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Abstract

The Fundamental Theorem of Finitely Generated Abelian Groups is a very important result that allows
us to describe explicitly the finitely generated abelian groups. This theorem can naturally be generalized
to finitely generated modules over principal ideal domains. The difficulty arises when we try to extend
it to other types of rings. In this work we prove a generalization of this, the decomposition theorem of
finitely generated modules over Dedekind domains. We also explore other similar decomposition and we
characterize the rings such that all their modules have a decomposition of simple and cyclic modules.

Resum

El Teorema Fonamental dels Grups Abelians Finitament Generats és un resultat molt important que
permet descriure de froma explícita com és qualsevol grup abelià finitament generat. Aquest teorema,
de manera força natural es pot generalitzar per a mòduls finitament generats sobre dominis d’ideals
principals. La dificultat apareix quan l’intentem estendre a altres tipus d’anells. En aquest treball
provem una generalització d’aquest, el teorema de descomposició de mòduls finitament generats sobre
dominis de Dedekind. A més explorem altres descomposicions similars i caracteritzarem els anells tals
que tots els seus mòduls descomposen en simples i en cíclics.
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Introduction

The Fundamental Theorem of Finitely Generated Abelian Groups also known as the Structure Theorem of
Finitely Generated Abelian Groups, affirms that: Every finitely generated abelian group can be expressed
uniquely as the product of Zn and the product of finite number of groups of the form Z/peii Z where pi ∈ Z
are prime numbers and ei ≥ 1.

The history of this theorem is complicated because the theory of groups was not yet well-established when
this result was proved. The first apparition of the actual group definition was in 1882. Group theory
begins in the mid 19th century with Lagrange, Galois and Cauchy and the first proof of the finite case is
credited to Leopold Kronecker in 1870, but did not use a language of groups. The first one who prove it
with this language was Ferdinand Georg Frobenius and Ludwig Stickelberger in 1878. Poincaré did the
finitely generated case with a matrix approach proof that is easily adaptable for proving the Fundamental
Theorem of Finitely Generated Modules over a Principal Ideal Domain.

The natural generalization of the abelian case is when we consider a module over a principal ideal domain.
Since every abelian group is a Z-module this generalization makes sense. It is not very hard to prove that
every finitely generated module over a PID is the finite direct sum of cyclic modules. In most cases the
proof is just an adaptation of the abelian groups proof. In this case the PID rings are characterized, as
we will see, by the property that every finitely generated module over this ring is a direct sum of cyclic
modules.

Now we can ask that if there is some generalization of the Fundamental Theorem of Finitely Generated
Modules over PID. It is credited to Steinitz that he proved a similar result for the finitely generated
modules over a Dedekind domain but in 1951 Irving Kaplansky gave a new proof of this result using
more general concepts. The decomposition is not as elegant neither simple as in the PID case but gives
a good characterization of these modules. At first sight it may seem the same as in the case of PID, but
the most notorious difference is that there are modules that can not be decomposed as a direct sum of
cyclic modules. In addition this decomposition loses the uniqueness. There is a part that depends on the
ideal class group.

At this point we can ask which decomposition of modules in direct sums are, or what are the type of
rings that every module decomposes into a direct sum of modules of a specific type.

The main goal of this work is to prove the Decomposition of finitely generated modules over a Dedekind
Domain. For doing this we need the Fundamental Theorem of Finitely Generated Modules over PID that
we will also prove. We will study the Dedekind domains and we will do some characterizations of this
ring.

Memoir Structure

In general, the whole text is mostly self-contained with the exception of the Krull-Schmidt-Remak-
Azumaya Theorem and the chapter 5 due to the extension of the proofs of these results. Every ring R in
the text is commutative and unitary unless otherwise specified.

In chapter 1 we give the first decomposition of modules. The type of modules that intervenes in the direct
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sum are the simple modules. This ones are the most facile modules since does not have any nonzero
proper submodule. We prove several results with these modules and we reach the characterization when
a ring has that every module is the direct sum of simple modules. Finally we state the Krull-Schmidt-
Remak-Azumaya Theorem that gives the unicity of the direct sums of simple modules.

In chapter 2 we begin with a wide vision of the various types of modules when the ring is a PID. From
these results and characterizations we can prove tha Fundamental Theorem of finitely generated modules
over PID. This is the theorem that we will generalize over Dedekind domains.

In chapter 3 we study the Dedekind domains. First of all we begin with a shortly theory of valuations
ring that will end with the first characterization of a Dedekind ring. We give various characterisations of
these rings to have a better vision of this new object. Finally we do a brief section about the ideal class
group that later will have an important role.

Once we have worked with the Dedekind domains we are able to prove the theorem about the decompo-
sition of finitely generated modules over a Dedekind domain. That is what we do in chapter 4. First we
give properties and characterizations of some modules types when the ring is a Dedekind domain. From
here we can do the theorem. We have to remark that this decomposition is nearly to be cyclic, because
when we have a finitely generated module over a Dedekind domain this module is isomorphic to a finite
direct sum of cyclic modules except one, that is generated by two elements.

In our last chapter, to close this work, we ask what is the ring that every module is the direct sum of
cyclic modules. These rings are very special, they are Artinian principal ideal rings. For proving this
theorem we choose a proof where the main tool are the injective modules.

In the appendix we state the basic concepts about the theory of rings and modules. Most of these results
will be used in the work. The notion of projective, Noetherianity, tensor product, localisation will be
very recurrent throughout the memoir.



Chapter 1

Semisimple Modules and Rings

In this section we begin with the most facile modules type, that is the simple modules. These modules
have the most basic and facile structure as a module since do not have any submodules except 0 and
himself. Then we explore which modules can be described as a direct sum of simple modules. This gives
us a nice characterization.

1.1 Definitions and Properties

Definition 1.1.1 An nonzero R-module S is simple if does not have any nonzero proper submodule.
Equivalently S is simple if 0 and S are the only submodules of S.

Proposition 1.1.2 Let M be a simple R-module. Then M ∼= R/I where I is some maximal ideal of R.

Proof: Let x ∈M a nonzero element. Then 〈x〉 ⊆M is a submodule of M but we suposed that M was
a simple module. Hence M does not have any proper submodule thus 〈x〉 = M . We can consider the
next morphism p : R −→ 〈x〉 = M where p(r) = rx. It is a epimorphism and by the First Isomorphism
Theorem we have that M ∼= R/ker (p). If ker (p) is not a maximal ideal we have a contradiction because
it will exist a maximal ideal I ) ker (p). Then I/ker (p) will be a proper submodule of R/ker (p). �

Proposition 1.1.3 Let M be a nonzero Artinian R-module. Then it possesses a simple submodule.

Proof: We can consider the collection of all nonzero submodules of M . Since M is Artinian we have
that this collection has a minimal element, this will be simple. �

Observation 1.1.4 If R is an Artinian ring we have that every nonzero R-module M has a simple
submodule because we can choose a nonzero m ∈ M and 〈m〉 it is a finitely generated submodule of
M . Hence 〈m〉 is an Artinian R-module (by Proposition A.3.8) and by the previous proposition it has a
simple submodule.

Definition 1.1.5 A nonzero R-module that is the direct sum of simple R-modules is called semisimple.
A ring is said to be semisimple if it is semisimple as a module over itself.

Proposition 1.1.6 Let M be a nonzero R-module. Then M is semisimple if and only if every submodule
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2 Semisimple Modules and Rings

of M is a direct summand of M .

Proof: First suppose thatM is semisimple, that isM =
⊕

i∈I Si where Si are simple modules. Let N ⊆
M be a submodule and let J ⊆ I (by Zorn’s lemma) be a maximal subset of I such that

(⊕
i∈J Si

)
∩N = 0.

We denote S by
⊕

i∈J Si. If i ∈ I\J then (S + Si) ∩N 6= 0 (by definition of S) hence (S +N) ∩ Si 6= 0.
Since Si is simple we have that

(S +N) ∩ Si = Si ⇒ Si ⊆ S +N

This is true for every i ∈ I\J , thus M = S +N and S ∩N = 0. it follows that N is a direct sumand of
M .
For the other implication first we show that every nonzero submodule of M contains a simple module.
Let C ⊆M be a submodule and c ∈ C any nonzero element. There exists a maximal submodule D ⊆ C
which does not contain the element c (by Zorn’s lemma). By hypothesis we have that D is a direct
summand of C, that is, there exist a submdoule E that D⊕E = C. If E is not simple, then is the direct
sum of F and G, two nonzero submodules of E. Thus C = D ⊕ F ⊕G and either D ⊕ F of D ⊕G does
not contain c (otherwise c ∈ D = (D ⊕ F ) ∩ (D ⊕G) because F ∩G = 0). Hence E is simple.
Now let B be a maximal submodule that is the direct sum of simple submodules of M . By hypothesis
B is a direct summand and then there exist a submodule N such that B ⊕ N = M . But N contains a
simple module S, and S ∩B ⊆ N ∩B = {0}. Hence B ( B ⊕ S contradicts the maximality of B. Thus
B =M and M is semisimple. �

Theorem 1.1.7 Let M be a semisimple R-module. Then the following statements are equivalent:

i) M is the direct sum of a finite number of simple submodules.

ii) M is Noetherian.

iii) M is Artinian.

iv) M is finitely generated.

Proof: i)⇒ii) and i)⇒ iii): We know that a simple R-module is Noetherian and Artinian (because does
not have any proper submodule). By the Corollary A.3.7 we have that a finite direct sum of simple
modules is Noetherian and Artinian. If M is the direct sum of a finite number of simple submodules,
these simple submodules are generated by one element, hence M is finitely generated. This establish
i)⇒iv).
Now we proceed by contradiction. Suppose thatM is not the direct sum of finitely many simple submod-
ules, that is, is the direct sum of infinitely many. Then M has a strictly ascending and descending chains
that does not end in a finite number of steps. So if i) is false, then ii) and iii) are false too. Now suppose
that M is finitely generated and is semisimple. Then M = 〈m1, . . . ,mn〉 and M =

⊕
j∈J Si where Si are

simple R-modules. Thenmi ∈
⊕

j∈J Si that is, there exists finitely many Si such thatmi ∈ S1i⊕· · ·⊕Sri .
Hence M is the direct sum of finitely many simple modules because M = 〈m1〉+ · · ·+ 〈mn〉. �

Corollary 1.1.8 A semisimple ring is the direct sum of a finite number of simple ideals.

Proof: Since R is generated by one element as an R-module we can apply the previous proposition and
get that it is the direct sum of finitely many simple submodules (ideals in this case). �

Proposition 1.1.9 Every nonzero submodule of a semisimple module is a semisimple module.
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Proof: Let M be a semisimple R-module and N a submodule of N . Let be H ⊆ N a submodule of
N , we know that H is also a submodule of M . By the proposition 1.1.6 we have that there exists a
submodule H ′ ⊆M such that H ⊕H ′ =M . Let p :M −→ H be the projection defined by p(h, h′) = h.
Since H ⊆ N we can consider p|N : N −→ H. Now

ker (p|N ) = H ′ ∩N and im (p|N ) = H ∩N = H.

Hence, the following sequence splits:

0 −→ H ′ ∩N inc−→ N
p|N−→ H −→ 0

because p|N ◦ j = IdH where j : H −→ N is the inclusion morphism. We can conclude that N =

inc(H ′ ∩N)⊕ j(H) = (H ′ ∩N)⊕H, that is, H is a direct summand of N . Hence, N is semisimple. �

Proposition 1.1.10 Any image of a nonzero morphism of a semisimple module is a semisimple module.

Proof: Let M be a semisimple R-module and ϕ :M −→M ′ a morphsim of R-modules. Then im (ϕ) ∼=
M/ker (ϕ), but by Theorem 1.1.7 we have that ker (ϕ) is a direct summand ofM . That isM = ker (ϕ)⊕N
and then

im (ϕ) ∼=M/ker (var) =
(
ker (ϕ)⊕N

)
/ker (var) ∼= N

Hence im (ϕ) is semisimple by the previous proposition.

Theorem 1.1.11 Let R be a ring. Then the following conditions on R are equivalent:

i) R is semisimple.

ii) Every R-module is semisimple.

iii) Every R-module is injectve.

iv) Every short exact sequence of R-modules splits.

v) Every R-module is projective.

Proof: i)⇒ii): Suppose that R is semisimple. For any R-module M we have the following surjective
R-moprhism ϕ :

⊕
m∈M R −→M . Since R is semisimple,

⊕
m∈M R is semisimple too and by the previous

Proposition im (ϕ) =M is semisimple.
ii)⇒iii): Suppose that every R-module is semisimple, then for every R-module E and exact sequence
0 −→ E

i−→ A
p−→ B −→ 0 we have that i(E) ∼= E is a direct summand of A (by Proposition 1.1.6).

Hence A ∼= E ⊕N for some R-module N and A/ker (p) ∼= B. But ker (p) = im (i) ∼= E, so

A/ker (p) ∼=
(
E ⊕N

)
/im (i) ∼=

(
E ⊕N

)
/E ∼= N ∼= B

Thus A ∼= E ⊕B and the exact sequence is split. By Proposition A.4.10 we have that E is injective.
The implication iii) to iv) is immediate because if every R-module is injective, then every exact sequence
splits. The same thing occurs with iv)⇒v) by the Proposition A.4.2.
v)⇒i): Suppose that every R-module is projective, then the following exact sequence is split:

0 −→ I −→ R −→ R/I −→ 0

where I ⊆ R is a nonzero ideal of R. Then R ∼= I ⊕ R/I, that is every ideal of R is a direct summand
of R. This is a characterization of semisimple modules (done at the Propostion 1.1.6), therefore R is
semisimple. �
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Remember that the Jacobson radical of a ring R denoted by J(R) is the intersection of all the maximal
ideals of R.

Proposition 1.1.12 Let R be a ring. Then the Jacobson radical of R/J(R) is 0.

Proof: We have that the maximal ideals of R/J(R) are the maximal ideals of R that contains J(R).
But by definition J(R) is the intersection of all the maximal ideals of R, hence every maximal ideal
contains J(R). Therefore J

(
R/J(R)

)
= J(R)/J(R) = 0. �

Proposition 1.1.13 A ring R that is Artinian and J(R) = 0 it is also semisimple.

Proof: By the Proposition 1.1.3 we have that R has a nonzero simple ideal I1. If I1 = R then we have
finished. Otherwise I1 is a proper ideal of R, so I1 6⊆ J(R) = 0, therefore there is a maximal ideal A1 not
containing I1. Since I1 is simple, I1 ∩A1 is either I1 or 0. If I1 ∩A1 = I1 then I1 ⊆ A1, a contradiction,
and so I1 ∩A1 = 0. Since A1 is maximal we have that A1 ⊕ I1 = R.
Now if A1 is simple, then we have finished because R is a direct sum of simple submodules. Otherwise A1

is Artinian (because is a submodule of an Artinian module) and hence it have a simple ideal I2 ⊆ A. By
the previous argument there exists A′1 ⊆ R such that I2⊕A′1 = R. With the same argument as the proof
of Proposition 1.1.9 we have that I2 ⊕ A2 = A1 where A2 = A1 ∩ A′1. This construction can be iterated
to produce a strictly decreasing chain of ideals R ) A1 ) A2 ) · · · . This chain has to end because R is
Artinian. Therefore R = I1 ⊕ I2 ⊕ · · · In and R is semisimple. �

1.2 Krull-Schmidt-Remak-Azumaya Theorem

Now we may ask if a decomposition using simple modules is unique. The answer is affirmative and the
theorem of this section is what it says. The proof of this theorem is quite large, by a lack of space, we will
not prove it. We have to remark that the proof of this result uses Schröder-Bernstein Theorem, therefore
is not an easy demostration. It can be found at [12], Theorem 3.13.

Definition 1.2.1 An R-module M is said to be indecomposable if M 6= 0 and the only direct summand
of M are 0 and M .

Definition 1.2.2 Let R be a ring (not necessary commutative). Then is said to be quasi local if the set
of non units is nonempty and is closed under addition.

Theorem 1.2.3 (Krull-Schmidt-Remak-Azumaya) LetM be an R-module and suppose that {Mi}i∈I and
{Nj}j∈J are families of submodules of M such that⊕

i∈I
Mi =M =

⊕
j∈J

Nj

Suppose further that each Mi and Nj has a quasi local ring of endomorphisms. Then there is a one to
one correspondence between the families of {Mi}i∈I and {Nj}j∈J such that corresponding modules are
isomorphic.

Proposition 1.2.4 Let S be a simple R-module. Then the ring of endomorphism of S is a division ring,
that is, every element has inverse.
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Proof: Suppose that S 6= 0 is a simple R-module. Then its ring of endomorphisms is nontrivial. Let f
be a nonzero element of HomR(S, S). Then f(S) is a nonzero submodule of S, so it has to be S (because
S is simple). Also ker (f) is a submodule of S and it can not be S, so it must be 0. Hence f is an
isomorphism and so it has inverse. In particular it is quasi local. �

Corollary 1.2.5 Let {Ei}i∈I and {Fj}j∈J be families of simple R-modules such that⊕
i∈I

Ei ∼=
⊕
j∈J

Fj

Then there is a one to one correspondence between the two families such that corresponding modules are
isomorphic.

Proof: It is immediate after the previous considerations. �

The following concepts will be used in chapter 5, but we will introduce it now because they have a strong
relation to Krull-Schmidt-Remak-Azumaya Theorem.

Definition 1.2.6 Let M be an R-module. We denote by S(M) the sum of all the simple submodules of
M and is called the socle of M . In the case when M has no simple submodules, then S(M) becomes the
zero submodule of M , it is a convention.

Observation 1.2.7 The socle S(M) of a module M is semisimple. Moreover it is the unique maximal
semisimple submodule of M . Also, an isomorphism between modules restricts to an isomorphism of their
socles. Then given any module M we can express the socle of M as follows

S(M) =
⊕
i∈I

Si

where Si are simple submodules of M .

Corollary 1.2.8 Let M be an R-module. Then the cardinal number |I| only depends on the module,
where I is the set such that S(M) =

⊕
i∈I Si.

Proof: Suppose that S(M) =
⊕

i∈I Si =
⊕

j∈J S
′
j where Si, S′j are simple submodules of M . Then by

the Corollary 1.2.5 we have that the cardinal of I and J are equal. Therefore the cardinal number |I|
only depends on M . �

Definition 1.2.9 Let M be an R-module and I be the set defined on the previous Corollary. Since
the cardinal number |I| only depends on M we denote this cardinal number by c(M), in other words
c(M) = |I|. Note that c(M) = 0 if and only if S(M) = 0.
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Chapter 2

Modules over PID

In this section we will prove a generalization of the classification theorem of finitely generated abelian
groups. The natural way to do this it is through modules (since a Z-module is an abelian group). We
will work with modules over PID rings (principal ideal domain) and lately we will be able to extend
to Dedekind rings. In particular we will see that all finitely generated modules over a PID ring can be
decomposed in a unique way, very similar to the abelian groups one.
To prove this result will we will divide the module in two parts, that is, we will show that every module
is the direct sum of a torsion-free module and a torsion module. Then we will prove that the torsion-free
modules are free and finally that the torsion modules can be decomposed in a unique way, first in to
direct sum of (p)-primary modules, and then in to direct sum of cyclic (p)-primary modules.

Definition 2.0.1 A ring R is said to be a principal ideal domain if every ideal of R is singly generated
and is a domain. Usually a principal ideal domain it is denoted by PID (it is an acronym).

Example 2.0.2 The ring of integers Z is a PID ring. The proof lies in the fact that the ideal generated
by two integers is the same as the ideal generated by its greatest common divisor.
Another example of a PID ring is the ring of polynomials in one variable over a field. In general every
euclidean domain is a principal ideal domain. But there are many PID that are not euclidean, like the
ring Z

[
1+
√
−19
2

]
.

Now we give some elemental results about the PID rings. These propositions will be used without any
mention. The proofs of these can be found at reference [11].

Proposition 2.0.3 Let R be a PID ring. The every nonzero prime ideal is maximal and its generator
is an irreducible element.

Proposition 2.0.4 Let R be a PID ring. Then R is also a UFD (unique factorization domain).

Definition 2.0.5 Let R be a commutative ring, and let M be an R-module. If m ∈ M , then its
annihilator (or order ideal) is

ann(m) = {r ∈ R : rm = 0}

We say that m is a torsion element (or has finite order) if ann(m) 6= (0); otherwise, m is a torsion-free
element (or has infinite order).

7



8 Modules over PID

Proposition 2.0.6 If M = 〈m〉 is a cyclic R-module then M ∼= R/ann(m).

Proof: We can define ϕ : R −→ M by r 7→ rm, then ϕ is an R-epimorphism and ker (ϕ) = {r ∈ R :

rm = 0} = ann(m). The First Isomorphism Theorem gives

M = 〈m〉 ∼= R/ker (ϕ) = R/ann(m)

�

Let R be a ring, then it is an R-module and it is cyclic since 〈1〉 = R. When R is a PID then all the
ideals (submodules of R) are cyclic too. This property can be generalized to modules over PID.

Proposition 2.0.7 If R is a PID ring then every submodule S of a cyclic R-module M = 〈m〉 is cyclic.

Proof: Let I = {a ∈ R : am ∈ S} ⊆ R, then it is an ideal of R since if a, b ∈ I then

am, bm ∈ S ⇒ (a+ b)m = am+ bm ∈ S hence a+ b ∈ I

and the scalar multiplication is clear too because if a ∈ I and λ ∈ R then

am ∈ S ⇒ (λa)m = λ(am) ∈ S ⇒ λa ∈ I.

We know that R is a PID, this implies I = dR for some d ∈ R and we will prove that S = 〈dm〉. This
inclusion 〈dm〉 ⊆ S is trivial, and the other is easy too. Let x ∈ S then

x ∈ S ⇒ x = am⇒ a ∈ I = dR⇒ a = bd⇒ x = bdm

thus x ∈ 〈dm〉. �

2.1 Torsion-free, Projective, Injective, Free and Flat Modules

over PID

In this section we will characterize and study the modules that are mentioned in the title. We will see
that the fact that the ring is a PID makes the properties behaves very well.

Definition 2.1.1 If M is an R-module, where R is a domain, then its torsion submodule tM is defined
by

tM = {m ∈M : m is a torsion element, that is, ann(m) 6= (0)}

Observation 2.1.2 We can assert that tM is a submodule because R is a domain. Letm1,m2 ∈ tM , then
there exists r1, r2 ∈ R nonzero such that r1m1 = 0 and r2m2 = 0. This implies that r1r2(m1 +m2) = 0

and r1r2 is nonzero because R is a domain. Hence m1 +m2 ∈ tM . The scalar multiplication property is
very similar. Let m1 ∈ tM and r ∈ R, then there exists r1 ∈ R nonzero such that r1m = 0. Therefore
r1 · (rm) = r · (r1m) = r · 0 = 0 ⇒ rm ∈ tM .

Definition 2.1.3 Let R be a domain and let M be an R-module. Then M is torsion if tM =M , while
M is torsion-free if tM = {0}.

Examples 2.1.4

i) If R is an integral domain, then tR = {0}, thus it is a torsion-free module.
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ii) If M = Z⊕ Z/nZ where n > 1 then it is a Z-module and tM = {0} ⊕ Z/nZ.

Proposition 2.1.5 Let M be an R-module, where R is a domain. Then M/tM is torsion-free.

Proof: Let m+ tM 6= 0 in M/tM , in other words that is m /∈ tM so that m is a torsion-free element.
If ann(m + tM) 6= (0), then there exists some r ∈ R with r 6= 0 such that 0 = r(m + tM) = rm + tM ,
that is rm ∈ tM . Thus, there exists s ∈ R with s 6= 0 and 0 = s(rm) = (sr)m. Since R is a domain we
have sr 6= 0 and so ann(m) 6= (0), this contradicts m being a torsion-free element.

The next theorem characterizes the finitely generated torsion-free modules over PIDs, it is important
because all these modules are free. First we prove a little result that will be useful lately.

Proposition 2.1.6 Let R be a PID ring and Q = Frac(R). If D is a finitely generated R-submodule of
Q then it is cyclic.

Proof: Since D is finitely generated, there exists bi, ci ∈ R such that D = 〈b1/c1, . . . , bm/cm〉.
Let c =

∏
i ci and define f : D −→ R by f(d) = cd for all d ∈ D. Since D is torsion-free, f is an injective

R-map, and so D is isomorphic to a submodule of R, that is D is isomorphic to an ideal of R. But R is
a PID, so every nonzero ideal in R is isomorphic to R (since they are cyclic torsion-free) or is 0. Hence
D ∼= imϕ ∼= R or D = 0. �

Theorem 2.1.7 If R is a PID, then every finitely generated torsion-free R-module M is free of finite
rank.

Proof: We prove the theorem by induction on n where M = 〈v1, . . . , vn〉.
If n = 1, then M is a cyclic R-module then by Proposition 2.0.6 we have M ∼= R/ann(v1). Since M is
torsion-free, ann(v1) = (0), so that M ∼= R and M is free of rank 1.
For the inductive step, let M = 〈v1, . . . , vn+1〉 and let π be the projection map

π :M −→M/〈vn+1〉

and consider N = t
(
M/〈vn+1〉

)
. We can define S = π−1(N) and applying the First Theores of Isomor-

phism it follows that
M/S ∼=

(
M/〈vn+1〉

)
/N ∼=

(
M/〈vn+1〉

)
/t
(
M/〈vn+1〉

)
.

That is, M/S is a torsion-free R-module.

Plainly, M/S can be generated by n elements (π : M −→ M/S the projection map is surjective, then
M/S is generated by v1 + S, . . . , vn+1 + S, but vn+1 + S = 0 + S), since M/S is torsion free then is free
with finite rank by the inductive hypothesis. Since free modules are projective, Corollary A.4.4 gives

M ∼= S ⊕ (M/S)

Thus, it suffices to prove that S ∼= R or S = {0}. We can observe that S can be described as follows:

S =
{
m ∈M : m ∈ N

}
=
{
m ∈M : rm = 0 for some r ∈ R} =

{
m ∈M : rm ∈ 〈vn+1〉

}
.

If x ∈ S, then there is some nonzero r ∈ R with rx ∈ 〈vn+1〉, that is, there is a ∈ R with rx = avn+1.
Define ϕ : S −→ Q = Frac(R) the fraction field of R, by x 7→ a/r, this map is well defined because if
rx = avn+1 and r′x = a′vn+1 then a′rx = a′avn+1 and ar′x = aa′vn+1 hence (a′r − ar′)x = a′avn+1 −
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a′avn+1 = 0. Since M is torsion-free we have a′r − ar′ = 0, in other words, a/r = a′/r′ in Q. It is a
R-map because if x, x′ ∈ S then we have rx = avn+1 and r′x′ = a′vn+1 for some a, a′ ∈ R, thus

rr′(x+ x′) = r′avn+1 + ra′vn+1 = (r′a+ ra′)vn+1

hence

ϕ(x+ x′) = (r′a+ ra′)/rr′ = a/r + a′/r′ = ϕ(x) + ϕ(x′)

If x ∈ S and λ ∈ R then rx = avn+1 for some a ∈ R and r(λx) = λ(rx) = λavn+1 thus ϕ(λx) = (λa)/r =

λϕ(x).
This map is injective since if ϕ(x) = 0 then a/r = 0 ⇔ r · 0 − a · 1 = 0 ⇔ a = 0. But r 6= 0 and
rx = avn+1 = 0, this implies that x = 0. Now im (ϕ) ∼= S and S ⊆ M then by Proposition A.3.2 S
is finitely generated. The proof is completed with the previous Proposition that says that every finitely
generated submodule of Q is cyclic. Hence S ∼= im (ϕ) is cyclic. �

Observation 2.1.8 Let R = k[X,Y ] where k is a field and M = 〈X,Y 〉. It is an R-module finitely
generated and torsion-free but it is not free over R because M needs to be generated by two elements
and these are linearly dependent. The hypothesis that M does not satisfy is that R is not a PID ring.

Now we keep doing results about these modules. First we will prove that every submodule of a finitely
generated free module is itself free. This gives a first characterization of the finitely generated projective
modules.

Corollary 2.1.9 Let R be a PID. Then the following statements are true:

i) Every submodule H of a finitely generated free R-module F is itself free and rank(H) ≤ rank(F ).

ii) Every finitely generated projective R-module P is free.

Proof:

i) Let H ⊆ F a submodule of a finitely generated free R-module F ∼= Rm. Then H is torsion-free
(because F is torsion-free) and is finitely generated (because F is Noetherian, Proposition A.3.2).
Now Theorem 2.1.7 says that H is free of finite rank. Let H ∼= Rn then we have the following exact
chain

0 −→ H
i−→ F

where i is the inculsion morphism, then Q = Frac(R) is R-flat, that is

0⊗R Q −→ H ⊗R Q −→ F ⊗R Q

is an exact sequence, but H ⊗RQ ∼= Qn and F ⊗RQ ∼= Qm are Q-vector spaces of dimension n and
m respectively. Since the sequence is exact Qn is a subspace of Qm this implies that n ≤ m.

ii) By Theorem A.4.6, P is a direct summand of a free R-module F . Since P is finitely generated, we
may choose F to be finitely generated too. Thus, P is isomorphic to a submodule of F , which is
free by the first part of this corollary. �

Corollary 2.1.10 If an R-module M can be generated by n elements and R is a PID. Then every
submodule S ⊆M can be generated by n or fewer elements.
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Proof: Supose that M = 〈m1, . . . ,mn〉 and N ⊆M then the following sequence is exact

Rn
π−→M −→ 0

where π is defined by π(ei) = mi and {ei}1≤i≤n is the canonical basis of Rn. Since N ⊆ M , then we
have that π−1(N) ⊆ Rn. Hence the following sequence is exact:

π−1(N) −→ N −→ 0

By the previous corollary we have that π−1(N) ∼= Rm where m ≤ n. Then N =
〈
π(e1), . . . , π(em)

〉
. �

Note that the previous proposition gives a strong property on the submodules of a finitely generated
module. This is not true when the ring R is not a PID because R is a module over istelf, so R is singly
generated (generated by 1 element). But if R is not a PID then it would have an ideal that it can not be
generated with only one element. This example contradicts the previous corollary. Now we characterize
the flat modules over a PID ring:

Proposition 2.1.11 If R is a domain, then every flat R-module M is torsion-free.

Proof: If M is not torsion-free, then there is a nonzero m ∈ M with rm = 0 for some nonzero r ∈ R.
Let 0 −→ R

i−→ Frac(R) be the inclusion. Now m ⊗ 1 6= 0 in M ⊗R R, for the map m ⊗ 1 7→ m is an
isomorphism M ⊗R R −→M . On the other hand,

(1M ⊗ i)(m⊗ 1) = m⊗ 1 = m⊗ r

r
= rm⊗ 1

r
= 0

in M ⊗R Frac(R), therefore m⊗ 1 is a nonzero element in ker (1M ⊗ i), so that M is not flat. �

Proposition 2.1.12 If R is a PID, then an R-module M is flat if and only if it is torsion-free.

Proof: IfM is torsion free, then every finitely generated submodule S is torsion-free, hence, free (Theo-
rem 2.1.7), hence flat. Therefore,M itself is flat by [11], Lemma 6.139 (elemental proof) or [11], Corollary
6.162. The converse is the previous proposition. �

Observation 2.1.13 We can apply the Theorem 2.1.7 to this last proposition and we get that a finitely
generated module over a PID is flat if and only if it is free.
There are flat modules over a PID that are not free, equivalently, there are torsion-free modules that are
not free. One example is the Z-module Q, is torsion-free but is not free since every two elements of Q
are dependent.

Now we prove Corollary 2.1.9 without the finitely generated condition, that is the free module can have
infinite rank. The fact that every projective module over PID is free it comes off from the next Theorem.

Theorem 2.1.14 Let R be a PID.

i) Every submodule H of a free R-module F is free and rank(H) ≤ rank(F ).

ii) Every projective R-module H is free.

Proof:
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i) We are going to use the statement equivalent to the Axiom of Choice and to Zorn’s Lemma, that
every set can be well-ordered. In particular, we may assume that {xk : k ∈ K} is a basis of F
having a well-ordered index set K. For each k ∈ K define

F ′k = 〈xj : j ≺ k〉 and Fk = 〈xj : j � k〉 = F ′k ⊕ 〈xk〉

note that F =
⋃
k Fk. Define

H ′k = H ∩ F ′k and Hk = H ∩ Fk

Now H ′k = H ∩ F ′k = Hk ∩ F ′k since H ′k ⊆ Hk and Hk ⊆ H, so that

Hk/H
′
k = Hk/(Hk ∩ F ′k) ∼= (Hk + F ′k)/F

′
k ⊆ Fk/F ′k ∼= R

Since R is a free R-module and R is a PID, Hk/H
′
k is free too, then by the proof of Theorem 2.1.7

we know that Hk = H ′k or Hk = H ′k ⊕ 〈hk〉, where hk ∈ Hk ⊆ H and 〈hk〉 ∼= R. We claim that H
is a free R-module with basis the set of all hk. It will then follow that rank(H) ≤ rank(F ).
Since F =

⋃
Fk, each f ∈ F lies in some Fk. Since K is well-ordered, there is a smallest index

k ∈ K with f ∈ Fk and we denote this smallest index by µ(f).
Note that if h ∈ H ′k ⊆ F ′k then µ(h) ≺ k. Let H∗ be the submodule of H generated by all the hk.
Suppose that H∗ is a proper submodule of H. Let j be the smallest index in{

µ(h) : h ∈ H and h /∈ H∗
}

and choose h′ ∈ H to be such an element having index j, that is h′ /∈ H∗ and µ(h′) = j. Now
h′ ∈ H ∩ Fj = Hj because µ(h′) = j and so

h′ = a+ rhj where a ∈ H ′j and r ∈ R

Because Hj = H ′j or Hj = H ′j ⊕ 〈hj〉 (and r can be 0). Thus a = h′ − rhj ∈ H ′j and a /∈ H∗,
otherwise h′ ∈ H∗ (because hj ∈ H∗). Since µ(a) ≺ j we have contradicted j being the smallest
index of an element in H not in H∗. We conclude that H = H∗, that is every h ∈ H is a linear
combination of hk’s.
It remains to prove that an expression of any h ∈ H as a linear combination of hk is unique. By
subtracting two such expressions, it suffices to prove that if

0 = r1hk1 + · · ·+ rnhkn

then all the coefficients ri = 0. Arrange the terms so that k1 ≺ · · · ≺ kn. If rn 6= 0 then
rnhkn ∈ 〈hkn〉 ∩H ′kn = {0}, a contradiction. Therefore, all ri = 0 and so H is a free module with
basis {hj : j ∈ K}.

ii) By Theorem A.4.6, P is a direct summand of a free R-module F . Thus P is isomorphic to a
submodule of F , which is free by the previous part of this theorem. �

Corollary 2.1.15 Let R be a PID ring and M an R-module. Then M is free if and only if is projective.

Proof: One implication is the previous theorem and the other is the Theorem A.4.5. �

At this point, we achieved the characterization of projective modules over PID. This property can be
extended over another type of ring. Here we have to mention the work done by Quillen and Suslin for
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proving that every projective module is free over any polynomial ring k[X1, . . . , Xn] where k is a field.
This result can be thought of as a generalization of the PID case because the ring of polynomials in one
variable is a PID ring.

Also, we can explore the injective modules over PID. Here we do a characterization that is motivated in
the first chapter, proving that a module is injective if and only if it is divisible. We have to remark that
previously in Proposition A.4.16 we saw that every torsion-free divisible R-module is injective where R
is a domain. Here we delete the extra condition to the module but we add a condition to the ring.

Proposition 2.1.16 Let R be a PID ring and M an R-module. Then M is injective if and only if it is
divisible.

Proof: One implication is done in the Proposition A.4.14. Now let’s suppose that M is a divisible
R-module and let I ⊆ R be any ideal of R. By the Proposition A.4.9 it will be enough to prove that
for every R-morphism h : I −→ M there exists a morphism g : R −→ M making the following diagram
commutative:

0 I R

E

inc

h g

Observe that I = aR for some a ∈ R because R is a PID. Since M is divisible there exists m ∈ M such
that h(a) = am. Now we can define the morphism g : R −→ M by g(r) = rm. Note that if t ∈ R then
g(t · a) = t · am = t · h(a) = h(t · a). So we have h = g ◦ inc. �

Observation 2.1.17 With the previous proposition we can conclude that if R is a PID then Frac(R)

is injective. This is done also in the appendix Example A.4.17. But we have a more strong result that
is: every direct sum, product and quotient of injective modules over a PID ring is injective. This is true
because any direct sum, product and quotient of divisible modules is a divisible module.

The Proposition 2.1.16 can be generalized to modules over a more wide rings type. We can see at [12],
Proposition 2.10, that every divisible module is an injective module when the ring is a Dedekind domain.
These rings are a natural generalization of PID rings.
In this section we have seen that a finitely generated torsion-free module is free and is projective. This
will be an essential result for the decomposition and it simplifies a lot. The next chapter investigates the
torsion part of a module introducing the (p)-primary components.

2.2 Torsion Modules over PID

We remember the definition of torsion module

Definition 2.2.1 Let M be an R-module, where R is a domain. Then its torsion submodule tM is
defined by

tM = {m ∈M : m is a torsion element, that is, ann(m) 6= (0)}

We say that M is torsion if tM =M , while M is torsion-free if tM = 0.



14 Modules over PID

Definition 2.2.2 Let M be an R-module and E ⊆M a submodule then

(E :M) =
{
r ∈ R : r ·M ⊆ E

}
is an ideal of R called colon ideal.

Definition 2.2.3 Let R be a PID, M an R-module and (p) a nonzero prime ideal in R. Then M is
said to be (p)-primary if for each m ∈M there is n ≥ 1 with pnm = 0.
If M is any R-module, then its (p)-primary component is

M(p) = {m ∈M
∣∣ (0 : m) = (pn) for some n ≥ 0} = {m ∈M

∣∣ ann(m) = (pn) for some n ≥ 0}

Lemma 2.2.4 Let R be a PID, M an R-module and (p) a nonzero prime ideal of R. Let m ∈ M such
that (p)nm = 0, then m ∈M(p).

Proof: We have to note that if (p)nm = 0 then (p)n ⊆ ann(m). That is (p)n = ann(m) · I where I
is another ideal, but in PIDs we have a divisibility theory for ideals (very similar with the divisibility
theory of the elements). Since (p) is a prime ideal it follows that ann(m) and I are powers of the ideal
(p). Therefore ann(m) = (pr)⇒ m ∈M(p).

With this lemma we note that we can express M(p) by the following way since R is a PID:

M(p) = {m ∈M
∣∣ (p)nm = 0 for some n ≥ 1} = {m ∈M

∣∣ pnm = 0 for some n ≥ 1}

Observation 2.2.5 With the notation of the previous lemma we have that the (p)-primary components
are submodules of M . This is because if m1,m2 ∈M(p) then there exist n1, n2 ≥ 1 such that pn1m1 = 0

and pn2m2 = 0. Then note that pn(m1+m2) = 0 where n = max{n1, n2}. Hence m1+m2 ∈M(p) by the
previous lemma. The proof of the scalar multiplication property is very similar. Let m ∈M(p) and r ∈ R,
then there exists n ≥ 1 such that pnm = 0. Therefore pn(rm) = rpnm = r0 = 0, hence rm ∈M(p).

Observation 2.2.6 Let M be a finitely generated (p)-primary module, then (0 : M) = (pn) for some
n ≥ 1. This is because if x1, x2 ∈ M , ann(x1) = (pr1) and ann(x2) = (pr2) then (pr) ⊆ ann(x1 + x2)

where r = max{r1, r2}. Also we have that ann(x) ⊆ ann(λx) for all x ∈ M and λ ∈ R. Since M is
finitely generated we conclude that there is an element with minimal annihilator, and this element is one
generator of M .

Proposition 2.2.7 Let R be a PID, M an R-module and (p) a prime ideal of R. We can consider Mp

(the localization of M by p) and the canonical morphism ϕp : M −→ Mp. Then we have the following
results:

i) ker (ϕp) ∩M(p) = {0}.

ii) For every prime q 6= p then M(q) ⊆ ker (ϕp) and (M(q))p = {0}

iii) Let N =
∑

(q)M(q) where q are prime elements of R then
∑

(q)6=(p)

M(q) ∩M(p) = {0}

Proof:

i) Note that ϕp(x) = x/1 is the canonical map, then

ker (ϕp) =
{
m ∈M : ϕp(m) = 0

}
=
{
m ∈M : m/1 = 0/1

}
=

=
{
m ∈M : rm = 0 where r ∈ R\(p)

}
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If m ∈ ker (ϕp) ∩M(p) then pnm = 0 and rm = 0 for some n ≥ 1 and r ∈ R\(p). The greatest
common divisor of r and pn is 1 thus there exists a, b ∈ R such that apn + br = 1. It follows that
m = 0 because

m = 1 ·m = (apn + br)m = apnm+ brm = 0 + 0 = 0

ii) Let m ∈ M(q) then there exists n ≥ 1 such that qnm = 0 but qn /∈ (p) thus qn ∈ R\(p). Now it
follows immediately that m ∈ ker (ϕp) by the previous result.
The fact that (M(q))p = 0 is because the localization of a submodule of M is isomorphic to the
image of the submodule by ϕp. Since M(q) ⊆ ker (ϕp) then

{0} = ϕp(M(q)) ∼= (M(q))p

iii) By ii) we have that M(q) ⊆ ker (ϕp) and ker (ϕp) ∩M(p) = {0} thus∑
(q) 6=(p)

M(q) ⊆ ker (ϕp) ⇒
∑

(q) 6=(p)

M(q) ∩M(p) = {0}

�

Theorem 2.2.8 (Primary Decomposition) Every torsion R-module M over a PID R is a direct sum of
its (p)-primary components:

M =
⊕
(p)

M(p)

Proof: If m ∈ M is nonzero, its order ideal ann(m) = (d) for some d ∈ R. By unique factorization,
there are irreducible elements p1, . . . , pn no two of which are associates, and positive exponents e1, . . . , en
with

d = pe11 · · · penn

Since R is a PID then (pi) is a prime ideal for each i. Define ri = d/peii , so that peii ri = d. It follows that
rim ∈M(pi) for each i. But the gcd of the elements r1, . . . , rn is 1 and so there are elements s1, . . . , sn ∈ R
with 1 =

∑
i siri. Therefore

m =
∑
i

siri ∈
〈⋃

(p)

M(p)

〉
With the previous proposition we have that the sum of M(p) is a direct sum, thus

M =
⊕
(p)

M(p)

�

Now we have that every torsion module over a PID ring can be expressed by the direct sum of its
(p)-primary components. This decomposition preserves isomorphisms.

Proposition 2.2.9 Two torsion modules M and M ′ over PID are isomorphic if and only if M(p)
∼=M ′(p)

for every nonzero prime ideal (p).

Proof: If f : M −→ M ′ is an R-map, then f(M(p)) ⊆ M ′(p) for every prime ideal (p). If f is an
isomorphism, then so is f−1, it follows that the restriction f|M(p)

:M(p) −→M ′(p) is an isomorphism.
Conversely, if there are isomorphism f(p) : M(p) −→ M ′(p) for all (p), then there is an ismomorpgism
ϕ :
⊕

(p)M(p) −→
⊕

(p)M
′
(p) given by

⊕
(p) f(p). �
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2.3 Fundamental Theorem of Finitely Generated Modules

The following result is the first step of the decomposition.

Proposition 2.3.1 Let R be a PID.

i) Every finitely generated R-module M is a direct sum,

M = tM ⊕ F

where F is a finitely generated free R-module.

ii) If M and M ′ are finitely generated R-modules, then M ∼= M ′ if and only if tM ∼= tM ′ and
rank(M/tM) = rank(M ′/tM ′)

Proof:

i) The quotient module M/tM is finitely generated because M is finitely generated, and it is torsion-
free by Proposition 2.1.5(i). Therefore, M/tM is free by Theorem 2.1.7, and hence M/tM is
projective. Finally M ∼= tM ⊕ (M/tM) by Corollary A.4.4.

ii) If ϕ : M −→ M ′ is an isomorphism, then ϕ(tM) ⊆ tM ′ because if rm = 0 with r 6= 0 then
rϕ(m) = ϕ(rm) = ϕ(0) = 0. Hence, ϕ|tM : tM −→ tM ′ is an isomorphism with inverse ϕ−1|tM ′ . For
the second statement, the map ϕ :M/tM −→M ′/tM ′ defined by ϕ(m+ tM) = ϕ(m) + tM ′ is an
isomorphism. Since M/tM is finitely generated torsion-free, it is a free module of finite rank, as is
M ′/tM ′ and these are isomorphic if they have the same rank (this is the IBN property that every
commutative ring satisfies).
Conversely, if tM ∼= tM ′ by f1 and rank(M/tM) = rank(M ′/tM ′), that is M/tM ∼= M ′/tM ′ by
f2. Since M ∼= tM ⊕ (M/tM) and M ′ ∼= tM ′ ⊕ (M ′/tM ′) then

M ∼= tM ⊕ (M/tM) ∼= tM ′ ⊕ (M ′/tM ′) ∼=M ′

where the isomorphism is f = f1 ⊕ f2. �

This proposition allows us to decompose a finitely generated module over a PID in two parts. The
torsion-free part and the torsion part. In the previous section we have studied each part but it remains
to prove that all (p)-primary module can be expressed by a direct sum of cyclic modules. First of all we
will define what a pure submodule is in this context (there are other definitions in other texts).

Definition 2.3.2 Let R be a PID, (p) be a prime ideal of R and let M be a (p)-primary R-module (that
is M =M(p)). A submodule S ⊆M is a pure submodule if, for all n ≥ 0,

S ∩ pnM = pnS

Observation 2.3.3 The inclusion pnS ⊆ S ∩ pnM is true for every submodule S ⊆M , and so it is the
reverse inclusion S ∩ pnM ⊆ pnS that is significant. It says that if s ∈ S satifies an equation s = pnm

for some m ∈M then there exists s′ ∈ S with s = pns′.

These pure submodules will have an important role on the proof of the Basis Theorem (the theorem that
says that every finitely generated R-module is the direct sum of cyclic submodules). The proof of the
Basis Theorem is by induction of a dimension defined later. The pure submodules will be the key for
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proving the induction step. Now we will see that every R-module has a pure submodule when R is a
PID.

Lemma 2.3.4 Let R be a PID, (p) a prime ideal of R and M a (p)-primary finitely generated R-module.
Then M has a nonzero pure cyclic submodule. Indeed, if m ∈ M is an element that has a minimal
ann(m) on the set of annihilators, then 〈m〉 is a pure submodule of M .

Proof: Since M is finitely generated we can apply the Observation 2.2.6 and we have (0 :M) = (pl) for
some l ≥ 1, thus there exists some m ∈M with ann(m) = (pl). This element has the minimal annihilator
on the set of annihilators, otherwise (0 :M) ( (pl).
Now we claim that S = 〈m〉 is a pure submodule.
If s ∈ S then s = λptm, where t ≥ 0 and p - λ, suppose that

s = pnm′ ∈ pnM

for some m′ ∈ M , then an element s′ ∈ S with s = λptm = pns′ must be found (if s = 0 then s′ = 0).
First note that n ≤ t otherwise, if n > t we have a contradiction because

0 = plm′ = pl−npnm′ = pl−ns = pl−nλptm = λpl−n+tm 6= 0

since p - λ, l − n+ t ≤ l and (0 :M) = (pl). Hence we can define s′ = λpt−nm ∈ S and

pns′ = pnλpt−nm = λptm = s

so that S is a pure submodule. �

Definition 2.3.5 Let M be an R-module with R a PID, then M/pM is a vector space over R/(p) where
(p) is a prime ideal of R, we define

d(M) = dim(M/pM)

In particular, d(pM) = dim(pM/p2M) and more generally

d(pnM) = dim(pnM/pn+1M)

The next lemma is the base step of the induction of the Basis Theorem. This induction will be on the
dimension defined previously.

Lemma 2.3.6 If M is a finitely generated (p)-primary R-module where R is a PID and (p) a prime
ideal, then d(M) = 1 if and only if M is a nonzero cyclic R-module.

Proof: If M is a nonzero cyclic R-module and (p)-primary then M = 〈m〉 and M/pM is cyclic. Since
ann(m) = (pn) we have that pnM = 0 but pn−1M 6= 0, if we suppose that M = pM then implies that
pn−1M = pnM = {0}, a contradiction. Hence M/pM 6= {0}, and so d(M) = dim(M/pM) = 1.
Conversely, if d(M) = 1 then M/pM ∼= R/(p), hence M/pM is cyclic, say

M/pM = 〈m+ pM〉 = pM + 〈m〉

then
p
(
M/〈m〉

)
=
(
pM + 〈m〉

)
/〈m〉 =M/〈m〉

now we can do the previous argument. Since M is a (p)-primary R-module then M/〈m〉 is also a (p)-
primary R-module. It satisfies p

(
M/〈m〉

)
=M/〈m〉 and this implies that M/〈m〉 = {0} hence M = 〈m〉

then M is cyclic. �
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Lemma 2.3.7 Let M be a finitely generated (p)-primary R-module where R is a PID.

i) If S ⊆M , then d(M/S) ≤ d(M).

ii) If S is a pure submodule of M , then d(M) = d(S) + d(M/S).

Proof:

i) First we note that M ⊗R R/(p) ∼=M/pM hence the following exact sequence

0 −→ S
i−→M

p−→M/S −→ 0

tensoring by R/(p) it becomes an exact sequence of R/(p)-vectorial spaces

S/pS −→M/pM −→ (M/S)/p(M/S) −→ 0

thus we have dim(M/pM) ≥ dim
(
(M/S)/p(M/S)

)
⇒ d(M/S) ≤ d(M).

ii) If S is pure then the inclusion morphism i : S/pS −→ M/pM is injective. Let s ∈ ker (i) ⊆
S/pS ⇒ s = 0 in M/pM this implies that s ∈ pM ∩ S. Since S is a pure submodule we have that
pM ∩ S = pS hence s ∈ pS ⇒ s = 0 in S/pS.
We can conclude that the following sequence of R/(p)-vector spaces is exact

0 −→ S/pS −→M/pM −→ (M/S)/p(M/S) −→ 0

and it satisfies d(M) = d(S) + d(M/S). �

The previous lemma gives the tool that we will use to prove the induction step on the Basis Theorem.
Now we are able to prove it.

Theorem 2.3.8 (Basis Theorem) If R is a PID, then every finitely generated R-module M is a direct
sum of cyclic modules in which each cyclic summand is either primary or is isomorphic to R.

Proof: By Proposition 2.3.1, M = tM ⊕F where F is finitely generated free submodule. Then we may
assume that M = tM and by the Primary Decomposition, Theorem 2.2.8, we may assume that M is
(p)-primary for some prime p. We prove that M is a direct sum of cyclic submodules by induction on
d(M) ≥ 1. The base step is Lemma 2.3.6, which shows that M must be cyclic in this case.
For the inductive step, Lemma 2.3.4 says that there exists a nonzero pure cyclic submodule S ⊆M and
Lemma 2.3.7 says that

d(M/S) = d(M)− d(S) = d(M)− 1 < d(M)

By induction, M/S is a direct sum of cyclic groups, say

M/S =

q⊕
i=1

〈xi 〉

where xi = xi + S.
Let m ∈ M and let m = m + S in M/S have order pl, now m has order pn, where n ≥ l. But
pl(m+ S) = plm = 0 in M/S, so there is some s ∈ S with plm = s. By purity, there is s′ ∈ S such that
plm = pls′, now we define z = m− s′, then plz = 0 and z + S = m+ S = m. This implies that z can’t
have order less than pl, but then the order of z is equal to pl.
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For each i we can choose a zi ∈M with order(z1) = order(xi) and xi = zi. Then following exact sequence
splits

0 −→ S
i−→M

p−→M/S −→ 0

because we have the following morphism j : M/S −→ M where j(xi) = zi. This application satisfies
p ◦ j = IdM/S and by the Proposition A.1.8 the sequence splits

M ∼=M/S ⊕ S =

q⊕
i=1

〈xi〉 ⊕ S

�

Now, the next result that we want to prove is the Fundamental Theorem of Finitely Generated Modules
over PID. It remains to be shown the uniqueness of the decomposition given in the Basis Theorem. The
main idea of the proof is to study the invariant elements of the decomposition of a finitely generated
(p)-primary module into cyclic submodules. In this case, the dimension described previously of the
submodules pnM will be these invariant that we are searching.

Lemma 2.3.9 Let R be a PID ring and M be a finitely generated (p)-primary R-module, where (p) is a
prime ideal. Let M =

⊕
i Ci where each Ci is cyclic. If bn ≥ 0 is the number of summands Cj having

order pn, then there is an integer t with

d(pnM) = bn+1 + bn+2 + · · ·+ bt

Proof: Let Bn be the direct sum of all Cj , if any, of order pn. Since M is finitely generated, there is
some t with

M = B1 ⊕B2 ⊕ · · · ⊕Bt

now
pnM = pnBn+1 ⊕ · · · ⊕ pnBt

Because pbBj = {0} for all j ≤ n, similary

pn+1M = pn+1Bn+2 ⊕ · · · ⊕ pn+1Bt

then we have

(pnM)/(pn+1M) = (pnBn+1 ⊕ · · · ⊕ pnBt)/(pn+1Bn+1 ⊕ · · · ⊕ pn+1Bt) ∼=
∼= (pnBn+1)/(p

n+1Bn+1)⊕ · · · ⊕ (pnBt)/(p
n+1Bt)

since each Bj is the direct sum of bj cyclic modules this implies that pnBj/pn+1Bj is the direct sum of bj
cyclic modules (when j > n), hence d(pnBj) = dim(pnBj/p

n+1Bj) = bj . Since d is additive over direct
sums, we have d(pnM) = bn+1 + · · ·+ bt. �

The numbers bn can be described in terms ofM , that is, they are independent of the cyclic decomposition
(they are invariant).

Definition 2.3.10 Let R be a PID ring andM be a finitely generated (p)-primary R-module. For n ≥ 0,
define

Up(n,M) = d(pnM)− d(pn+1M)

The previous lemma shows that d(pnM) = bn+1 + · · · + bt and d(pm+1M) = bn+2 + · · · + bt so that
Up(n,M) = bn+1.
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Theorem 2.3.11 Let R be a PID ring and M a finitely generated (p)-primary R-module. Then any two
decompositions of M into direct sums of cyclic modules, have the same number of cyclic summands of
each type. More precisely, for each n ≥ 0, the number of cyclic summands having order pn+1 is Up(n,M).

Proof: By the Basis Theorem, there exist cyclic submodules ci with M =
⊕

i Ci. Lemma 2.3.9 shows
that is the number of ci having order pn+1 is Up(n,M), a number that is defined without any mention of
the given decomposition. Thus if M =

⊕
j Dj is another decomposition of M , where each Dj is cyclic,

then the number of Dj having order pn+1 is Up(n,M). �

Corollary 2.3.12 If M and M ′ are finitely generated (p)-primary modules over a PID, then M ∼= M ′

if and only if Up(n,M) = Up(n,M
′) for all n ≥ 0.

Proof: If ϕ : M −→ M ′ is and isomorphism, then ϕ(pnM) = pnM ′ for all n ≥ 0 and so ϕ induces
isomorphisms of the R/(p) spaces pnM/pn+1M ∼= pnM ′/pn+1M ′. Thus, their dimension are the same,
that is Up(n,M) = Up(n,M

′).
Conversely, assume that Up(n,M) = Up(n,M

′) for all n ≥ 0. If M =
⊕

i Ci and M
′ =

⊕
j C
′
j where

Ci and Cj are cyclic, then Lemma 2.3.9 shows that the number of summands of each type is the same,
that is M and M ′ are isomorphic. �

Definition 2.3.13 If M is a finitely generated (p)-primary module over a PID, then its elementary
divisors are the numbers in the sequence

Up(0,M) , Up(1,M) , . . . , Up(t− 1,M)

where pt is the largest order of a cyclic summand of M .

With this notation we announce and prove the Fundamental Theorem:

Theorem 2.3.14 (Fundamental Theorem of Finitely Generated Modules) Let R be a PID ring and M
a finitely generated R-module. Then M can be expressed as a finite direct sum of cyclic modules of the
form R and R/(pni ) where pi is a prime element of R.
Furthermore, two finitely generated R-modules are isomorphic if and only if their torsion submodules have
the same elementary divisors and their free parts have the same rank.

Proof: The decomposition is very clear, is just the application of the Theorem 2.3.8 and Theorem 2.3.11.
Let M and M ′ two isomorphic modules. We know that M = tM ⊕ F where F is a free module and
M ′ = tM ′ ⊕ F ′. By Proposition 2.3.1 ii) we only have to prove the of the torsion, because the free part
is immediate. By the Proposition 2.2.9 we know that tM ∼= tM ′ if and only if Mp

∼=M ′p for every prime
p ∈ R, but the last corollary says that Mp

∼= M ′p if and only if Up(n,M) = Up(n,M
′) for all n ≥ 0, that

is, they have the same elementary divisors. �

Observation 2.3.15 In the same way as for the finitely generated abelian groups, we have another way
to decompose. Instead of decomposing the torsion part into elementary divisors we can do it through
invariant factors. This decomposition is very similar and can be obtained from the elementary divisors.
With the elementary divisors we have the following:

tMpi
∼= R/

(
pei1i

)
⊕R/

(
pei2i

)
⊕ · · · ⊕R/

(
p
eiri
i

)
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Then the invariant factors are:
cj = p

e1j
1 · pe2j2 · · · penj

n

where 1 ≤ j ≤ max{ri} = r and if some eij does not exist then its value is 0. Therefore we have that
c1 | c2 | · · · | cr and tM ∼=

⊕r
j=1R/

(
cj
)
by the Chinese Remainder Theorem.

Example 2.3.16 One application of the Fundamental Theorem of Finitely Generated Modules over PID
is the classification of endomorphisms of vector spaces. The relation is the following: Let T : V −→ V

a linear transformation between a k-vector space. Then V can be thought as a k[X]-module, where the
multiplication f(X) · v is defined as

(
f(T )

)
(v). It is not difficult to see that if V has finite dimension as

a k-vector space then V is a torsion finitely generated k[X]-module. We can decompose the k[X]-module
V by its invariant factors. Now T can be restricted to each cyclic module and these new restricted linear
maps have a much simpler matrix expression. Hence we end with a simpler matrix of the linear map T .
This form is called Rational Canonical Form of the endomorphism T .
If we do the same but decomposing the k[X]-module V with the elemenatry divisors we end with the
Jordan Canonical Form of the endomorphism T .
These two forms are very relevant in the study of linear algebra and have many applications.

Finally we end this chapter with a characterization of PID rings. This one is very special because it
relates the fact that every finitely generated module over a PID is the direct sum of cyclic modules.

Theorem 2.3.17 Let R be a Noetherian domain. Then the following statements are equivalent:

i) R is a PID ring.

ii) Every finitely generated R-modules is the direct sum of cyclic R-modules.

Proof: i)⇒ii): This implication is the Basis Theorem (Theorem 2.3.8).
Now let’s suppose that every finitely generated R-module is the direct sum of cyclic R-modules. Then R
is an R-module finitely generated, so every ideal of R is finitely generated because R is Noetherian. By
hypothesis we have that every ideal of R is the direct sum of cyclic R-modules. If I = J ⊕K where I is
a nonzero ideal and J,K are nonzero cyclic R-modules, then J ⊕ 0 and 0⊕K are R-module of I. Note
that there are nonzero elements a ∈ J ⊕ 0 and b ∈ 0⊕K. This implies that a · b ∈ (J ⊕ 0)∩ (0⊕K) = 0.
Since R is a domain a · b = 0⇒ a = 0 or b = 0, a contradiction. Therefore every ideal is cyclic, in other
words R is a PID. �

This Theorem can be generalized for non-domains and it is still true. This is done by A. I. Uzkov in [14].
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Chapter 3

Dedekind Rings

Up until now we have worked with PID rings. These rings are comfortable to work with them because
this property make things easier (like every ideal is a product of prime ideals). We can consider a much
simpler ring, like a local PID, and we can ask ourselves what ring is such that all its localizations are
local PID. We will see that such a ring is very rich and can be characterized in many ways. They are the
Dedekind domains. We can think that these domains are a generalization of PID rings. The approach
that we will do to Dedekind domains in this work is, as mentioned above, looking its localisation.

3.1 Valuation Rings

The valuation rings arises from considering a function from a field to a totally ordered abelian group
that satisfies two properties. Then the set of all the elements of the field including the 0 that their image
is greater than 0 form a ring. This ring is called the valuation ring. But in this section we will have a
idealistic pint of view towards these rings because at this work the valuation are not relevant.

Definition 3.1.1 A valuation ring is an integral domain R with the property that if I and J are ideals
of R then either I ⊆ J or J ⊆ I.

Proposition 3.1.2 Let R be an integral domain. Then the following statements are equivalent:

i) R is a valuation ring.

ii) If a, b ∈ R then either (a) ⊆ (b) or (b) ⊆ (a).

iii) If x ∈ K = Frac(R) then either x ∈ R or x−1 ∈ R.

Proof: (i)⇒(ii) is clear. Assume that (ii) holds and let x ∈ K. Then x = a/b where a, b ∈ R. If (a) ⊆ (b)

then a = br for some r ∈ R, hence x = a/b = r ∈ R. If (b) ⊆ (a) then b = ar and x−1 = b/a = r ∈ R.
Finally, suppose that (iii) holds and let I, J ⊆ R ideals. If I * J then we can choose a ∈ I that a /∈ J .
Let b ∈ J be any nonzero element, then a/b /∈ R (if a/b ∈ R then a ∈ (b) ⊆ J). Hence b/a ∈ R and
b ∈ (a) ⊆ I. Thus J ⊆ I. �

With the previous proposition we obtained different characterization of this type of rings. We want to
reach another characterization more powerful that describes the discrete valuation rings (that will be

23
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introduced later). First note that every valuation ring is quasi local.

Proposition 3.1.3 Let R be a valuation ring. Then the non-units of R form an ideal of R, which is the
unique maximal ideal of R.

Proof: Let S be the set of nonunits of R. Let a, b ∈ S and c ∈ R then ac is not a unit of R, hence
ac ∈ S. For the previous proposition we can assume that a/b ∈ R. Then a+ b = (a/b+ 1)b ∈ S because
a/b+ 1 ∈ R and b ∈ S. Thus S is an ideal of R and if A is a proper ideal of R then every element of A
is a non-unit so A ⊆ S. We can conclude that S is the unique maximal ideal of R. �

Definition 3.1.4 Let R′ |R be a ring extension (R ⊆ R′), an element a ∈ R′ is integral over R if it is a
root of a monic polynomial in R[x]. Now we can define

OR′|R =
{
a ∈ R′ : a is integral over R

}
If R is a domain, R′ = Frac(R) and OR′|R = R, then R is called integrally closed. Some authors call
these rings by normal domains.

The concept of integral element is very useful on algebraic number theory. Usually OR′|R is called the
ring of integers when R = Z and R′ is a finite field extension of Q. For example Z[i] is the ring of integers
of the field Q[i].

Example 3.1.5 Every UFD (unique factorization domain) is integrally closed, in particular every PID
is integrally closed.

Proposition 3.1.6 Let R be a valuation ring. Then it is integrally closed.

Proof: Let K be its quotient field and x ∈ K an integral element over R, then

xn + an−1x
n−1 + · · ·+ a0 = 0

for ai ∈ R. If x /∈ R then x−1 ∈ R hence

x = −(an−1 + an−2x
−1 + · · ·+ a0x

−n+1)

and thus x ∈ R, a contradiction. �

Definition 3.1.7 Let R be a ring. Then the Krull dimension of R is:

dim(R) = sup
{
n : p0 ( p1 ( · · · ( pn , where pi is a prime ideal of R for each i

}
Definition 3.1.8 A discrete valuation ring is a Noetherian valuation ring of dimension 1. In other
words a discrete valuation ring is a Noetherian valuation ring that every nonzero prime ideal is maximal.
Usually we denote these rings by the abbreviation DVR (it is an acronym).

Before we prove the theorem that characterizes the DVR rings we have to enunciate a very standard
result that can be found at [2].

Proposition 3.1.9 (determinantal) Let M a finitely generated R-module, I ⊆ A an ideal and φ ∈
EndA(M) such that φ(M) ⊆ IM . Then φ satisfies an equation like the next one

φn + αn−1φ
n−1 + · · ·+ α1φ+ α0 = 0
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where αi ∈ I and n is the number of elements that a system of generators of M has.

Theorem 3.1.10 Let R be a domain then the following properties are equivalent:

i) R is a DVR.

ii) R is Noetherian, integrally closed and has a unique nonzero prime ideal.

iii) R is a local PID that is not a field.

Proof: i)⇒ii). If R is a DVR, then it does have all the required properties, since R is a local ring and
integrally closed by the previous propositions.
ii)⇒iii). This requires us to show that R is a PID. Let p be the nonzero prime ideal and choose a nonzero
a ∈ p. Define M = R/aR and consider the family A of all the annihilators ann(m) as m varies over all
the nonzero elements of M . Since R is noetherian, it satisfies the maximum condition, and so there is a
nonzero element b+ aR ∈M such that q = ann(b+ aR) is maximal in A.
We claim that q is a prime ideal. Suppose that x, y ∈ R, xy ∈ q and x, y /∈ q, then y(b+ aR) = yb+ aR

is a nonzero element of M because y /∈ q. But ann(b+ aR) ( ann(yb+Ra) because x /∈ ann(b+ aR) and
this contradicts the maximality property of q. Therefore q is a prime ideal, since R has a unique nonzero
ideal p we have

q = ann(b+ aR) = p

We note that b/a /∈ R otherwise b + aR = 0 + aR contradicting b + aR being a nonzero element of
M = R/aR.
Now we will show that p is principal, with generator a/b (we do not yet know if a/b lies in R or not). First
we have bp = bq ⊆ aR so that (b/a)p ⊆ R. If (b/a)p ⊆ p, since p is a R-module we can apply Proposition
3.1.9 (determinantal) with φ(x) = (b/a) · x. Then we get that b/a is integral over p, that is, over R but
R is integrally closed this puts b/a ∈ R a contradiction. Therefore (b/a)p = R, thus p = (a/b)R, that is
a/b ∈ R and p is principal.
Denote a/b by t, we will show that every ideal in R is principal and generated by tn for n > 0. Let I be
a nonzero ideal of R, and consider the chain of submodules of Frac(R)

I ⊆ t−1I ⊆ t−2I ⊆ · · ·

we claim that this chain is strictly increasing. If t−nI = t−n−1I then the finitely generated R-module
t−nI satisfies t−1(t−nI) ⊆ t−nI so that t−1 = b/a is integral over R (by the determinantal). As above, R
is integrally closed, this forces b/a ∈ R, a contradiction. Since R is noetherian, this chain can contain only
finitely many ideals in R. Thus, there exist an n such that t−nI ⊆ R and t−n−1I 6⊆ R. If t−nI ⊆ p = tR

then t−n−1I ⊆ R, therefore t−nI = R and I = tnR is a principal ideal.
iii)⇒i). If R is a local PID that is not a field, then it is Noetherian. Since R is local we have a unique
maximal ideal (p) and is prime also. Hence R has only one irreducible element named p (remember that
a PID is a UFD). If a, b ∈ R then a = upn and b = spm where u, s ∈ R are units hence (a) ⊆ (b) or
(b) ⊆ (a). Thus R is a discrete valuation. �

Example 3.1.11 By the previous theorem we have that ring of formal power series k[[x]] where k is a
field is a DVR. This is because is a PID and it only has one maximal ideal (x).

Observe that the Theorem 3.1.10 gives a nice characterization of DVR rings, it allows us to characterize
the Dedekind rings that will be defined in the next section.
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3.2 Characterizations of Dedekind domains

Historically the Dedekind domains arises from algebraic number theory. When we have a finite field
extension of Q, then its ring of integers is a Dedekind domain (it is a basic result of algebraic number
theory). The structure and properties of these rings can be useful for solving some Diophantine equations.
Thanks to the previous section we are able to show that the localization of a Dedekind domain is a DVR
and vice versa.

Definition 3.2.1 A domain R is a Dedekind ring if it is integrally closed, noetherian, and all its nonzero
prime ideals are maximals.

Proposition 3.2.2 Let R be a domain that is integrally closed. Then every localisation S−1R where S
is a multiplicative set is integrally closed.

With the previous proposition we can prove our first characterization of Dedekind domains.

Proposition 3.2.3 Let R be a noetherian domain. Then R is a Dedekind ring if and only if the local-
izations Rp are DVRs for every nonzero prime ideal p.

Proof: If R is a Dedekind ring and p is a maximal ideal, then Rp has a unique nonzero prime ideal.
Moreover Rp is Noetherian, a domain and integrally closed by the previous proposition. By Theorem
3.1.10 we get that Rp is a DVR since it.
For the converse, we must show that R is integrally closed and that its nonzero prime ideals are maximal.
Let u/v ∈ Frac(R) be integral over R, for every nonzero prime ideal p, the element u/v is integral over
Rp. But Rp is a PID, hence is integrally closed, so u/v ∈ Rp for all p prime ideal of R. We conclude that
u/v ∈ ∩pRp = R by Proposition A.1.6, therefore R is integrally closed.
Suppose that there are nonzero prime ideals p ( q in R. Then pq ( qq in Rq, contradicting the fact
that DVRs have a unique nonzero prime ideal. Therefore nonzero prime ideals are maximal, and R is a
Dedekind ring. �

Observation 3.2.4 Note that if R is a Dedekind domain and p a prime ideal then Rp is also a Dedekind
domain. The reverse is also true, that is if Rp is a Dedekind domain for every prime ideal p then R is a
Dedekind domain. This can be stated as follows: The property of being Dedekind domain is local.

Now we will approach these rings by studying its ideals. But first we have to define a more general
concept of an ideal.

Definition 3.2.5 If R is a domain with Q = Frac(R) then a fractional ideal I is a nonzero R-submodule
of Q such that there exists a nonzero a ∈ R such that aI ⊆ R.
If I is a fractional ideal we can define another fractional ideal

I−1 = {v ∈ Q : vI ⊆ R}

it is always true that I−1I ⊆ R, a fractional ideal I is invertible if I−1I = R.

With this new concept we will explore which properties have an invertible ideal. The next propositions
answer this question.

Proposition 3.2.6 Let R be a domain and I a fractional ideal. If there exists another fractional ideal
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J ⊆ Frac(I) such that IJ = R then J = I−1. In other words the inverse of a fractional ideal, if it exists,
is unique.

Proof: By definition we have that J ⊆ I−1, this implies R = IJ ⊆ II−1 ⊆ R, hence II−1 = R, then I
is invertible. Finally

IJ = R ⇒ I−1IJ = I−1 ⇒ J = I−1

�

Proposition 3.2.7 Let R be a domain. Then every invertible ideal of R is finitely generated.

Proof: Let I be an invertible ideal, then I−1I = R this implies the existence of elements ci ∈ I−1 and
bi ∈ I such that

∑
i cibi = 1. Now let b ∈ I, then b = b1 =

∑
(bci)bi and ai = bci ∈ R for every i, since

b ∈ I and ci ∈ I−1.
Thus I = b1R+ · · ·+ bnR and {b1, . . . , bn} is a set of generators of I. �

The previous propositions say that if an ideal is invertible then it has a unique inverse and it is finitely
generated. We can think that the property of being invertible is strong. Well, this is true. It is strong
enough that if all the ideals of a domain are invertibles then this domain is a Dedekind ring. The next
theorem affirm that.

Lemma 3.2.8 Let R be a domain. Then all the ideals of R are invertible if and only if all the fractional
ideals of are invertible.

Proof: One implication is trivial because an ideal of R is a fractional ideal.
Let J be a fractional ideal of R, then there exists an r ∈ R such that rJ ⊆ R, that is r · J = I ⊆ R. Now
I is an ideal of R thus I is invertible. Then

I · I−1 = R ⇒ J · I−1 = R ⇒ J · rI−1 = R

hence J is invertible and J−1 = rI−1. �

Theorem 3.2.9 Let R be a domain. Then R is a Dedekind ring if and only if all the ideals of R are
invertible.

Proof: Suppose that R is a Dedekind ring and let J be a fractional ideal in R, since R is a Dedekind
ring, its localization Rp is a PID. So Jp, as every nonzero principal ideal, is invertible (in Proposition
2.1.6 we proved that every fractional ideal of a PID is principal).

(J−1J)p = (J−1)pJp = (Jp)
−1Jp = Rp

Proposition A.1.5 gives J−1J = R and so J is invertible.
Now we have to prove the other direction. Since all the ideals of R are fractional, they are invertible and
by Proposition 3.2.7 they are finitely generated. Thus R is noetherian by the Corollay A.3.3.
We must show that every nonzero prime ideal p is a maximal ideal. Let I be an ideal with p ( I (we
allow I = R), then pI−1 ⊆ II−1 = R, so that pI−1 is an ideal in R. Now (pI−1)I = p because the
multiplication is associative, since p is a prime ideal, we must have pI−1 ⊆ p or I ⊆ p. The second option
does not hold, so that pI−1 ⊆ p. Multiplying by p−1I gives R ⊆ I. Therefore I = R and so p is a
maximal ideal.
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Now we have to prove that R is integrally closed, let a ∈ Frac(R) be integral over R, then J = 〈a, . . . , an〉
is a finitely generated R-submodule of Frac(R), equivalently, a fractional ideal, with aJ ⊆ J . By the
previous lemma J is invertible and this implies that there are c1, . . . , cn ∈ J−1 and b1, . . . , bn ∈ J

with 1 =
∑
i cibi (like in Proposition 3.2.7). Hence a =

∑
i cibia, but bia ∈ J and ci ∈ J−1 gives us

a =
∑
i ci(bia) ∈ R. Therefore R is integrally closed and hence it is a Dedekind ring. �

This Theorem allows us to work with the fractional ideals of a Dedekind domain because they have good
properties since they are invertible. The next propositions will study the semilocal Dedekind rings and
the UFD Dedekind rings.

Proposition 3.2.10 Let R be a Dedekind domain with a finite number of prime ideals, then R is a PID.

Proof: Since R is a Dedekind domain, all the prime ideals are maximal, let m1, . . . ,mn denote the
maximal ideals in R and let I be an ideal (is invertible since R is Dedekind). Since II−1 = R, then for
each i from 1 to n we can choose ai ∈ I and bi ∈ I−1 such that aibi 6∈ mi. Moreover mi cannot contain
the intersection of the remaining maximal ideals (lemma A.1.4), hence we can find an element ui that is
not in mi but does lie in all the other maximal ideals.
Set v = u1bi + · · · + unbn, note that v ∈ I−1 so that vI is an ideal in R. We claim that vI lies in no
maximal ideal. Suppose, that vI ⊆Mi for some i, then vai ∈Mi, however

vai = (u1b1 + · · ·+ unbn)ai

and uibiai 6∈ Mi but all the other terms lies in mi. Hence vai 6∈ mi and this is a contradiction because
we supposed that vI ⊆ mi. We have proved that vI = R and I = v−1R is principal. �

Proposition 3.2.11 A Dedekind ring R is a UFD if and only if it is a PID.

Proof: First we know that if R is a PID ring then it is UFD (this is true for any ring).
Now suppose that R is a UFD Dedekind ring and let I be an invertible ideal. Then there are a1 . . . , an ∈ I
and q1, . . . , qn ∈ Frac(R) such that 1 =

∑
i qiai and qiI ⊆ R for all i. Let qi = bi/ci where bi, ci ∈ R,

since R is a UFD we can assume that (bi, ci) = 1. But we have that (bi/ci)aj ∈ R (because qi ∈ I−1 and
aj ∈ I), thus ci divides biaj so that ci divides aj for all i, j.
Let c = lcmci, . . . , cn then c =

∑
i(cbi/ci)ai and cbi/ci ∈ R. Hence cR ⊆ I. By the definition of c we

have also that c divides aj for all j, so that aj ∈ cR and so I ⊆ cR, that is I = cR is principal. By the
previous theorem we have that all the ideals of R are invertible therefore are principal. �

We have to remark that in general the UFD rings are quite complex (in spite of the simplicity of their
definition). For example it is not true that the power series ring over a UFD is a UFD. But if the ring is
a Dedekind domain then the UFD property is well characterized.
The next goal is to characterize the Dedekind domains with the fact that every invertible fractional ideal
is projective. We begin with a characterization of the morphisms that go from a fractional ideal to the
ring.

Proposition 3.2.12 Let R be a domain, I a fractional ideal and f : I −→ R an R-homomorphism. Let
b be any nonzero element of I, then f(a) = b−1f(b)a for all a ∈ I.

Proof: Since I is a fractional ideal, we can choose a d ∈ R such that dI ⊆ R, then db ∈ R and da ∈ R
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for any a ∈ I. We have
(da)f(b) = f(dab) = (db)f(a)

Hence af(b) = bf(a), this implies that f(a) = b−1f(b)a. �

Now with the previous proposition and the dual basis lemma (Theorem A.4.7) we will characterize the
Dedekind domains by the property that all its ideals are projective. This result will be important lately
because we will see that all finitely generated torsion-free R-module can be decomposed by a direct sum
of ideals in R and the fact that this ideals are projective simplifies and helps a lot.

Theorem 3.2.13

i) A nonzero ideal I in a domain R is invertible if and only if I is projective.

ii) A domain R is a Dedekind ring if and only if every ideal in R is projective.

Proof:

i) First we suppose that I is an invertible ideal. Then there exists ci ∈ I−1 and bi ∈ I such that
1 =

∑
i cibi. The maps fi : I −→ R defined by fi(a) = aci are in HomR(I,R) and a =

∑
i(aci)bi =∑

i fi(a)bi. By the dual basis lemma (Theorem A.4.7) the ideal I is a projective R-module.
The other implication begins with the same dual basis lemma, let {bi}i≥1 a set of generators of I
and fi ∈ HomR(I,R) such that a =

∑
i fi(a)bi for all a ∈ I. The previous proposition ensures that

fi(a) = b−1fi(b)a for any b nonzero element of I. Then if we fix b ∈ I we have that fi(b) = 0 for all
i except i = 1, . . . ,m, thus

a =
∑
i

fi(a)bi ⇒ a =

m∑
i=1

b−1fi(b)abi ⇒ 1 =

m∑
i=1

b−1fi(b)bi.

Since fi(a) ∈ R ⇒ b−1fi(b)a ∈ R for all a ∈ I then ci = b−1fi(b) ∈ I−1. Therefore 1 =
∑
i cibi

and ci ∈ I−1, bi ∈ I hence I−1I = R.

ii) This follows from the previous part and the Theorem 3.2.9. �

The next goal is to characterize the Dedekind domains by their primes ideals. We will see that every ideal
of a Dedekind domain is a product of prime ideals. Moreover this is a sufficient and necessary condition
for a domain to be Dedekind.

Lemma 3.2.14 Let R be a domain and p1, . . . , pn ideals of R. If p1 · · · pn is invertible then each pi is
invertible.

Proof: Let I = p1 · · · pn, then we have that II−1 = R and I−1
∏

pi = R. This implies pi
(
I−1

∏
j 6=i pj

)
=

R. Thus I−1
∏
j 6=i pj is the inverse of pi. �

Theorem 3.2.15 For any domain R, the following properties are equivalent

i) R is a Dedekind domain.

ii) Every ideal of R can be expressed uniquely as a finite product of maximal ideals.

iii) Every ideal of R can be expressed as a finite product of prime ideals.



30 Dedekind Rings

Proof: (i)⇒(ii). Let R be a Dedekind domain and S the set of ideals of R wich can not be expressed
as a finite product of maximal ideals. If S is empty, then all the ideals can be expressed in such way and
it is done. If S is not empty then there exists some ideal I ∈ S that is maximal in this set (this exists
because R is Noetherian).
Since I 6= R then I ⊆ m ( R for some maximal ideal m. By the Theorem 3.2.9 we know that all the ideals
are invertible, thus I = mJ where J = m−1I ( m−1m = R. If I = J then R = II−1 = mJJ−1 = m, a
contradiction, thus I ( J . Therefore J /∈ S by maximality and m /∈ S then I = mJ ∈ S is a contradiction.
We conlude that every ideal can be expressed as a finite product of maximal ideals.
Any such expression is unique, if p1 · · · pn = q1 · · · qr, since q1 · · · qr ⊆ p1 and p1 is prime, we have qi ⊆ p1

for some i. But qi is maximal, so p1 = qi and we cancel these terms. Now we apply induction and follows
that n = r and the expression is unique up to the order of the factors.
(ii)⇒(iii) is clear. To prove (iii)⇒(i) we first show that every invertible prime ideal p of R is maximal. If
p is not maximal, then there exists an element a ∈ R such that p ( p + aR ( R and by the hypothesis
we can write

p+ aR = p1 · · · pn and p+ a2R = q1 · · · qr

where pi and qj are prime ideals containing p. In R = R/p we have that

aR = p1 · · · pn and
(
aR
)2

= a2R = q1 · · · qr = p1
2 · · · pn2

where a is the class of a in R/p and the same for pi, qj . Let p1 be the minimal ideal among the prime
ideals pi, qj . Since qj ⊆ p1 for some j, we find that p1 = qj because p1 is minimal. Now we can apply
the Correspondence Theorem and we get that p1 = pj . These prime ideals are invertible (by hypothesis)
and with induction it follows that n = 2r and each pi is equal to two of the qj . Therefore

p ⊆ p+ a2R =
(
p+ aR

)2 ⊆ p2 + aR

Thus any element x of p can be written in the form x = y + za with y ∈ p2 and z ∈ R. Then we have
that za ∈ p, hence z ∈ p because a /∈ p. This implies that p ⊆ p2 + p · aR. Since p is invertible, we can
cancel it and find p+ aR = R, wich is a contradiction. This shows that p is maximal.
Now let m be any nonzero prime ideal of R. If 0 6= a ∈ m, then aR = p1 · · · pn ⊆ m, hence pi ⊆ m for
some i. Since aR is invertible (because it is a principal ideal) and pi is a factor, by the previous Lemma
pi is invertible too. Hence pi is maximal by the first part of this proof and so m = pi which shows that
m is invertible. Since every nonzero ideal I of R can be expressed as a finite product of prime ideals and
these are invertible, the ideal I is invertible too. �

This theorem is very important as it says that the behavior of prime ideals on a Dedekind ring is similar
to the behavior of prime elements on a PID ring. Because every ideal (element) can be expressed uniquely
as a finite product of prime ideals (elements). At this point we note that the Dedekind domains have a
divisibility ideal theory. The following results are properties of this divisibility theory for ideals.

Proposition 3.2.16 Let I and J be nonzero ideals in a Dedekind ring R, and let their prime factorization
be

I = pe11 · · · penn and J = pf11 · · · pfnn

where ei ≥ 0 and fi ≥ 0 for all i. Then the following statements are true:

i) I ⊆ J if and only if I = JL for some ideal L.
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ii) I ⊆ J if and only if fi ≤ ei for all i.

iii) If mi = min{ei, fi} and Mi = max{ei, fi} then

I ∩ J = pM1
1 · · · pMn

n and I + J = pm1
1 · · · pmn

n

iv) R/I = R/(pe11 · · · penn ) ∼=
(
R/pe11

)
× · · · ×

(
R/penn

)
Proof:

i) If I ⊆ J then J−1I ⊆ R and J(J−1I) = J thus L = J−1I.
Conversely, if I = JL, since L ⊆ R is an ideal then I = JL ⊆ JR = J .

ii) This is immediate by the previous result and the unique factorization of ideals as product of prime
ideals.

iii) Let I+J = pr11 · · · prnn and let A = pm1
1 · · · pmn

n . Since I ⊆ I+J and J ⊆ I+J we have that ri ≤ ei
and ri ≤ fi, so ri ≤ min{ei, fi} = mi. Hence A ⊆ I + J .
For the other inclusion we have that I ⊆ A and J ⊆ A by ii), then I + J ⊆ A.

iv) This is just the Chinese Remainder Theorem because if i 6= j then peii and p
ej
j are coprime. We can

prove that first observing that pi + pj = R ⇒ (pi + pj)
n = R then expanding this expression by

the binomal theorem for n = ei + ej we have that peii + p
ej
j = R. �

Corollary 3.2.17 Let R be a Dedekind ring, and let p be a nonzero prime ideal in R.

i) If a ∈ p then p occurs in the prime factorization of Ra.

ii) If a ∈ pe and a /∈ pe+1 then pe occurs in the prime factorization of Ra, but pe+1 does not occur.

Proof:

i) If a ∈ p then Ra ⊆ p this implies that Ra = pL by the previous proposition.

ii) If we suppose that pe+1 occurs in the prime factorization of Ra then Ra = pe+1L and so a ∈
pe+1L ⊆ pe+1. �

3.3 Ideal Class Group

Once we have proved that every fractional ideal of a Dedekind domain is invertible, we can observe that
the set of all the fractional ideals of R is a group under multiplication. This group is commutative and
the set of principal ideals form a subgroup. Then we can consider the quotient group by this subgroup
and the result is a group that haves a lot of information. This group can be thought of as a group that
measures how close or far the ring is to being PID.

Proposition 3.3.1 Let R be a Dedekind domain. Then the set of all fractional ideals F(R) forms an
abelian group under multiplication.

Proof: Let I, J ∈ F(R) be two fractional ideals of R. Then I ·J is a fractional ideal, hence I ·J ∈ F(R).
The associative property comes off from the fact that the multiplication of elements from R is associative.
It is immediate that the neutral element is R and every fractional ideal is invertible because R is a
Dedekind domain (Theorem 3.2.9). This group is abelian because the ring is commutative, that is, the
multiplication is commutative in R. �



32 Dedekind Rings

Proposition 3.3.2 Let R be a Dedekind domain. Then F(R) is a free abelian group with basis all the
nonzero prime ideals.

Proof: By Theorem 3.2.15 we have that every ideal of R. This can be extended to fractional ideals since
if I is a fractional ideal then there exists a ∈ R such that aR · I is an ideal of R. This ideal has a unique
prime factorization as well as the ideal aR. Then I = (aR)−1(aR · I) has a unique prime factorization
(where the exponents of the prime ideals can be negative).
This implies that the group F(R) is a free abelian group with the set of prime ideals as a basis. �

Definition 3.3.3 Let R be a Dedekind domain. Then its class group C(R) is defined by

C(R) = F(R)/P(R)

where P(R) is the set of all principal fractional ideals of R.

Observation 3.3.4 We remember that if G is a group and S a normal subgroup of G then the equivalence
relation that gives G/S is the following: g, f ∈ G are related if and only if g · f−1 ∈ S. Then applying
this to our class group gives that the fractional ideals I, J are related if and only if I · J−1 ∈ P(R). This
is the same as say that here exists some principal ideal aR such that I ·J−1 = aR⇔ I = aJ (because we
are in a Dedekind domain). Hence if we have two fractional ideals I, J such that I = rJ for some r ∈ R,
then I and J are in the same equivalence class on the quotient group C(R).

In general the study of this group is difficult. There is a very important result about the ideal class
group of a number field that says: If K is a number field, then C(OK|Z) is a finite abelian group. The
order |C(OK|Z)| is called the class number of OK|Z. Dirichlet was the first who proved this result but
the usual proof of this theorem uses a geometric theorem of Minkowski wich says that sufficiently large
parallelepipeds in Euclidean space must contain lattice points. These theorems are done in the subject
Algebraic Methods for Number Theory.

Observation 3.3.5 Let R be a Dedekind domain that is UFD. By the Proposition 3.2.11 we have that
R is a PID, hence F(R) = P(R). Therefore C(R) ∼= {1}. If R is obtained through a number field then
the class number of R would be 1. That is, the ring of integers is a UFD if and only if it class number
is 1. This problem is very important and is not solved in general. When the number field is a quadratic
imaginary extension of Q, in other words is of the form Q

(√
D
)
where D < 0 is an integer. Then it is

know that there are only finitely many values of D satisfying this property and the list of these numbers
is also known.

Example 3.3.6 It is known that the class number of the field extension Q[
√
−5] is 2. That is,∣∣∣C(Z[√−5])∣∣∣ = 2. As we will see in Example 4.2.2, the ideal (2,

√
−5) is not principal. Hence is not

trivial at the class group, therefore C
(
Z[
√
−5]
)
=
{
R, (2,

√
−5)

}



Chapter 4

Modules over a Dedekind Domain

We saw in the Section 2.1 that every finitely generated module over PID has a nice form, specifically, can
be described by a direct sum of the torsion part and the torsion-free part. The torsion part is a direct
sum of cyclic modules and the torsion-free part is a free module. Now in this chapter we will try to do
the same but with Dedekind rings. This generalization of the ring changes the decomposition and the
proofs of it, specially the results about the torsion-free part.

4.1 Finitely Generated Modules over a Dedekind Domain

We will begin this section proving some properties of torsion-free, projective and torsion modules over a
Dedekind domain that are finitely generated. The first result gives a way to decompose finitely generated
torsion-free modules, but as we will see later, this form is not unique.

Proposition 4.1.1 Let R be a Dedekind ring and M a finitely generated torsion-free R-module. Then
we have that M ∼= I1 ⊕ · · · ⊕ In where Ii is an ideal of R for each i.

Proof: The proof is by induction on rank(M) ≥ 0. If rank(M) = 0 then M is torsion, thus M = 0 by
Proposition A.2.6 since M is torsion-free. Assume now that rank(M) = n+ 1 ≥ 1 and choose a nonzero
m ∈M , so that rank(Rm) = 1. Then

0 −→ Rm
i−→M

p−→M ′′ −→ 0

is an exact sequence, where M ′′ = M/Rm and p is the projection map. Note that by Proposition A.2.6
we have that rank(M ′′) = n because it is exact, rank(M) = n+ 1 and rank(Rm) = 1. Now M is finitely
generated, this implies that M ′′ is also finitely generated. Let T = t(M ′′) the torsion submodule of M ′′

then M ′′/T is a finitely generated torsion-free R-module with rank(M ′′/T ) = rank(M ′′) = n, because
rank(T ) = 0. By induction M ′′/T is a direct sum of ideals of R, since R is a Dedekind domain its ideals
are projective (by the Theorem 3.2.13) and hence M ′′/T is projective. Define

M ′ = p−1(T ) =
{
x ∈M : rx ∈ Rm for some r 6= 0

}
⊆M

There is an exact sequence 0 −→ M ′ −→ M −→ M ′′/T −→ 0 and splits (because M ′′/T is projective)
that is M ∼=M ′ ⊕ (M ′′/T ). Hence

rank(M ′) = rank(M)− rank(M ′′/T ) = 1.

33
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Since R is noetherian, every submodule of a finitely generated R-module is itself finitely generated, hence
M ′ is finitely generated. Therefore M ′ is isomorphic to an ideal by Proposition A.2.6 and this completes
the proof. �

The next result characterizes the torsion-free modules over a Dedekind ring thanks to Proposition 4.1.1
and the fact that the sum of projective modules is a projective module.

Proposition 4.1.2 Let R be a Dedekind ring andM a finite generated R-module. ThenM is torsion-free
if and only if M is projective.

Proof: By the Theorem 3.2.13 we know that every ideal in a Dedekind ring is projective. By the
Proposition 4.1.1 we have that M is a direct sum of ideals, then it is a direct sum of projective modules.
Hence a projective module.
Conversely, ifM is projective then there exists n ∈ N such thatM ⊆ Rn, this implies that it is torsion-free
(since R is a domain). �

Corollary 4.1.3 Let R be a Dedekind ring and M a finitely generated R-module. Then we have that
M = P ⊕ tM where P is a projective submodule of M isomorphic to M/tM .

Proof: First note that the quotient module M/tM is a finitely generated torsion-free R-module, so it
is projective by the previous proposition. Therefore the following exact sequence splits by Proposition
A.4.3

0 −→ tM −→M −→M/tM −→ 0

Therefore M ∼=
(
M/tM

)
⊕ tM and the result is proved. �

Proposition 4.1.4 Let R be a Dedekind ring and let M,M ′ be finitely generated R-modules. Then
M ∼=M ′ if and only if tM ∼= tM ′ and M/tM ∼=M ′/tM ′.

Proof: The argument is very similar to the proof of the Proposition 2.3.1 ii). �

We have reached the "basic" decomposition, that is, every finitely generated module over a Dedekind
rings is the direct sum of the torsion part and the torsion-free part. Moreover we proved that this
decomposition is unique up to isomorphism. Also we proved that this torsion-free part has a nice form,
it is the direct sum of ideals of R. Now we do the same for the torsion part. We will see that it is the
direct sum of cyclic torsion modules. First we begin showing that there is an isomorphism between a
p-primary module and its localisation at the prime p.

Definition 4.1.5 Let R be a Dedekind ring and T a finitely generated torsion R-module. Let pi be a
prime ideal of R, then the pi-primary component of T is

T [pi] =
{
m ∈ T : ann(m) is a power of pi

}
.

In the case where M = T [pi] then the module is called p-primary.

Observation 4.1.6 By the Observation 2.2.5 we have that T [pi] are submodules ofM because the ideals
of a Dedekind domain have a divisibility theory as we remark at the Proposition 3.2.16. Also we have
the property that when M is finitely generated p-primary then ann(M) = pn for some n ≥ 1. The proof
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is done in the Observation 2.2.6.

Proposition 4.1.7 Let p be a nonzero prime ideal in a Dedekind ring R and M an R-module with
ann(M) = pe for some e > 0. Then the localization map M −→ Mp is an isomorphism (and hence M
may be regarded as an Rp module).

Proof: It suffices to prove that M ∼= Rp ⊗RM . If m ∈M is nonzero and s ∈ R\p then

pe +Rs = R

Hence there exist u ∈ pe and r ∈ R with 1 = u+ rs and so m = rm+ rsm = rsm because ann(M) = pe.
Then we see that s−1m = rm ∈ M , thus we can define s−1m in M . We have to see that this is well
defined. If 1 = u′ + r′s where u′ ∈ pe and r′ ∈ R then s(r − r′)m = 0, so that

s(r − r′) ∈ ann(M) = pe

Now by Corollary 3.2.17 since s /∈ pe it follows that pe is not in the prime factorization of Rs. If
r − r′ 6∈ pe then pe does not appear on the prime factorization of Rs(r − r′), this is a contradiction
because s(r − r′) ∈ pe. Thus r − r′ ∈ pe, this implies that rm = r′m and since m = rsm we have that
s−1m is well defined.
Let f : Rp × M −→ M be the map defined by f(r/s,m) = rs−1m. This map is R-bilinear and so
there is an R-map f̃ : Rp ⊗M −→ M , it is surjective and has inverse, hM : M −→ Rp ⊗M defined by
hM (m) = 1⊗m. �

The next goal is to prove the Primary Decomposition Theorem when the ring is a Dedekind Domain. For
the proof, we have to use the following lemma that is a consequence from the divisibility ideal theory of
the Dedekind Domains.

Lemma 4.1.8 Let I1, . . . , In be ideals in a Dedekind ring R. If there is no nonzero prime ideal p with
Ii = pLi for all i for some ideals Li then I1 + · · ·+ In = R.

Proof: First we factorize every ideal Ii in to product of prime ideals, then we proceed to calculate the
first sum I1 + I2 with the help of Proposition 3.2.16 iii). We keep doing this, since all the ideals Ii does
not have a common prime, this sum finalize with all the primes exponent equals to 0. �

Theorem 4.1.9 (Primary Decomposition) Let R be a Dedekind ring and T a finitely generated torsion
R-module. If I = ann(T ) = pe11 · · · penn , then T = T [p1]⊕ · · · ⊕ T [pn].

Proof: We now check that the sum is direct. Let Wi the submodule of T generated by all T [pj ] with
j 6= i and Ii =

∏
j 6=i p

ej
j then pi and Ii are coprime. Hence there are ai ∈ pi and ri ∈ I with 1 = ai+ri. Let

x ∈ T [pi]∩Wi then x = aix+ rix but aix = 0 and rix = 0 this implies x = 0. Therefore T [pi]∩W = {0},
then T [pi] are in direct sum.
By the previous Lemma we have

I1 + · · ·+ In = R

thus there are bi ∈ Ii with b1 + · · · bn = 1. If t ∈ T , then t = b1t + · · · bnt, but if ci ∈ peii then
cibi ∈ peii Ii = I = ann(T ) and so ci(bit) = 0. Hence peii ⊆ ann(bit) so that ann(bit) = pei for some e > 0

(because peii ⊆ ann(bit) ⊆ pi). Therefore bit ∈ T [pi] and so

T = T [p1]⊕ · · · ⊕ T [pn]
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�

Now we have a decomposition of finitely generated modules over a Dedekind domain. That is, with
the results from this section we know that a module can be expressed as a direct sum of a torsion-free
submodule and a torsion and these ones decomposes too. The torsion-free submodules is the direct sum
of ideals of R and the torsion submodule can be expressed as a direct sum of their p-primary components.

4.2 Decompositon of Finitely Generated Modules over a Dedekind

Domain

The objective of this section is to show the unicity of the decomposition described in the previous section.
We will see first of all that the p-primary modules can be decomposed with a direct sum of cyclic modules
and this is unique (as in the PID case). And then we will study the unicity of the torsion-free part that
will be more difficult.

Theorem 4.2.1 Let R be a Dedekind ring. Then the following statements are true:

i) Two finitely generated torsion R-modules T and T ′ are isomorphic if and only if T [pi] ∼= T ′[pi] for
all i.

ii) Every finitely generated p-primary R-module T is a direct sum of cyclic R-modules, and the number
of summands of each type is an invariant of T .

Proof:

i) The result follows from the observation that if f : T −→ T ′ is an isomorphism, then ann(t) =

ann
(
f(t)

)
for all t ∈ T . The other direction is the same as Proposition 2.2.9.

ii) The Primary Decomposition shows that T is the direct sum of its primary components T [pi]. By
Proposition 4.1.7, T [pi] is an Rpi-module, but Rpi is a PID and so the Basis Theorem and the
Fundamental Theorem hold (Theorem 2.3.8 and 2.3.14). We can conclude that each T [pi] is a
direct sum of cyclic modules. The number and isomorphic types of cyclic summands are unique
determined. �

Now we reached the full decomposition of a finitely generated module over a Dedekind domain. Moreover
we have seen that the decomposition of the torsion part is unique. Unfortunately the the decomposition of
the free-torsion is not unique. It can be described in a way that is unique under isomorphism. We will see
that the invariant of these decompositions is the class of the product of the ideals on the ideal class group.

The next proposition is sometimes surprising because in general the Dedekind domains are not PID but
all the ideals are generated by at most two elements. The next example points this property and the fact
that not all ideals are principal.

Example 4.2.2 The ring of integers Z
[√
−5)

]
is not principal because the ideal I = (2,

√
−5) can not

be generated by one element. If we suppose that this ideal is principal, I = (a + b
√
−5) where a, b ∈ Z

then a + b
√
−5 divides 2. This implies that the norm of this element divides 4, hence a2 − 5b2 has to
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divide 4 in the ring of integers. Then it is immediate to see that b = 0 and a = 1 and b = 0 and a = 2

are the only solution to this. The first one is a contradiction because I is a proper ideal and the second
one also conducts to a contradiction. Because 2 does not divide

√
−5 since 4 does not divide −5.

Proposition 4.2.3 Let R be a Dedekind ring

i) If I ⊆ R is a nonzero ideal, then every ideal in R/I is principal.

ii) Every fractional ideal J can be generated by two elements. More generally for any nonzero a ∈ J
there exists b ∈ J with J = (a, b).

Proof:

i) First note that for every prime ideal p we have that R/pn ∼= Rp/(p
n)p since R/pn is a local ring

that has p as a maximal ideal. Then R/pn is a principal ideal ring (because Rp is principal).
Let I = pe11 · · · penn , since the ideals peii are pairwise coprimes we have by the Chinese Remainder
Theorem that

R/I = R/(pe11 · · · penn ) ∼= R/pe11 × · · · ×R/penn

hence is a PID.

ii) First we prove the statement for an ideal J ⊆ R. Choose a nonzero element a ∈ J . By i) we have
that the ideal J/aR in R/aR is principal. Then there exists a b ∈ R such that J/aR is generated
by b+ aR hence J = (a, b).
For the general case where J is a fractional ideal, there is a nonzero c ∈ R with cJ ⊆ R. Since
cJ ⊆ R is an ideal we have that cJ = (a′, b′) for a′, b′ ∈ cJ thus there are a, b ∈ J such that a′ = ca

and b′ = cb. Therefore cJ = (ca, cb) then it follows that J = (a, b). �

Corollary 4.2.4 If I and J are fractional ideals over a Dedekind ring R, then there are a, b ∈ Frac(R)

such that
aI + bJ = R

Proof: First choose a nonzero a ∈ I−1. Now aI ⊆ I−1I = R so that aIJ−1 ⊆ J−1. By the previous
proposition there is an element b ∈ J−1 such that J−1 = aIJ−1 + bR.
Since b ∈ J−1 ⇒ bJ ⊆ R and we can multiply the previous expression by J , so

R = JJ−1 = J(aIJ−1 + bR) = aI + bRJ = aI + bJ

�

With the previous corollary we can decompose the torsion-free modules over a Dedekind domain in
another way. This decomposition together with the cancellation property will allow us to prove the
uniqueness of these direct sums.

Proposition 4.2.5 Let R be a Dedekind domain with Q = Frac(R). Then two fractional I, J ideals of
R are isomorphic if and only if there exist some c ∈ Q such that I = cJ .

Proof: If I = cJ for some c ∈ Q then I ∼= J with the morphism ϕ : J −→ I defined by ϕ(x) = cx. Now
suppose that f : J −→ I is an isomorphism. Then we can consider the morphism f : J −→ Q that is
obtained composing f with the inclusion I −→ Q. Then f : J −→ Q is a monomorphism and since Q is
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an injective R-module (Example A.4.17), there is an R-morphism g : Q −→ Q extending f . Now we will
see that g(x) = cx for some c ∈ Q.
First note that g|R : R −→ Q is an R-morphism and for every a, b ∈ R then

ag|R(b) = g|R(ab) = bg|R(a) ⇒ g|R(a)/a = g|R(b)/b = c ∈ Q ⇒ g|R(a) = ca

for every a ∈ R. Let x ∈ Q, then x = r/s where r, s ∈ R. This implies that r = sx and g(sx) = g(r).
But g(sx) = sg(x) and g(r) = g|R(r) = cr. Therefore g(x) = g(r)/s = c(r/s). �

Observe that the previous proposition characterizes the isomorphisms between ideals of a Dedekind
domain. With that in mind we can prove the next result that simplifies the decomposition of a torsion-
free module.

Lemma 4.2.6 Let M be a finitely generated torsion-free R-module, where R is a Dedekind ring, so that
M ∼= I1 ⊕ · · · ⊕ In where the Ii are ideals. Then M ∼= Rn−1 ⊕ J where J = I1 · · · In.

Proof: It suffices to prove that I ⊕ J ∼= R⊕ IJ and then do induction. By the previous corollary there
are nonzero a, b ∈ Frac(R) with aI + bJ = R and since aI ∼= I and bJ ∼= J (by the previous proposition)
we can assume that I and J are coprime ideals of R. There is an exact sequence

0 −→ I ∩ J δ−→ I ⊕ J α−→ I + J −→ 0

where δ(x) = (x, x) and α(u, v) = u− v. Since I and J are coprime, we have I ∩ J = IJ and I + J = R.
Since R is projective this sequence splits, that is I ⊕ J ∼= R⊕ IJ. �

The next proposition states a very important property that a module can have, the cancellation one. An
R-module M is said to be cancellative if Rn ⊕M ∼= RnN implies that M ∼= N . For example if R is a
PID we saw that every R-module has this property. In this case, if R is a Dedekind Domain then every
module is cancellative too. It is a powerfull result, and here we will prove it with the exterior power
construction (done in section A.2).

Proposition 4.2.7 Let R be a Dedekind ring. If R ⊕ G ∼= R ⊕H where G and H are R-modules then
G ∼= H.

Proof: First we can assume that there is a module E = A ⊕ G = B ⊕ H where A ∼= R ∼= B. Our
objective is to reduce this problem for the case where G and H are ideals. Let p : E −→ B the projection
p(b, h) 7→ b and consider p|G . Now

ker (p|G) = G ∩H and im (p|G) ⊆ B ∼= R

If im (p|G) = 0 (the degenerated case) then G ⊆ ker (p) = H. Now we can consider an other projection
morphism p′ : E −→ G where p′(a, g) 7→ g and the restriction toH is also a retraction (that is p′|H ◦j = IdG

where j : G −→ H is the inclusion morphism). Then the following exact sequence splits

0 −→ ker (p′|H )
i−→ H

p′|H−→ G −→ 0

Thus H ∼= G⊕ ker (p′|H ) = G⊕ (A ∩H). Now we have E/G = (A⊕G)/G ∼= A ∼= R but since G ⊆ H we
have also that E/G = (B ⊕H)/G ∼= B ⊕ (H/G) ∼= R⊕ (H/G) because the following exact sequence and
the First Isomorphism Theorem

0 −→ G −→ E −→ B ⊕ (H/G) −→ 0
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Thus R ∼= R ⊕ (H/G). This isomorphism is an R-module isomorphism, then the submodules R ⊕ 0 and
0⊕ (H/G) can be thought as an ideals I and J of R. Then if a ∈ I and b ∈ J we have a · b ∈ I ∩ J but
throught the isomorphism this corresponds to

(
R⊕ 0

)
∩
(
0⊕ (H/G)

)
= 0. Hence H/G = 0 because R is

a domain, this implies that G = H.
If L = im (p|G) is a nonzero ideal then with the First Isomorphism Theorem we have that G/(G∩H) ∼= L.
Since R is a Dedekind ring, L is a projective module and so the following exact sequence splits

0 −→ G ∩H −→ G −→ L −→ 0

Then G ∼= L⊕ (G ∩H) that is G = I ⊕ (G ∩H) where I ∼= L.
With the same arguments we get that H = J⊕ (G∩H) where J is isomorphic to an ideal of R. Therefore

E = A⊕G = A⊕ I ⊕ (G ∩H)

E = B ⊕H = B ⊕ J ⊕ (G ∩H)

It follows that

A⊕ I ∼= E/(G ∩H) ∼= B ⊕H

If we prove that I ∼= J we will get that

G = I ⊕ (G ∩H) ∼= J ⊕ (G ∩H) = H

Therefore, we have reduced the theorem to the special case where G and H are nonzero ideals. For this,
we will use the exterior powers and some properties.
Suppose that R⊕ I ∼= R⊕ J . First note that by the Theorem A.2.17 we have∧2

(R⊕ I) ∼=
(
R⊗

∧2
I
)
⊕
(∧1

R⊗
∧1

I
)
⊕
(∧2

R⊗ I
)

But
∧2

R = {0} by the Corollary A.2.14 and
∧1

R⊗
∧1

I ∼= R⊗ I ∼= I. We now show, for every maximal
ideal m, that

(∧2
I
)
m
= {0}. By the Proposition A.2.15 we have(∧p

I
)
m

∼=
∧p

Im

since Rm is an R-algebra. We know that Rm is a PID, so Im is a principal ideal and hence(∧2
I
)
m

∼=
∧2

Im = {0}

Finally we have that
∧2

(R⊕ I) ∼= I and then

R⊕ I ∼= R⊕ J ⇒
∧2

(R⊕ I) ∼=
∧2

(R⊕ J) ⇒ I ∼= J

�

All these results lead to the Steinitz theorem that characterizes the direct sum decomposition of the
finitely generated torsion-free modules over a Dedekind domain. Also giving the uniqueness of this
decomposition.

Theorem 4.2.8 (Steinitz) Let R be a Dedekind ring, and let M ∼= I1 ⊕ · · · ⊕ In and M ′ ∼= I ′1 ⊕ · · · ⊕ I ′l
be finitely generated torsion-free R-modules where Ii and I ′i are fractional ideals of R. Then M ∼= M ′ if
and only if n = l and I1 · · · In ∼= I ′1 · · · I ′n.
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Proof: First of all by the Proposition A.2.6 iii) we have that every R-submodule I of Q = Frac(R) has
rank(I) = 1. Then the same proposition part i) shows that

rank(M) =

n∑
i=1

rank(Ii) = n

Since M ∼= M ′ we have that Q ⊗R M ∼= Q ⊗R M ′ so that rank(M) = rank(M ′) and n = l. By Lemma
4.2.6 it suffices to prove that if Rn ⊕ I ∼= Rn ⊕ J then I ∼= J . But this is the previous proposition that
we proved with the exterior power. �

This chapter can be concluded with the following theorem which gives the full decomposition of finitely
generated modules over a Dedekind ring. Observe that the unicity is given by the equivalence class of
the ideal class group. This is due to Observation 3.3.4 and Proposition 4.2.5.

Theorem 4.2.9 Let R be a Dedekind ring, and let M be a finitely generated R-module. Then M is of
the form M ∼= T ⊕Rn⊕ I where T is the finite sum of cyclic primary modules and I is a fractional ideal
of R.
This decomposition is unique up to the equivalence class of I on the ideal class group of R.



Chapter 5

Decomposition of Modules with Cyclic

Summands

In this chapter the main goal is to prove that if every R-module can be decomposed into a direct sum
of cyclic modules, then this ring R is an Artinian principal ideal ring. For proving this, we choose
a demonstration that uses injective modules. Therfore we have to introduce this theory before the
Theorem. All these results will not be proven for lack of space. All the proofs can be found in [12].

5.1 Essential Extensions

First of all we will see that every module can be embedded in an injective module, that is, every module
is a submodule of an injective module. This, as we will see, it is not trivial.

Lemma 5.1.1 Every Z-module can be embedded in a injective Z-module.

Lemma 5.1.2 Let G be an injective Z-module. Then HomZ(R,G) is an injective R-module.

Lemma 5.1.3 Let M be an R-module. Then M can be embedded in the R-module HomZ(R,M)

Theorem 5.1.4 Every module has an injective extension, with other words that can be embedded in an
injective module.

Definition 5.1.5 Let E be an extension of the R-module M (that is E is a submodule of M). Then E
is said to be an essential extension of M is, for every nonzero submodule E′ of E then E′ ∩M 6= {0}.

Example 5.1.6 Let R be a domain. Then its field K of fractions is an essential extension of R (when
are considered as an R-modules). It is very immediate to prove this: Let I be a nonzero R-submodule
of K, then it has a nonzero element, say a ∈ I. In particular a ∈ K, therefore there exist an r ∈ R such
that ra ∈ R. By the definition of a submodule we have that ra ∈ I, that is ra ∈ I ∩R and we supposed
that R was a domain. Hence ra is a nonzero element of R.

Definition 5.1.7 Let M be an R-module and E an extension of M . Then R is said to be a maximal

41
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essential extension of M if satisfies that

i) E is an essential extension of M .

ii) Whenever E′ is a proper extension of E, then E′ us not an essential extension of M .

Definition 5.1.8 Let M be an R-module and E an extension of N . Then N is said to be a minimal
injective extension of M if satisfies

i) N is injective.

ii) Whenever N ′ is a proper submodule of N which contains M , then N ′ is not injective.

Proposition 5.1.9 Let M be an R-module and let N be an injective extension of M . Then N has a
submodule E which is a maximal essential extension of M .

Proposition 5.1.10 Let M be an R-module and let E be an extension of M . Then the following
statements are equivalent:

i) E is an essential injective extension of M .

ii) E is a maximal essential extension of M .

iii) E is a minimal injective extension of M .

Theorem 5.1.11 Let M be an R-module. Then theer exists an R-module E satisfying the following
equivalent conditions:

i) E is an essential injective extension of M .

ii) E is a maximal essential extension of M .

iii) E is a minimal injective extension of M .

Moreover, if E1 and E2 are both essential injective extensions of A, then there is an isomorphism θ :

E1 −→ E2 such that the following diagram is commutative.

A

E1 E2

inc
inc

θ

Definition 5.1.12 Let M be an R-module. An R-module E satisfying the conditions of the previous
Theorem is called an injective envelope ofM . We use the notation E(M) to denote the injective envelope
of M .

Observation 5.1.13 An R-module M is injective if and only if M = E(M). Also if M is an R-module
and N is a submodule of E(A) which contains M then E(M) is also an injective envelope of N .

Example 5.1.14 Let R be a commutative domain. Then the field of fractions of R, when is considered
as an R-module, is an injective envelope. First of all we knew that the field of fractions is an injective
R-module (we saw it on the Observation 2.1.17). Then by the Example 5.1.6 we know that is an injective
essential extension and hence, an injective envelope of R.
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Proposition 5.1.15 Let M be an R-module. Then the following statements are equivalent:

i) M is injective.

ii) M is a direct summand of every extension of itself.

Definition 5.1.16 An R-module M is said to be finitely embedded if there exist finitely many simple
module S1, . . . , Sn such that

E(M) ∼= E(S1)⊕ · · · ⊕ E(Sn)

Proposition 5.1.17 Let M be a finitely embedded R-module. Then every submodule of M is finitely
embedded.

Theorem 5.1.18 Let M be an R-module. Then the following statements are equivalent:

i) M is Artinian.

ii) Every factor module of M is finitely embedded.

Theorem 5.1.19 Let R be a Noetherian ring and M and R-module. Then the following statements are
equivalent:

i) M is Artinian.

ii) M is finitely embedded.

5.2 Indecomposable Injective Modules

Definition 5.2.1 Let M be an R-module and let N be a submodule of M . Then N is said to be an
irreducible submodule if N 6=M and there do not exist submodule N1, N2 of M such that N ( N1, N (
N2 and N1 ∩N2 = N .

Proposition 5.2.2 Let M be an injective R-module. Then the following statements are equivalent:

i) M is indecomposable.

ii) M 6= {0} and is an injective envelope of every nonzero submodule of itself.

iii) The zero submodule of M is irreducible

Corollary 5.2.3 Let M be an indecomposable injective R-module and suppose that either M or R is
Artinian. Then M = E(S) for some simple R-module S.

Proposition 5.2.4 Let M be an injective R-module. Then the following statements are equivalent:

i) M is indecomposable.

ii) The ring of endomorphisms of M is local.
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Proposition 5.2.5 Let R be a Noetherian ring and M an R-module. Then the following statemnets are
equivalent:

i) M is an indecomposable injective R-module.

ii) M ∼= E(R/P ) for some prime ideal P of R.

Proposition 5.2.6 Let R be a Noetherian ring, then every direct sum of injective R-modules is injective.

Lemma 5.2.7 Let M be a nonzero Noetherian R-module. Then M has a submodule K such that E(K)

is indecomposable.

Corollary 5.2.8 Let R be a Noetherian ring and letM be a nonzero R-module. ThenM has a submodule
K such that E(K) is indecomposable.

Now we will use the definition done in Section 2.2 Definition 1.2.9. It says that c(M) = |I| where M is
an R-module and I is the set of indexes of the following direct sum:

S(M) =
⊕
i∈I

Si

where each Si is a simple module. For definition S(M) is the sum of all the simple submodules of M and
is called the socle of the module M .

Theorem 5.2.9 The following statements are equivalent:

i) R is a Noetherian ring.

ii) Every injective R-module is a direct sum of indecomposable (injective) R-modules.

iii) There is a cardinal number κ such that every injective R-module is of the form
⊕

i∈IMi, where
c(Mi) ≤ κ for all i ∈ I.

Observation 5.2.10 We know that for every R-module M we have

c(M) ≤ |S(M)| ≤ |M |

where || denotes the cardinal number of a set. In particular, it follows form the previous Theorem, that
a ring R is Noetherian if every injective R-module is the direct sum of a family of finitely generated
submodules. Because we have to observe that if M is a finitely generated R-module, then M = 〈m1〉 +
· · ·+ 〈mn〉. Hence

|M | ≤ |R⊕ · · · ⊕R| = n|R|

and n|R| either is finite or |R|. Therefore c(M) ≤ |M | ≤ max
{
ℵ0, |R|

}
= κ.

Theorem 5.2.11 The following statements are equivalent:

i) R is an Artinian ring.

ii) Every injective R-module is a direct sum of a family of injective envelopes of simple modules.

Corollary 5.2.12 Let R be a Noetherian ring. Then the following statements are equivalent:
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i) R is Artinian.

ii) Every prime ideal of R is maximal.

5.3 Characterization of Cyclic Decomposition

Proposition 5.3.1 Let R be a Noetherian ring. Then the following statements are equivalent

i) R is Artinian.

ii) Every indecomposable injective R-module is Noetherian.

Lemma 5.3.2 Let R be a quasi local ring with a maximal ideal M and let U be an R-module with the
property that every finitely generated submodule of U is cyclic. Then the submodules of U are totally
ordered.

Corollary 5.3.3 Let R be a quasi local ring with maximal ideals M and let E = (E/M - Suppose taht
every finitely generated submodule of E is cyclic. Then the ideals of R are totally ordered.

Lemma 5.3.4 Let R be a quasi local ring. Then the following statements are equivalent:

i) R is a principal ideal ring.

ii) There is an element p of R such that every nonzero ideal of R is of the form pnR, wherer n ≥ 0.

iii) The ideals of R are totally ordered.

Lemma 5.3.5 Let R be a local Artinian principal ring. Then R/I is self-injective for every ideal I of R.

Definition 5.3.6 A ring is said to be self-injective if it is injective as a module over itslef.

Lemma 5.3.7 Let R be a local ring such that every ring R/I is self-injective for every ideal I of R.
Then the ideals of R are totally ordered.

Lemma 5.3.8 Let R be a local Artinian ring. Then the following statements are equivalent:

i) R is a principal ideal ring.

ii) There is an element p ∈ R and n ≥ 1 such that the ideals of R are precisely R, pR, p2R, . . . , pnR,
being all distinct.

iii) The ideals of R are totally ordered.

iv) For every ideal I of R, the ring R/I is self-injective.

Theorem 5.3.9 Let R be a ring. Then the following statements are equivalent:

i) Every R-module is a direct sum of cyclic submodules.
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ii) R is an Artinian principal ideal ring.

iii) R is Noetherian and, for every ideal I of R, the ring R/I is self-injective.

Proof: Our first goal is to reduce the proof for local Artinian rings. To achieve this first part we have to
deduce for each statement that the ring R is Artinian. Assume i), then the Observation 5.2.10 gives that
R is Noetherian. Also i) gives that every indecomposable injective R-module if cyclic, and so Noetherian.
Then by the Proposition 5.3.1 R is Artinian. It is immediate that ii) implies that R is Artinian. Now
assume iii) and consider a prime ideal P of R. We know that the domain R/P as a module over itself
has its field of fraction as an injective envelope (as we saw in Example 5.1.14). By hypothesis R/P is a
self-injective ring, therefore R/P is a field and P is a maximal ideal. Hence, by the Corollary 5.2.12 we
have that R is Artinian. Thus, to prove the equivalence of i), ii), iii), we can take R to be Artinian, so a
direct sum of local Artinian rings (Theorem A.3.15). Say

R = R1 ⊕R2 ⊕ · · · ⊕Rn

We must next see that it is sufficient to prove the equivalence of i), ii), iii) when R is a local Artinian
ring. We will do this by proving that R satisfies i) if and only if each Ri satisfies i); and similary of ii)
and iii). Observe that

1R = e1 + e2 + · · ·+ en

where ei ∈ Ri. Then, for each i, ei is the identity element of Ri (because they are in direct sum). Note
that ei · ej = 0 when i 6= j and e2i = ei. Let L be an R-module. Then

L = e1L⊕ e2L⊕ · · · ⊕ enL.

This sum is direct because if x ∈ eiL ∩ ejL when i 6= j then x = eim = ejn and multiplying by ei we
have that x = 0. Also, eiL can be regarded as an Ri-module as well as an R-module and its submodules
are the same in both cases, because

(r1 + · · ·+ rn)eix = rieix

wherer rj ∈ Rj and x ∈ L. Thus eixR = eixRi and hence, the cyclic submodules of eiL are the same
whether it is regarded as an R module or as an Ri-module. It follows that if, for 1 ≤ i ≤ n, every
Ri-module is a direct sum of cyclic submodules, then every R-module is a direct sum of submodules.
Conversely, let 1 ≤ i ≤ n and consider an Ri-module Li. We can regard Li as an R-module:

rxi = (r1 + r2 + · · ·+ rn)xi = rixi = (rei)xi

where rj ∈ Rj and xi ∈ Li. Further Rxi = Rixi, so the cyclic submodules of Li are the same whether it
is regarded as an Ri-module or as an R-module. Therefore the converse is also true.
Now we prove the same thing but for ii). Let I be an ideal of R, we can write

I = e1I ⊕ e2I ⊕ · · · ⊕ enI

and ejI can be regarded as an ideal of the ring Rj for every 1 ≤ j ≤ n. Suppose that, for 1 ≤ j ≤ n

every ideal of Rj is principal. Then ejI = ajRj where aj ∈ Rj , so

I = R(a1 + a2 + · · ·+ an).

Thus evert ideal of R is principal. Conversely, every ideal of Rj can be regarded as an ideal of R, for
1 ≤ j ≤ n. And an ideal of Rj is principal as an Rj-ideal if and only if it is principal as an R-ideal. Thus,
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the converse is true.
Now it only remains to consider iii). let Ij an ideal of Rj . Let ϕj : R −→ Rj be the projection mapping.
Put I = ϕ−1j (Ij). Then I is an ideal of R and R/I ∼= Rj/Ij (First Isomorphism Theorem of rings). If we
suppose that R/I is a self-injective ring, then Rj/Ij is a self-injective ring. Conversely, consider an ieal
I of R. Now

R/I =
(
R1 ⊕ · · · ⊕Rn

)
/I = (R1 + I)/I ⊕ · · · ⊕ (Rn + I)/I.

This express the ring R/I as a direct sum of rings. By the Second Isomorphism Theorem we have
(Rj+ I)/I ∼= Rj/(I ∩Rj). Thus, if we assume that Rj/Ij is a self-injective ring for every ideal Ij then we
have expressed R/I as a direct sum of self-injective rings. Thus, to deduce that R/I is self-injective ring,
we need to show that a direct sum of self-injectives rigns is self-injective. To do this, we shall simplify
the notation. Suppose that we have a direct sum

R = R1 ⊕ · · · ⊕Rn

where the rings Rj are self-injective. Consider an R-module L which has R as a submodule. We have

L = e1L⊕ · · · ⊕ enL.

Then each ejL can be considered as an Rj-module, with Rj as a submodule. It follows from Proposition
5.1.10 that Rj is a direct summand of ejL as an Rj-module. Since the R-submodules and Rj-submodules
of ejL are the same, Rj is a direct summand of ejL as an R-module. Thus R is a direct summand of
L. This shows that R is a self-injective ring because we considered any module L which has R as a
submodule (Proposition 5.1.10).
Now we have to prove the equivalence of i), ii) and iii), but we can add the assuption that R is a local
Artinian ring, with a maximal ideal M . The equivalence of ii) and iii) follows form Lemma 5.3.8 and
Proposition A.3.9. Now assume i) and consider a submodule of N of E(R/M) (note that R/M is a simple
module). Then N is a direct sum of cyclic submodules, but the zero submodule of E(R/M) is irreducible
(Proposition 5.2.2). So N must actually be cyclic. It follows form the Corollary 5.3.3 that the ideals of
R are totally ordered. Therefore by Lemma 5.3.8, R is a principal ideal ring. This proves i)⇒ii).
It only remains ro assume ii) and iii) and deduce i). We are also assuming that R is a local Artinian ring,
so from Lemma 5.3.8 we have that the ideals of R can be written as follows:

R, Rp, Rp2, . . . , Rps−1, Rps = 0

these being all distincts. Consider an R-module N . Let A be a maximal family of submodules of N of
the form Rx where (0 : x) = 0, whose sum is direct. If N has an element x such that (0 : x) = 0 then
this family exists because we can apply Zorn’s Lemma. Let F0 be the sum of the members of A (or be 0
if there no exists any A). Then we may write

F0
∼=
⊕
i∈I0

R.

Since R is a self-injective ring and is also Noetherian, F0 is injective by the Proposition 5.2.6. Hence we
can write

N = F0 +N1

where N1 is a submodule of N . Consider an element x1 ∈ N1. Now (0 : x) 6= 0 for the maximality of A.
Let r ∈ R such that rx1 = 0 and r 6= 0. We can write r = upl where u is a unit of R and l < s, so that
ps−1x1 = 0. This is true for all x ∈ N1, so that Rps−1 ⊆ annR(N1). If s = 1, this means that N1 = 0.
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Suppose that s > 1. Let R = R/Rps−1 and denote the natural image of p in R by p. Now R as well as
R is a local Artinian principal ideal ring, and its ideals are

R, Rp, Rp2, . . . , Rps−1 = 0.

Moreover, N1 may be regarded as an R-module. It follows from above that we can write

N1 = F1 ⊕N2

where F1 and N2 are R-submodules of N1

F1
∼=
⊕
i∈I1

R, Rps−2 ⊆ annR(N2).

If s = 2 then N2 = 0. If s > 2 we now regard N2 as a module over the ring R/Rps−2 and continue as
before. In this way, we obtain

N = F0 ⊕ F1 ⊕ · · · ⊕ Fs−1

where Fk ∼=
⊕
i∈Ik

R/Rps−k for 0 ≤ k ≤ s− 1. This establishes i). �



Conclusions

On this work we achieved the goals that the tutor has initially propose. That is the study of the structure
of finitely generated modules over a PID and over a Dedekind domain. Also we have gone further in this
topic with the last chapter characterizing the rings whose modules are the direct sum of cyclic modules.

One could summarize this work by saying that it only proves existence theorems of direct sum decom-
position of modules and the unicity of these. I think that this reduction is not fair. For me it goes
beyond that, it also proves some characterizations of the rings that satisfies that every module is the
direct sum of some module type. This point of view starts at the beginning characterizing the rings
that every module is semisimple. On the modules over PID this question is recovered concluding that
a Noetherian Domain is a PID if and only if every finitely generated module is the direct sum of cyclic
modules. This characterization lead to the last chapter where the Noetherianity, domain and finitely
generated is removed from the statement.

Throughout this work I learned a lot of things. I delved into the commutative module theory and
commutative ring theory, in particular on Dedekind domains and Injective modules. I also have learned
some methods related to Category Theory for example for proving some results about the exterior power.

This work also improved my LATEX writing skills. I have to admit that for me, the most difficult thing
(besides from the mathematical part) it was the language. I am used to read and listen English, but I
do not write often in this idiom. It has supposed for me an extra effort to taker care that everything was
well wrote.

Along this semester I realized how much I like search, think, prove and read mathematics. In particular
I discover the book Injective Modules of Sharpe and Vamos ([12]) which I really enjoyed reading. This
book has encouraged me to do the final chapter and do it through injective modules.
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Appendix: Basic Concepts

This appendix is a survey of all the results that we will use and are done in the optional subject:
Introduction to Commutative Algebra. The proof of all the statements can be found in [2].

A.1 Rings and Modules

Definition A.1.1 Let R be a ring, an R-module M is an (additive) abelian group M with a scalar
multiplication R×M −→M that for all m,m′ ∈M and r, r′, 1 ∈ R satisfies:

i) r(m+m′) = rm+ rm′.

ii) (r + r′)m = rm+ r′m.

iii) (rr′)m = r(r′m).

iv) 1m = m.

Proposition A.1.2 Let R be a ring and I ⊆ R a proper ideal. Then there exists a maximal ideal m ⊆ R
such that I ⊆ m.

Definition A.1.3 Let R be a ring, we say that R is local when it has only one maximal ideal.

Lemma A.1.4 (intersection prime avoidance) Let I1, . . . , In ⊆ A be ideals, p a prime ideal such that
n⋂
j=1

Ij ⊆ p, then Ii ⊆ p for some i (if the equality holds then there exists an i such that Ii = p).

Proposition A.1.5 Let I and J be ideals in a domain R. If Im = Jm for every maximal ideal m, then
I = J .

Proposition A.1.6 If R is a domain, then ⋂
m

Rm = R

where the intersection is over all the maximal ideals m in R.

Definition A.1.7 Let M,M ′,M ′′ R-modules and f : M ′ −→ M , g : M −→ M ′′ two morphisms. We
call this an exact sequence

0 −→M ′
f−→M

g−→M ′′ −→ 0

when f is an homomorphism, g an epimorphism and im (f) = ker (g).
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Definition A.1.8 A short exact sequence

0 −→ A
i−→ B

p−→ C −→ 0

is split if there exists an R-homomorphism j : C −→ B such that p ◦ j = 1C . We call such a morphism j

a section.

Proposition A.1.9 Let 0 −→ A
i−→ B

p−→ C −→ 0 be an exact sequence. Then following statements
are equivalent:

i) This sequence is split.

ii) There exists a morphism f : B −→ A such that f ◦ i = IdA.

iii) There is an isomorphism h : B −→ A⊕ C such that h ◦ i is the injection of A into the direct sum,
and p ◦ h−1 is the projection of the direct sum onto C.

A.2 Tensor product and exterior power

For this section we give another reference: For the tensor product [4] section 4.7 and for the exterior
power [11] section 8.6.2.

Definition A.2.1 Let M,N,S be R-modules, then f :M ×N −→ S is a bilinear morphism if it satisfies

f(m+m′, n) = f(m,n) + f(m′, n)

f(m,n+ n′) = f(m,n) + f(m,n′)

f(rm, n) = rf(m,n) = f(m, rn)

in other words that the maps f(m, · ) and f( · , n) are R-morphisms.

Definition A.2.2 Let A,B be an R-modules, then their tensor porduct is an R-module E with a bilinear
form h : A × B −→ E such that for every R-module G and bilinear morphism f : A × B −→ G there
exist a unique morphism f̃ : E −→ G making the following diagram commute:

A×B G

E

f

h f̃

Observation A.2.3 If a tensor product exists then is unique up to isomorphism, because it is defined
with a universal property. We denote the tensor product of A and B by A⊗R B.

Proposition A.2.4 If A and B are R-modules, then their tensor product exists.

The next proposition is an example of an application of the tensor product. In general this construction
is called scalar extension.

Definition A.2.5 Let R be a domain and Q = Frac(R). If M is an R-module, define

rank(M) = dimQ

(
Q⊗RM

)
Proposition A.2.6 Let R be a domain with Q = Frac(R) and let M be an R-module.
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i) If 0 −→M ′ −→M −→M ′′ −→ 0 is a short exact sequence of R-modules then

rank(M) = rank(M ′) + rank(M ′′)

ii) An R-module is torsion if and only if rank(M) = 0.

iii) Let M be torsion-free, then M has rank 1 if and only if it is isomorphic to a nonzero R-submodule
of Q.

Definition A.2.7 Let A1, . . . , An, B be R-modules, then f : A1 × · · · × An −→ B is a multilinear
morphism if it is an R-morphism for each variable when we fix the other ones.

Observation A.2.8 With this definition we can generalize the universal property of tensor product for
more than two modules. Then this construction is the same as if we iterate the tensor product of two
modules and it is associative. This last fact is not trivial and it should be proved, here we do not have
too much space and is not the goal of this work.

Notation: If we have an R-module M , we denote M
n︷ ︸︸ ︷

⊗ · · ·⊗M by
⊗n

M and similary with the product

M

n︷ ︸︸ ︷
× · · ·×M by ×nM .

Definition A.2.9 Let M,N be R-modules, then an R-multilinear morphism f : ×nM −→ N is
alternating if

f(m1, . . . ,mn) = 0

whenever mi = mj for some i 6= j.

Now we can do the same construction as we did with the tensor product.

Definition A.2.10 Let M be an R-module, then his nth exterior power is an R-module E with an
alternating multilinear morphism h : ×nM −→ E such that for every alternating multilinear morphism
f : ×nM −→ G there exists a unique morphism f̃ : E −→ G making the following diagram commute:

×nM G

E

f

h f̃

Observation A.2.11 If an nth exterior power exists then is unique up to isomorphism, because it is
defined with a universal property (like in tensor product). We denote the nth exterior power of M by∧n

M .

Proposition A.2.12 If M is an R-module then the nth exterior power exists.

Proposition A.2.13 Let M be an R-module.

i) If m,m′ ∈M then m ∧m′ = −m′ ∧m in
∧2

M .

ii) If p ≥ 2 and mi = mj for some i 6= j then m1 ∧ · · · ∧mp = 0 in
∧n

M .

Corollary A.2.14 If M can be generated by n elements then
∧p

M = {0} for all p > n.
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Proposition A.2.15 Let M be an R-module and A an R-algebra, then for all n ≥ 0

A⊗R
∧n

M ∼=
∧n

(A⊗RM)

We can construct a graded algebra from the exterior powers.

Proposition A.2.16 Let M be an R-module, then the follow R-module∧
M =

⊕
n≥0

∧n
M

is a graded R-algebra with the action of r ∈ R on
∧n

M by

r(x1 ∧ · · · ∧ xp) = (rx1) ∧ x2 ∧ · · · ∧ xn

and the multiplication
∧p

M ×
∧q

M −→
∧p+q

M for p, q ≥ 1 given by(
x1 ∧ · · · ∧ xp, y1 ∧ · · · ∧ yq

)
7−→ x1 ∧ · · · ∧ xp ∧ y1 ∧ · · · ∧ yq.

Theorem A.2.17 For all p ≥ 0 and all R-modules M and N then

∧n
(M ⊕N) ∼=

n⊕
i=0

(∧i
M ⊗R

∧n−i
N
)

A.3 Noetherian and Artinian Rings and Modules

Definition A.3.1 An R-module M is Noetherian if every ascending chain of submodules of M is finite,
by ascending chain of M we mean the following increasing sequence of submodules:

N1 ( N2 ( N3 ( · · ·

Proposition A.3.2 Let M be an R-module, then the following conditions are equivalent

i) M is Noetherian.

ii) Every submodule of M is finitely generated.

iii) Every nonempty set of submodules of M has a maximal element with respect to set inclusion.

Corollary A.3.3 A ring R is noetherian if and only if all its ideals are finitely generated

Proof: We just have to apply the previous proposition to the R-module R that is finitely generated
(generated by 1). �

Definition A.3.4 An R-module M is Artinian if every descending chain of submodules of M is finite,
by descending chain of M we mean the following decreasing sequence of submodules:

N1 ) N2 ) N3 ) · · ·

Proposition A.3.5 Let M be an R-module, then the following conditions are equivalent
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i) M is Artinian.

ii) Every nonempty set of submodules of M has a minimal element with respect to set inclusion.

Proposition A.3.6 Let M1,M2,M be R-modules such that

0 −→M1 −→M −→M2 −→ 0

is an exact sequence. Then M is Noetherian (resp. Artinian) if and only if M1 and M2 are Noetherian
(resp. Artinian).

Corollary A.3.7 Let M1, . . . ,Mn be R-modules. Then M1 ⊕ · · · ⊕Mn is Noetherian (resp. Artinian) if
and only if each Mi is Noetherian (resp. Artinian).

Proof: We have to do induction over the number of summands and apply the previous proposition since
the following is an exact sequence:

0 −→M1 ⊕ · · · ⊕Mn−1 −→M1 ⊕ · · · ⊕Mn −→Mn −→ 0

�

Proposition A.3.8 The following statements are equivalent:

i) R is a Noetherian (resp. Artinian) ring.

ii) All finitely generated R-module are Noetherian (resp. Artinian).

Proposition A.3.9 Let R be an Artinian ring, then it is also Noetherian. Moreover it has finite length.

Proposition A.3.10 Let R be an Artinian ring and M an R-module. Then the following statements
are equivalent:

i) M is Noetherian.

ii) M is Artinian.

Proposition A.3.11 Let R be an Artinian ring. Then every prime ideal of R is maximal. Also R has
only finitely many prime ideals.

Definition A.3.12 Let R be a ring, its Jacobson radical denoted by J(R) is the intersection of all the
maximal ideals of R.

Proposition A.3.13 Let R be a ring. Then its Jacobson radical J(R) is the set of elements r ∈ R such
that rS = 0 for every simple module S.

Proposition A.3.14 Let R an Artinian ring. Then the Jacobson radical of R is a nilpotent ideal, that
is, there exists n ≥ 1 such that J(R)n = {0}.

Theorem A.3.15 Let R be an Artinian ring. Then R = R1⊕· · ·⊕Rn where Ri are local Artinian rings.
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A.4 Projective and Injective Modules

Definition A.4.1 An R-module F is projective if, where p : A −→ A′ is surjective and h : F −→ A′

is any morphism, there exists a lifting g : F −→ A, that is, there exists a map g making the following
diagram commute:

F

A A′ 0

g
h

p

equivalently h = p ◦ g.

Proposition A.4.2 An R-module F is projective if and only if for every exact sequence

0 −→M1 −→M2 −→M3 −→ 0

then the following sequence is exact

0 −→ HomR(F,M3) −→ HomR(F,M2) −→ HomR(F,M1) −→ 0

Proposition A.4.3 Let P be an R-module. Then P is projective if and only if every short exact sequence
0 −→ A −→ B −→ P −→ 0 is split.

Corollary A.4.4 Let A be a submodule of a module B. If B/A is projective then A has a complement:
there is a submodule C of B with C = B/A and B = A⊕ C.

Theorem A.4.5 Let F be a free R-module, then F is projective.

Theorem A.4.6 An R-module P is projective if and only if it is a direct summand of a free R-module.

Theorem A.4.7 (Dual basis lemma) Let R be a ring, M an R-module and {ui} a generating system for
M . Then M is projective if and only if there exist αi ∈ HomR(M,R) such that for any m ∈M there are
only a finite number of i such that αi(m) is nonzero and

m =
∑
i

αi(m) · ui

Definition A.4.8 An R-module E is injective if, where i : A −→ B is injective and h : A −→ E is any
morphism then there exists a morphism g : B −→ E making the following diagram commute

0 A B

E

i

h g

equivalently g ◦ i = h.

Proposition A.4.9 Let E be an R-module. Then the following conditions are equivalent:
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i) E is an injective module.

ii) For every ideal I ⊆ R and R-morphism h : I −→ E there exist an R-morphsim g : R −→ E making
the following diagram commutative:

0 I R

E

inc

h g

iii) For every exact sequence
0 −→M1 −→M2 −→M3 −→ 0

then the following sequence is exact

0 −→ HomR(M1, E) −→ HomR(M2, E) −→ HomR(M3, E) −→ 0

Proposition A.4.10 Let E be an R-module. Then E is injective if and only if every short exact sequence
0 −→ E −→ A −→ B −→ 0 is split.

Proposition A.4.11 Let {Ei}i∈I be a family of R-modules. Then
∏
i∈I Ei is injective if and only if

each Ei is injective.

Corollary A.4.12 Let {Ei}i∈I be a finite family of R-modules. Then
⊕

i∈I Ei is injective if and only if
each Ei is injective.

Proof: We have to note that
∏
i∈I Ei

∼=
⊕

i∈I Ei when I is a finite set. Hence it is just the previous
proposition. �

Definition A.4.13 LetM be an R-module. An element m ofM is said to be divisible if, for every r ∈ R
which is not a zero divisor, there exists m′ ∈M such that m = rm′.
If every element of M is divisible, then M is said to be a divisible module. Alternatively M is divisible
if M = rM for every r ∈ R that is not a zero divisor.

Proposition A.4.14 Every injective module is divisble.

Definition A.4.15 Let M be an R module. An element m ∈M is said to be a torsion element if there
exists a nonzero r ∈ R such that rm = 0. If the only torsion element of M is the zero element, then E is
said to be a torsion free module.

This definition is developed at the section 2.1 where we define the torsion module and its properties. The
next proposition gives a sufficient condition to a divisible module to be injective.

Proposition A.4.16 Let R be an integral domain and let M be a torsion free divisible R-module. Then
M is injective.

Example A.4.17 It follows from the previous proposition that the field of fractions of a domain is an
injective module over that domain. This will be relevant at the last chapter when we will deal with
injective essential extensions (the injective envelope).


