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ABSTRACT
Nanoporous materials have the potential to be used as molecular sieves to separate
chemical substances in a mixture via selective adsorption and kinetic sieving. The
separation of isotopologues is also possible via the so-called quantum sieving effect:
the different effective size of isotopologues due to their different Zero Point Energy
(ZPE). Here we compare the diffusion coefficients of Hydrogen and Deuterium in
(8,0) Single Walled Carbon Nanotubes obtained with quantum dynamics simula-
tions. The diffusion channels obtained present important contributions from reso-
nances connecting the potential wells. These resonances, which are more important
for H2 than for D2, increase the low-temperature diffusivity of both isotopologues,
but prevent the inverse kinetic isotope effect reported for similar nanostructured
systems.
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1. Introduction

The importance of hydrogen in chemical research and industry cannot be overesti-
mated: from its use as reagent in synthetic chemistry and several industrial processes,
to its potential application as a clean fuel for combustion batteries, the future of our
society seems to be inevitably tied to being able to harness hydrogen’s capabilities as
efficiently as possible[1–3]. One particular aspect of such harnessing is the separation
of hydrogen and deuterium, since the latter has very different applications in the areas
of isotopological tracing[4], proton nuclear magnetic resonance spectroscopy[5, 6], neu-
tron scattering[7, 8]. If chemical separation processes are extremely costly per se, using
around 10-15% of the total amount of energy consumed worldwide[9], isotopological
separation is comparatively the most expensive[10, 11]. In the particular case of H2/D2

separation, at industrial level the most common technique is the cryogenic distillation,
which achieves a separation factor of merely 1.5[12]. Finding a more efficient pathway
to achieve this separation is clearly one of the main objectives in current research in the
area of chemical separation[3]. A very promising alternative is based on the quantum
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sieving effect, proposed by Beenakker et al [13]. This phenomenon is a consequence the
mass difference between H2 and D2: a lower mass increases the zero-point energy of the
internuclear bond, which in turn results in a more diffuse wave function and therefore
a larger effective size. Thus, H2 has a larger effective size when compared with the
heavier D2. This size difference becomes critical when the molecules enter nanometric
cavities, and can affect both their adsorption and diffusion properties. In the last two
decades, the adsorption of H2 and D2 has been studied in several nanoporous mate-
rials such as carbon nanotubes[14–19], zeolites[20–23], or metal–organic frameworks
(MOFs)[24–29] with the aim of finding the best candidate for isotopic separation of H2

and D2; see also Ref 30 and references therein. Very recently, specifically tailored or-
ganic cage molecules have been reported to obtain selectivities of up to 8 by combining
small pores connecting large cavities[31].

When studying quantum sieving, one has to distinguish between the change of the
adsorption and diffusion properties of the adsorbates. In the former case, a heavier
isotopologue is preferentially adsorbed in the nanomaterial (thermodynamic or chem-
ical affinity quantum sieving), which can be straightforwardly interpreted through
the relative change in ZPE of the two species when entering the nanometric cavity.
Regarding diffusion, it is known that there are two competing quantum effects which
simultaneously play a role in the process: on one hand, the ZPE effects described above
decrease the diffusion barrier for the heavier deuterium, resulting in a higher mobility
than expected. This effect has been claimed to result in an inverse kinetic isotope
effect, namely, a faster diffusion of deuterium in nanoporous materials, compared with
hydrogen[32–34]. However, these studies were based on semiclassical Transition State
Theory simulations, which neglect the second quantum effect: resonant tunnelling. A
more detailed study of the diffusion of H2/D2 mixtures in broad (2.7 nm diamater)
carbon nanotubes by Kowalczyk et al.[17] using Ring-polymer Molecular Dynamics
showed the complex interplay of nuclear quantum effects in this process. However, for
narrower carbon nanotubes (up to 0.6 nm diameter), which enforce single-file diffu-
sion of the confined molecules, its has been seen that tunnelling effects contribute to
enhance hydrogen transport properties[35].

In this work we revisit the case of H2/D2 quantum sieving in a narrow (8,0) single
walled carbon nanotubes, with a diameter of 0.6 nm, and provide accurate diffusion
coefficients for for both molecules in the low pressure regime. The results reported here
evidence that by significantly extending the propagation time up to 20 picoseconds
we are able to resolve quantum resonances below the diffusion barrier that change
drastically the perspective of the previously published simulations. These much larger
propagation times, required by the low corrugation of the potential energy profile
along the nanotube axis, are achieved thanks to an adiabatic approach described in a
previous work[35].

2. Theoretical Methods

2.1. Diffusion coefficient calculation

Previous theoretical works[33–37] on the diffusion of hydrogen in nanoporous carbon,
regardless of the specific potential energy surface employed, show that the interaction
between the molecule and the nanostructure generates a potential energy profile that
consists of collection of minima (adsorption sites) separated by maxima (diffusion
barriers). In the particular case of narrow carbon nanotubes as the (8,0) one studied
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here (0.6 nm diameter), the minima and maxima are located along the nanotube axis,
and this structure forces single-file diffusion of the confined molecules. This limits the
influence of interactions among adsorbed molecules, which will therefore be neglected
hereafter. Given these features of the potential energy surface, and following previous
studies[38] on similar systems, we have modelled the molecular diffusion process a set
of uncorrelated jumps between neighbouring adsorptions sites separated by a distance
l[39, 40]. Using this model and in the low-pressure limit the diffusion coefficient is
obtained through:

D(T ) =
l2

2d
khop(T ). (1)

where khop is the hopping probability between adjacent sites, and d is the dimension-
ality of the system (1 in this case). The problem of calculating the diffusion coefficient
is then reduced to the calculation of khop . Following Zhang and Light[38], this proba-
bility will be calculated through the flux–correlation function approach in a quantum
dynamics formalism, which is summarised below.

The general expression for a transition rate k(T ) is given by the thermal average
of the Cumulative Reaction Probability (CRP), N(E), which defines the probability
for the system to go from any reactant state to any product state as a function of
the energy. Then, assuming a Boltzmann distribution for the energy of the system, we
have:

k(T ) =
1

2πQ(T )

∫ ∞
−∞

e−βEN(E)dE. (2)

In the previous equation, β = 1
kBT

, and Q(T ) is the partition function of the system. In
our case, the partition function of molecular hydrogen or deuterium is factorised as a
product of its (5) confined degrees of freedom and the unconfined diffusion coordinate
(z) (see below for details on the coordinate system used in the model):

Q(T ) = Tr(eβĤ
5D

)qz(T ) (3)

with qz(T ) = L
(
mT
2π

) 1

2 the semiclassical partition function of a particle in a periodic

potential with periodicity L equals to the unit cell’s lenght (4 a0 in our case) and Ĥ5D

the Hamiltonian of the confined coordinates of the system (see below). The origin of
energy was chosen to be the minimum value of the PES (note that the origin of energy
of both the partition function and N(E) has to be chosen consistently to ensure that
k(T ) does not depend on the energy reference taken).

In this work we compute N(E) via the flux–correlation functions approach[41–43],
as implemented in Refs 44, 45. In this approach one sets a dividing surface, h, which
separates reactants from products and defines the thermal flux operator accross such

a surface as F̂T0
= e−β0Ĥ/2i[Ĥ, h]e−β0Ĥ/2 = e−β0Ĥ/2F̂ e−β0Ĥ/2, with β = 1/kBT0. With

this we can define the generalised flux-correlation function:

Cff (t, t′;T0) = Tr(F̂T0
eiĤt

′
F̂ e−iĤt) (4)
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which is related to the Boltzmann averaged N(E) through a Fourier transform:

N(E) =
1

2
e2β0E

∫ ∞
−∞

dt

∫ ∞
−∞

dt′eiE(t−t′)Cf (t, t′;T0). (5)

In order to evaluate the trace in Eq (4) efficiently, the flux operator is diagonalised to
obtain its eigenvalues and eigenstates (fT0

and |fT0
〉, respectively). It can be shown[46]

that the flux operator has a limited spectrum of non-zero eigenvalues, and therefore the
tracing operation can be performed over a comparatively small number of states. The
flux correlation function is then computed from the time–propagated flux eigenstates

as Cff (t) =
∑

m,n fmfn〈fn | e−iĤt | fm〉, and the final expression for the cumulative
reaction probability becomes:

N(E) =
1

2
e2β0E

∑
n

∑
m

fnfm

∣∣∣∣∣
∫ ∞
−∞

dteiEt〈fn | e−iĤt | fm〉

∣∣∣∣∣
2

. (6)

Moreover, it can also be seen that the flux eigenstates of a system can be related to
the vibrational states of the activated complex at the top of the dividing surface[47].
Therefore this method has the additional advantage that we can obtain the individual
contributions of each flux eigenstate to the cumulative reaction probability, Ni(E),
so that the cumulative reaction probability is defined as the sum of this individual
contributions [48]. This can give insight of the mechanism of the transition process.

In this work we have used the State-Averaged variant of the Multiconfigurational
Time–dependent Hartree (SA-MCTDH)[45] for both the iterative diagonalisation of
the different operators (Hamiltonian and flux operator), and the propagation of the
resulting wavepackets.

2.2. Modelisation of the system

To represent the diffusion of H2 (or D2) in the low pressure limit and compute the
transition rate in Eq. 2, we have modelled a single molecule in the hollow cavity of
a carbon nanotube using its 3 internal degrees of freedom (vibration ρ, polar angle
between molecular and nanotube axis θ, and azimuthal angle φ) as well as the 3
translational DOFs of the molecular centre of mass (x, y, z) as a coordinate system.
This representation has been previously used by ourselves [35, 37, 49] as well as by
other authors[15, 50]. The quantum dynamics calculations have been carried out using
an adiabatic approximation described in a previous publication[35]. This is justified
in terms of a time–scale separation argument between the large–amplitude motion of
the molecule along the axis of the nanotube (z) and the fast motion on the confined
coordinates (vibration, rotation, and translation in the xy plane; collectively referred
to as q), as it can be inferred from the relaxed potential energy surfaces in Figure 1.

Following this approximation the full dynamics of the system is represented by the
evolution of a 1D wavepacket on a set of particular potential energy surfaces instead
of a full 6D function. The molecular wave packet evolves, thus, according to the 1D
Time–dependent Schrödinger Equation (note that atomic units are used throughout
this paper, and therefore ~ = 1):

i
∂

∂t
ψ̃j(z, t) = Ĥ

(ad)
j ψ̃j(z, t), (7)
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Figure 1. Relaxed projections of the PES used in this work along significant coordinates. Note the small

corrugation along the z coordinate as compared to the potentials along ρ, θ and x.

with the adiabatic Hamiltonian defined as:

Ĥ
(ad)
j =

1

2m

∂2

∂z2
z +

Nz∑
k=1

εj(zk) |zk〉〈zk| , (8)

with m the mass of H2 or D2, as needed.
In Eq (8), each function εj(zk) represents the z–dependent eigenvalue of a given

eigenstate ξ5D
j (q; zk) of the confined coordinates Hamiltonian, Ĥ5D(q, zk), evaluated

at a given grid point zk. By including the projector |zk〉〈zk| this function acts effectively
as a potential energy term for the motion of the wave packet along the z dimension.
We will hence refer to each εj(zk) as a confined eigenstate potential energy surface
(cePES). To obtain them, we diagonalise the Hamiltonian of the confined coordinates
at different points along the z axis; each z–dependent eigenvalue then conforms a given
cePES.

In a previous work we proved that this adiabatic representation yields excellent
agreement with full-dimensional propagations of the same system while drastically
reducing the computational effort. For details on the derivation and the model of the
5D eigenstates, we refer the reader to Ref. 35.
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Table 1. Primitive and SPF basis sets for the calculation of the eigenstates of the 5D Hamiltonian for both

H2 and D2. Distances given in Bohr radii, angles in radians. The same primitive basis was used for both

isotopologues.

DOF
Number of SPFs Primitive grid
H2 D2 Num. Points Type Range

ρ 2 2 32 FFT 0.5–5.0
θ 5 5 64 cot-DVR 0–π/2
φ 7 7 64 FFT 0–2π
x 3 4 32 FFT -3.5–3.5
y 3 4 32 FFT -3.5–3.5

3. Results and discussion

3.1. Confined Eigenstates Potential Energy Surfaces

As a first step to study the diffusion, we took advantage of the adiabatic approach
to visualise the diffusion process as a 1D problem. By observing the computed cePES
we can obtain relevant information on the diffusion mechanism even before running
actual quantum dynamics simulations of that process.

The SA-MCTDH approach was used to compute the eigenstates of the 5D Hamilto-
nian at the centre of a unit cell of the nanotube (z = 0) via iterative diagonalisation,
using the same wave function representation parameters reported in [35] and listed in
Table 1 for the sake of clarity. The 50 lowest energy eigenstates, ξ5D

j (q; z), were used

as a basis for the matrix representation of Ĥ5D at 512 equispaced points along the
z coordinate, extending from −56.1 to 56.1 Bohr radii which corresponds to 14 unit
cells of the SWCNT. The total number of carbon atoms used to define the interaction
potential was large enough to ensure that no edge effects were noticeable at the ends
of the simulation grid.

The lower energy cePES corresponding to the H2 molecule are depicted in the
left panel of Figure 2. The different curves are drawn according to the ortho–para
symmetry of the 5D eigenstate they represent: the solid, darker lines label a symmetric
state and the dashed, lighter lines label an antisymmetric state. The same scheme is
followed in the right panel, which shows the curves for D2. From these figures we
can extract an approximate value for adsorption and for the threshold energy. The
adsorption energy is given by the energy difference between the ground state of the
free and the adsorbed molecule, and amounts to 0.36 eV for He and 0.30 eV for D2. On
the other hand, the threshold energy is is the minimum energy (including ZPE) that
a particle would need to go from reactants to products. This quantity corresponds to
the maximum of the lowest–energy cePES, and has a value of Etr = 0.3588 eV for H2,
while for D2 it decreases to Etr = 0.2543 eV. The adiabatic diffusion barrier, ∆Etr ,
defined as the difference between the maximum and the minimum of each cePES, is
also slightly lower for D2 (5.6 meV) than for H2 (7.2 meV). A final feature is the density
of confined eigenstates that each molecule presents. We can use the relation between
flux eigenstates and the vibrational states of the transition complex to estimate how
many eigenstates will contribute to the diffusion for a given energy range from the
Boltzmann population of the vibrational levels of the molecule fixed at a point along
the diffusion coordinate. It is readily seen that the spectrum is denser for D2 than for
H2, as a consequence of its larger mass, and therefore more eigenstates will contribute
to the diffusion for D2 than for H2.

All the effects presented in this section are directly or indirectly related to the differ-
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Figure 2. Variation along a single unit cell of the eigenenergies of the 5D hydrogen (left) and deuterium
(right) eigenstates (cePES). Symmetric eigenstates with respect to inversion are represented with solid lines,

while dashed lines label asymmetric states.

ent ZPE of the isotopologues, and point in the direction that, in confined environments,
D2 could diffuse faster than the lighter H2. This inverse kinetic isotope effect has been
described previously in Carbon Molecular Sieves[32, 34, 36, 51, 52] and nanotubes[37],
and justified as a purely ZPE effect: due to the lower ZPE of D2 its effective size is
smaller than that of H2, and as a consequence the heavier isotopologue feels less the
corrugation of the potential generated by the Carbon atoms, thus diffusing more easily
than H2. In the next section, we will investigate if this effect persists when including
all possible quantum effects via time–dependent quantum dynamics simulation of the
system.

3.2. Hopping probabilities and diffusion coefficients

As outlined in Section 2.1, we used the flux correlation functions approach together
with the SA-MCTDH method to compute the probability associated to the molecule
transitioning between adjacent adsoprtion sites. Since quantum effects are more rele-
vant at lower temperatures, we focus our study in the range of 40–125 K.

The qualitative analysis of the cePES above allowed us to estimate that only 6
to 8 flux eigenstates have an significant population at the maximum temperature
considered, and therefore contribute appreciably to k(T ). To ensure convergence of the
calculations we have computed a total of 26 flux eigenstates to represent the diffusion
process of the H2 molecule, and 30 in case of D2. The basis set used to represent
the MCTDH wave function in both cases is described in Table 2. Here it should be
noted that since we are using a thermalised flux operator, it is necessary to choose
an adequate thermalisation value β in order to get a numerically stable cumulative
reaction probability. Values of β too high or too low will amplify the numerical noise
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Table 2. Primitive and SPF representation used in the flux eigenstates calculation and propagation.

DOF
Number of SPFs Primitive grid
H2 D2 Num. Points Type Range

q 20 14 50 Discrete –
z 20 20 512 FFT -56.066 – 56.066 a0
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Figure 3. Flux–position correlation function for the diffusion of H2 (right) and D2 (left) along an
(8,0) SWCNT. Inset: close up to the short–time region (dashed line corresponding to the 6D propagation

in Ref. 37).

on the relevant energy region, thus yielding inaccurate results for N(E) and ultimately
for the diffusion coefficient. Here we set a value of β corresponding to 100 K, which was
confirmed to yield numerically stable results in the investigated temperature range.

The resulting flux states were propagated for a total time of 20 ps, using again
the SA-MCTDH method. To prevent transmissions and reflections in the edge of the
representation grid we added a transmission–free complex absorbing potential (CAP)
as defined by Manolopoulos[53, 54] with a length of 20 bohr. The transmission–free
nature of the CAP was required due to the existence of long–lived processes in the
diffusion mechanism (See below, and Ref.35, for details on these processes).

The integral of Cff over time t, known as the flux–position correlation function,
Cfp(t), can be used as a rule of thumb to estimate the convergence of a calculation:
the value of this quantity stabilises as the wave packet leaves the interaction region,
and it reaches a plateau once the amplitude of the function in that region becomes
zero. Therefore, to obtain a perfectly converged CRP one has to choose a propagation
time tf such that a constant value of Cfp(t) is achieved for any time t > tf . The
flux–position correlation functions obtained after a total propagation time of 20 ps for
H2 and D2 are shown in the left and right panel of Figure 3, respectively.

For the long time propagations reported in this work, note that in neither case
does the function admittedly reach a constant value, thus indicating that a portion
of the wave packets is still in the interaction region, even after 20 ps. This is a di-
rect consequence of the small barrier for the diffusion process. Additionally, the fine
structure of the functions is also a signal of the presence of resonances in the diffusion
process[35]. These two features of the system would enforce us to go to much longer
times to obtain a perfectly converged CRP. However, this time would only contribute
to the resolution of the fine structure of the resonances, at the price of much more
computational effort and potential numerical instability. Instead of this, we decided
to fix the maximum energy resolution for the calculation of the CRP by multiplying
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Figure 4. Cumulative Reaction Probability results for the diffusion of H2. Left: Thermalized CRP at T =

100 K. Right: N(E) and individual flux eigenstates contributions after 20 ps propagation. Vertical dotted lines
marks the diffusion energy threshold.
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Figure 5. Cumulative Reaction Probability results for the diffusion of D2. Left: Thermalized CRP at T =

100 K. Right: N(E) and individual flux eigenstates contributions after 20 ps propagation. Vertical dotted lines
marks the diffusion energy threshold.

Cff (t) by a Gaussian convolution function with ∆E = 0.12 meV. This reduces the
aliasing coming from the truncation of the Fourier Transform in Eq. 6[35], yielding
a smoother function with better convergence properties and, as long as the value of
∆E is smaller than kBT for all the temperature range studied, not causing significant
errors to the calculation of the transition rate, Eq. (2). To confirm that the CRP are
sufficiently converged at 20 ps, we compared the resulting functions after an increase
of 10% on the total propagation time, getting essentially the same results for both
N(E) and the transition rate.

The resulting N(E) for H2 and D2 are shown in Figures 4 and 5, respectively,
together with the individual contributions of the lowest–energy flux eigenstates. Ad-
ditionally, the threshold energy for the diffusion process is marked in both figures as
a dashed vertical line.

The first feature to notice in both plots is their significant amount of fine structure
in form of sharp peaks. In a previous work[35] these features were confirmed to be
shape and Feshbach resonances by calculating the exact 6D eigenstates of H2 in a
unit cell of the carbon nanotube using periodic boundary conditions and comparing
its eigenvalues with the energies of the features on the CRP. In the mentioned work
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we were able to confirm the nature of these features: each peak on the CRP was
related to two tunnelling eigenstates of the 6D system with opposite phase. The energy
difference between these states corresponds to the width of the feature in N(E) (see
Ref. [35] for more details). The same kind of study for D2 yielded similar results, thus
showing that the features starting at 0.28 eV are indeed resonances and not numerical
noise. By using the adiabatic picture of 1D wave packets in different cePESs and the
concept of flux eigenstates as vibrational states of the transition state complex, we
can get a qualitative interpretation of the resonances by assigning each flux eigenstate
contribution (Ni in Figures 4 and 5) to a given cePES (for the lowest states, this
can be easily done by comparing the energies of the features and the eigenstates).
The sharp features then correspond to tunnelling-like states with an energy below the
diffusion barrier for that specific cePES (shape resonances). For energies beyond this
threshold the particle overcomes the potential barrier and diffuses freely, (Ni(E) = 1).
On some particular states, there appear Feshbach resonances that slightly decrease
this probability over a given energy interval (e.g. the two dips in aroung 37.5 eV
of H2). The large amount of resonant states is consistent with the shape of Cfp(t)
discussed previously, as the low-energy resonances provide a way for the wave packet
to enter and leave the interaction region easily. More importantly, some resonances
are found at energies below the diffusion threshold for both isotopologues, indicating
that tunnelling effect is relevant for the diffusion process at low temperatures.

Comparing the cumulative reaction probability curves for both H2 and D2, one can
see two main differences: on one hand, the energy and intensity of the first resonances;
on the other, the density of the higher energy resonances. The first feature is probably
the more critical point, since this difference will influence more heavily the behaviour
of the different molecules at very low temperature. The two first resonances in N(E)
for the H2 molecule are both intense and appear at energies significantly lower than
the threshold. Moreover, a second-order resonance appears at E = 0.36 eV, just above
the diffusion threshold, thus contributing to increase the diffusion coefficient at all
temperatures. On the contrary, for D2 we have a very weak (and therefore negligible)
resonance at E = 0.248 eV, while two strong resonances exist at energies just below
the energy threshold. However, since they are so close to the diffusion threshold, these
resonances will have a smaller effect on D than those present in H2. This can be un-
derstood by noticing that, in the calculation of the transition probability, Eq. (2), the
CRP has to be weighted by a Boltzmann distribution and normalised with the par-
tition function of the system. The latter avoids dependencies on the absolute energy
scale chosen as reference, so that only relative differences in energy matter. Thus, as
a result of the exponentially decaying Boltzmann function, the relative weight of the
below-barrier resonances becomes larger in the overall diffusion probability as the tem-
perature diminishes. As it can be seen in the left panel of Figures 4 and 5, where we
show the CRP thermalized at 100 K, this effect becomes more noticeable as the energy
difference between the tunnelling resonances and the diffusion barrier increases. In the
case of H2 diffusion, resonances are so apart in energy that, at very low temperature
values, the two below-barrier resonances dominate the overall diffusion probability.
Conversely, for deuterium the resonances are close enough to the barrier to contribute
almost the same as the first above-barrier diffusion states at any given temperature
value. This also explains why the effects of low–energy resonances decreases as tem-
perature increases: as the above-barrier region gains weight due to the Boltzmann
function, more diffusion states get populated, so the relative weight of the individ-
ual resonant states decreases. Similarly, even though D2 presents a denser resonance
spectrum than H2 at high energies, these do not play any role in the diffusion process
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in the studied temperature range, since the resonant states are too energetic to have
significant population compared with the set of regular diffusion states.

Once we analysed N(E) thoroughly, the transition coefficient has been obtained
by Boltzmann averaging of the CRP at different temperatures, and then inserted in
Eq (1) to compute the diffusion coefficient. The diffusion coefficient is plotted in Fig-
ure 6 as a function of temperature inverse for both H2 and D2 as solid blue and red
lines, respectively. The same quantities have been computed using a Transition State
Theory (TST) model, and are also shown in the same figure as dotted lines. The sum
of all the quantum effects outlined previously (i.e. ZPE effects and tunnelling) signifi-
cantly changes the diffusion coefficient with respect to those predicted by simple TST
calculations. It is readily seen that there is a relevant increase of D at low tempera-
tures for both isotopologues, but more so for the lighter H2, as it was expected from
the discussion of the cumulative reaction probability above. In fact, some tunnelling
contributions remains at temperatures as high as 125 K for this molecule. The conse-
quence of the different amount of tunnelling effect for both species is important even
from a qualitative point of view: TST predicts a turnover of the diffusion coefficient at
temperatures below 70 K, with D2 starting to diffuse faster than H2 at this point. This
inverse Kinetic Isotope Effect is consistent with the discussion of the adiabatic diffu-
sion barrier discussed Section 3.1 and widely studied in Carbon Molecular Sieves. In a
previous work[37] we reported that the same effect would be observed for the diffusion
of H2 and D2 along SWCNTs, and supported such a claim with quantum dynamics
simulations of the full 6D system up to 500 fs. Instead, having been able to extend our
quantum simulations to a remarkable limit such as 20 ps has changed dramatically our
conclusions: 500 fs propagations provide insufficiently converged hopping probability,
unable to resolve the sharp below tunnelling resonances. With the correctly converged
cumulative reaction probability and the resonances properly resolved, tunnelling out-
weighs the ZPE effects at low temperatures, and the inverse kinetic isotope effect does
not take place. As seen in the right panel of Figure 6, the kinetic selectivity, defined
as the ratio DD2

/DH2
, presents a maximum of ≈ 0.8 around 70 K. This illustrates

again the interplay between ZPE and tunnelling contributions: even though ZPE ef-
fects tend to increase D2 diffusion, at T < 70 K they begin to be outweighted by the
more efficient resonance enhanced diffusion of H2. These results show the importance
of an accurate quantum mechanical description of H2 and D2 when studying their
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diffusion properties.

4. Summary and Conclusions

The calculation of the diffusion coefficients for H2 and D2 along a (8,0) CNT in the
low pressure limit has been carried out using the single–hopping approach. In this
particular regime, intermolecular interactions are not expected to play a relevant role,
both due to the low density of diffusing particles and the single-file diffusion imposed
by the narrow cavity of the nanotube. Taking this into account, the hopping rate was
obtained through the general expression of a transmission rate, with the cumulative
reaction probability computed with the flux–correlation function approach. In order
to achieve convergence of N(E), we used an adiabatisation scheme to reduce the
problem from a 6D Hamiltonian to a 2D system, thus being able to propagate the flux
eigenstates for 20 ps. This allowed us to resolve resonant structures in N(E) which
enhance diffusion at low temperatures.

The diffusion coefficients calculated in this work differ from previous studies in that
no inverse kinetic isotope effect appears in this particular system. This qualitative in-
consistency with a previous work of us indicates that N(E) was not correctly converged
in those calculations. The difference with other theoretical and experimental studies
on other nanostructured materials like Carbon Molecular Sieves, however, is probably
due to the different structure of those, which present large pores connected through
narrow channels rather than the cylindrical shape of carbon nanotubes. Despite this
fundamental difference, and the use of the frozen nanostructure and low-pressure lim-
its, we hope that this study about the behaviour of the molecules inside a carbon
nanotube can be used to model the transport within the narrow channels connecting
pores in other nanomaterials, or to consider the design of new devices based purely on
nanotubes.
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