaluated individually for each subject and 

its value was the difference between the reconstruction of the irrelevant 

angles (distractors) with the reconstruction of no information (Methods-

MRI). Significance was tested independently for each subject using 

permutation tests.  

 

 

Figure 57 Time evolution of distractor decoding when training in the distractor delay period  
Distractor decoding in all four temporal conditions when training in the distractor delay period. Boxes 

represent the different events: grey box represent the presentation of the target; the red box 

represents the presentation of the distractor and the yellow box the response time. All the events 

consider a 4s delay due to the hemodynamic response and present a window of 3s to correct for 

individual variability. The three lines show the mean decoding of the six participants with a 95% ci in 

the three ROIs (visual, parietal, and frontal areas).  
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Although distractors are irrelevant information that should be ignored, 

results clearly show that they can be decoded form different regions, so 

they are not filtered out at some stage of the processing. While Figure 56 

show the time evolution of the decoding of the distractor when training in 

the target delay period (first delay of order 1 – long TDOA), Figure 57 

shows the same time evolution but for the other training protocol: training 

in the distractor delay period (first delay of order 2 – long TDOA).  

The results of the previous section showed that the studied visual and 

parietal areas could not reconstruct the angles of the remembered 

information when training the IEM in the distractor delay period (Figure 

55). This result opened two different hypotheses to explain this lack of 

decoding: first, maybe visual and parietal regions present two different 

patterns of BOLD signal (one for the target and one for the distractor). 

Second, maybe visual and parietal decoding rely on sensory strength and 

training the IEM in relevant information works better than training it in 

irrelevant information due to attentional-related modulations of sensory 

cortices (Busse et al., 2008; Hembrook-Short et al., 2017). According to the 

first hypothesis, as two different patterns of BOLD signal exist (one for the 

target and one for the distractor), decoding the distractor training in the 

distractor delay period would give a better reconstruction than decoding 

the distractor training in the target delay period. According to the second 

hypothesis, however, decoding the distractor training in the distractor 

delay period would give worse reconstruction, as the IEM would be better 

trained in a condition where the sensory cortices had not received an 

attenuated modulation (target delay period). Comparing the time 

evolution of distractor decoding under the two different training protocols 

(Figure 56 and Figure 57) and the average decoding during the delay 

Figure 58 Distractor decoding at 
different training protocols. 
Decoding of the distractor in visual, 

parietal, and frontal areas when training 

the IEM either in the target delay period 

and the distractor delay period. The box 

shows the mean decoding of all six 

subjects and the 95% ci. Each dot is the 

mean decoding of each subject during 

the delay period following the distractor 

presentation.  
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period following the distractor presentation (Figure 58), visual and parietal 

regions present better decoding of the distractor when training the model 

in the target delay period than when training in the distractor delay period 

(visual: t=2.29, p=0.02; parietal: t=3.25, p=0.001). No significant difference 

is observed in frontal (frontal: t=-1.19, p=0.23). Therefore, results support 

the second hypothesis, suggesting visual and parietal cortices decoding 

depends on the sensory strength of the stimulus as opposed of holding a 

different pattern of BOLD signal for the target and the distractor. 

 

Behavioral effects in BOLD signal: attraction-repulsion 

Due to the distributed nature of WM (Christophel et al., 2017), I could 

reconstruct the angles for remembered stimuli in all the regions (Figure 

50A). However, these regions may be reflecting some redundant stage of 

the maintenance process, with no influence on the final response. To 

address it, I looked for correlations between the actual behavior and the 

decoding of both the target and the distractor in different regions. 

 

Figure 59 cw-ccw distributions for close and far trial in the scanner dataset 
A) Distribution of errors in close trials for clockwise (cw) and counterclockwise (ccw) distractors. A 

significant difference between the distributions with attractive effect was observed for close trials 

(mixed linear model, N=6, n=939, β intercept= 0.507, z=0.559, ci= [-1.271, 2.285], p=0.576; β cw-ccw=-

1.444, z=-2.203, ci=[-2.730, -0.159], p=0.028). B) Distribution of errors in far trials cw and ccw 

distractors. No significant difference between the distributions was observed (mixed model, N=6, 

n=948, β intercept= -0.428, z=-0.515, ci= [-2.059, 1.202], p=0.607; β cw-ccw=-0.479, z=-0.733, ci=[-

1.759, 0.801], p=0.463). 
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One of the main behavioral effects I observed was the difference in the 

interference pattern depending on the distance between the target and 

the distractor (Figure 47). In close trials -distractor located in the same 

quadrant as the target- I observed an attractive effect (response biased 

towards the distractor) while in far trials -distractor located in a different 

quadrant - I observed a repulsive effect (response biased away of the 

distractor). However, when looking at the distribution of errors of cw and 

ccw trials in the dataset obtained in the scanner (Figure 59), just the 

attractive effect in the close trials (significant separation between the cw 

and ccw distributions, p=0.028) was observed.  

  

Figure 60 Distribution of reconstructed angles for cw and ccw distractors 
A) Distribution of reconstructed angles during the delay period of the close trials. For each distribution, 

the approximate number of trials was 1887*7 (TRs of the delay period) / 4 (close-far split x cw-ccw 

split). Significant differences between the cw and the ccw distributions were detected in all three 

regions (visual: t=8.80, p<0.001; parietal: t=8.03, p<0.001; frontal: t=5.56, p<0.001). B) Distribution of 

reconstructed angles during the delay period of the far trials. No difference between the cw and the 

ccw distributions were detected in any of the three regions (visual: t=-0.59, p=0.55; parietal: t=0.53, 

p=0.59; frontal: t=0.36, p=0.71). 
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When I used the IEM to reconstruct the remembered angle from BOLD 

signal from both close and far trials (Methods-MRI) and plotted their 

distributions depending on whether they had a cw or a ccw distractor, a 

separation between cw and ccw trials was observed in all three regions for 

close trials (Figure 60A) and no difference was observed for far trials 

(Figure 60B), consistent with the previously presented distribution of 

behavioral errors.     

 

Behavioral effects in BOLD signal: TDOA  

The lack of differences between regions in the previous analysis may 

reflect either interference that starts at early stages of the processing that 

propagates higher up in the hierarchy, top-down feedback, or resolution 

problems where the distractor was confounded with the target in close 

trials. For that, I looked for correlations between behavior at the different 

temporal conditions in the far trials and the decoding of both the target 

and the distractor in different regions. Figure 48E-F showed the results for 

both close and far trials of the dataset obtained in the scanner. In both 

scenarios, I observed a TDOA effect, with higher interference for the short 

TDOA trials (close trials: β TDOA=-0.387, z=-2.453, ci=[-0.696, -0.078], 

p=0.014; far trials:; β TDOA=0.410, z=2.653, ci=[0.107, 0.713], p=0.008). As 

the decoding procedure tried to decode the isolated stimulus, I focused on 

far trials (Figure 48F). The mixed model in this condition revealed an 

interaction order-TDOA (β orderxTDOA=-0.238, z=-2.438, ci=[-0.430, -

0.047], p=0.015). The subsequent analysis of analyzing TDOA effects in 

each order condition revealed a repulsive effect for short TDOA in order 1 

and no effect in order 2 (mixed linear model with random intercept per 

subject. Order 1 trials: N=6, n=475, β intercept= -0.584, z=-1.053, ci=[-

1.672, 0.503], p=0.292; β TDOA=0.169, z=2.420, ci=[0.032, 0.307], 

p=0.016. Order 2 trials: N=6, n=473, β intercept= 0.795, z=0.831, ci=[-

1.080, 2.671], p=0.406; β TDOA=-0.061, z=-0.915, ci=[-0.191, 0.070], 

p=0.360). If one of the studied regions is responsible for the maintenance 

leading to the final response, it must show a decoding pattern compatible  

with behavioral results. 

According to behavioral results, a region responsible for the final memory 

response should present reduced decoding of the target in those 

conditions with high interference (short TDOA), increased decoding of the 
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distractor in those conditions with high interference, or both. The exact 

pattern of target and distractor decoding will also help to describe 

whether distractor filtering is accomplished through mechanisms that 

increase the fidelity of the remembered information (Fischer & Whitney, 

2012), through mechanisms of distractors suppression (Bettencourt & Xu, 

2016) or through a combination of them. All these scenarios predict 

reduced decoding of the target for higher distracting conditions, either for 

an active reinforcement of the representation of the remembered angles 

in the low distracting condition or because of memory interference in the 

Figure 61 TDOA differences in decoding for the target and the distractor 
A) Decoding of the target in visual, parietal, and frontal areas when training the IEM in the target delay 

period. The box shows the mean decoding of all six subjects and the 95% ci. Each dot is the mean 

decoding of each subject during the delay period following the distractor presentation. Parietal and 

frontal regions present attenuated decoding of the target in the condition order1-short TDOA. B) 

Decoding of the target in visual, parietal, and frontal areas when training the IEM in the target delay 

period. No region presented differences No attenuated decoding at different TDOAs is observed in 

order 2 condition. C) Decoding of the distractor in visual, parietal, and frontal areas when training the 

IEM in the target delay period. Just frontal regions present attenuated decoding of the distractor in the 

condition order1-short TDOA. D) Decoding of the distractor in visual, parietal, and frontal areas when 

training the IEM in the target delay period. Just parietal regions present attenuated decoding of the 

distractor in the condition order2-long TDOA. 
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high distracting conditions. Decoding of the target showed that parietal 

and frontal regions presented impaired decoding in order 1-short TDOA 

(Figure 61A; visual: t=-1.65, p=0.11; parietal: t=-3.038, p=0.004; fontal: t=-

2.10, p=0.042). The decoding of the target was not reduced between 

TDOAs conditions in order 2 trials for any region (Figure 61B; visual: 

t=0.775, p=0.44; parietal: t=-1.94, p=0.06; fontal: t=-1.43, p=0.16). Results 

regarding the decoding of the target were in line with behavior, and 

pointed towards parietal or frontal as candidate regions for storing the 

WM readout.  I then evaluated the decoding of the distractor, to evaluate 

if one of regions presented a more consistent decoding pattern of both 

the target and the distractor. When decoding the distractor, it is important 

to clarify that I also used the model trained in the target delay period, as 

it was the one that gave better decoding results of the distractor in visual 

and parietal regions (Figure 58). Figure 61C-D shows the decoding of the 

distractor in order 1 and order 2 conditions. In order 1 trials, where I 

observed a significant effect of TDOA in behavior, just frontal regions 

showed an increased decoding of the distractor in the short TDOA 

condition (Figure 61C; visual: t=0.71, p=0.48; parietal: t=0.47, p=0.64; 

fontal: t=2.25, p=0.029). In order 2 trials, where no significant effect of 

TDOA was observed in behavior, parietal regions showed an increased 

decoding of the distractor in the short TDOA condition (Figure 61D; visual: 

t=0.74, p=0.47; parietal: t=2.58, p=0.014; fontal: t=1.73, p=0.09). Results 

indicate that frontal area is the one with a decoding pattern, of both the 

target and the distractor, more consistent with the observed behavior. 

This suggests the final memory readout is maintained in frontal ares, 

where the target and the distractor eventually coexist in the same circuit.  
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Mechanistic explanation for distractor filtering 

 

In this section, I provide a mechanistic explanation of how WM 

maintenance and distractor filtering are accomplished. The analysis of 

both behavioral data and BOLD signal provided consistent results with the 

final memory readout originating in frontal areas, coinciding with the 

region where the bump attractor model was conceived. To explain the 

behavioral results, I implemented the bump attractor model combining PA 

with STP mechanisms (Methods-Computational modeling, Network model 

for distractor filtering), in line with Kilpatrick (2018), Seeholzer et al. (2019) 

or Barbosa et al. (2020). The model aimed to qualitatively reproduce the 

observed behavior (Figure 47) under the manipulated distractor features: 

Similarity domain: 

a) Distance: attraction for close distractors and repulsion for 

distance ones (Figure 46) 

Temporal domain: 

b) Order: increased absolute interference for order 1 compared to 

order 2. 

c) TDOA: increased absolute interference for short TDOA compared 

to long TDOA. 

d) Order-TDOA: tendency for an interaction in close trials. 

 

The model qualitatively replicated behavioral results in close trials (Figure 

62A). First, the model shows the observed overall attraction for close-by 

distractors (Figure 47A). The attractive regime is originated due to the ring 

structure of the model, where neurons coding for close-by locations are 

more strongly connected than neurons coding for distant ones. This 

creates an overlap in the activity profile of the memories of the target and 

the distractor that could lead to the merge of memory traces by the end 

of the delay. Figure 62B shows a simulated trial of the order 1 – short TDOA 

condition. This condition was the one presenting higher interference, 

which is reflected in the simulation through the merging of the memory 

traces, leading to a final position of the bump -the memory readout- 

located in between the original positions of the target and the distractor.   
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Figure 62 The bump attractor model explains behavior in close trials. 
A) Simulated behavior for the different temporal conditions in close trials. An overall attraction was 

observed in all the condition and an interaction between order and TDOA, having short TDOA a larger 

interference effect in order 1 compared to order 2. B) Simulated trial in the condition order1-short 

TDOA. The simulation shows the rate of each of the 512 excitatory neurons of the circuit and its 

evolution during a delay of 3s. On top of the simulation there is a line indicating the stimulus 

presentation (orange) and the distractor presentation (black). The memory readout is computed with 

a population vector that extracts the mean location of the bump at the end of the delay period. C) 

Simulated trial in the condition order 1- long TDOA D) Simulated trial in the condition order 2- short 

TDOA. E) Simulated trial in the condition order 2- long TDOA 
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The model also replicated the effects of order and TDOA (Figure 47A). 

First, the order 1 – short TDOA was also the condition with higher 

distraction and, for each order condition, the short TDOA condition had 

stronger interference effects (Figure 62A). The model showed a clear 

interaction order-TDOA, which was only observed as a trend in behavioral 

data (orderxTDOA: p=0.067). Figure 62B-E show simulated trials in each of 

the temporal conditions. The observed effects were obtained thanks to 

the combination of PA with STP mechanisms. On the one hand, transient 

STD after the stimulus presentation explained TDOA differences in order 1 

(Figure 62B-C): The initial STD generates an unstable state of the bump at 

the early delay that leads to higher interference for short TDOAs. When 

the distractor is presented just after the target offset (short TDOA), it 

interferes with a less robust memory trace (attenuated rate) than when 

the distractor is presented long after the target offset (long TDOA), 

reproducing the observed behavioral pattern. On the other hand, STF 

explained interference in order 2 conditions (Figure 62D-E): distractors left 

a synaptic trace that was still present by the time the target appeared. As 

synaptic traces decay with time, they were stronger by the time the target 

was presented in the short TDOA condition compared to the long TDOA 

condition, leading to more interference in the first scenario. The attractive 

effect of the synaptic traces, however, is smaller than the one originated 

by the merging of bumps. Therefore, the magnitude of the interference 

for short TDOA conditions was larger in order 1, originating the interaction 

order-TDOA. 

Regarding the far trials, the model also replicated behavioral results in far 

trials (Figure 63A). First, the model shows the observed overall repulsion 

for distant distractors (Figure 47B). The repulsive regime is again 

originated due to the ring structure of the model, where the combination 

of the tuning of the excitatory and the inhibitory connections results in an 

effective inhibition between memory traces located far from each other. 

Compared to close trials (Figure 62), the magnitude of the repulsive effects 

is smaller than the attractive ones, which is also appreciable in behavior 

(Figure 47). The model replicated just some of the effects of order and 

TDOA. In behavior, I just observed an effect of TDOA (TDOA: p=0.034), 

which is successfully reproduced by the model. However, it also predicted 

significant effects of order and of the interaction order-TDOA. More 

simulations for the far conditions are still needed to understand the 

differences between the behavior and the model. Differences could be 
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originated by the sampling of close and far trials in behavioral data: while 

close trials explored a range of 20° (10°-30°), the range for the far trials 

was 140° (40°-180°).   

Figure 63 The bump attractor model explains behavior in far trials. 
A) Simulated behavior for the different temporal conditions in far trials. An overall repulsion was observed 

in all the condition and an interaction between order and TDOA, having short TDOA a larger interference 

effect in order 1 compared to order 2. B) Simulated trial in the condition order1-short TDOA. C) Simulated 

trial in the condition order 1- long TDOA D) Simulated trial in the condition order 2- short TDOA. E) 

Simulated trial in the condition order 2- long TDOA 
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Distractor filtering: electrophysiology 

 

Through a collaboration with Jaqueline Gottlieb, I got access to neural 

recordings of monkeys performing a vsWM task with prospective 

distractors at different TDOA while being recorded in LIP and dlPFC 

(Methods-Electrophysiology, Dataset 2). This dataset was used for Suzuki 

& Gottlieb (2013), where they observed that distractor responses were 

more strongly suppressed and more closely correlated with performance 

in the dlPFC relative to LIP. Besides pointing to frontal regions as a 

candidate area for the final memory readout, this dataset allowed me to 

address two different questions. First, if the population code underlying 

the representation of the target was stable or dynamic over time, and 

second, if the rate activity profile of dlPFC neurons was the one predicted 

by the computational model.  

Previous studies using cross-temporal decoding found differences in the 

stability of the code for the stimulus presentation and the delay period 

(Mendoza-Halliday & Martinez-Trujillo, 2017; Spaak et al., 2017; Stokes et 

al., 2013). When I trained and tested a linear decoder across all the time 

intervals in the different TDOA conditions (Figure 64), I observed a similar 

pattern of cross-temporal generalization: stable code throughout the 

stimulus presentation and stable code throughout the delay period (Figure 

64A-D). The significance of each train and test bin (Figure 64E-H) was 

evaluated with a permutation test comparing the mean decoded error 

with a distribution of shuffled reconstructions -shuffling the labels of the 

testing subset-. Comparing the stability of the code during the delay period 

for the different TDOA condition, larger errors were detected for short 

TDOA conditions compared to long TDOA conditions (Figure 64A-D). A 

subsequent analysis of the decoding strength at this interval (mean error 

per neuron for training-testing times>800ms) showed better 

reconstructions for longer TDOA conditions, in line with behavioral results 

(Figure 65, linear mixed model with a random intercept per neuron: n=63, 

β intercept=58.807, z=35.819, ci=[55.589, 62.025], p<0.001, β TDOA=-

0.006, z=-6.773, ci=[-0.008, -0.004], p<0.001). 
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Figure 64 Code stability for different TDOAs 
A-D) Cross-temporal decoder for the different TDOA conditions. The y axis shows the training time 

and x axis the testing time. The color bar illustrates the error of the decoding, so brighter colors 

indicate better reconstruction of the target. The black small triangle indicates the presentation 

time of the target, and the red one, the presentation time of the distractor. E-H) Significance of 

each cross-decoding bin evaluated with a permutation test (mean error of all neurons compared 

to the distribution of shuffled errors). Black squares show p-values <0.05.   
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When computing the mean cross-temporal reconstruction for the whole 

region (Figure 66A, collapsing TDOA conditions), I observed an important 

difference with previous results regarding the symmetry of the cross-

temporal generalizations: while training during the stimulus presentation 

compromised decoding during the delay period (same as previous 

studies), training at the end of the delay period allowed decoding during 

the stimulus presentation (Figure 66B). 

Figure 65 Delay cross-temporal 
error reduction with TDOA 
Mean error for training and testing 

times larger than 800ms for the 

different TDOA conditions. Each point 

represents the mean error of each 

neuron (n=63), and the box shows the 

population mean and the 95% ci. A 

significant reduction of the error is 

observed for long TDOA conditions 

(mixed model, TDOA p <0.001). 

Figure 66 Average cross-temporal decoding 
A) Mean cross-temporal decoding of the target in PFC. B) Testing accuracy when training during the 

stimulus presentation (blue) or during the last 500ms of the delay period (olive). The y axis shows the 

difference between the signal and the shuffled cross temporal decoding matrixes for the selected 

training and testing times (computed individually at each TDOA condition) and flipped (multiplied per 

-1). The x axis shows the testing times. While training during the stimulus presentations compromises 

decoding during the delay period, training at the end of the delay period does not compromise 

decoding during stimulus presentation. 
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The computational model presented in the previous section made a clear 

prediction regarding the activity profile of the neurons responsible for the 

final memory readout: stimulus selectivity followed by a dip of activity due 

to STP and a following recovery of the rate (Figure 14). This dataset also 

allowed me to test the firing profile predicted by the computational model 

by correlating the decoding strength of each neuron with the presence of 

a transient dip after the stimulus offset. To do so, I analyzed the firing 

activity the firing activity of the recording neurons when the target was 

presented in the RF (Figure 67A) and fitted a parabolic curve (y = ax2 + bx 

+c) to each of them. Figure 67B shows examples of two neurons: the one 

on the left presenting a parabolic firing profile (a=0.52) and the one on the 

right a linear profile (a=-0.05). The computational model predicted that 

neurons with a parabolic profile are the ones responsible for the final 

memory readout, so I correlated the decoding error from the cross 

temporal decoder with the a of the parabolic fit (Figure 67C) and indeed 

observed a significant correlation (linear model, n=252, β intercept=57.1, 

z=39.17, ci=[54.226, 59.967], p<0.001, β a=-6.47, z=-2.821, ci=[-10.987, -

1.953], p=0.005), where neurons with a pronounced dip in the firing rate 

at early stages of the delay presented a better final decoding of the target.   

Figure 67 Correlation between electrophysiological rate profile and decoding strength 
A) Normalized firing rate of neurons from Suzuki & Gottlieb, (2013) where the target was presented 

in the RF of the neurons and the distractor was not. Each line shows the mean firing rate of 63 neurons 

at the different TDOA conditions. The dashed black line shows the time of the target presentation and 

the yellow one the response time. Each triangle shows the presentation time of the distractor. B) Two 

examples of the parabolic fit on top of the firing profile of a single neuron. The a parameter of the fit 

is displayed, with larger values of a for pronounced dips during the delay period. C) Correlation 

between the cross-temporal decoding strength of each neuron during the last 500ms of the delay with 

the estimated a of the parabolic fit. 
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Distractor filtering under NB stimulation 

 

In this section, I wondered if the bump attractor computational model 

could provide a mechanistic explanation of distractor filtering for the 

electrophysiological and behavioral results of Qi et al. (2021). In that work, 

two implanted monkeys performed a vsWM task with distractors while 

stimulating the Nucleus Basalis of Meynert (NB). Similar to the paradigm 

used in the section Distractor filtering: TDOA and order effects (Methods-

Paradigms and analysis), distractors were manipulated in the similarity 

(target-distractor angular distance) and temporal domain (Methods-

Electrophysiology, Dataset 3). However, in the temporal domain, just order 

was manipulated. To avoid confusions when consulting the original 

source, I have maintained the nomenclature of the Qi et al. (2021), which 

is Remember 1st (equivalent to order 1) and Remember 2nd (equivalent 

order 2). Instead of using an interleaved-trial design, the experimenters 

wanted to minimize the uncertainty about the trial type, so they used a 

block design with 10 consecutive trials of Remember 1st followed by 10 

consecutive trials of Remember 2nd. Thus, the bump attractor model had 

to explain the observed behavioral and electrophysiological results with 

and without stimulation of the NB with a control strategy consistent with 

the block design.  

Considering the task design, I implemented a bump attractor model that 

could maintain the WM content in two different regimes: Remember 1st 

and Remember 2nd through a neuromodulation in the conductances 

(Methods-Computational modeling). Consistent with known cholinergic 

activation of PFC neurons (Carr & Surmeier, 2007; Hedrick & Waters, 

2015), I modeled NB stimulation as an unspecific increase of excitability of 

excitatory neurons in the circuit through a slight increase in external input. 

This provided two independent axes to test the performance of the 

network model: task condition (Remember 1st/2nd) and NB stimulation 

(ON/OFF). To evaluate the performance of the network, I compared the 

readout of the network at the end of the delay with the location of the 

target to obtain a measure of behavioral error. I then inspected if the 

computational model could reproduce the results of Qi et al. (2021) and 

thus provide evidence towards attractor dynamics in PFC controlling 

distractor interference in WM.  
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Figure 68 The bump attractor model reproduces the increase of firing rate during the delay 
period under NB stimulation in PFC. 
A) (Modified from Qi et al. (2021)) Raster plot of a PFC neuron with and without NB stimulation (ON 

and OFF). B) (Modified from Qi et al. (2021)) Mean activity of the 54 neurons that responded to visual 

stimulus and presented elevated firing during the fixation period after NB stimulation. Enhanced firing 

rate in the ON condition is observed through the delay period but not in the ITI. C) Average firing of 

100 model neurons responding to preferred stimulus in bump attractor model simulations in the OFF 

and ON condition. D) Two network simulation examples of the bump attractor model in the OFF (left) 

and ON (right) conditions. NB stimulation elicited elevated firing rate during the delay period as well 

as a broadening of the bump (compare bumps in average network activity at the end of the delay, red 

traces). 
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Qi et al. (2021) analyzed the activity of 54 stimulus-responsive neurons 

that reacted to NB stimulation with elevated firing rate during the fixation 

period. In those neurons, they observed that NB stimulation induced 

elevated firing during the delay period (Figure 68A-B) but not during 

stimulus presentation or in the inter-trial interval (ITI). The computational 

model displayed qualitatively similar neural dynamics. Figure 68C shows 

the average peri-stimulus firing rate in model neurons responding to 

preferred stimuli in the ON and OFF conditions. The model qualitatively 

reproduced electrophysiological results, with no appreciable difference 

between the OFF and ON conditions during the ITI, small differences 

during the stimulus presentation and clear differences in the firing rate 

during the delay period. Full network simulation examples in the OFF and 

ON NB stimulation conditions can be observed in Figure 68D.  

A broadening of the bump is noticeable (Figure 68D, in red), consistent 

with electrophysiological results of Qi et al. (2021), and which will be 

important for subsequent points. In sum, the activity of individual neurons 

in the bump attractor network is modulated by a slight increase in cellular 

excitability (simulating NB stimulation) in a qualitatively similar way to the 

effects of NB stimulation on the activity of PFC neurons (Qi et al., 2021). 

I then analyzed whether this network could account for the behavioral 

effects observed experimentally by Qi et al. (2021) (Figure 69). Their 

paradigm consisted in two different blocks: Remember 1st and Remember 

2nd, depending on which of two sequentially presented stimuli was to be 

remembered and reported at the end of the trial to obtain reward. Also, 

the distance between these two stimuli was manipulated (Methods-

Electrophysiology). I tested the computational model specifically in these 

various conditions: Remember 1st/2nd, distractor close/far, and NB 

stimulation ON/OFF are examples of simulated trials in all these 

conditions. In the Remember 1st condition (Figure 69, left), the 

computational model reproduced the behavioral effects observed in Qi et 

al. (2021) (Figure 69C: modeling results; Figure 69E: original behavioral 

results). Performance was impaired in the ON condition (NB stimulation), 

specifically when the distance between the target and the distractor was 

small (close trials), but performance improved when the distance between 

the target and the distractor was large (far trials). Increased firing rates in 

the ON condition makes more neurons to be engaged in the bump activity, 

which results in a broader bump. This broader bump -compared to the OFF 
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Figure 69 The bump attractor model reproduces the observed experimental performance. 

 A) Sample simulation showing activity of excitatory neurons in a bump attractor network for both the 

OFF and ON conditions in Remember 1st. Abscissa represents time and ordinate represents neurons 

with preference for different visual stimulus locations, indicated by location varying between 0 and 

360°. Activity of neurons with different preferences is indicated based on color scale. The first visual 

stimulus appearance at 90° elicits a bump of activity that is maintained during the delay period, after 

the visual stimulus is no longer present. In the top left panel, I simulated the appearance of the second 

visual stimulus at the 150° location (OFF, close). As the simulated response is the readout of the final 

location of the bump at the end of the delay period, the appearance of the second stimulus does not 

disrupt the initial bump, as the final position of the bump is nearly the same as the initial one (small 

variations due to noise fluctuations). On the other hand, The ON condition (top right) results in a 

broader bump of activity. Therefore, when the second visual stimulus appears in a nearby location, it 

is not inhibited by lateral inhibition and the bumps are more likely to merge, compromising behavior. 

The second row represents the far conditions, where the second stimulus is located at 260º, away 

from any possible interference with the initial stimulus. In this scenario, the ON condition again results 

in a broader bump of activity, which is more resistant to noise fluctuations, thus improving behavior. 
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condition- is more easily attracted to a distractor activation located at a 

close distance on the network, resulting in an attraction effect that 

compromises performance (Figure 69A, top). On the other hand, for those 

trials where the distractor was located far away, the increased broadening 

of the bump had positive effects for WM performance. A broader bump 

leads to a more stable bump attractor, less sensitive to noise fluctuations 

in the network, thus leading to reduced bump diffusion during the delay 

(Wimmer et al., 2014) and more accurate read-outs at the end of the delay 

(Figure 69C, right).  

When no distractor is located close enough to interfere with the bump 

reduced bump diffusion is the primary effect of stimulation, and 

performance improves (Figure 69A, bottom). In sum, a broadening of 

bump attractors caused by NB stimulation can explain WM impairment in 

close-distractor trials and WM improvement in far-distractor trials in the 

Remember 1st condition, as observed experimentally (Figure 69E, Qi et al. 

(2021)). 

  

B) The modulated network for the Remember 2nd regime also reproduced behavioural results. 

In the Remember 2nd condition, the initial bump of activity terminates, and a new bump is 

maintained after the appearance of the second visual stimulus. For the remember second 

condition, the same improvement observed for the far condition in remember first occurs with 

NB stimulation: broader bumps are more resistant to noise fluctuations, so they diffuse less 

during the delay period leading to more accurate responses. In this case, as the bump from the 

first stimulus is already extinguished, there is no effect of bump interference and there is an 

overall improvement of performance independent of the distance between stimuli. C & D) Show 

the model’s simulated behaviour. C) In the Remember 1st (R1st) condition, the model showed 

improved performance for the far condition and impaired performance for the close condition 

for the ON condition (left). Results of 20,000 simulated trials are shown for each condition with 

a 15º threshold for correct trials. The right plot shows the distribution of simulated errors in the 

far condition. Simulated responses are more accurate in the ON condition due to the enhanced 

noise resistance of the broader bumps. D) In the Remember 2nd condition (R2nd), the model 

showed an overall increase of performance for the ON condition (left). The distribution of the 

simulated errors showed more accuracy for the ON condition due to enhanced noise resistance 

and extinction resistance. E & F) Show the actual experimental data for the Remember 1st and 

Remember 2nd conditions. In both scenarios, the experimental data is qualitatively reproduced 

by the model (directly on top). E) (Modified from Qi et al. (2021)) Mean monkey performance 

(and sem) in the Remember 1st condition (left), for trials grouped by distance between the first 

and second visual stimulus. The right plot shows the empirical distribution of angular deviations 

from mean saccadic endpoint for the far condition. F) (Modified from Qi et al. (2021)) Mean 

monkey performance (and sem) in the Remember 2nd condition, for trials grouped by distance 

(left). The right plot shows the empirical distribution of angular deviations from mean saccadic 

endpoint for the far condition.  
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The model also reproduced the effects in the Remember 2nd regime 

(Figure 69D, right). In this condition, Qi et al. (2021) found an overall 

performance improvement after NB stimulation (Figure 69F). Again, the 

bump attractor computational model could explain this behavior with the 

same mechanistic explanation of broader bumps after NB stimulation. In 

this case, as the to-be-remembered stimulus is the second one, the 

interference with the distractor in the close-distractor trials is strongly 

reduced, so the effect that prevails in all cases is the reduced random 

diffusion of the bump during the delay period due to bump broadening. In 

sum, slight depolarization in the ON condition (simulating NB stimulation) 

caused broader bumps and reduced bump diffusion in Remember-2nd 

network simulations, which can explain WM improvement observed for 

this condition experimentally. 

The experimental design contained null conditions where one of the two 

stimuli was not presented (20% of the trials). Monkeys doing the task 

could not anticipate these trials, so they were expecting to observe a 

stimulus that did not appear. In the null conditions Remember 1st-Absent 

2nd (Figure 70A) no difference was observed during the delay period upon 

NB stimulation. However, in the condition Remember 2nd-Absent 1st, NB 

stimulation revealed neural responses precisely at the time of the 

expected, but absent, 1st stimulus (Figure 70B). In the context of bump 

attractor models, this could reflect the appearance of “phantom bumps” -

a bump appearing spontaneously at a random location because of 

temporal anticipation in this null condition. I used the computational 

model to test this intuition. I modeled the presentation of the stimulus as 

the combination of two currents: a non-specific input temporally aligned 

to the stimulus onset representing a timing anticipatory signal (i.e. 

temporally specific but stimulus non-specific) and a temporally and 

stimulus specific input representing the visual stimulus. Simulated trials 

reproduced the electrophysiological results: for the Remember 1st-Absent 

2nd condition, no phantom bump was observed during the second delay 

period, as the already present bump inhibited the rest of the circuit (Figure 

70C). However, in the Remember 2nd-Absent 1st condition, phantom 

bumps appeared in the ON but not in the OFF condition (Figure 70D). In 

the OFF condition, the anticipation input was not strong enough to elicit a 

bump (Figure 70D, left). However, in the ON condition, this anticipation 

current together with the one resulting from NB stimulation was sufficient 

to destabilize the un-patterned baseline network activity and elicit 
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phantom bumps in some trials (Figure 70D, right). Because phantom 

bumps appear unpredictably at different points in the network, it would 

be difficult to validate this hypothesis experimentally from the activity of 

just a few simultaneously recorded neurons.  

Figure 70 Phantom bumps explained by the model. 
 A) Mean firing rate in the “null condition” Remember 1st-Absent 2nd (modified from supplementary 

information of Qi et al. (2021), supplementary figure). No specific “response” is observed in the ON 

condition at the time in which the 2nd stimulus was expected (2s). B) Mean firing rate of the two 

monkeys in the “null condition” Remember 2nd-Absent 1st (modified from Qi et al. (2021)). Horizontal 

lines illustrate the times that a first visual stimulus would have been delivered. Elevated activity during 

this period can be observed for the NB-stimulation ON condition. C) Simulation of a Remember 1st-

Absent 2nd trial in the ON condition. D) Simulation of a Remember 2nd-Absent 1st trial in the OFF and 

ON conditions. E) Distribution of simulated rates outside the preferred location during the first delay 

divided by maximum firing rate of the simulation (preferred location during second delay). Complete 

overlap for the absent second stimulus condition in both ON and OFF conditions, indicating the 

absence of “phantom bumps”. F) Average simulated firing rate following the absent first stimulus, in 

the ON and OFF conditions. To corroborate this effect was a consequence of the appearance of 

sporadic bumps and not an overall baseline elevation, I  G) quantified the mean firing rate in the period 

following the absent stimulus and divided it against the mean response to a preferred stimulus 

(phantom/ bump activity). Phantom bumps are revealed by a slight elevation of the histogram for the 

ON condition. The bump emerged at random locations; thus, any given neuron was activated in only 

a small fraction of trials.  
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The fact that the population mean firing rate during the first delay (Figure 

70F) was higher for the ON condition, could still be explained based on a 

small general elevation of baseline activity, without the formation of 

phantom bumps. I thus devised an analysis that could be tested in single-

neuron data. In each trial I normalized the rate of each neuron in the delay 

following the absent stimulus by its mean firing rate in response to a 

preferred stimulus (Figure 70E,G). In the Remember 1st-Absent 2nd null 

condition, no difference was observed between the histograms of these 

normalized rates in the ON and OFF conditions (Figure 70E). However, in 

Remember 2nd-Absent 1st simulations I observed that in the ON condition, 

some neurons presented elevated activity in a few trials that approached 

their preferred rates during bump states (Figure 70G), indicating their 

participation in bump activity. In sum, the bump attractor model explained 

the emergence of electrophysiological markers of stimulus anticipation 

under NB stimulation (Qi et al., 2021) as the triggering of phantom bumps 

by arousal mechanisms in cholinergically depolarized prefrontal 

networks.  

 

Network simulations allowed me to address an additional question, 

regarding the site of action of NB stimulation. In principle, the neural 

effects observed by Qi et al. (2021) could have been entirely the result of 

changes in upstream, sensory cortical areas that were not active during 

the delay period of the task. Such upstream changes would then be 

propagated and maintained in the PFC. I tested this hypothesis in the 

model by simulating NB stimulation as an increase of the external current 

just during stimulus presentation (ON exp), and not during the whole trial 

(ON). Like the ON condition, ON exp also resulted in a broadening of the 

bump during the stimulus presentation (Figure 71A-B). During the delay 

period, however, ON exp did not maintain the broader bump (Figure 71C-

D), because the bump attractor model imposes a fixed bump width in the 

absence of selective input during the delay period. In the absence of a 

broader bump during the delay period, behavioral effects due to 

interference or diffusion stability cannot be reproduced, suggesting NB 

stimulation also acts in the memory circuit of PFC besides other sensory 

areas. 
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Behavioral and electrophysiological results of Qi et al. (2021) contain a 

paradoxical effect: while performance is enhanced in many conditions 

after NB stimulation (Figure 69), neurons in PFC experienced a loss of 

tuning (Figure 72A). Previous works reported a link between tuning curve 

properties and behavior (Busse et al., 2008; Compte & Wang, 2006; Li et 

al., 2004; Raiguel et al., 2006; Sanayei et al., 2018; T. Yang & Maunsell, 

2004), suggesting that better tuning (in terms of width or amplitude) leads 

to better performance. The results presented here, however, show that 

decrease of tuning at the neuronal level does not always imply an 

impairment in performance, which is the result of a readout from the 

Figure 71 NB stimulation: memory vs sensory-related effect. 
Model comparison of NB stimulation as elevated current just during the stimulus presentation (ON 

exp) vs elevated current during both stimulus presentation and delay period (ON). A) Presents the 

average firing during one second of the stimulus presentation of 100 simulations centered to the 

preferred stimulus. A broader bump is observed for both ON an ON exp compared to the control 

condition (OFF). B) Mean standard deviation of a gaussian fit of 100 simulations illustrate this 

difference in bump-broadening. C) Same as A but, instead of sampling one second of stimulus 

presentation, I analyzed the last second of the delay period. In this scenario, the ON exp. the condition 

did not present a broader bump than the control condition. D) Same as B but for the last second of 

the delay period. To achieve broader bumps during the delay period is not enough with elevated 

current activity during stimulus presentation (ON exp), this elevated current must also be present 

during the delay period (ON).  
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whole network. In the computational model, I computed the final readout 

as the population vector of all the neurons at the end of the delay period. 

In the experiments, NB stimulation weakens neuronal tuning through a 

general increase of firing rates in the tuning curves (Figure 72A). This is 

very different from the situation in the rate computational model (Figure 

Figure 72  Spiking bump attractor model. 
A) Population tuning curves for both the stimulus presentation and the delay period (from Qi et al, 

(2021)). They are obtained by averaging responses of individual neurons to visual stimuli relative to 

each neuron’s preferred reference location (centered at 0). B) Population tuning curve of the rate 

version of the bump attractor model. C) Control simulation in the spiking version of the bump attractor 

model. D) NB stimulation simulation in the spiking version of the bump attractor model. E) Population 

tuning curve of the spiking version of the bump attractor model. F) The spiking version of the bump 

attractor model also presented Increased performance in the NB stimulation simulated condition 

(ON). The graph shows how diffusion is reduced in the ON condition, leading to more accurate reports 

at the end of the delay period (2 (OFF/ON) x 25 (stimulus positions) x 5 (repetitions)=250 simulations).  
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72B), where only responses to preferred stimuli get enhanced in the ON 

condition, but this is because this is a very simplified model, composed of 

identical neurons with fixed tuning and connected all-to-all. This scenario 

is an idealized approximation, so I also tested a more realistic spiking 

network with strong heterogeneity in neuronal tuning caused by sparse 

connectivity (Hansel & Mato, 2013). 

When I simulated NB stimulation the same way as in the rate model 

(baseline condition in Figure 72C compared to increase of the external 

current in Figure 72D) I indeed observed that stimulation increased 

neuronal responses across the full extent of the tuning curves (Figure 72E), 

similar to the experimental data (Figure 72A). Finally, I analyzed whether 

the loss of tuning in the spiking network was associated to impaired or 

improved performance. The spiking network also presented reduced 

bump diffusion (increased performance) in the NB stimulation condition 

(Figure 72F). Overall, modeling results of a more realistic version of the 

bump attractor model support the interpretation that NB stimulation 

induces better performance at the population level even when tuning is 

impaired at the single-unit level. 
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5.Discussion 
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Topography of the working memory circuit 

In the first section of this chapter (Angular dimension), I made a 

topographical exploration of the vsWM circuit by analyzing biases and 

precision at different eccentricities. While studying biases and precision in 

the memory reports is a standard approach when testing capacity 

(Almeida et al., 2015; Chieffi & Allport, 1997; Nassar et al., 2018; Pratte et 

al., 2017; Sprague et al., 2014), distractor effects (Chunharas et al., 2019; 

Rademaker et al., 2015; Van Ede et al., 2018) or serial biases (Barbosa et 

al., 2020; Stein et al., 2020); their combination with topographical aspects 

is seldom (W. J. Harrison & Bays, 2018; Staugaard et al., 2016). Therefore, 

in this section, I studied how interference changes with eccentricity, and I 

proposed a computational model that mechanistically explains the 

observed behavior and challenged predictions of the SRT.  

I developed a vsWM task with single-item trials and multi-item trials 

presented at different eccentricities and variable delay lengths. In single-

item trials, I found an unexpected increase of accuracy in the angular 

dimension with eccentricity (Figure 36B). The bump attractor model 

explained it through a loss of tuning with eccentricity. More eccentric 

bumps were then broader, absorbing more efficiently the noise 

fluctuations that cause the delay-diffusion. For the multiple-items trials, I 

observed an attractive regime for further eccentricities and a repulsive 

regime for close ones (Figure 37B). Again, the loss of tuning with 

eccentricity explained these effects, as broader bumps are more prone to 

attract themselves at fixed azimuthal angles. A limitation of this 

experiment is that I tested three fixed angular distances, so a larger 

exploration of the spectrum would help to validate the model in a 

parametric way. In a similar experiment, Almeida et al., (2015) controlled 

for the distances between items and observed a reduction in interference 

effects, providing a nice validation of the spatial properties of the model. 

Future experiments testing different eccentricities should then evaluate 

the angular and the module error separately because, as observed here, 

the performance in one dimension may not go in the same direction as in 

others. 

One limitation of this model is that I decided to change the connectivity 

parameters of the model based on the observed loss of precision in 

module error as you get away from fixation (Figure 36A), but other 
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parameters of the model can also account for broader bumps (i.e. strength 

of conductance parameters, different connectivities for external inputs, 

etc.). Another limitation is that I did not correct for cortical magnification 

(Daniel & Whitteridge, 1961; J. Rovamo & Virsu, 1979) nor for presentation 

times with eccentricity (Carrasco et al., 2003), so I cannot discard the 

stimulus size and the speed information processing to play a role in the 

observed results. 

As observed in this chapter, interference effects are a great tool to 

evaluate the efficiency of computational models because, despite their 

small magnitude (few degrees), they provide a lot of insight about the 

topography and the internal circuitry of the network. For instance, without 

a ring structure, it is not clear how to account for both attractive and 

repulsive effects. A model explaining changes in behavior with eccentricity 

can be extremely useful to understand intra- subjects variability (different 

individual tuning for different eccentricities) and experiments observing 

contradicting results (Bae & Luck, 2017; Rademaker et al., 2015). 

Furthermore, this chapter could make the field consider interference 

effects not only as distance-between-stimuli effect but as a combination 

of both eccentricity and distance-between-stimuli. Moreover, this chapter 

will contribute to orient the field towards a more circuitry-based debate, 

so we all propose specific models and mechanisms by which the biases 

found in behavior are explained.  

In this chapter, I separated perceptual from memory effects in the same 

vsWM paradigm, so I could evaluate the validity of the SRT (Christophel et 

al., 2017; Gayet et al., 2018; Scimeca et al., 2018; Xu, 2018) by indirectly 

addressing where is WM likely to be maintained. Thanks to this controlled 

paradigm, and by using a measure of error that cleaned the topographical 

systematic errors (Methods-Paradigms and analysis), I found repulsive 

effects for the perceptual condition and both attractive and repulsive 

effects for the WM condition (Figure 37). This difference in the direction 

of the effects pointed towards different networks being responsible for 

the encoding and WM maintenance. The SRT would predict the same 

biases for perception and memory, as they rely in the same neural 

substrate. Results are consistent with Harrison & Bays (2018), where they 

used critical spacing of visual crowding to evaluate how the WM content 

was affected by overlapping representations. While the SRT would predict 

an impairment, as they would be stimulating the same cortical space, they 
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did not observe an effect of cortical crowding in performance. From my 

point of view, the study of Harrison & Bays (2018) had two limitations that 

are solved in this thesis: first, they made a conclusion out of a negative 

behavioral result (no differences in performance was observed) and 

second, as stimuli were presented sequentially, it is still possible that the 

WM content had enough time to shift to neurons that normally encode 

sensory stimulation in some other part of the visual field (Ester et al., 

2009). Both issues are solved here, and on top, a computational model 

that mechanistically explains the interference is provided.  

According to the bump attractor computational model, attractive and 

repulsive interference effects depend on the neural tuning (Almeida et al., 

2015; Nassar et al., 2018). Tuning in sensory areas is shown to be quite 

stable over time (Bachatene et al., 2015; Lütcke et al., 2013), so different 

tuning-based results for encoding and WM already point to these 

processes taking place in different areas. Although attention can sharp 

tuning properties (Compte & Wang, 2006; David et al., 2008; McAdams & 

Maunsell, 2000), the increase of tunning would lead to a change from the 

attractive to the repulsive regime and not the other ways around, which is 

the observed pattern (Figure 37). The observed results and a potential 

sharpening of the tuning curves through attentional modulation  would 

support the evolution-inspired idea that sensory areas present repulsive 

effects to increase visual discrimination while higher order regions with 

broader tunings present attractive effects to get a more efficient 

maintenance (Chunharas et al., 2019; Fritsche et al., 2017). Overall, this 

chapter shows it is necessary to include a no-memory condition (delay 0) 

to separate perception-based and memory-based effects, so we do not 

incorrectly attribute to memory, biases that can be due to perceptual 

processes (Schutte & DeGirolamo, 2020). Besides, it provides convincing 

evidence against the SRT based on the topographical predictions of it. 

Neurophysiological data is essential to validate models. In this case, the 

bump attractor computational model predicted a loss of tuning with 

eccentricity. Critically, when checking the tuning curves of PFC in 

macaques performing a similar task (Methods-Electrophysiology, Dataset 

1), I observed such loss of tuning with eccentricity (Figure 40). Previous 

works addressing performance with eccentricity for low-level visual 

functions (Cowey & Rolls, 1974; Jyrki Rovamo et al., 1978) detected a 

decrease in performance that could be explained by an increase of the 
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receptive fields sizes with eccentricity (Johnston & Wright, 1986). 

Electrophysiological inspections of the macaques visual cortices 

(Burkhalter & Van Essen, 1986; Desimone & Schein, 1987; Felleman & Van 

Essen, 1987; Gattass et al., 1981; Toet & Levi, 1992) and also neuroimaging 

studies in humans (Harvey & Dumoulin, 2011) reported a proportional 

increase of receptive fields sizes with eccentricity. This linear scaling factor 

implies the tuning of the neurons of the visual cortex to be constant with 

eccentricity, inconsistent with the modeling explanation proposed here. 

Instead, PFC recordings showed the loss of tuning predicted by the 

computational model. Some studies questioned the proportional increase 

of receptive fields with eccentricity in visual cortices (Dow et al., 1981; Van 

Essen et al., 1984) and reported a flatter regime for close eccentricities 

and a stepper regime for  further eccentricities. As I did not have access to 

any other neural recordings rather than PFC performing this task, I cannot 

totally discard two different populations in the visual cortex with different 

topographies nor other regions reproducing the topography observed 

here, making PFC redundant.  In sum, I propose a model that accounts for 

memory topographical effects both for single-item and multiple-item 

trials. This model receives already biased information from a perceptual 

circuit, which cannot overlap with the one responsible for WM due to the 

nature of the observed interference patterns.   

In the second section of the chapter (Radial dimension), I developed a 

radial version of the bump attractor model that gives a mechanistic 

explanation to a delay-dependent behavioral bias: the time evolution of 

the compression of the visual space towards the fixation point (Figure 42). 

Sheth & Shimojo (2001) discussed a possible mechanism based on lateral 

connections where a constantly activated representation of the fixation 

point would attract the representations of more eccentric items. However, 

their interpretation had two important inconsistencies: first, it needed a 

constant activation of the reference (fixation point). This need was 

incompatible with another of their results: the compression of the visual 

space was still present when the referent point was invisible. Second, it 

needed a transient activity of the target, which does not match with 

electrophysiological data pointing towards persistent activity of the target 

during the delay period (Funahashi et al., 1989; Fuster & Alexander, 1971; 

Goldman-Rakic et al., 1990; Kubota & Niki, 1971). The proposed model for 

the radial dimension solves both inconsistencies by relying on the 

topography of the network (the model did not require a bump at the 

http://f1000.com/work/citation?ids=8095493,555973,1942329,1375351,561099&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://f1000.com/work/citation?ids=8095493,555973,1942329,1375351,561099&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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fixation point to obtain the compressive effect), and on persistent activity 

(the activity of the target is not restricted to the presentation period, and 

it is maintained throughout the delay period). This model is the first 

implementation of the bump attractor model to the radial dimension. In 

the first section of this chapter, I explained behavioral results through 

connectivity changes at different eccentricities. In this section, the 

changes in eccentricity were also implemented by compromising the 

tuning of more eccentric neurons (Figure 42A) and, as before, I obtained 

broader bumps for more eccentric locations (Figure 42D-F). In the angular 

formulation of the bump attractor model, broader bumps diffused less 

during the delay period as they absorbed noise fluctuations more 

efficiently. However, in this model formulation of the radial dimension, 

more eccentric bumps drift more as the pattern of connectivity with 

neighbor neurons is not constant. Altogether, the angular version and the 

radial version of the bump attractor model account for a larger error with 

eccentricity in the radial dimension and a smaller error with eccentricity in 

the angular dimension. These results open the door to future modeling 

work that aim to unify both models to explain the error in Euclidean 

space.  

One important difference between behavior and the model is the delay 0 

condition (Figure 41C, grey and Figure 42B, light blue). The model does not 

show any effect (flat line at 0) while behavior shows that the compression 

of the visual space has a perceptual component, in line with Sheth & 

Shimojo (2001). As I previously discussed in the angular model, the bump 

attractor model just explains the delay-dependent effects (not perceptual 

biases), so different models of visual areas should be considered to explain 

the biases in early visual cortices observed in both sections (Chunharas et 

al., 2019; Fritsche et al., 2017; Gibson & Radner, 1937; O’Toole & 

Wenderoth, 1977). This chapter explained results through two different 

circuits: one for the encoding of visual information and another for WM 

maintenance. Future studies may consider evaluating it by using groups of 

patients with one of this circuits impaired. Patients with optic ataxia, 

which is a purely perceptual deficit, would be a good candidate to test this 

hypothesis, as two independent networks would predict no interaction 

between delay and group (patient vs control) in the compression of the 

visual space. In other words, the model predicts the same slope in the 

evolution of the compression of the visual space with delay for optic ataxia 

patients and controls, although the first ones would present higher 
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baseline levels of compression. In sum, the second section of this chapter 

presents the first radial version of the bump attractor computational 

model, which successfully models the delay component of the 

compression of the visual field.  

In each section of the chapter (Angular dimension and Radial dimension), 

I developed a model that was compatible with the one of the other 

section, as I compromised tuning with eccentricity: κ in the network model 

of the angular dimension (Equation 3) and S(λ) in the network model in the 

radial dimension (Equation 9). The fact that equivalent modifications 

explained behavior in both dimensions demonstrates the flexibility of the 

bump attractor model. Future experiments must be considered to 

elucidate if a combined model is needed, because it could be the case that 

the angular and the radial component of the final memory readout are 

computed independently in the brain. Alternatively, if the final memory 

readout was a xy combination in Euclidean space, a two-dimensional 

model that integrates the angular and the radial dimension would be 

needed. In the former scenario, the two models presented here could be 

a good starting point, as they share mechanisms for WM maintenance (PA) 

and use equivalent parameters to describe the connectivity between 

neurons.  
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Distractor filtering in the working memory circuit 

In this chapter, I manipulated distractors both in the temporal and the 

similarity domains. Regarding the temporal domain, changes in TDOA 

were in line with previous studies (Figure 44, Figure 45, Figure 47 and 

Figure 48) showing more interference for short TDOAs (Jolicœur & 

Dell’Acqua, 1998; Pasternak & Zaksas, 2003; Suzuki & Gottlieb, 2013; Van 

Ede et al., 2018; Vogel et al., 2006). Results suggest that memories go 

through a “stability process” after encoding (Barbosa, 2017), which may 

seem in contradiction with another consistent finding of errors increasing 

with delay length (Funahashi et al., 1989). Although I did not directly 

evaluate this contradicting effects by playing with very short delays, 

previous works indeed found a decrease of performance for very short 

delay periods of 400ms compared to delay periods of 1s (Loft et al., 2014; 

Loft & Remington, 2013). The computational model presented in this 

chapter would explain both effects through two different sources of 

errors: encoding-instability and memory-diffusion. The firing-rate dip at 

early stages of the delay period (Figure 14) explains the encoding-

instability related errors, while memory diffusion due to noise fluctuations 

explains the increased error with delay length (Figure 11).  

Regarding the similarity domain, I evaluated the effect of different 

distances between stimuli (Figure 46). Results were consistent with 

previous studies, showing attractive interference for close stimuli and 

repulsive interference for distant stimuli (Almeida et al., 2015; Nassar et 

al., 2018). Although the observed pattern of interference provides 

supporting evidence for the ring connectivity of bump attractor model 

and, there are some intriguing results when comparing the distance 

effects with the ones of chapter 1 (Topography of the working memory 

circuit). In chapter 1, the interference was between two targets while in 

this chapter, the interference was between a target and a distractor. 

Observing that the pattern of interference follows the same topographical 

rule (attraction for close and repulsion for far), points to all interferences 

taking place in the same circuit, instead of some areas just maintaining 

unbiased target information (Iamshchinina et al., 2021; Lorenc et al., 

2018). The bump attractor model supports this interpretation in PFC, 

being it responsible for the final memory readout. 
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Altogether, the computational model explained behavioral results (TDOA 

and distance effects, Figure 62 and Figure 63) through incorporating STP 

mechanisms. Previous studies combined PA with STP mechanisms to 

explain serial biases (Barbosa et al., 2020; Kilpatrick, 2018; Stein et al., 

2020), diffusion (Itskov et al., 2011), or even attractive effects of close 

distractors (Seeholzer et al., 2019). The motivation for this combinations 

of mechanisms originated in previous studies showing memory 

reactivation for unattended stimulus after unspecific stimulation of the 

circuit (Rose et al., 2016; Wolff et al., 2017), which planted the idea that 

other mechanisms not relying on PA were needed, such as synaptic 

mechanisms (Fiebig & Lansner, 2017; Mongillo et al., 2008). Although 

posterior experiments showed that those results could be a consequence 

insufficient statistical power to detect PA (Barbosa et al., 2021; Christophel 

et al., 2018), memory mediated by PA alone is insufficient to explain some 

electrophysiological findings. Barbosa et al. (2020) observed that after 

response, decoding of the target reduced to chance levels during the ITI. 

However, decoding reappeared specifically during the fixation period of 

the next trial, in the direction of the observed serial. A version of the bump 

attractor model without STP would explain behavioral results through a 

bump of activity staying during the ITI and interfering with the next trial. 

The latter explanation, however, would be inconsistent with chance level 

decoding during the ITI, so Barbosa et al. (2020) needed to incorporate STP 

mechanism. The model presented here needed STP to explain short vs 

long TDOA effects as well as interference from previously presented 

distractors. In the model, the elevated firing during the stimulus 

presentation induces an initial STD that takes time to recover, creating a 

window of instability that explains why short-TDOA conditions are more 

disruptive than long-TDOA conditions. Also, distractors are not maintained 

in the form of PA in the order 2 condition (Figure 62 and Figure 63), so 

their interference is mediated by their synaptic trace, which is also more 

degraded for long TDOAs.  As in Barbosa et al. (2020), these results would 

not be explained with the original bump attractor model without STP 

(Compte et al., 2000), as it would not have an instability period following 

stimulus presentation and previously presented distractor would not be 

attenuated.  

The dip in the firing rate proposed by the model has been observed in the 

classical Funahashi et al. (1989) when aligning to the stimulus presentation 

(Figure 5B), and the electrophysiological  analysis of the firing rates of the 
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Dataset2 (Suzuki & Gottlieb, 2013) showed an interesting correlation 

between a delay-dip and the final decoding (Figure 67C). Although there is 

certain circularity in the analysis as distractors were presented during the 

delay period and because neurons for the original paper were selected 

depending on their cue selectivity, a null correlation would indicate that 

those neurons responsible for the final memory readout are the ones that 

present a stable code with no instability during the delay. Previous studies 

using cross-temporal decoders with distractors showed transient 

instability when distractors were presented (Hallenbeck et al., 2021; 

Parthasarathy et al., 2017), consistently with the data in Figure 64A. 

Previous studies also identified two different periods of stable 

generalization: one for the stimulus presentation and one for the delay 

period (Mendoza-Halliday & Martinez-Trujillo, 2017; Parthasarathy et al., 

2017; Spaak et al., 2017; Stokes et al., 2013). I observed a consistent 

asymmetry in the cross-temporal decoding matrix: while training during 

the stimulus presentation did not allow to decode during the delay period, 

training during the delay period allowed to decode during stimulus 

presentation (Figure 64A, Figure 66B). One plausible explanation for it 

relies on the procedure of selecting neurons, as neural heterogeneity with 

PFC subpopulations with selectivity to different time intervals is been 

reported (Markowitz et al., 2015; Mendoza-Halliday & Martinez-Trujillo, 

2017). Both Markowitz et al. (2015) and Mendoza-Halliday & Martinez-

Trujillo (2017) observed neurons with selectivity to the stimulus 

presentation, neurons with selectivity to the delay period and neurons 

with selectivity to both. As neurons included in the cross-temporal 

decoding analysis were selected based on their stimulus selectivity, one of 

the three previously described subpopulations -selectivity to the delay 

period- is not represented. Therefore, neurons with delay-selectivity 

would also have stimulus-selectivity, generating the asymmetry. If all the 

different types of neurons could be incorporated into the analysis, it is 

possible this asymmetry disappears. Markowitz et al. (2015) already 

pointed out that the subpopulation with both delay and visual stimulus 

selectivity was the one with better correlation with behavior, so a future 

analysis comparing the correlation of the slope of the delay-selectivity 

subpopulation with decoding strength is likely to reveal a worse 

correlation than the one presented here. Markowitz et al. (2015) did not 

observe a dip in the rate at the early delay of the subpopulation with 

selectivity to both stimulus and delay, so an alternative model to the one 
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presented here would rely in the communication between the neurons 

with delay-selectivity and the ones with both. In this alternative model, 

TDOA effects would probably be explained through the population with 

delay selectivity, which shows a ramping effect, in a similar way as in the 

model of Murray, Jaramillo et al. (2017) but by changing the parietal cortex 

by another subpopulation. This alternative model, however, would have 

some inconveniences. First, it would be less parsimonious, as it would 

require more populations to explain behavior; second, some of this 

subpopulations have not been found in similar experiments (Tsujimoto & 

Sawaguchi, 2004); third, when found, these subpopulations were detected 

at different locations of the PFC (Markowitz et al., 2015), which could 

potentially affect their communication; and fourth, to explain behavioral 

effects -such as serial biases- this model would still require STP 

mechanisms. All things considered, future modeling effort should be put 

into balancing PA, STP and different subpopulations to explain both 

electrophysiology and behavior. 

While in the first chapter of the results (Topography of the working 

memory circuit) I used the bump attractor model exclusively to explain 

behavioral results, in this chapter I also used it to make predictions. The 

bump attractor model explains interference effects through the 

coexistence of the target and the distractor in the same network under 

similar codes. Therefore, a model trained to decode the target should be 

able to decode the distractor and vice versa. To test this, I tried to 

reconstruct WM content in visual, parietal, and frontal areas training both 

in the delay period of the target and in the delay period of the distractor. 

When training in the delay period of the target, I could systematically 

reconstruct the WM content of the target in all three regions (Figure 50A, 

Figure 55, red), as expected due to the distributed nature of WM 

(Christophel et al., 2017) and previous studies using IEM to decode 

information (Ester et al., 2013; Hallenbeck et al., 2021; S. A. Harrison & 

Tong, 2009; Lorenc et al., 2018; Rademaker et al., 2015, 2019; Serences, 

2016; Serences et al., 2009). Critically, when training in the distractor delay 

period, decoding the target was only possible in frontal areas (Figure 50B, 

Figure 55, grey), in line with the prediction of the model. Not being able to 

decode the target when training in the distractor delay period in visual and 

parietal could be interpreted in two different ways: first, visual and 

parietal areas have a mnemonic code that is sensory-dependent 

(Rademaker et al., 2019; Sprague et al., 2014, 2016), so they need a model 
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trained in the best possible attentional conditions. This first interpretation 

would predict that, when training on the target delay period, the distractor 

should be decoded. On the other hand, visual and parietal areas could 

have two different and independent codes, one for the target and one for 

the distractor, in line with recent studies that showed sensory information 

remapped or rotated into subspaces to avoid interference (Libby & 

Buschman, 2021; Wan et al., 2020), which is somehow represented in the 

patterns of BOLD signal. This second interpretation would predict that, 

when training on the distractor delay period, the distractor should be 

decoded. When tested this hypothesis, I observed that decoding the 

distractor was possible when training in the target (Figure 58), in line with 

previous results using IEMs. In frontal regions, decoding the distractor with 

either training in the or the distractor gave similar results, which is the 

predicted result for them coexisting in the same circuit. 

In this thesis there are several differences to discuss compared to previous 

studies using IEM to reconstruct the WM content. First of all, previous 

studies used an independent task to train the IEMs (Ester et al., 2015; 

Sprague et al., 2014, 2016) while others used the actual WM task 

(Hallenbeck et al., 2021; Lorenc et al., 2018; Rademaker et al., 2019). 

Training the IEM in the independent task (Methods-MRI) just allowed me 

to reconstruct during the stimulus presentation in visual (results not 

included), while using the delay period of the actual WM task worked 

better. In the very influential paper Rademaker et al. (2019), they 

observed that training in the independent task allowed them to decode 

orientations in visual areas, but for parietal areas they needed to train the 

model in the delay period of the WM task. As both Rademaker et al. (201) 

and Iamischinia et al. (2021) pointed out, training in the independent task 

(with flickering stimulation during the delay period) associates the 

mnemonic code to sensory-like stimulation and, consequently, if the 

mnemonic code differs from that configuration, as it is likely to happen as 

the retinotopic structure is lost, training in the actual delay period with 

cross-validation procedures is a better strategy to reconstruct the WM 

content, as this approach capitalizes on any signal differentiating the WM 

content during the delay. Although my results go in that direction, the fact 

that I could not decode during the delay period using the independent task 

even in visual area suggests that, in my dataset, the main problem was the 

difference between the delay period of the independent task and the WM 

task. Both the number of stimuli (1 vs 6) and the task difficulty (understand 
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a cue, increased load, distractors, precise response) suggest that even in 

visual areas, the pattern of BOLD signal associated with WM is changed. 

Previous studies have showed how top-down signals can affect sensory 

areas (Ardid et al., 2007, 2010; Gregoriou et al., 2014; Posner & Gilbert, 

1999; Reynolds et al., 2000; Reynolds & Chelazzi, 2004; Treue & Maunsell, 

1996), providing a reasonable explanation for obtaining decoding just 

when training the IEM in the delay period of the WM task even for visual 

areas.  

Regarding the ROI definition, it is important to note several differences 

compared to previous studies. First, I was not able to retinotopically define 

as many regions as other studies with that amount of spatial resolution. In 

visual cortex, I analyzed the activity in V1 and not in other regions like V2, 

V3, V3AB or V4. As I just explored the most primary area of visual cortex, I 

must be cautious regarding my interpretations, as other areas may be 

maintaining the WM content differently. Previous results performing a 

deeper exploration did not find relevant differences in the role of these 

areas when applying IEMs. Hallenbeck et al. (2021) combined V1-V3 

activity and found differences supporting the maintenance in WM content 

in these regions compared to V3AB or V4, while Rademaker et al. (2019) 

could decode systematically with equivalent results from V1 to V4. In 

parietal regions, I could not systematically separate from subject to 

subject the areas of intraparietal sulcus (IPS): IPS0, IPS1, IPS2 and IPS3 as 

previous studies did (Hallenbeck et al., 2021; Rademaker et al., 2019; 

Sprague et al., 2014, 2016). Instead, I combined the WM localizer mapping 

with an atlas to get parietal activity associated to WM. While the above 

mentioned studies found differences between visual and parietal, they 

just observed a small difference between IPS0 and IPS1 (Rademaker et al., 

2019), being the first one more similar to visual cortex. The decoding 

results of the thesis showed similar patterns of decoding between visual 

and parietal areas, which could also be explained by the ROI definition of 

parietal incorporating sensory-related IPS regions.  Finally, compared to 

Hallenbeck et al. (2021), Sprague et al. (2014) or Sprague et al. (2016), I 

did not systematically find activation in the superior precentral sulcus 

(sPCS), but did in other areas of superior frontal (Figure 23). A final 

important limitation in the interpretations of the results is that the 

electrophysiological results in the monkey brain that motivated the bump 

attractor model came from PFC, which equivalent location in the human 

brain would be in more anterior areas than the ROI defined. As several 
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recording in different frontal areas have shown delay-dependent elevated 

activity during the delay period (Leavitt et al., 2017), I speculate the 

proposed attractor dynamics to be generalizable in frontal areas and not 

specifically to PFC.    

It has been proposed that the task demands are essential to discriminate 

the role of each region in vsWM (Bettencourt & Xu, 2016; Christophel et 

al., 2017; Lorenc et al., 2018, 2021) and that, consequently, the idea of a 

singular essential storage could limit our comprehension of WM 

(Iamshchinina et al., 2021). In this line, previous electrophysiological and 

neuroimaging data suggest that tasks requiring the memorization of 

detailed low-level visual features would engage sustained mnemonic 

activation in early visual areas, while tasks involving the storage of abstract 

concepts would recruit association areas. Lorenc et al. (2018) observed 

consistent results with this hypothesis because, in the absence of 

distractors, the reconstruction of the WM content was more accurate in 

visual areas. However, when distractors were presented, most accurate 

reconstructions were observed in parietal regions. In the same direction, 

Iamischinia et al. (2021) reanalyzed Rademaker et al. (2019) and observed 

that parietal areas were more resistant against distractors. However, both 

studied showed that visual areas reproduced behavioral results more 

consistently and following studies like Hallenbeck et al. (2021) observed a 

clear correlation between the decoded memory error and the behavioral 

error in visual areas (Figure 7D) but not in downstream regions. As IEMs 

provide more precise reconstructions in sensory regions due to the 

retinotopic structure of the areas (Sprague et al., 2016), it is hard to 

conclude that WM representations are biased just in sensory regions. If 

that was not the case, maybe visual areas would be receiving a biased top-

down input. The results presented here are consistent with this final 

interpretation, as I observed a cw-ccw interference in all regions, including 

frontal areas (Figure 60). The interference was stronger in visual areas, but 

the fact that it was still present in parietal and frontal areas challenges 

previous works suggesting downstream areas only hold distractor-

resistant representations (Lorenc et al., 2018).  

Furthermore, the analysis of the decoding of the target and the distractor 

at different TDOA conditions (Figure 61) revealed that frontal regions had 

the most consistent decoding with behavior: higher representation for the 

target in the less distracting condition and higher distractor reconstruction 
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for the more distracting one. Previous studies suggested distractor 

filtering was mediated via a mechanisms that increase the fidelity of the 

remembered information (Fischer & Whitney, 2012), while other 

supported mechanisms of pure distractor suppression or a combination of 

both (Bettencourt & Xu, 2016; Lorenc et al., 2018; Suzuki & Gottlieb, 

2013). Both scenarios predict a reduced decoding of the target for higher 

distracting conditions, either for an active reinforcement of the 

representation of the remembered angles in the low distracting condition 

or because of a memory loss due to interference in the high distracting 

condition. Figure 61A showed this effect in all the regions. The decoding 

of the distractor was crucial, as frontal was the only region presenting a 

significant difference in decoding between the low and high distracting 

condition (Figure 61C). Therefore, results suggest that distraction is 

mediated by both an increased fidelity of the target but also by a 

suppression of the distractor. Critically, I observed no decoding for the less 

distracting condition (no significant interference is observed), so a gate 

mechanism that prevents the distractors enter the circuit is also likely to 

take place, maybe through the basial ganglia, as previous literature 

suggests (Awh & Jonides, 2001; Badre, 2012; Chatham & Badre, 2015; 

Frank et al., 2001; McNab & Klingberg, 2008). However, when the gating 

mechanism fails, the results of this thesis are consistent with the distractor 

being represented in frontal areas and interfering with the target in the 

same circuit, consistent with the bump attractor model. 

One possible explanation for the observed interference compared to some 

previous studies (Iamshchinina et al., 2021; Lorenc et al., 2018; Rademaker 

et al., 2019) could be that I am using positions instead of gratings. 

Perceptual effects and after-images are stronger with gratings (Wade et 

al., 1996), and they also require an extra step of abstraction compared to 

dots (Hubel & Wiesel, 1968; Lampl et al., 2001), which could affect their 

bottom-up processing and their top-down modulation. As Hallenbeck et 

al. (2021) used positions and still found no correlation with behavior in 

frontal areas, it is possible that, although distractors are used, tasks are 

still very easy and behavioral effects are so weak that are hardly detected 

in downstream areas. Taking together the results of this thesis with 

previous studies analyzing the distributed nature of WM (Christophel et 

al., 2017; Leavitt et al., 2017), decoding results in sensory and downstream 

areas (Rademaker et al., 2019; Sprague et al., 2014) and correlations of 

decoding with behavior in different tasks demands (Hallenbeck et al., 
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2021; Iamshchinina et al., 2021; Lorenc et al., 2018), I consider the 

following as the most plausible explanation for how the final memory 

readout is computed: 1) frontal regions are in charge for WM maintenance 

and send top-down signals to high resolution areas for the accurate final 

response. 2) The final memory readout is computed as a weighted 

measure of different WM storage buffers and, the weight for each buffer 

depends on the task demands: easy tasks could weight strongly visual 

buffers compared to frontal ones, while hard tasks would weight strongly 

frontal compared to visual ones. The results obtained in this thesis are 

compatible with both interpretations, and further studies must be run to 

discriminate between them.    

In the last section of the chapter, I evaluated the adequacy of the bump 

attractor model to mechanistically explain WM improvement after NB 

stimulation (Qi et al., 2021). Because correct performance depends on a 

highly tuned and sensitive system, alterations are mostly functionally 

detrimental (Bisley et al., 2001; Brozoski et al., 1979; Cañas et al., 2018; 

Croxson et al., 2011; D’Esposito & Postle, 2015; Duan et al., 2015; Maisson 

et al., 2018; Major et al., 2015; Opris et al., 2005; K. H. Pribram et al., 1964; 

Rahman et al., 2021; Yue et al., 2021; Y. Zhang et al., 2021). For this reason, 

behavioral impairments are also harder to interpret: WM may worsen 

because of induced drowsiness, or a toothache, and not inform us 

specifically about mechanisms of WM maintenance. On the other hand, 

WM improvement is more informative regarding the underlying 

mechanisms and, consequently, more useful for the development of 

therapeutic strategies for those diseases where WM is affected. Previous 

studies regarding WM improvement reported it under computerized 

training programs (Jaeggi et al., 2008; Klingberg et al., 2005; Sattari et al., 

2019), optogenetic manipulations of the glutamatergic circuit (Cardoso-

Cruz et al., 2019; K. W. Wang et al., 2019), TMS applied to the dorsolateral 

PFC (Beynel et al., 2019; Brunoni & Vanderhasselt, 2014; Luber et al., 2007; 

Ramaraju et al., 2020) or pharmacological interventions (Arnsten, 2006; 

Aultman & Moghaddam, 2001; Bäckman & Nyberg, 2013; Bontempi et al., 

2003; Floresco & Jentsch, 2011; Jäkälä et al., 1999; Spinelli et al., 2006). In 

some cases, providing electrophysiological or neuroimaging traces 

correlating with it (Constantinidis & Klingberg, 2016; Garavan et al., 2000; 

Jolles et al., 2010; McNab et al., 2009; Meyer et al., 2011; Meyers et al., 

2012; Olesen et al., 2004; Qi & Constantinidis, 2012a, 2012b; Takeuchi et 

al., 2016; Tang et al., 2019). However, as opposed to the results presented 
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here, the mechanistic explanation of how these interventions affected the 

WM circuit was missing. 

As in the model presented in Topography of the WM circuit: Angular 

dimension, the model of this section used broader bumps to reproduce 

behavior: broader bumps diffuse less during the delay period as they 

absorb noise fluctuations (Figure 68D). The way to get broader bumps, 

however, was completely different: while in chapter 1 broader bumps 

emerged from wider connectivity profiles in eccentricity (changes in κ of 

the von Misses distribution), in this section broader bumps were a 

consequence of an increase in the external input (I0
E): as NB stimulation 

provokes a release of ACh in PFC, this would result in blockade of 

hyperpolarizing intrinsic currents in excitatory neurons, so it should be 

modeled as an increase in the excitability of the population.  

Previous works showing improvement in cognitive tasks (Blake et al., 2017; 

Dasilva et al., 2019; Galvin et al., 2020; Liu et al., 2017, 2018; Sun et al., 

2017; Y. Yang et al., 2013) did not show the condition-dependence 

observed in Qi et al. (2021), where, for prospective distractors located 

close to the target, NB stimulation produced WM impairment and,  for the 

other conditions, NB stimulation produced WM improvement (Figure 69). 

The bump attractor model was still able to replicate this singularity in the 

dataset, as broader bumps under NB stimulation would also be more 

susceptible to merging when other stimuli are presented close-by (Figure 

69A&C). Explaining this singular condition was crucial, as it showed that 

this mechanism could also have side effects when inspecting different 

domains of WM. In this line, I think that future interventions regarding 

WM should us complex behavioral tasks because, as observed here, 

improving in some conditions may be detrimental for others.  

To my knowledge, this is the first work providing a circuit-level model that 

successfully reproduces experimental results on WM improvement and 

impairment upon specific task manipulations. Besides, although 

anticipation effects have been reported in PFC for predictable stimulus 

timings (Altamura et al., 2010; Berchicci et al., 2015), examples of how this 

expectation affects memory traces are rare. In this sense, Qi et al. (2021) 

showed how expectation under NB stimulation generated elevated firing 

rate at the precise moment in which the first visual stimulus would have 

been presented (Figure 70). The model interprets this as the spontaneous 

generation of a spurious memory in the network because of increased 
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excitability by NB stimulation and by anticipatory timing signals. Although 

this is similar to the memory reactivation of mnemonic traces imprinted in 

synaptic modifications (Barbosa et al., 2020; Mongillo et al., 2008), the 

relation to events in previous trials is not necessary and these “phantom 

bumps” could reveal false working memories, where the memory appears 

at a random location unrelated to previous memory traces. Finally, 

although sharper tuning at the neuronal level is typically associated with 

increased performance (Li et al., 2004; Raiguel et al., 2006; Sanayei et al., 

2018; T. Yang & Maunsell, 2004), the modeling results presented in this 

thesis (Figure 71 and Figure 72) are in line with other theoretical studies 

showing that broader tuning curves can produce either worse or better 

performance at the whole network level depending on specific conditions 

(Butts & Goldman, 2006; Ma et al., 2006; Pouget et al., 1999; Stein et al., 

2020; K. Zhang & Sejnowski, 1999). In sum, Qi et al. (2021) presented 

intriguing and unexpected results after NB stimulation, and I showed that 

the bump attractor model can consistently account for them via an 

increase in neuronal excitability, which is a reasonable alteration of the 

neocortical circuit after the release of ACh caused by NB stimulation. 

An important limitation of the model is that it is composed of one single 

type of neurons. In Qi et al. (2021), many neurons that had no selectivity 

or did not present increased activation during the fixation period were 

discarded. When I increased the complexity of the model by using a spiking 

network version of the bump attractor model (which mimicked in a more 

realistic way the heterogeneous tuning and connectivity of real data), I 

observed a better reproduction of electrophysiological results, so it is 

likely that an even more complex model that includes more neuron 

diversity (Finn et al., 2019; Markowitz et al., 2015; Mendoza-Halliday & 

Martinez-Trujillo, 2017) could reproduce the results more accurately.  

The models proposed in the second chapter show different control 

mechanisms for distractor filtering: while on model (Methods-

Computational modeling, Network model for distractor filtering) 

controlled which of the two stimuli presented was the target through 

changes in the excitability (I0
E), the other (Methods-Computational 

modeling, Network model of NB stimulation) relied on changes in the 

strengths of inhibitory and excitatory connections to modulate the 

network from a Remember 1st to a Remember 2nd regime. These different 

strategies are in line with the task design of each paradigm: while the first 
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model needed to change between Remember 1st (order 1) and remember 

2nd (order 2) in a trial basis, so a rapid adaptation is needed, the second 

did not, as blocks of Remember 1st were presented separately from blocks 

of Remember 2nd, so more stable control mechanisms could be 

implemented. Supporting the control mechanism mediated by changes in 

the excitability, previous studies showed attentional modulation in PFC, 

which is reflected in baseline activity or in ramping effects before the 

stimulus presentation (Rainer et al., 1998; Suzuki & Gottlieb, 2013). 

Supporting the control mechanism mediated by neuromodulation, 

previous studies proposed different mechanism to achieve 

neuromodulation on a timescale of seconds (Arnsten, 2010; Arnsten et al., 

2012; Vijayraghavan et al., 2017). Although in this thesis I have explored 

these two control mechanisms, others are still possible. For example, 

maybe sensory inputs of unwanted distractors get suppressed or 

attenuated in early sensory regions (Nakajima et al., 2019), so when they 

reach downstream areas they cannot compete with the targets or they do 

not even reach memory storage centers; or large-scale brain-area 

interactions mediate how likely it is a certain stimulus to enter the memory 

state (Sakai et al., 2002). 

In sum, the second chapter provided a deep exploration of how the WM 

circuit deals with distracting information, combining behavioral, 

neuroimaging, electrophysiological and modeling results, all of them 

providing converging evidence towards attractor networks mediating WM 

maintenance in frontal areas.   
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General discussion 

To conclude, I will discuss the results of the thesis regarding the initial 

goals. In the first chapter, I explored the topography of the WM circuit to 

(1) evaluate if the topographical relationships are maintained through 

encoding and maintenance periods of WM. Results with variable delay 

lengths and eccentricities point towards different circuits mediating 

encoding and maintenance. As one of the fundamental points of the SRT 

is that encoding and maintenance occur in the same circuit, my results go 

against this theory. Furthermore, the bump attractor model, which 

mechanistically explains WM through PA, successfully explained 

behavioral results through a change of neural tuning that is not observed 

in visual cortex. Finally, electrophysiological data confirmed one 

prediction of the model regarding the RF size in PFC, so all behavioral, 

modeling, and electrophysiological data converged to attractor dynamics 

in PFC mediating WM maintenance. 

The bump attractor model explains behavior in the angular dimension, 

leaving the whole radial dimension unexplored. Although I partially 

explored the radial dimension when addressing the first goal (memory 

errors at different eccentricities), a mechanistic explanation for errors in 

the radial dimension was missing. To (2) topographically describe the WM 

circuit on this dimension, I developed a radial version of the bump 

attractor model that successfully explained the delay dependence of the 

compression of the visual field, where memory reports are systematically 

biased towards the fixation point.  

In the second chapter, I explored how the WM circuit deals with distracting 

information. To do so, I (3) evaluated the effects of manipulating the 

distractors in the similarity and the temporal domains. Behavioral results 

were consistent with previous literature, showing that more similar 

distractors (in both domains) had higher disruptive effects. Again, the 

bump attractor model (4) could reproduce behavioral results, and 

predictions of the model (5) were tested in neuroimaging and 

electrophysiological results. Neuroimaging results demonstrated the 

coexistence of the target and the distractor in frontal areas under the 

same code and showed the most consistent decoding with behavior in 

frontal areas. In addition, electrophysiological single-unit PFC recordings 
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were consistent with the profile of activity predicted by the computational 

model.  

Finally, I explored the validity of the model analyzing a dataset that 

presented WM improvement after NB stimulation. By manipulating the 

basal conditions of the model, I (5) explained gains in performance, 

providing the first mechanistic explanation for both WM gains and 

impairment after an intervention. With this model, I also (4) explored 

different control mechanisms for distractor filtering, as this model relied 

on a neuromodulation of excitatory and inhibitory neurons, consistent 

with a block design while the first one relied on a modulation of the 

excitability of the network, consistent with an interleaved-trial design. 

Altogether, this thesis supports a WM maintenance system in frontal 

areas, with evidence both coming from the topographical and distractor-

filtering exploration. The thesis provides evidence towards the bump 

attractor computational model, which has demonstrated its versatility by 

explaining changes in eccentricity, under different distractor protocols and 

under cholinergic modulation. Future exploration must be considered to 

incorporate other WM buffers into the model, such as parietal or visual, 

as well as to increase the complexity of the model not just by incorporating 

STP mechanism but also considering neural heterogeneity. 
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6.Conclusions 

 

1. The effects of memory precision and simultaneous memory 

interference at different eccentricities can be explained 

parsimoniously in a bump attractor network model if we assume 

a loss of angular neural tuning with eccentricity. 

 

2. Electrophysiological results support a loss of tuning with 

eccentricity in prefrontal cortex neurons, consistent with the 

modeling prediction. 

 

3. The same eccentricity-dependent loss of angular neural tuning 

explains in a novel bump attractor model of the radial dimension 

the delay-dependent compression of the visual field in working 

memory.  

 

4. This convergent association of degraded angular tuning in the 

visual periphery with working memory is in contrast with reported 

preserved peripheral angular tuning in visual perception. This 

suggests that the neural circuits responsible for sensory encoding 

and for working memory maintenance are separate and have 

quantitatively different topographies. 

 

5. The bump attractor model can explain distractor interference in 

the similarity and temporal domains through the combination of 

persistent activity and short-term synaptic plasticity mechanisms. 

 

6. Neuroimaging results support distributed working memory 

buffers in visual, parietal, and frontal areas. 

 

7. Only in frontal areas, decoding of the target and the distractor is 

independent of training in the target delay period or in the 

distractor delay period. This can be interpreted as a validation of 

the computational model assumption that target and distractor 

information interfere in the same network, represented with the 

same code. This suggests that this occurs in frontal cortex.  
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8. Behavioral results are consistent with the observed decoding in 

frontal areas, suggesting that distractor filtering is mediated both 

by an attenuation of distracting information in frontal areas as 

well as by an increased fidelity of the remembered information.  

 

9. The bump attractor model can account for different control 

strategies to filter distracting information. Two different control 

mechanisms, one based on excitability control, and another based 

on neuromodulatory control explained results for block and 

interleaved-trial designs, respectively.  

 

10. Electrophysiological and behavioral results after stimulation of the 

Nucleus Basalis of Meynert during spatial working memory can be 

explained by increased excitability of neurons in a bump attractor 

network, which results in broader neural tuning and improved 

working memory precision. 
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List of abbreviations 

Abbreviation Meaning 

Ach  acetylcholine  

BOLD  blood oxygenation level lependent 

ccw  counterclockwise 

ci  confidence interval 

cw  clockwise 

dlPFC  dorsolateral prefrontal cortex  

EPI  echo planar imaging 

fMRI  functional magnetic resonance imaging  

FWHM  full width at half maximum  

gF  general fluid intelligence  

IEM  Inverted encoding model 

IQ  intelligence quotient  

ITI  inter-trial interval 

IPS 
LIP 

 Intraparietal sulcus 
 lateral intraparietal  

MNI  Montreal Neurological Institute   

MRI  magnetic resonance imaging 

NB  Nucleus Basalis of Meynert 

NT  non-target  

ODR  oculomotor delayed-response 

PA 
PFC 

 persistent activity 
 prefrontal cortx  

RF  receptive field 

ROI  region of interest 

sem  standard error of the mean 

SOA  stimulus onset asynchrony  

SPM 
sPCS 

 Statistical Parametric Mapping 
 Superior precentral sulcus 

SRT 
STD 

 sensory recruitment theory  
 short-term synaptic depression 



194 
 

STF 
STP 

 short-term synaptic facilitation 
 short-term synaptic plasticity  

TDOA  target-distractor onset asynchrony 

TE  time to echo 

TR  repetition time 

vsWM  visuospatial working memory 

WM  working memory 
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