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5. Hierarchical X–FEM for n–phase flow (n > 2). S. Zlotnik and P. Dı́ez.

Submitted to Computer Methods in Applied Mechanics and Engineering, 2008.

Two different disciplines are present in this Thesis: applied mathematics and

geophysics. Geophysicist and mathematicians (or engineers) both may be interested

in some topics covered here. While writing this memoir we have keep in mind this

possible bimodal audience, trying always to help the reader of the “other” discipline.

In chapters dealing with geophysics (2, 5 and 6) some basic geophysical concepts are

introduced for the engineer reader. In Chapters 3 and 4, some standard numerical

procedures are detailed to be followed by geophysicists.

The terminology of each discipline may also lead to confusion, for example

geophysicists call convergence rate to the relative velocity between tectonic plates

and does not refer to the approximation properties of any particular numerical

scheme, as used in mathematics. In order to avoid misinterpretations, some

definitions are included through this text.
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Chapter 1

Introduction

1.1 Plate Tectonics

Plate tectonics is a framework in which the outermost layer of the Earth, the

lithosphere, is divided into plates moving one respect to another. The ocean floor is

the active part of the system: oceanic plates are continuously created at mid–ocean

ridges, where adjacent plates move apart in a process called seafloor spreading.

As the adjacent plates diverge, hot mantle rocks ascend to fill the gap, the material

cools, becomes rigid and creates new plate area. The complementary process of plate

consumption occurs at ocean trenches, where an oceanic plate bends and descends

into the Earth’s interior. The oceanic plate creation process counterbalance the

plate consumption to keep the surface area of the Earth constant. The ocean floor

is therefore created at mid–ocean ridges and moves away while it cools and thickens

until eventually being subducted.

Plate tectonics provides a framework to understand most major geological and

geophysical observations. For example, the location of volcanic arcs and deep

earthquakes is related with subduction zones. Mid–ocean ridges produce shallow

earthquakes and continuous volcanism, which generates the oceanic crust. Ocean

floor topography, heat flow data and geoid anomalies are related with the movement

and aging of the oceanic lithosphere. Major tectonic deformation around the globe

is concentrated in the boundaries between plates. Plate Tectonic theory is successful

in accounting for all these observables. Nevertheless it is a purely qualitative

theory and, therefore, it requires a physical support to quantify and demonstrate

the dynamical feasibility of the processes. The dynamics of the Earth and of the

processes described by Plate Tectonics is still not completely understood.

Major questions remain regarding the dynamics of the lithosphere and the

mantle, for example: what are the causes of the flattening of the oceanfloor
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topography in lithospheres older than 70 Ma. What controls the deformation regime

of the backarcs in subductions zones? Which variables control the angle of the slab

in subduction zones? How is subduction initiated? These questions, among many

others, are currently active subjects of research.

Different approaches are used to gain insight on the mantle and lithosphere.

Firstly, indirect measurements like geological observations and geochemical signa-

tures from volcanism, together with geophysical data such as heat flow, topography

and gravity anomalies give information about the present state and about the active

processes acting on the Earth. Secondly, laboratory experiments provides valuable

information about the properties of rocks such as density, thermal conductivity or

viscosity, etc. Thirdly, seismic waves give first hand information about the interior

of the Earth. Seismic studies and seismic tomographies allow for locate major fea-

tures inside the Earth; information about material properties, phase transitions and

degree of melting can be obtained from seismic data.

Nevertheless, most geological and geophysical data provide information about

one moment in time, but do not give much insight into the dynamics of the processes.

Therefore, numerical models are a powerful tool to gain some insight on geodynamic

processes. In this work we use numerical models to study some aspects of the

dynamic of the oceanic lithosphere.

1.2 Numerical Models

The complex physical models describing the Earth dynamics require advanced

numerical methods to find solutions to the governing partial differential equations.

The combination of mantle convection with mobile, dynamically evolving plates has

been a challenge problem since the 1980s (Cohen, 2005). In many ways the problem

is more computationally challenging today than it appeared to be in the 1980s

mainly because of complexities introduced by rheology. The constitutive behavior

of rocks is strongly dependent on temperature, pressure, stress and composition.

Strong gradients in temperature, compositional boundaries (e.g. between the crust

and mantle), and the tendency of deformation localization resulting from the

constitutive non–linearity, all produce sharp changes in the material properties

over small scales relative to the dominant scale of the system (Moresi et al., 2007).

Complex rheological behavior includes plasticity (e.g. Tackley, 1998, 2000; Bercovici,

2003), grain–size dependent viscosity (e.g. Solomatov, 2001) or the effect of water

on rheology (e.g. van Keken et al., 2002; Arcay et al., 2005; Abers et al., 2006).

Computational geodynamic models are in constant evolution. Numerical

2
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techniques in one hand and physical equations including new and more accurate

physical processes on the other hand, both are continuously improved leading

to more realistic models. The first generation of geodynamic codes solved

two dimensional, single–material problems, e.g. the early versions of TERRA

(Baumgardner, 1985), ConMan (King et al., 1990), MC3D (Gable et al., 1991) and

CitCom (Moresi and Solomatov, 1995; Moresi and Gurnis, 1996). Multiphase codes

appeared after year 2000. Some examples are Stag3D (Tackley and Xie, 2003) which

use finite volumes to solve the equations in a 3D spherical coordinates and I2VIS

(Gerya and Yuen, 2003) using finite differences in a 2D Cartesian domain. In the

last few years several new 3D models were written: ACuTEMan (Kameyama, 2005),

Ellipsis3D (O’Neill et al., 2006) and I2ELVIS (Gerya and Yuen, 2007) all designed

to run on parallel computers. New versions of early models, specially of CitCom, are

also available.

1.3 Scope of this thesis

The scope of this thesis is twofold. Its first part is devoted to the development of

a numerical tool to model geodynamic problems. We aim to provide a computer

code able to solve efficiently the governing physical equations, that is conservation

of mass, momentum and energy. This code should be flexible enough to incorporate

secondary processes that might be of special interest in geodynamics. For example,

mineral phase transitions, melting processes, etc.

To evaluate the realism of the simulations by comparison with real data, the

model should compute geophysical observables such as surface heat flow, topography,

gravity anomalies, seismic velocities, etc.

The eXtended Finite Element Method (X–FEM) is a novel numerical technique

used in engineering problems. It allows to describe multiphase problems in an

Eulerian framework in a convenient manner. We want to test its efficiency when

applied to geodynamic problems.

The second objective is the application of the generated tool to study the

dynamics of the oceanic lithosphere.

1.4 Outline

The outline of this thesis is as follows:

Chapter 2 is devoted to the physical problem. The basic equations of the model

are derived and explained in the context of the geodynamical problem. All assumed

3
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approximations are presented. The models used to reproduce the dependence of

physical properties of rocks on temperature and pressure are also described.

The numerical methodologies used to solve the physical equations are explained

in Chapter 3. A detailed description of X–FEM applied to the mechanical and

thermal problems is given. The coupling between equations is also explained. Finally,

some academical examples are used to validate the code.

The numerical techniques presented in Chapter 3 are standard in other scientific

or engineering fields. In Chapter 4 we present some original numerical ideas and some

computational details of our program. In Section 4.1 an extension of the X–FEM

technique to handle any number of materials is presented. In Section 4.2 an adaptive

scheme to track interfaces is proposed and tested. In Section 4.3 an efficient algorithm

to assemble sparse matrices is proposed.

In Chapter 5 the generated program is used to analyze the stability of the oceanic

lithosphere. The development of small–scale convection and it consequences on the

evolution of the lithosphere is studied. Emphasis is put in i) the influence of various

rheological and thermophysical parameters on small–scale convection, and ii) its

ability to reproduce geophysical observables. Predictions of seismic velocities, SHF

and seafloor topography are used to ensure compatibility with current observations.

Chapter 6 presents two application of our model: firstly, a parameter study of the

slab breakoff phenomenon is presented in Section 6.1. The influence of shear heating,

phase transitions and rheology is studied in terms of the timing of the detachment,

its isostatic response. Secondly, the relation between the slab dip and convergence

velocity is systematically studied in Section 6.2. A positive correlation between these

variables is found.

Chapter 7 summarizes the main conclusions from previous chapters and describes

possible future work.
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Chapter 2

Physical Model

The physics underling lithospheric and mantle processes is complex, it includes flow

and solid materials with strongly variable properties depending on thermal state and

chemical composition. Phase changes are also present, introducing sharp contrasts

in properties. Partial melting produces depletion of rocks in some elements, varying

its chemical composition and consequently its properties.

The base of the model presented here is composed by two coupled problems:

a dynamic flow problem, governed by the Stokes equation and a heat balance

problem. The coupling between equations is given by the dependency of the physical

parameters (e.g. density, viscosity, etc) on the solution of the equations (e.g.

temperature, pressure, velocity).

In some simple cases the governing partial differential equations can be simplified

to hold ordinary differential equations or even algebraic equations. However, because

of the requirement for accurate modeling of many concurrent (coupled) physical

processes, numerical techniques are essential in the solution of these equations.

In this chapter the physical model is presented. The basic equations of the

model are derived and explained in the context of the geodynamical problem. The

assumed approximations and the empirical or theoretical models used to reproduce

the dependence of physical properties of rocks on temperature and pressure are

presented.

2.1 Heat problem

Thermal structure of the lithosphere exerts a first order control on its behavior.

As the physical properties of the rocks —for example its density and viscosity—

strongly depend on temperature, the whole mechanical behavior of the mantle and

the oceanic lithosphere is controlled by its thermal state. Moreover, the temperature
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contrast between the cold slab and the surrounding mantle in subduction zones,

generates a density contrast that provides a major source of stress within the slab,

being the primary force driving the plates (Forsyth and Uyeda, 1975). Therefore, an

accurate thermal model is required.

Three different heat transfer mechanisms act within the Earth: convection,

conduction and radiation. The last one becomes important at temperatures higher

than approximately 1500 K. The relative importance between these heat transfer

mechanisms determines three major thermal regimes in the mantle. First, there are

regions of nearly adiabatic temperature gradient, where advective heat transport

dominates all other transfer mechanism. This is the case of the upper mantle and

transition zone, which are included in all of the models presented here. Second, there

are regions where the heat transfer by conduction and advection are comparable.

The oceanic lithosphere belongs to this category. Finally, in some regions conductive

transfer dominates. The continental lithosphere is an example. These thermal

regimes act simultaneously within the Earth.

2.1.1 Heat equation

When there exists a temperature gradient within a body, heat energy will flow from

the region of high temperature to the region of low temperature. This phenomenon

is known as conduction heat transfer and is described by Fourier’s Law

q = −k∇T (2.1)

This equation determines the heat flux vector q for a given temperature profile

T and thermal conductivity k. The minus sign ensures that heat flows down the

temperature gradient as required by the second law of thermodynamics. It is valid

to assume a isotropic conductivity k for rocks. In Section 2.8 the details on how the

thermal conductivity of rocks is addressed are given.

The heat equation follows from the conservation of energy for a differential

element within the body

∇ · q = hg − de

dt
(2.2)

where hg is the generated heat within the body and e is the internal energy related

to the body’s ability to store heat by raising its temperature by

de

dt
= ρ Cp

dT

dt
. (2.3)
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Replacing equations (2.1) and (2.3) into (2.2) the heat equation is obtained

∇ · (−k∇T ) = hg − ρ Cp
dT

dt
(2.4)

where ρ is the density and Cp the heat capacity. Expressing the material derivative
dT
dt

in terms of spatial and temporal partial derivatives as

dT

dt
=

∂T

∂t
+ u · ∇T (2.5)

and replacing it into equation (2.4), the complete thermal energy equation including

convection and conduction results

ρCp

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k∇T ) + ρf (2.6)

where the generated heat hg is replaced by f , the rate of internal heat per unit

mass, multiplied by the density. The source term f in equation (2.6) has different

contributions as described next.

2.1.2 Heat sources

The main heating mechanisms acting on the mantle are: radiogenic heating due to

decay of radioactive isotopes, shear heating due to mechanical viscous dissipation,

adiabatic heating due to adiabatic compression and decompression of materials and

latent heating due to transformation between different mineral species. The last two

heating mechanisms may produce negative values.

Radiogenic heat production. A substantial part of the heat lost through the

Earth’s surface originates in the interior of the Earth by the decay of the radioactive

isotopes of uranium, thorium and potassium. Approximately the 80% of present heat

flow can be attributed to radiogenic sources, and 20% comes from the cooling of the

Earth. The present distribution of these elements within the Earth is not uniform.

Partial melting at ocean ridges depletes mantle rocks of incompatible elements

such as radioactive ones. These elements are concentrated in the basaltic partial

melt fraction. As a result the oceanic crust (tholeiitic basalt) is enriched in these

elements by about a factor of four relative to the undepleted mantle. Processes that

lead to the formation of the continental crust, such as volcanism associated with

subduction, further differentiate the incompatible elements. The concentration of

the heat–producing elements in a typical continental rock such a granite are quite

7
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variable, but in general they are one order of magnitude greater than in tholeiitic

basalts.

Shear heating. The shear heating is the rate at which the work done against

viscous forces is irreversibly converted into internal energy (heat). It is related to

the solution of the mechanical problem, discussed in Section 2.2, as

fs = σij ε̇ij = σxxε̇xx + σzzε̇zz + 2 σxzε̇xz (2.7)

where σ and ε̇ are the deviatoric stress and the strain rate tensors.

Adiabatic heating. The adiabatic heating is due to the adiabatic compression

and decompression of materials. It is defined in terms of temperature, velocity,

thermal expansivity α and pressure p as

fa = Tα [u∇p]

= Tα

[
ux

∂p

∂x
+ uz

∂p

∂z

]
. (2.8)

Neglecting the horizontal variation in pressure and replacing the vertical pressure

gradient by ρg the adiabatic heating terms reads

fa ≈ Tα ρ uz g.

Latent heating. The mineral species are stable within a range of temperatures

and pressures. While the minerals composing the rocks of the subducting lithosphere

descend, the T–p conditions change and the minerals adopt their most stable phase.

The kinematics of these mineralogic phase reactions may be exothermic, for example

the olivine–wadsleyite transformation occurring at approximately 410 km depth

in an undisturbed mantle, or may be endothermic as the wadsleyite–ringwoodite

transformation occurring at 660 km depth.

All these heat contributions but the latent heat, are included in the model by

means of the term f in equation (2.6). The heat produced by decay of radiogenic

elements fr, the adiabatic heat source fa and the viscous heating term fs are added

to obtain the total rate of internal heat per unit mass f = fr + fs + fa.

8
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2.1.3 Thermal regime of the upper mantle and transition

zone

The upper mantle and transition zone are characterized by sub solidus convective

cells where advective heat transport dominates over the heat conduction (and

radiation). This process tends to homogenize temperatures and it is fair to assume

a near adiabatic variation of temperatures with depth. The adiabatic gradient does

not imply that horizontal variation in mantle temperatures can be neglected. This

gradient depends on several factors such as mantle depletion, lithospheric thickness,

lithospheric composition, all having lateral variations. Moreover, some processes

like subduction and mantle plumes, that tend to disturb the adiabatic temperature

profile and lateral variations in temperature are expected to be up to ±50% of

the spherical average temperature (Schubert et al., 2001). The three dimensional

thermal structure of the mantle is closely related to the pattern of mantle convection.

Anomalous high temperatures are associated with regions of ascending flow, such

as mantle plumes, while anomalously low temperatures characterize regions with

descending flow, such as subduction zones.

2.1.4 Thermal regime of the oceanic lithosphere

As oceanic plates move away from ridges, they cool from above, thicken, and

become denser by thermal contraction. This cooling is reflected on the dependence

of geophysical observables on the age of the plate t (McKenzie, 1967; Parsons and

Sclater, 1977). For plates younger than about 70 Ma1, both seafloor topography and

surface heat flow decrease linearly with
√

t, consistent with predictions from the

half–space cooling (Turcotte and Oxburgh, 1967).

For larger ages, however, this relation breaks down and the two observables

decrease less rapidly, reaching almost constant values in ocean basins (Parsons and

Sclater, 1977; Schroeder, 1984; Stein and Stein, 1992). Since these observables reflect

the thermal structure of the lithosphere, their flattening implies a similar behavior

for the isotherms within the plate. These features are included in the popular plate

model (McKenzie, 1967), which considers the lithosphere as a cooling plate with an

isothermal lower boundary. Although this model can explain the observed flattening

of both seafloor topography and surface heat flow, it does not propose any particular

mechanism by which the horizontal isotherm is maintained at constant depth. The

thermal and mechanical evolution of the oceanic lithosphere will be addressed in

1A usual notation in geology is to use “Ma” to indicate age, it means “million years ago”, while
“My” is used for the unit of time = 106 years.
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Chapter 5.

2.2 Mechanical flow problem

2.2.1 Upper mantle and transition zone

Despite the upper mantle is composed in more than 99% by solid rocks (not molten)

its behavior at geological time scales (> 104 yr) is fluid. This solid–state deformation

mechanism occurs due to the thermally activated motion of atoms associated with

lattice defects such as dislocations and vacancies (Ranalli, 1995).

The mantle mechanical behavior is modeled as a quasi–static Stokes flow (Busse,

1989; Schubert et al., 2001). This model is based on the following assumptions: i)

rocks are almost incompressible, ii) due to the high Prandtl number, inertia terms

are neglected, iii) due to the modest Rayleigh number characterizing convection

in Earth’s mantle, turbulent convection is neglected. In the following section the

general equation governing a fluid (Navier–Stokes equation) is presented. All the

assumed approximations are then introduced and justified.

2.2.2 Rheology of oceanic lithosphere

Deformation of the whole oceanic lithosphere can be related to elastic, plastic and

viscous rheological behaviors. The rigidity of the oceanic lithosphere allows it to

bend when subjected to load. The elastic bending of the lithosphere under vertical

loads can explain the basins around volcanic islands and the structure of ocean

trenches. However there are significant deviations from a simple elastic rheology

(Schubert et al., 2001).

The lithosphere at ocean trenches bends and undergoes brittle failure evidenced

by extensional shallow seismicity. This failure does not propagate through the entire

lithosphere and it appears to have little effect on the general flexural behavior.

The pure viscous approach has been proposed on the 1970’s by Gremaecker

(1977), McKenzie (1977) and Melosh and Raefsky (1980). This approach can produce

the same morphology as the elastic rheology, however, viscous flexure releases at

long times. In some old sedimentary basins flexural effects can be still observed.

Turcotte (1979) has used this argument to discard the pure viscous rheology for

oceanic lithosphere. Nevertheless, application of a pure viscous rheology may be

appropriate for investigating other aspects of the oceanic lithosphere and subduction

process (e.g. Zhang et al., 1985; Vassiliou and Hager, 1988; Zhong and Gurnis, 1994;

10
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Gurnis et al., 1996). The viscous approach is adopted here, mainly for simplicity

facing numerical methods.

2.2.3 Conservation of mass

In non–relativistic mechanics mass must be conserved, requiring that

ρt +∇ · (ρu) = 0 (2.9)

where ρ is the density, ρt its time derivative and u is the velocity vector. For the

special case of an incompressible fluid, the density is constant and thus equation (2.9)

is simplified to

∇ · u = 0. (2.10)

The velocity field in an incompressible fluid is divergence free.

2.2.4 Strain rate in fluids

The velocity gradient ∇u is a second–order tensor defined as

∇u =
∂u

∂x1
+

∂u

∂x2
+

∂u

∂x3

where xi are the spacial dimensions. This tensor may be decomposed into its

symmetric and skew–symmetric parts according to

∂ui

∂xj

=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
+

1

2

(
∂ui

∂xj

− ∂uj

∂xi

)

or, in abbreviated form

∇u = ∇su +∇wu.

The symmetric tensor∇su defined as 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
is called the strain rate and it is

noted ε̇. The skew–symmetric tensor defined as 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
is called the spin–tensor.

Since strain is dimensionless, the dimension of strain rate is the inverse of time, that

is, in International System, [s−1].
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2.2.5 Stresses in fluids

When a fluid is at rest, no shear stresses are present and only the normal or

hydrostatic stresses are possible. In this case the stress tensor is

σij = −p δij

where p is the fluid pressure defined as p = 1
3
(σ11+σ22+σ33) and δij is the Kronecker

delta. If the fluid is in motion, the stress tensor may be divided into its isotropic

part, present when the fluid is at rest, and the deviatoric part, τ , as

σij = −p δij + τij .

The stress strain rate relation for a linear (Newtonian) fluid is given by

σij = −p δij + τij = −p δij + 2ηε̇ij + λε̇kkδij

where η is the dynamic viscosity. Assuming incompressibility the velocity field is

divergence free (ε̇kk = 0) and consequently the above relation reduces to the so-called

Stokes law

σij = −p δij + τij = −p δij + 2ηε̇ij (2.11)

or, in matrix form

σ = −p I + 2 η∇su.

The viscosity is then defined as function of the deviatoric tensors as

η =
τij

2 ε̇′ij
, i �= j

where ε̇′ij = ε̇ij− 1
3
ε̇kk δij is the deviatoric strain rate. The dimension of the viscosity

is that of stress divided by strain rate, in International System is Pascal times second

[Pa s].

2.2.6 Conservation of momentum

Derivation of the equation of motion is based on the second Newton’s law, according

to which mass multiplied by acceleration is equal to the sum of all the forces acting on

the mass under consideration. There are two different forces acting on a fluid: mass

forces and surface forces. Surface forces in a fluid (pressure and friction) act on the

boundary surfaces of an elementary parcel, while volume forces do on the fluid parcel

12
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throughout its volume. We consider gravity to be the only body force. Although

Coriolis forces due to rotation of the Earth are important in the Earth’s liquid outer

core, they are small enough to be neglected in the Earth’s mantle (Schubert et al.,

2001). The centrifugal force due to rotation is included in the acceleration of gravity.

Derivation of the momentum equation can be found elsewhere, for example

(Batchelor, 1967; Ranalli, 1995; Dobretsov and Kirdyashkin, 1998; Schubert et al.,

2001). The general governing equation, called Navier–Stokes equation, yields

ρ (ut + (u · ∇)u) = ∇ · σ + ρg (2.12)

where ut is the time derivative of the velocity field, σ the stress tensor and g the

acceleration of gravity vector. The left hand side of equation (2.12) is the product

of the mass and the acceleration per unit volume in an elementary parcel. The first

term of the right hand side corresponds with the divergence of the net surface forces

per unit volume on the elemental parcel and, the last term is the net body force per

unit volume.

The stress of equation (2.12) is replaced using the constitutive equation (2.11)

that relates σ with the strain rate and thus with velocities. The Navier–Stokes

equation becomes

ρ (ut + (u · ∇)u) = 2∇ · (η∇su)−∇p + ρg. (2.13)

When viscosity is constant, it is usual to rewrite the first term of the right hand

side of the previous equation in terms of the Laplacian of the velocity. In this case

the viscosity depends on temperature, pressure and on the gradient of the velocity

and thus it is not possible to restate the equation. Similarly, the dynamic pressure

p̂ = p/ρ and the kinematic viscosity ν = η/ρ cannot be used due to variations of

density.

In the case of highly viscous fluids, like the Earth mantle, the convective term

(u · ∇)u is neglected because the viscous term dominates the equation (Batchelor,

1967; Busse, 1989; Donea and Huerta, 2002). For incompressible and highly viscous

fluids, the resulting equation is the so-called equation of Stokes flow

ρut − 2∇ · (η∇su) +∇p = ρg. (2.14)

In the case of creeping flows (very slow flows) it is usual to neglect the inertial

term ut of the equation (2.14). This approximation, called the infinite Prandtl

number, is supported by the dimensional analysis presented in Section 2.5. The
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infinite Prandtl number approximation of the mechanical problem eliminates all

explicit time dependence from the momentum equation. This produces an elliptic

equation characterized by the instantaneous transmission of information across the

solution domain. Changes in buoyancy and constitutive relationships at any point

in the domain have an immediate influence on all other points in the domain. The

Stokes equation (2.14) including the infinite Prandtl number approximation is then

stated in its steady state form

−2∇ · (η∇su) +∇p = ρg (2.15)

and the transient mechanical flow problem, without explicit dependence on time,

evolves due to changes in density field and phases location. In this circumstances

(transient problem, no explicit time dependence) the problem is called quasi–static.

2.3 Boussinesq approximation

The Stokes flow problem stated in Section 2.2.6 assumes incompressible materials.

This assumption implies a constant density field (equations (2.9) and (2.10)). In

that situation the gravitational forces F = ρg are constant and does not have

any influence on the dynamic of the model. Ignoring density variations implies

ignoring gravitational forces and thus, thermal convection. In geodynamic models

this is not a valid assumption because the dependency of density on temperature

generates the principal forces acting on the system. Density variations in the

gravitational field result, for example, in the buoyancy forces that drive the plates.

Therefore, some relaxation in the incompressibility assumption is required. To handle

density variations in a consistent manner the fluid must be stated as compressible

and all effects associated with compressibility must be included. In that case,

to obtain distributions of velocity, temperature and pressure in space and time,

equations of momentum, mass, energy (heat transfer) and state of matter have

to be solved simultaneously. This procedure essentially complicates the study of

thermo–gravitational flows. For this reason simplifying assumptions are made and

more convenient approximations are used.

The Boussinesq approximation consist in neglecting the variations in density in

all terms but on the body force term ρg of equation (2.15). Thus, conservation

of mass is used as in Section 2.2.3, assuming a constant density. The Boussinesq

approximation includes changes in density due to temperature variations but

neglects the dependence on pressure. When the pressure dependence is included

the approximation is usually called extended Boussinesq.
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2.4 Viscosity and the constitutive equation

The mechanical behavior of a fluid is parametrized by its viscosity. The viscosity

relates the stress acting on a fluid with the strain rate. It is a measure of the

resistance of a fluid to deform under shear stress. There are two approaches to

understand the viscosity structure of the Earth: i) using observations such as the

geoid and post glacial rebound combined with flow models and ii) studying the

physical deformation of mineral in the laboratory.

The viscosity of the solid mantle was first determined based on post glacial

rebound by Haskell (1937). In Scandinavia the Earth’s surface is still rebounding

from the load of ice during the last ice age. Assuming a viscous mantle Haskell

was able to explain the present uplift of Scandinavia if the mantle has a viscosity

of about 1020 Pa s. This viscosity value is still accepted today. Although it is an

immense number (honey at room temperature has a viscosity of 10 Pa s), it predicts

vigorous mantle convection on geologic time scales.

Laboratory studies indicate that viscosity of minerals such as olivine is a strong

function of temperature, grain size and stress (Kirby, 1983; Ranalli, 1995; King, 1995;

Hirth and Kohlstedt, 2003). The deformation of minerals under mantle conditions

generally follows a power–law, where the strain rate depends on a power of the

deviatoric stress. There is general agreement that two main creep mechanisms

are likely responsible for most of the deformation in the mantle: diffusion creep

(Herring–Navarro and Coble creep) and dislocation creep (Kirby, 1983; Ranalli,

1995). Although there are significant uncertainties associated with the extrapolation

of laboratory results (performed at low pressures and high strains rates) to

mantle conditions, a comparison of microstructures on experimentally and naturally

deformed peridotites indicates that the same deformation mechanisms detected in

laboratory take place in the mantle as well (Ranalli, 1995; Hirth and Kohlstedt,

2003). Deformation caused by dislocation creep is evidenced in lithospheric mantle

samples (e.g. xenoliths, peridotitic massifs) and indirectly inferred in the shallow

upper mantle from seismic anisotropy studies(see Nettles and Dziewonski (2008)

for a recent review). On the other hand, diffusion creep may be dominant over

dislocation creep at depths > 250 – 300 km, where stresses are low and pressure

effects become dominant (i.e. the activation volume of diffusion creep seems to be

smaller than that of dislocation creep, (Ranalli, 1995)). This change in deformation

mechanisms with depth is consistent with the lack of significant anisotropy at such

depths, although not conclusive (Mainprice et al., 2005).

Both deformation mechanisms are based on modifications of the atomic lattice of

minerals. The diffusion creep mechanism is Newtonian, that is the stress–strain rate
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relation is linear. It is due to migration of atoms and ions by movements of adjacent

empty sites in the crystalline lattice. Atoms move within grains (Herring–Navarro

creep) and along grain surfaces (Coble creep). The diffusion of atoms in a crystalline

solid is a thermally activated process. The diffusion coefficient D is given by the

relation (Ranalli, 1995)

D = D0 exp

(
−E + p V

R T

)
(2.16)

The activation energy E is the energy preventing the migration of an atom into an

adjacent vacancy. The activation volume V takes into account the effects of pressure

in reducing the number of vacancies. The exponential temperature dependence gives

the fraction of atoms that have sufficient energy to overcome the energy barrier

between lattice sites and can jump into a vacancy. The diffusion creep viscosity

decreases strongly with decreasing grain size.

The dislocation deformation mechanism happens when a part of the crystal is

shifted with respect to the other. The surface that traces the motion is the glide

surface and it is planar. This shifting does not occur instantly but the shifted part

increases gradually. The line of imperfections in the crystalline lattice, bounding

the front of the shifting is called dislocation. This mechanism can also be thermally

activated at low stress levels and, again, the same exponential relation indicates

the number of atoms that have sufficient energy to overcome the interatomic

bonds restricting the motion of a dislocation. Dislocation creep is a non–Newtonian

mechanism, meaning that the relation between stress and strain rate is non–linear,

namely exponential. This mechanism does not depends on grain size.

The transition between the dislocation and diffusion creep occurs when, for a

given stress, the strain rates given by the two mechanisms are equal. In general, for

a given stress, the deformation mechanism with the larger strain rate, or with lower

viscosity, prevails. The most abundant mineral in the upper mantle is the olivine

and probably, is also the weakest. Thus its rheology is likely to be dominant and

usually olivine viscosity is used as an estimate of the viscosity of the mantle (Kirby,

1983; Ranalli, 1995; Hirth and Kohlstedt, 2003).

Theoretical treatments and experimental observations demonstrate that the

macroscopic creep behavior of rocks is well described using a “power–law” of the

form (Ranalli, 1995; Karato and Wu, 1993; Regenauer-Lieb et al., 2006)

ε̇ = A
(σ

ν

)n

d−m exp

(
−E + p V

R T

)
(2.17)

where ε̇ = 1
2
ε̇ij ε̇ij is the second invariant of the strain rate with dimension s−2, σ the
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deviatoric stress in Pa, ν the shear modulus, d the grain size in mm, E the activation

energy in kJ mol−1, V the activation volume in J MPa mol−1, T the temperature

in K, p the pressure in Pa, R the gas constant and A is a constant. The viscosity is

defined as

η =
σ

2 ε̇
(2.18)

therefore, deformation is directly related to viscosity. Replacing (2.17) into (2.18)

an explicit Arrhenius expression for viscosity is obtained

η = A
−1/n
D ε̇(1−n)/2n exp

(
E + p V

nRT

)
(2.19)

where AD is a constant depending on the material with units MPa−n s−1 and

n the flow law exponent. Using different parameters, this expression describes

both the diffusion and dislocation creep components for mantle and crustal

materials. To compute the viscosity we assume a constant material parameter

AD = 1
2
A−1/nμ−1 (b/d)−m/n, including the pre-exponential factor A, the grain–size

dependence, and the shear modulus. Although grain–size may change due to grain

growth and dynamic recrystallization processes, its dependence on stress is not well

known. Thus, we consider only constant grain sizes, d = 3 mm, found in diatremes

and ophiolites (Schubert et al., 2001).

Viscosity parameters used in this work are taken from Karato and Wu (1993),

from Hirth and Kohlstedt (2003), from Ranalli (1995) and from van Hunen et al.

(2004).

Diffusion and dislocation creep act simultaneously in the mantle (Ranalli, 1995).

In order to account for the effect of the two mechanisms, two different viscosities

ηdiff and ηdisl are computed separately and then combined into an effective viscosity

ηeff , which is computed as the harmonic mean of ηdiff and ηdisl

1

ηeff
=

(
1

ηdiff
+

1

ηdisl

)
. (2.20)

This expression is truncated if the resulting viscosity is either greater or lower

than two imposed cutoff values (usually 1018 to 1024 Pa s−1).

It is worthwhile to note the strongly non–linear character of the constitutive

equation. Changes in deviatoric stress by a factor of two, change the viscosity by

an order of magnitude. Changes on temperature of 100 K, change the viscosity by

an order of magnitude. Changes in the activation volume by a factor of two, change

the viscosity below 300 km depth by two or three orders of magnitude.
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2.4.1 Quasi–brittle deformation

At temperatures lower than about 700 K, the viscous rheology for solid rocks

is combined with a quasi–brittle rheology to yield an effective rheology. For this

purpose the Mohr–Coulomb law (e.g. Ranalli, 1995; Brace and Kohlstedt, 1980) is

simplified to the yield stress criterion, σyield, and implemented by a limiting of creep

viscosity, ηcreep, as follows

ηcreep ≤ σyield

2 ε̇
(2.21a)

σyield =
(
a pl + b

)
(1− λ) (2.21b)

where λ = pf/pl is the pore fluid pressure coefficient, i.e., the ratio between pore

fluid pressure pf , and lithostatic pressure pl; a = 92.85 and b = 0 are empirical

constants (Brace and Kohlstedt, 1980).

2.5 Dimensional analysis

Heat equation. The goal of this dimensional analysis is to evaluate the relative

importance of the different terms involved in the heat equation. Namely, the

importance between the convective and the conductive terms. This information is

used later to choose the proper numerical algorithm to solve the equation. The

obtained relations between terms is not fixed and in different situations the order

of involved variables may change through time and the importance between terms

inverted, as discussed in Section 2.1. Furthermore, sometimes a variable, for example

the velocity, has relevant spacial variations at the same time. This generates serious

numerical difficulties. Nevertheless, the main behavior of the equation corresponds

with the following analysis.

Dimensional analysis of the heat equation is based on the following dimensionless

variables (primes denote dimensionless values)

x′ = x/h

t′ = t κ/h2

f ′ = f
ρ Cp

h2

ΔT κ

T ′ = T/ΔT

v′ = v h/κ

k′ = k
ρ Cp

1
κ

where h is the height of the domain under consideration, ΔT the maximum

temperature jump in the model and κ the thermal diffusivity in m2s−1. Using

previous dimensionless variables the thermal equation results in (Schmeling and

Marquart, 1991)
∂T ′

∂t′
+ u′ · ∇T ′ = ∇ · (k′∇T ′) + f ′
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Quantity Value Units
h 660 km
‖u‖ 1.6× 10−9 m s−1

ρ 3600 kg m−3

Cp 1000 J kg−1K−1

κ 10−6 m2s−1

k 4 W m−1K−1

ΔT 1600 K
f 10−8 W m−3

g 9.8 m s−2

α 5× 10−5 K−1

η 1021 Pa s

Table 2.1 – Representative upper mantle values used in the dimensionless analysis
of Stokes and heat equations.

Using the characteristic values listed in Table 2.1, the following coefficients are

obtained

k′ = 2,29

f ′ = 7,88·101

‖u′‖ = 1,98·103

The convective term u′ · ∇T ′ dominates the heat equation in the upper mantle

and transition zone. Because of the variable velocity distribution, the time increment

at each step needs to be carefully computed to keep numerical solutions in its stable

domain, see Section 3.3.2.

Stokes equation. The dimensionless form of the Stokes equation involves two

variables, the Prandtl number characterizing the convection regime and the G

coefficient defined as

Pr =
η

κρ
and G =

h3gρ

ηκ
.

The dimensionless Stokes equation reads

1

Pr
ut = −∇P +∇2u−G.

Using the representative values for mantle materials, the coefficients of the

equation (2.5) take the values Pr−1 = 3.6× 10−24 and G = 1.01× 107. The relation

between former values (they differ in more than 30 orders of magnitude) supports

neglecting the inertia term. Thus, the time disappears from the Stokes equation and
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2.6. MINERAL PHASE TRANSITIONS

the problem becomes quasi–static.

Other helpful dimensionless parameter characterizing vigor of convection is the

Rayleigh number Ra defined as

Ra =
α ΔT ρ2 g h3 Cp

η k

Using representative values for the mantle a Rayleigh number Ra = 4.38 × 105 is

obtained. Representative values for the upper mantle are listed in Table 2.1

2.6 Mineral phase transitions

The physical properties of a rock depend on the proportions and the compositions

of the mineral phases. These, in turn, depend on temperature, pressure and

composition. In general, one cannot assume that the mineralogy is constant

when temperature and pressure varies. In the upper mantle the most important

minerals determining physical properties are olivine, ortho and clinopyroxene and

aluminium–rich phases such as plagioclase, spinel and garnet. All these minerals

are unstable at high pressure and therefore only exist in the upper part of the

mantle. Clinopyroxene, diopside plus jadeite, may be stable to depths as great

as 500 km. Olivine transforms successively to wadsleyite, a spinel–like structure,

near 410 km depth and to ringwoodite, a cubic spinel, near 500 km depth. At

higher pressure it transforms to perovskite plus magnesiowüstite. Orthopyroxene

transforms to majorite, a garnet–like phase.

The variations in mantle properties depend, to first order, on stable mineral

phases and, to second order, on the variation of temperature and pressure. In order

to model densities one must know the expected equilibrium assemblage and the

properties of the phases. Transformations within the mantle draw a complex diagram

such as shown in Figure 2.1

To model the effect of mineral transformation into the physical properties of

rocks, we simplify the diagram considering four mineral domains shown in Figure 2.1.

Each domain is defined following the phases transformation of the olivine: olivine

to wadsleyite at 410 km depth, wadsleyite to ringwoodite at 510 km depth and

ringwoodite to magnesium perovskite+ferropericlase at 660 km depth. These mineral

transformations are the most relevant in terms of density and viscosity contrasts due

to the abundance of the olivine in the mantle (more than 60%). Moreover, they are

the responsible of the strongest discontinuities in seismic velocities at corresponding

depths.
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Figure 2.1 – Phase equilibria after Stixrude and Lithgow-Bertelloni (2007). Mineral
species are described in Table 2.2. Mineral domains used in this work are shown in
green.

Symbol Meaning Value used
pl olivine [MgxFe1−x]2SiO4

opx orthopyroxene [MgxFe1−x]2−yAl2ySi2−yO6

sp spinel MgxFe1−xAl2O4

cpx clinopyroxene Ca1−y[MgxFe1−x]1+ySi2O6

gt Garnet Fe3xCa3yMg3(1−x+y+z/3)Al2−2zSi3+zO12;
x + y + 4z/3 ≤ 1

C2/c pyroxene [MgxFe1−x]4Si4O12

ak akimotoite MgxFe1−x−yAl2ySi1−yO3, x + y ≤ 1
mgpv perovskite MgxFe1−x−yAl2ySi1−yO3, x + y ≤ 1
ppv post-perovskite MgxFe1−x−yAl2ySi1−yO3, x + y ≤ 1
ri ringwoodite [MgxFe1−x]2SiO4

wa wadsleyite [MgxFe1−x]2SiO4

wu magnesiowüstite MgxFe1−xO
hpcpx high pressure clinopyroxene Ca1−y[MgxFe1−x]1+ySi2O6

plg plagioclase [(NaAlSi)x(CaAl2)1−x]Si2O8

fp ferropericlase [MgxFe1−x]O
capv calcium perovskite La1−xCaxCo1−yFeyO3

Table 2.2 – Solution notation and formulae. Unless otherwise noted, the composi-
tional variables x, y, and z may vary between zero and unity.

In practice the phase transitions determining the mineral domains are charac-

terized by a particular Clapeyron slope, which we approximate as linear functions

in the temperature–pressure domain (See Figure 2.2).

Table 2.3 lists values for Clapeyron slopes reported by different authors.

The average rock properties are computed as follow: i) the volumetric fractions

of the major constituent phases along a 1600 K adiabat are taken from Stixrude
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Figure 2.2 – Main domains of stable mineral species. Clapeyron curves, here
approximated as straight lines, determine the equilibrium between phases.

Transition Temperature (K) Pressure (MPa) Slope (MPa K−1) Ref
ol to wa 1600 14200 4.0 a

ol to wa 1600 14200 3.6 b

ol to wa 1700 13500 2.5 c

ol to wa 1700 13500 1.5 d

wa to ri 1700 17000 4.0 e

ri to mgpv 1873 23100 -2.5 c

ri to mgpv 1873 23100 -3.0 f

Table 2.3 – References: a from Katsura et al. (2004), b from (Guest et al., 1994), c
from Katsura and Ito (1989), d from Akaogi et al. (1989), e from Guest et al. (2004),
f from Ito and Takahashi (1989)

and Lithgow-Bertelloni (2007) (See Table 2.4), ii) each phase is identified with

only one (the most abundant) end–member (e.g. enstatite for opx, diopside for

cpx, pyrope for grt), iii) experimentally derived properties of these end–members

are taken from works listed in Tables 2.3 to 2.5, and finally iv) the average rock

properties are computed as either the arithmetic mean of the end–members weighted

by their respective volumetric proportions or with a Voigt–Reuss–Hill averaging

scheme. The latter is used only when calculating the elastic moduli for seismic

velocities. We acknowledge that this approach is only valid to the first–order and

lack thermodynamic consistency. However, it gives values comparable to those

obtained with more sophisticated methods (e.g. Stixrude and Lithgow-Bertelloni,

2005; Stixrude and Lithgow-Bertelloni, 2007) with a minimum of computational

time.
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Mineral 200 km 420 km 600 km 800 km
Olivine(Fo) 51.3% 0 0 0
Olivine(Fa) 5.7% 0 0 0
Orthopyroxene(Enstatite) 13.5% 0 0 0
Clinopyroxene(Diopside) 10.0% 0 0 0
Garnet (Pyrope) 19.6% 40.0% 37.5% 0
Wadsleyite 0 60.0% 0 0
Ringwoodite 0 0 60.0% 0
Ferropericlase 0 0 0 16.0%
Mg perovskite 0 0 0 78.0%
Ca perovskite 0 0 2.5% 6.0%

Table 2.4 – Stable phases at different depths used to construct the mineral domains.
After Stixrude and Lithgow-Bertelloni (2007).

2.7 Thermal expansion coefficient

The thermal expansion coefficient α = V −1(∂V/∂T )p, is used to express the volume

change of a material due to a temperature change. It controls the variations of

density as a function of temperature. The Grüneisen theory of thermal expansion

(Suzuki et al., 1979) combined with the Debye model of solids (e.g. Stixrude and

Bukowinski, 1990), leads to a relation between volume and temperature, based on

four parameters. To fit these, accurate experimental measures of thermal expansivity

are needed over a wide range of temperatures. In many cases the fitting cannot be

uniquely defined, either because the accuracy of thermal expansion measurement is

not sufficiently high or because the temperature range of measurement is limited.

For the purpose of fitting experimental data over a specific temperature range, a

polynomial expression for the thermal expansion coefficient may be used. Fei (1995)

compiled a widely used data set composed by 359 fittings of 121 minerals in different

conditions. He uses the expression

α(T ) = a0 + a1T + a2T
−2. (2.22)

Some newer data tables include an additional term a3T
−4 to improve the accuracy

of the approximation (for example Schutt and Lesher (2006)). Here we use the

polynomial expression 2.22 with data from Table 2.5. The data from experimentalist

correspond to single mineral species. Mantle rocks are composed by aggregates

of minerals, therefore the thermal expansion of each mineral specie have to be

averaged to obtain the bulk thermal expansion. Here a weighted average with mineral

proportions is used. For each one of the four compositions described in Section 2.6
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Mineral a0(×10−5) a1(×10−8) a2 a3

Forsteritea 2.85 1.01 -0.348 0
Fayalitea 2.39 1.15 -0.0518 0
Orthopyroxenea 2.95 0.57 0 0
Clinopyroxenea 2.60 1.15 0 0
Granatea 2.02 0.74 -0.461 0
Wasdleyiteb 2.71 0 0 0
Ringwooditeb 2.37 0 0 0
Ferropericlased 3.49 0.685 -0.372 0
Mg Perovskitec 1.86 0 0 0
Ca Perovskited 3.50 0 0 0
Average at depth
200 km 2.65 0.92 -0.2712 0
420 km 2.43 0.29 -0.1842 0
600 km 2.26 0.27 -0.1726 0
750 km 2.22 0.11 -0.0595 0

Table 2.5 – Parameters for thermal expansion formula. For single mineral species and
for mantle aggregates at different depths. Parameters for the different phases were
taken from: Forsterite, Fayalite, Enstatite, Diopside, Pyrope: (Afonso et al., 2007);
Wadsleyite, Ringwoodite: (Akaogi et al., 1989); Ferropericlase, Ca–Perovskite: (Fei,
1995); Mg–Perovskite:(Oganov et al., 2001).

the coefficients a0 to a3 are calculated based on the phase equilibria from Stixrude

and Lithgow-Bertelloni (2007).

The effect of pressure on the thermal expansion coefficient becomes important

in thick (i.e. cold) lithospheres. Pressure dependence can be described by the

AndersonGrüneisen parameter δT (Chopelas, 2000; Afonso et al., 2005)

α(T, P ) = α(T )

(
ρ(T, P )

ρ(T )

)δT
ρ(T )

ρ(T,P )

In order to save computational time, we keep calculations of physical properties

explicit (we neglect non–linear behavior). Thus, the term ρ(T, P )/ρ(T ) in the previ-

ous expression is approximated using the compressibility coefficient β ( 10−5 MPa−1)

as
ρ(T, P )

ρ(T )
≈ 1 + β(p− p0) (2.23)

We have used a typical average δT = 5.5, consistent with theoretical and

experimental estimations (Chopelas, 2000; Anderson et al., 1992; Afonso et al.,

2005).
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2.8 Thermal conductivity

Despite thermal conductivity in single crystals is usually anisotropic, the random

distribution of crystals forming a rock makes the isotropic assumption fair. The

experimental measurements of the thermal conductivity and, consequently, the

empirical laws derived from them, include the effect of the heat transport by

black–body radiation. Thus, thermal conductivity coefficient used here accounts for

both heat transfer by vibrations of adjacent atoms (conduction) and heat transfer

by electromagnetic waves (radiation).

Two different options to calculate thermal conductivity as a function of

temperature and pressure are tested. Firstly, an empirical formula given by Clauser

and Huenges (1995). Despite this formula was formulated for approximating thermal

conductivity in crustal rocks, it was extended to mantle materials in previous works

(e.g. Gerya et al., 2004). The coefficients for both, crustal and mantle rock are (Gerya

et al., 2004)

Oceanic crust [1.18 + 474/(T + 77)]× exp (4× 10−5p)

Mantle [0.73 + 1293/(T + 77)]× exp (4× 10−5p)

where temperature T is expressed in Kelvin units and pressure p in MPa. Resulting

conductivity has units W m−1K−1.

The second formulation used to model thermal conductivity is that proposed by

Hofmeister (1999). It based on phonon lifetimes obtained from reflectance spectra.

The conductivity is calculated as

k(T, p) = k298

(
298

T

)a

exp

[
−

(
4γ +

1

3

) ∫ T

298

α(θ) dθ

] (
1 +

K ′
0p

K0

)
+ krad (2.24)

where k298 is the thermal conductivity measured at ambient conditions, a is a

parameter with an approximated value of 0.33 for all silicates, γ is the averaged

Grüneisen parameter with values for the mantle from 1 to 1.4, K0 is the bulk modulus

with value 120 GPa, and K ′
0 its derivative with respect to pressure, with values

between 4 and 5. The last term krad is the contribution of the radiation phenomena,

approximated by the polynomial function

krad = a + b T + c T 2 + d T 3 (2.25)

where temperature T is in Kelvin, and the values of constants a to d are
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Figure 2.3 – Thermal conductivity coefficient as a function of depth. Dashed line
from Clauser and Huenges (1995). Solid line from (Hofmeister, 1999).

a = 1.753 ×10−2

b = 1.0365×10−4

c = 2.2451×10−7

d = 3.407 ×10−11

The integral of the thermal expansion coefficient in equation (2.24) is computed

in practice taking into account all the mineral phase transformations described in

Section 2.6. Thermal conductivity computed using both formulations is shown in

Figure 2.3. Values of mantle rocks at the base of the lithosphere are underestimated

by the equation of Clauser and Huenges (1995).

2.9 Density

Most of the density change in the mantle is due to hydrostatic compression.

Density changes associated with temperature and pressure variations accompanying

convection are small compared to the spherically averaged density of the mantle.

Therefore, it is appropriate to simplify the density ρ as a function of temperature T

and pressure p with respect to a reference value ρ0 as

ρ(p, T ) = ρ0 [1− α× (T − T0)]× [1 + β × (p− p0)] (2.26)
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where α is the thermal expansion coefficient, β the compressibility coefficient, and

T0 and p0 are, respectively, the temperature and pressure at which the reference

density ρ0 is given. This relation becomes non–linear due to the dependency of α

and β on temperature and pressure.

There are significant density variations associated with phase transitions. To

account for them in our model, the reference density ρ0 depends on the mineral

phase domain.
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Chapter 3

Numerical approach

The model introduced in Chapter 2 is composed of two main ingredients: a

mechanical flow problem governed by the Stokes equation and a transient heat

problem. Neither has a general analytical solution. In some simple cases analytical

methods can be used but, in the general case, numerical techniques are required to

obtain approximations of the solution.

The primary technique used in this work to approximate solutions of partial

differential equations, as the Stokes and the heat equations, is the Finite Element

Method (FEM). It is based on a variational or weak statement of the problem

and a discretization of the variational equations. The FEM is generally attractive

because it is robust, flexible in its ability to model complex geometry, algorithmically

modular, and mathematically very well understood. The FEM has a long history in

geodynamics, predominantly because of its ability to accurately solve problems with

strong gradients (Moresi et al., 1996), but also because its geometrical flexibility;

it allows for modeling spherical and cartesian domains without reformulating

the equations in spherical coordinates. Adopting the FEM as the basis for the

numerical solution allows dealing with material properties with steep variations

(large gradients).

Another widely used technique to solve partial differential equations is the

Finite Difference method (FD). Both techniques, FEM and FD, are based on

a discretization (supported by a mesh) of the simulation domain. FEM uses

unstructured meshes allowing for concentrating elements in the regions where more

resolution is needed while leaving coarse regions where the solution is “simpler” or

easier to interpolate. As the standard version of FD requires using structured meshes,

it is difficult to control the resolution in different regions of the domain. Moreover,

curved boundaries and boundaries not parallel to the cartesian axis are difficult to

handle with DF while it is straightforward with FEM. For example, the simulations
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on a spherical domain presented in Section 7 may be complex to model in a FD

framework and probably they require to rewrite all equations in polar coordinates.

Despite in most cases DF are used only because of reutilization of preexisting codes,

there are some new developments using FD (e.g. Gerya and Yuen, 2007).

To solve the coupled model introduced in the previous chapter several techniques

and algorithms are needed. These techniques complement the FEM. For example

a Padé method is used to integrate the thermal equation trough time, a Level Set

technique is used to track the location of the different materials, an enrichment

technique via partition of the unity is used to allow for a solution with discontinuous

gradient across the interfaces, a Taylor–Galerkin algorithm is used to update through

time the level set functions, a basic Picard method is used to handle non–linearities

generated by the rheologic constitutive equation, etc. In some simple models mesh

adaptivity is used to improve accuracy and efficiency.

The mechanical flow problem described in Section 2.2 is solved by a mixed Finite

Element Method with both velocity and pressure unknowns. Its multiphase character

is handled by a level set technique. The level set approach is a computationally

efficient way of tracking the different materials location. It allows for describing

the interface without requiring it to conform with the mesh. A solution with

discontinuous gradient on the interface described by the level set is expected. The

discontinuity is generated by the jump of material properties across this interface.

Here we enrich the finite element solution allowing for a discontinuous gradient inside

the elements crossed by the level set, using a X–FEM technique. Classical finite

elements cannot handle with such a solution. Moreover, the mechanical problem is

non–linear due to the viscosity dependence on the velocity gradient. We found that

a basic Picard method suffices to solve the non–linear problem up to the accuracy

required. In Section 3.1 these techniques and their applications are described. The

thermal equation is discretized in space using standard finite elements and updated

through time using a Padé method as described in Section 3.2. The coupling between

the mechanical and the thermal problem is handled in a staggered scheme.

This chapter is devoted to describe all the numerical methodologies used to

solve the coupled transient non–linear equations. Most of the content of this chapter

pertains to two original papers (Zlotnik et al., 2007a,b).

3.1 Mechanical flow problem

The numerical solution of the mechanical Stokes flow problem via mixed finite

elements is described in this section. Stokes equation states the dynamical effect
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of the externally applied forces and the internal forces of a fluid. The internal forces

are due to the pressure and the viscosity of the fluid. A flow region Ω ∈ 	n, with

boundary Γ closed and sufficiently regular is considered. Then, the flow of a viscous

incompressible fluid is governed by the momentum equation (2.15) introduced in

Section 2.2.6

−2∇ · (η∇su) +∇p = ρg

and the mass conservation equation (2.10)

∇ · u = 0.

The problem must be completed with suitable boundary conditions. Typically

the velocity uD is prescribed on a portion ΓD of the boundary

u(x, t) = uD(x, t) x ∈ ΓD, t ∈ (0, T )

and a boundary traction t is imposed on the complementary portion ΓN

nσ(x, t) = t(x, t) x ∈ ΓN, t ∈ (0, T ) (3.1)

where vector n denotes the unit outerward normal to the boundary. The initial value

of the velocity field at the initial time t = 0 is given in Ω

u(x, t) = u0(x) x ∈ Ω. (3.2)

No initial condition needs to be specified for the pressure. This is a consequence

of the fact that no time derivative of pressure appears in governing equations. When

velocity is imposed everywhere on the boundary Γ, pressure is only present by its

gradient in the Stokes equation and thus it is determined only up to an arbitrary

constant.

Some difficulties arise in the resolution of incompressible flow problems. The

incompressibility condition expressed in equation (2.10) is a constraint on the

velocity field which must be divergence free. Then the pressure must be considered as

a variable not related to any constitutive equation. Its presence in the momentum

equation has the purpose of introducing an additional degree of freedom needed

to satisfy the incompressibility constraint. The role of the pressure variable is

thus to adjust itself instantaneously in order to satisfy the condition of divergence

free velocity. That is, the pressure is acting as a Lagrangian multiplier of the

incompressibility constraint and thus there is a coupling between the velocity and
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pressure nodes
velocity nodes

Figure 3.1 – Mini–element

the pressure unknowns (Donea and Huerta, 2002).

The variable formulation with both velocity and pressure unknowns, leads to the

so-called mixed finite elements. Such methods present numerical difficulties caused

by the saddle point nature of the resulting variational problem. The algebraic system

for the nodal values of velocity and pressure in a Galerkin formulation is governed

by a partitioned matrix with a null sub matrix on the diagonal. Solvability of such a

system depends on a proper choice of finite element spaces for velocity and pressure

interpolation. In this work the well–known mini–element is used (see Figure 3.1).

This triangular element is composed by three pressure nodes at the vertices (linearly

interpolated) and four velocity nodes (three linear nodes at the vertices and one

central quadratic node). The mini–element satisfy the LBB compatibility condition

(after Ladyzhenskaya, 1969; Babuška, 1970; Brezzi, 1974) which guarantees the

solvability of the system.

An alternative to the mixed scheme is the penalty formulation. It is used in some

geophysical codes, for example ConMan (King et al., 1990) and CitCom (Moresi and

Solomatov, 1995). The penalty method allows for elimination of the pressure variable

from the Navier–Stokes problem through a relaxation of the incompressibility

condition. The problem then involves only velocities, making the penalty method

computationally attractive. A numerical disadvantage is the presence of the penalty

parameter λ, which may cause a loss of accuracy for excessively large values of λ,

and prevent convergence to the actual solution for insufficiently large parameter. In

the physical model material properties depend on pressure. Therefore, if a penalty

formulation is used, the pressure is usually approximated by a linear function.

This approximation neglects density variations and looses the dynamic part of the

pressure.
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3.1.1 Strong and weak formulations

The mixed Finite Element Method applied to a single–phase Stokes flow is next

described. The multiphase character of the problem will be address in Section 3.1.2.

From the numerical point of view the problem can be stated in a strong form as:

given the body force field g, the viscosity field η and the boundary conditions for

velocity uD in the boundary ΓD, find the velocities u and the pressures p, such that

−2∇ · (η∇su) +∇p = ρg in Ω (3.3a)

∇ · u = 0 in Ω (3.3b)

u = uD in ΓD (3.3c)

nσ = t in ΓN (3.3d)

where the symmetric gradient operator ∇s is defined as ∇s = 1
2
(∇ + ∇�) (see

Section 2.2.4).

The formulation of the weak problem requires the following definition: a function

u is square–integrable on a domain Ω if

∫
Ω

u2 dΩ <∞

and we write u ∈ L2(Ω). Hk(Ω) is defined as the set of functions such that itself and

all its derivatives up to order k are in L2(Ω).

The formulation of the weak form of the problem involves the definition of

four collections of functions: the test functions and the trial solution functions,

for the velocity field and for the pressure field. The space of velocity trial functions

is denoted by S. This collection of functions consists of all functions which are

square–integrable, have square integrable first derivatives over the computational

domain Ω and satisfy the Dirichlet boundary conditions on ΓD defined in (3.3c).

This collection is defined by

S =
{
u ∈ H1(Ω) | u = uD on ΓD

}
.

This space contains vector functions such that each component is in the

corresponding space of scalar functions.

The test functions for velocity belong to space V. Functions in this class have

the same characteristics as those in S, except that they are required to vanish in ΓD
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where the velocity is prescribed. The V space is defined by

V =
{
w ∈ H1(Ω) |w = 0 on ΓD

}
.

Finally, we introduce a space of functions, denoted Q, for the pressure. Since the

space derivatives of pressure do not appear in the weak form of the Stokes problem,

the functions in Q are simply required to be square integrable

Q =
{
q ∈ L2(Ω)

}
.

This space is both the trial space and the test function space. In the case of a purely

Dirichlet velocity boundary condition, the pressure is defined up to a constant, and

its value must be prescribed at one point of the domain Ω.

To obtain the weak formulation of the problem, the governing equation (3.3a)

is multiplied by a velocity test function w ∈ V and integrated over the domain Ω.

Similarly, the incompressibility condition (3.3b) is multiplied by the pressure test

function q ∈ Q and integrated, obtaining

∫
Ω

w · ∇p dΩ− 2

∫
Ω

w · (∇ · (η∇su)) dΩ =

∫
Ω

w · ρg dΩ (3.4a)∫
Ω

q (∇ · u) dΩ = 0 (3.4b)

Integrating by parts the second term on the left hand side of equation (3.4a) results

in ∫
Ω

w · (∇ · (η∇su)) dΩ =

∫
Ω

∇ · (w · η∇su) dΩ−
∫

Ω

∇w : η∇su dΩ. (3.5)

where the following notation has been introduced:

∇u : ∇v =

m∑
i=1

n∑
j=1

∂ui

∂xj

∂vi

∂xj
.

Applying the Green–Gauss divergence theorem on the first integral of the right hand

side of equation (3.5) we obtain

∫
Ω

∇ · (w · η∇su) dΩ =

∫
Γ

(w · η∇su) · n dΓ (3.6)

where n is the outer normal vector to the boundary.
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The last term of (3.5) can be written as

∫
Ω

∇w : η∇su dΩ =

∫
Ω

∇sw : η∇su dΩ. (3.7)

In this last step the gradient ∇w is replaced by its symmetric part. The replacement

is valid due to the split of the gradient ∇w in its symmetric part and its

skew–symmetric part as

∇w = ∇sw +∇ww. (3.8)

As the double contraction of a skew–symmetric tensor with a symmetric tensor is

zero, only the symmetric part remains and the replacement of (3.7) is justified.

Similarly, the first term of equation (3.4a), which involves the pressure gradient

is integrated by parts. Applying the divergence theorem we obtain

∫
Ω

w · ∇p dΩ =

∫
Ω

∇ · (wp) dΩ−
∫

Ω

p∇ ·w dΩ =

=
��������0∫

Γ

wpn dΓ−
∫

Ω

p∇ ·w dΩ. (3.9)

The integral on the boundary is zero due to the boundary conditions.

Making use of equations (3.5), (3.6), (3.7) and (3.8), the weak form of problem

(3.3) becomes: given g and uD, find velocities u ∈ S and pressures p ∈ Q, such that

for all velocity test functions w ∈ V and all pressure test functions q ∈ Q
∫

Ω

p∇ ·w dΩ− 2

∫
Ω

∇ws : η∇su dΩ = 2

∫
Γ

(w · η∇su) · n dΓ +

∫
Ω

w · ρg dΩ

(3.10a)∫
Ω

q∇ · u dΩ = 0 (3.10b)

The proof of the equivalence of the strong and weak formulation can be found

elsewhere, for example Hughes (2000); Zienkiewicz and Taylor (2000)

The Galerkin formulation of the Stokes problem leads to a mixed finite element

method. Discretization uh and ph for velocity and pressure are introduced. The

associated test functions w and q are also discretized as wh and qh. We denote Vh

and Sh the finite dimensional subspaces of V and S, and Qh the finite dimensional

subspace of Q. These finite element spaces are characterized by a partition of the

domain (a mesh). The computational domain Ω is partitioned into element domains

Ωe. This discretization or mesh is composed by elements and nodes.

The velocity is then formulated in terms of shape functions and associated nodal
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values. We denote N the set of velocity nodes in the mesh. The subset ND of N
is the subset of velocity nodes corresponding to the Dirichlet boundary conditions,

where the velocity is prescribed. The velocity is approximated as follows

vh = uh + uh
D

uh =
∑
i∈N

Ni(x)ui

uh
D =

∑
i∈ND

Ni(x)uDi

where Ni is the shape function associated with the node number i and ui is the value

of uh at node i. The pressure field is interpolated using a different set of pressure

nodes denoted by Np and shape functions N̂i, as

ph =
∑
i∈Np

N̂i(x) pi (3.11)

where pi is the pressure value at node i.

To complete de statement of the space discretization the technique used to track

the location of the material phases is required. This technique, called level sets, is

described in the next section.

3.1.2 Two–phase flow and the Level Set technique

Flow problems are naturally described in an Eulerian framework where the

computational mesh is fixed and the fluid moves with respect to the grid. The

Eulerian formulation facilitates the treatment of large distortions in the fluid motion.

Its handicap is the difficulty to follow interfaces between different materials. In an

Eulerian description the finite element mesh is thus fixed and the continuum moves

and deforms with respect to the computational mesh. As the material flows “over”

the mesh, the physical properties of one element (for example its density or viscosity)

will change through time due to material advection.

Level set methods are computational techniques for tracking moving interfaces;

they rely on an implicit representation of the interface. Since the introduction of the

level set method by Osher and Sethian (Osher and Sethian, 1988), a large amount of

bibliography on the subject has been published. See, for instance, the cited review

by Sethian and Smereka (Sethian and Smereka, 2003) and the work by Osher and

Fedkiw (Osher and Fedkiw, 2001). Level set methods are particularly designed for

problems in multiple space dimensions in which the topology of the evolving interface

changes during the course of events. This technique is commonly used in engineering
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Figure 3.2 – Two material domains (a). Surface representation of the level set
function φ (b). The sign of the function indicates the phases location.

problems to track interfaces location (e.g. Chessa and Belytschko, 2003; Moës et al.,

2003) and cracks (e.g. Belytschko and Black, 1999; Stolarska et al., 2001). It is also

used in computational geometry applications, in grid generations, computer vision

and other applications.

The level set technique describes the location of the interface between materials

by means of a function φ, called level set function, defined on the simulation domain.

The sign of the level set function defines two geometrical domains using the following

convention

φ(x, t) =

⎧⎪⎨
⎪⎩

> 0 for x in domain 1

= 0 for x on the interface

< 0 for x in domain 2

(3.12)

where x stands for a point in the simulation domain and t is the time. The interface

location is the set of points where the level set field vanishes (See Figure 3.2). The

material corresponding to each point of the simulation domain is thus determined

by the sign of the level set function.

Initially, φ is set as a signed distance to the interface. Far enough from the

interface, φ is truncated by maximum and minimum cutoff values. The resulting

level set function describes the position of the interface independently of the

computational mesh.

In the practical implementation, φ is described (interpolated) with the finite

element mesh, and therefore the resolution of the approximated interface depends

on the quality of this mesh. Usually the same mesh of the mechanical problem is used

to describe the level set function. This is a reasonable approach; same resolution is

obtained in describing interfaces and velocities used to update these interfaces.
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The level set represents interfaces which do not necessarily coincide with the

element edges. Thus, the same mesh can be used throughout the entire simulation

to describe the interface. Chapters 5 and 6 provide examples of simulations using

the same mesh along time. Additionally, for some simple cases, we test a remeshing

procedure based on the position of the interface (See Section 4.2). Mesh adaptivity

allows for element concentration in the places where they are needed, while leaving

coarse elements in less compromised areas. To locate phases, smaller elements close

to the level set allows for an accurate description of the interface. As the level set

function evolves, remeshing is needed to update the fine part of the mesh following

the interface. The proposed adaptive scheme is described in Section 4.2.

The level set φ is a material property and consequently it is transported by the

velocity. Therefore, it is updated by solving the following pure advection equation

(first order hyperbolic)

φt + u · ∇φ = 0 (3.13)

where u is the velocity field computed by solving the Stokes problem (3.3) and φt the

time derivative of the level set function. In this context, the velocity field is known in

all the points of the domain. Thus, the level set is transported integrating equation

(3.13) using an explicit time–marching scheme designed for the pure advective

problem: the two–step third order Taylor Galerkin method (Selmin, 1987; Donea

and Huerta, 2002). This method, described in Section 3.2.3, is straightforwardly

implemented and computationally affordable. In similar situations other authors

use the Hamilton–Jacobi equation to transport the interface. This is specially

appropriate if the only available data is the front velocity, or if the velocity depends

on the front itself, for example on its curvature. In the present situation the velocity

is known everywhere as a vector and it is possible to directly integrate the pure

advection problem. In general, the time evolution of the level set function is such

that it does not conserve the property of being a truncated distance to the interface

(as set for the initial configuration). However, as demonstrated in the examples and

in Section 3.6.1, for the current application this method is sufficiently accurate and

it does not require any post–process to reconstruct the distance shape.

The level set approach may describe changes in the shape (topology) of the

phases. In practice, this allows the representation of detaching drops, merging

bubbles, breaking sets, etc. This feature of the level set method is of great interest

when used in some geophysical situations, for example to model slab breakoff,

delamination, or any other process involving changes in the topology of the interface.

The description of the materials location given by the level set function is not

only useful for the mechanical problem, but it is also used in solving the Eulerian
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multiphase thermal equation.

Other material tracking techniques

The most popular technique used to track material phases in geophysical codes is

the markers approach. It consists in using a number, usually large, of Lagrangian

points carrying the material parameters. The properties of a point of the Eulerian

framework are computed as an average of the markers close to this point. This

technique was originally designed to work in a finite differences framework, where

the discretization is regular and structured and thus it is trivial to identify the

markers close to each node. When the mesh becomes non–structured, as with finite

elements, the detection of the markers in the proximity of a node is a computationally

time consuming task. To reduce the computational time most present multiphase

codes run on parallel multiprocessor computers. Despite of the parallelization, the

number of operations required is still high and therefore, a technique requiring less

computational effort is desirable.

van Keken et al. (1997) study the material tracking problem and compare

different tracking techniques to solve an Eulerian multiphase problem. They test

three methods: the Lagrangian markers method (named as “tracers” in their work),

a marker chain method where the interface between two materials is discretized

using a series of markers and, finally, a field method where the material properties

are described by a continuous field similar to temperature. They conclude that

the Lagrangian marker approach is the most accurate method, alerting about the

large number of markers needed. This huge number poses severe restrictions to the

application of the technique to three dimensional problems. According to van Keken

et al. (1997) two dimensional isoviscous materials require, at least 10 to 100 markers

per element. For more realistic rheologies this ratio even increases.

Present applications of the marker technique use much more than 10 markers

per element. The simulations of lithospheric structures related to subduction done

by Gorczyk et al. (2006) use, in average, 1.25 × 105 markers per element. That

is, an amazing grand total of 10 billion markers. With these extremely high

resolutions they can track meter–size structures. Leaving aside the super–populated

simulations, in most 2D models the estimation of 100 markers per element is fair.

When models move from 2D to 3D, the relationships between markers and

elements become a serious restriction. To maintain the resolution used by Gorczyk

et al. (2006) in a three dimensional model, 1 × 1015 markers are needed. This

posses severe computational restrictions: if each marker employs only twelve bytes

of memory —a minimum lower bound to store only its position— the amount of
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required memory is 366 times greater than the memory of the present world biggest

computer, which has 32768 giga bytes of memory.

In contrast, the level set technique has the capability to describe the location

of the interface between materials using the same number of points (same mesh)

utilized in the description of the mechanical problem. Therefore, when moving

from 2D to 3D, the tracking of the materials does not add extra points to the

nodes describing the 3D velocity. Moreover, the level set technique does not require

averaging the material properties from markers to nodes, nor the temperature and

pressure from nodes to markers.

3.1.3 Space discretization and enriched solutions

The space discretization of the mechanical Stokes equation (3.10) and level set

update equation (3.13) is described in this section. The level set method is

usually combined with an enrichment technique to improve the accuracy of the

solution in the vicinity the interface. The combination of finite element with these

two numerical techniques is called eXtended Finite Element Method (X–FEM).

X–FEM is particularly suitable for multiphase problems in which the strain rate

is discontinuous across the interface due to the continuity of stress and a step in

the viscosity. None of the methods tested in van Keken et al. (1997) is well suited

to resolve this discontinuity. Instead, it is approximated by a continuous function

and effectively smeared out over a few grid elements. The enrichment technique

used here adds dynamically some degrees of freedom to the mechanical solution to

catch the discontinuity exactly where it is expected to happen, i.e. over the interface

described by the level set.

The enrichment improves the solution near the interface described by the level

set. Figure 3.3 shows how the enrichment technique modifies the solution inside

multiphase elements.

The space discretization presented next includes the description of the enriched

solution for the mechanical problem in a two–phase context. We have proposed an

extension of the X–FEM approach to handle any number of material phases. It is

presented in Section 4.1.

The mixed formulation of the Stokes problem uses different interpolations for

velocity u and pressure p. The mini–element, shown in Figure 3.1, determines these

interpolation spaces. Denoting by Nlin the indices associated with the vertex nodes

and Nj , for j ∈ Nlin, the corresponding shape functions, the interpolated pressure
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is illustrated. The velocity gradient (strain rate) will be discontinuous across the
interface, caused by the continuity of stress and the step in the viscosity.

is

p(x, t) � ph(x, t) =
∑

j∈Nlin

Nj(x) pj(t). (3.14)

The interpolation of the velocity also includes the bubble degrees of freedom Nj for

j ∈ Nbub, namely

u(x, t) � uh(x, t) =
∑

j∈Nlin
⋃Nbub

Nj(x)uj(t). (3.15)

The level set formulation is interpolated in terms of the linear degrees of freedom

φ(x, t) � φh(x, t) =
∑

j∈Nlin

Nj(x) φj(t). (3.16)

In order to improve the ability of the interpolation to represent the gradient

discontinuities across the interface, the interpolation of the velocity and pressure

are enriched using a partition of the unity approach and a ridge function R, defined

41



3.1. MECHANICAL FLOW PROBLEM

by Moës et al. (2003) as

R(x) =
∑

j∈Nenr

|φj|Nj(x)−
∣∣∣∣∣
∑

j∈Nenr

φj Nj(x)

∣∣∣∣∣ . (3.17)

Note that R is defined such that it is only different from zero in the elements

containing part of the interface. The enrichment affects only the degrees of freedom

corresponding to the vertex nodes of the elements in contact with the interface.

The set of indices corresponding to such nodes is denoted as Nenr. Thus enriched

interpolations of velocity and pressure are expressed as

uh(x, t) =
∑

j∈Nlin
⋃Nbub

uj(t) Nj(x) +
∑

j∈Nenr

aj(t) Mj(x) (3.18)

and

ph(x, t) =
∑

j∈Nlin

pj(t) Nj(x) +
∑

j∈Nenr

bj(t) Mj(x), (3.19)

where aj and bj are, respectively, the additional degrees of freedom for velocity and

pressure and its associated interpolation function M is defined as

Mj(x) = R(x)Nj(x) (3.20)

A compact matrix expression of the interpolation of velocity and pressure is used in

the following

u�
h (x, t) = Nu U (3.21)

and

ph(x, t) = Np P (3.22)

where

Nu = [N1, N2, . . . , Nnu , M1, . . . , Mne]

U = [u1,u2, . . .unu , a1, . . . , ane]
�

Np = [N1, N2, . . . , Nnlin
, M1, . . . , Mne]

P = [p1, p2, . . . , pnlin
, b1, . . . bne ]

�

where nu = card(Nlin

⋃Nbub), nlin = card(Nlin) and ne = card(Nenr). Note that

the vector of unknowns U is defined as a (nu + ne) × 2 array and therefore is not

suitable as an entry in a linear system of equations. In order to properly write the
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matrix form of the system, U has to be reshaped as

Urs = [ux
1, u

y
1, u

x
2, u

y
2, . . . , u

x
nu

, uy
nu

, ax
1 , a

y
1, . . . , a

x
ne

, ay
ne

]�

which is a 2(nu + ne)× 1 vector. According to this reshape, a similar reordering has

to be done in Nu in order to obtain an expression analogous to (3.21), namely

Nrs
u =

[
N1 0 N2 0 . . . Nnu 0 M1 0 . . . Mne 0

0 N1 0 N2 . . . 0 Nnu 0 M1 . . . 0 Mne

]
.

The size of the Nrs
u matrix is 2 × 2(nu + ne). It is worth noting that the number

of enriched nodes, ne varies along time as the interface described by the level set is

transported. Consequently, the size of Urs and Nrs
u changes.

Problem (3.10) is discretized in space using the interpolation introduced above

and the Galerkin formulation. The resulting system of algebraic equations reads

KuU
rs + G�

u P = fu (3.23a)

GuU
rs = 0 (3.23b)

where the matrices Ku, Gu and fu are defined as

Ku =

∫
Ω

B�η B dV

Gu = −
∫

Ω

N�
p ρ (∇ ·Nrs

u ) dV

fu =

∫
Ω

(Nrs
u )�ρg dV

where the gravity vector g used in fu is the column vector in the right hand side of

equation (2.15). The gradient matrix B is defined as

B = [B1,B2, . . . ,Bnu , B̃1, . . . , B̃ne]

Bi =

⎡
⎢⎣

∂Ni

∂x1
0

0 ∂Ni

∂x2

∂Ni

∂x2

∂Ni

∂x1

⎤
⎥⎦ and B̃i =

⎡
⎢⎣

∂Mi

∂x1
0

0 ∂Mi

∂x2

∂Mi

∂x2

∂Mi

∂x1

⎤
⎥⎦ .

Note that the spatial derivatives of Mi contained in matrices B̃i, for i = 1, . . . , ne

account for the enrichment and depend on the level set φ. Therefore, the chain rule

must be employed to evaluate those derivatives.
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Equations (3.23) are compacted in the following block matrix form

[
Ku G�

u

Gu 0

][
Urs

P

]
=

[
fu

0

]

This partitioned system can be solved with several techniques, for instance

the Uzawa method (Brezzi and Fortin, 1991) was recently tested by Moresi in

geophysical codes. Here we use banded solvers for sparse, square matrices or gradient

bi–conjugate methods.

3.1.4 Time discretization

The mechanical problem, stated in its quasi–static version, does not requires an

explicit time discretization scheme. The time variable and its derivatives are absent

of the equation. Its evolution through time will be due to the thermal evolution of

the model and the evolution of the phases location.

3.2 Thermal problem

The thermal problem stated in equation (2.6) involves the time derivative terms. In

this case the time dependency cannot be neglected and a double discretization is

needed in space and time. First we present the space discretization done in a similar

way as with Stokes equation by stating a weak formulation of the problem, making

a discretization of the solution on the domain and using a Galerkin formulation.

Once the problem is semi–discretized in space, time is discretized by means of a

Padé method.

The transient heat equation (2.6) is non–linear due to the dependency of density

and thermal conductivity on temperature. As we expect only small changes in the

temperature field between two consecutive steps, this equation is linearized, and the

material properties are calculated based on the thermal field of the previous step.

3.2.1 Strong and weak formulations

The strong formulation of the problem is stated as follows: given a velocity field

u(x, t) in Ω, the thermal conductivity k(x, t), the heat source f(x, t), an initial

temperature field T0(x), Dirichlet boundary conditions TD(x, t) on ΓD and Neumann
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boundary conditions h(x, t) on ΓN , find T such that

∂T

∂t
+ u · ∇T −∇ · (k∇T ) = f in Ω× [0, tend], (3.24a)

T (x, 0) = T0 in Ω, (3.24b)

T = TD on ΓD, (3.24c)

k(n · ∇T ) = h on ΓN . (3.24d)

To obtain the weak formulation similar steps as with the mechanical problem are

done. The test function space is defined as

V =
{
w(x) ∈ H1(Ω)|w(x) = 0 for x ∈ ΓD

}
.

The time dependency of the approximate solution T can be translated to the trial

space St, which varies as a function of time,

St =
{
T |T (x, t) ∈ H1(Ω), t ∈ [0, tend] and T (x, t) = TD for x ∈ ΓD

}
.

Multiplying the heat equation by the test function w, integrating by parts and

applying the divergence theorem the weak formulation of the problem is obtained:

given f , TD, h, k and T0 such that for all w ∈ V
∫

Ω

w Tt dΩ+

∫
Ω

w(u ·∇T ) dΩ+

∫
Ω

∇w ·(k∇T ) dΩ =

∫
Ω

w f dΩ+

∫
ΓN

w h dΓ (3.25)

where Tt is the time derivative of temperature. The spacial discretization by means

of the Galerkin formulation consists of defining two finite dimensional spaces Sh and

Vh and restricts the weak form to these spaces.

3.2.2 Space discretization

The space discretization of the thermal problem (2.6) is performed using the linear

interpolation, in a similar way as with pressure. The thermal conductivity is not

expected to have a large jump across the interface and therefore the interpolation is

not enriched, smearing out the jump. The approximation of the temperature results

T (x, t) � T h(x, t) =
∑

i∈Nlin

Ni(x) Ti(t) = NT T (3.26)
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where

NT = [N1, N2, . . . , Nnlin
]

T = [T1, T2, . . . , Tnlin
]�.

And the system of ordinary differential equations resulting from the spatial

discretization (3.26) reads

MT Ṫ + GTT = KTT + fT (3.27)

where the involved matrices are defined as

MT =

∫
Ω

N�
T ρ Cp NT dV,

GT =

∫
Ω

ρ Cp N�
T u� (∇NT ) dV,

KT =

∫
Ω

(∇NT )�k∇NT dV and

fT =

∫
Ω

N�
T q dV.

3.2.3 Time discretization

The transient heat equation (2.6) is integrated upon time using a n–stage explicit

Padé method. This method is easier to implement than classical Runge–Kutta

methods and posses the same numerical properties (Donea and Huerta, 2002). The

Padé multistage method is expressed in the following incremental form

T n+β1 = T n, (3.28a)

T n+βi = T n + βiΔt Ṫ n+βi−1, i = 2, . . . , ntg + 1 (3.28b)

where β1 = 0, and βi = 1/(ntg + 2− i).

From the discretization (3.27) of the heat equation (2.6), each step of the explicit

Padé method can be written in the matrix form

MT Ṫn+βi−1 = (GT + KT )Tn+βi−1 + fT (3.29a)

Tn+βi = Tn + βiΔt Ṫn+βi−1. (3.29b)
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This method updates the temperature from step n to step n + 1 computing the

temperature in some intermediate points n + βi. Same as with the TG3 integration

algorithm described in Section 3.3.2, the GT and KT matrices depend on the velocity

field u and, in the present implementation, a constant velocity is assumed during

the time step. These matrices are assembled once in each time step and then used

in each stage of the Padé method.

3.3 Level sets

The level set technique used to locate interfaces is described in Section 3.1.2. The

level set function φ is defined in equation (3.12) and its update through time is

described in equation (3.13). In the following sections the numerical approximation

of these equations is described.

3.3.1 Space discretization

The level set is discretized in space using a linear interpolation

φ(x, t) � φh(x, t) =
∑

i∈Nlin

Ni(x) φi(t) = NT Φ (3.29)

where

Φ = [φ1, φ2, . . . , φnlin
]�.

In practice the same mesh is used for the discretization of temperature, pressure

and the level set function. The transport equation of the level set (3.13) is discretized

using (3.29) and yields

MφΦ̇−GφΦ = 0 (3.30)

where

Mφ =

∫
Ω

N�
T NT dV and (3.31a)

Gφ = −
∫

Ω

N�
T u� (∇NT ) dV. (3.31b)

3.3.2 Time discretization

The level set function is updated at each time step by the transport equation (3.13),

which can be rewritten as

φ̇ = −u · ∇φ.
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This equation is integrated upon time using a two–step third–order Taylor–Galerkin

method (2S–TG3), namely

φ̃n = φn +
1

3
Δt φ̇n + α Δt2 φ̈n, (3.32a)

φn+1 = φn + Δt φ̇n +
1

2
Δt2 ¨̃φn

. (3.32b)

The α parameter takes the value 1/9 to reproduce the phase–speed characteristics

of the single–step Taylor–Galerkin scheme (Donea and Huerta, 2002). Taking into

account the incompressibility equation (2.10), the second time derivative of the level

set function φ can be expressed as

φ̈ = −u · ∇φ̇ = u · ∇ (u · ∇φ) = ∇ · ((u · u)∇φ)

therefore, the first step of the Taylor–Galerkin algorithm is given by

φ̃n = φn +
1

3
Δt (−u · ∇φn) + α Δt2∇ · ((u · u)∇φn) . (3.33)

Using the space discretization Φ of the level set function φ, the first and second

steps of the TG3 scheme are expressed in the following matrix forms

MφΦ̃n =

[
Mφ +

1

3
ΔtGφ + α Δt2 Kφ

]
Φn, (3.34a)

MφΦn+1 = [Mφ + ΔtGφ] Φ
n +

1

2
Δt2 Kφ Φ̃n, (3.34b)

where Mφ and Gφ are defined in (3.31), and Kφ comes from the discretization of

the last term of (3.33)

Kφ = −
∫

Ω

(u · u)(∇N�
T ∇NT ) dV.

Note that Gφ and Kφ depend on the velocity field. In the practical implementation,

the velocity field un of the n step is taken constant during the entire time step

and consequently the steady (quasi–static) Stokes problem is not solved for the

intermediate step φ̃n.

To keep the solution in the stability domain of the 2S–TG3 algorithm the time

increment Δt must be such that the Courant vector (cx, cy) satisfy

c2
x + c2

y ≤ 3/4 (3.34)

where cx = uxΔt/hx, cy = uyΔt/hy and hi is the mesh size along the i–th Cartesian

48



CHAPTER 3. NUMERICAL APPROACH

direction. Thus, at most temporal steps the time increment Δt is set to satisfy

c2
x + c2

y = 3/4 θ (3.35)

with θ = 0.9. That means that at each time step each particle moves approximately

nine tenths of the size of the smallest element of the mesh. Nevertheless, there are

situations in which this time increment is too large: if the velocity is slowing down

to zero, in order to satisfy (3.35) the time increment grows to infinite. To avoid

immense time increments, the criterion (3.34) is combined with a time increment

for the diffusive part of the problem

Δtdiff =
θh2

2κ
(3.36)

where κ is the thermal diffusivity and h the size of an element. This guarantees the

stability of the thermal equation at very low velocities. Additionally, an absolute

maximum time increment is imposed. At each step the minimum of the three time

increments is used.

3.4 Coupling scheme

Mechanical and thermal problems are two ways coupled. The heat equation (2.6)

involves several terms depending on the mechanical solution, that is on velocity and

pressure. First, the advective term explicitly involves the velocity field. The thermal

conductivity k, the density ρ and the thermal expansivity coefficient α all have a

dependency on pressure. There are two heat sources directly related with the velocity

field, the shear heating is calculated in terms of the strain rate (the derivative of the

velocity), and the latent heat depending on the vertical velocity. In the other way,

the mechanical Stokes equation (3.3a) involves density and viscosity, both highly

dependent on temperature.

Our model use a staggered scheme to handle the coupling between the thermal

and mechanical problems. At each time step some variables are linearized, for

example the temperature, and others are iteratively solved to account for the

non–linear behavior, for example the velocity.

To move the system from the step n to the following step n + 1, the solver uses

the following scheme (Figure 3.4): first, phase locations in step n + 1 are calculated

by integrating the level set update equation (3.13) using the explicit Padé method.

Second, the thermal field in step n + 1 is calculated by solving the linearized heat

equation (2.6) using the explicit Taylor–Galerkin algorithm. Finally, the mechanical
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Tn Tn+1

un, pn un+1, pn+1

φn φn+1

iii) Mechanical problem

i) Level set

ii) Thermal problem (linearized, explicit)

(quasi-static, non-linear)

(explicit, linear)

Stokes flow

Taylor Galerkin

Padé
step n step n+1

Figure 3.4 – Basic scheme of the solver. To advance one step in time the following
steps are done: i) the phases are updated, ii) the temperature is calculated and iii)
using the calculated locations and temperatures, the mechanical problem is solved.

Stokes problem (3.3) is solved in its quasi–static version by mean of the mixed

finite elements, using the updated thermal field and phase locations. The non–linear

character of the mechanical problem is solved using a basic Picard method. We found

that, after the first step, only two or three iterations are usually needed to converge to

the required accuracy. This fast convergence, due to the small time increments and,

consequently, small changes in the solutions from step to step, makes unnecessary

to implement a more complex methodology to afford nonlinearities.

3.5 Scaling of variables

The equations introduced in this chapter can be stated and solved in a dimensional

or a dimensionless form. For example the dimensionless conservation of momentum

equation described in Section 2.2.6 can be stated in terms of the Rayleigh number.

Here we solve all the equation in its dimensional form, but using dimensionless

variables. That is, the equations are solved as described in this chapter but the

variables are scaled using reference values. Namely, the temperature is scaled using

the largest drop in temperature in the model ΔT , the space is scaled using the height

of the model h0 and the viscosity and velocity are scaled using reference values η0

and u0, respectively. The scaling procedure let the values of these four variables in

the range (0, 1) approximately. Having these variables in a similar range reduces the

condition number1 of the matrices generated by the numerical methods described

in Chapter 3. Using primes to denote scaled variables we use

T ′ = T/ΔT , x′ = x/h0, η′ = η/η0 and u′ = u/uo.

1The condition number associated with a matrix gives a bound on how inaccurate the solution
will be after approximate solution.
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Variable Unit Scaling

Pressure Pa p′ = h0 η−1
0 u−1

0 p

Density kg m−3 ρ′ = u0h0 η−1
0 ρ

Mass kg M ′ = u0 η−1
0 h−2

0 M

Power W P ′ = η−1
0 x−1

0 u−2
0 P

Force N F ′ = η−1
0 x−1

0 u−1
0 F

Energy J E ′ = η−1
0 x−2

0 u−1
0 E

Thermal conductivity W m−1K−1 k′ = ΔT η−1
0 u−2

0

Thermal diffusivity m2s−1 d′ = h−1
0 u−1

0

Thermal expansion K−1 α′ = ΔTα

Compressibility Pa−1 β ′ = η0u0h
−1
0 β

Volumetric heat source W m−3 H ′ = h2
0 η−1

0 u−2
0 H

Specific heat capacity J kg−1K−1 C ′
p = ΔT u−2

0 Cp

Acceleration m s−2 a′ = h0 u−2
0 a

Table 3.1 – Scaling of physical variables

All space dimensions are scaled using the same h0. The η0 and u0 coefficients

are input parameters, with usual values of η0 = 1021 Pa s and u0 = 5 cm yr−1 =

1.6× 10−9 m s−1. All other physical variables can by written in terms of these four

and consequently scaled. Dimensionless quantities are listed in Table 3.1

3.6 Validation of the code

The correctness of the numerical approach described in Section 3.1 is tested here

by means of some academical examples. Firstly, the ability of the level set to

describe interfaces and to ensure the volume conservation is studied. Secondly,

we demonstrate how the enriched interpolation improves the solution. Thirdly, a

qualitative comparison of a Rayleigh–Taylor diapir against a previous model is

presented. And finally, a qualitative and intuitive test is done by sinking rigid blocks

into a viscous media with different viscosity contrasts.

3.6.1 Volume conservation

The goal of this example is testing the description of the phase tracking via the

level set approach (see Section 3.3), the accuracy of the numerical scheme used to

transport the level set (solving equation (3.13)) and the influence of the enrichment
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1 2 3 4

5 6 7 8

Figure 3.5 – Dense fluid falling in a square box. Evolution of the two phases.

in the numerical results. Due to the incompressibility assumption the volume of

each phase has to be conserved along time. Therefore, volumetric changes in time

are used to assess the accuracy of the numerical techniques.

The setup of the simulation is as follows: two immiscible fluids with different

densities and viscosities lay in a square domain. Densities and viscosities are taken

to be of the same order of magnitude as in a geophysical simulation, η1 = 1022 Pa s,

ρ1 = 3300 kg m−3 and η2 = 1020 Pa s, ρ2 = 3290 kg m−3. At the initial configuration

the denser fluid is in the top of a square box. The interface has a small–amplitude

perturbation to induce the instability to develop at the center of the model. The

initial state and several snapshots along the evolution are shown in Figure 3.5. The

evolution from step 6 looses its horizontal symmetry. This is a consequence of the

unstructured mesh. Note that in this example the thermal behavior is not taken

into account and the viscosity and density of each phase are assumed to be constant

(linear mechanical model).

This test is performed with a series of uniformly–refined non–structured meshes.

The results are displayed in Table 3.2, which shows the maximum volume variation

obtained with each mesh. As expected, the finer the mesh, the better description of

the level set and therefore, smaller volume variation is observed. However, even with

a coarse mesh (average edges length is 0.05 of the domain side) the error produced

is less than four percent.

3.6.2 Influence of the enrichment

The influence of the enrichment on the solution of the mechanical equations is

addressed here. The same model as in the previous section is discretized using
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Mesh Elems Initial vol. Δvol % Error
1 910 0.74 0.024 3.3
2 1432 0.74 0.020 2.7
3 2074 0.74 0.016 2.1
4 2832 0.74 0.014 1.9
5 3710 0.74 0.015 2.0
6 4706 0.74 0.014 1.8
7 5814 0.74 0.012 1.6

Table 3.2 – Volume conservation. Maximum volume variation (along time) with
respect to the initial configuration for different uniform meshes.

both enriched and non–enriched interpolations. The standard interpolation (not

enriched) is stated in equations (3.15) and (3.14) for velocity and pressure. The

enriched interpolation is stated in equations (3.18) and (3.19).

The same material properties of the previous section are used. A reference

solution is computed using the mesh displayed in Figure 3.6d, which is composed of

2074 triangular elements. Then, using a coarser mesh composed of 508 elements (see

Figure 3.6c) the problem is solved with and without enrichment and both results are

compared with the reference solution. The solution is analyzed at a given time that

corresponds to the configuration shown in Figure 3.6c. The error is computed as the

difference of the velocity solutions at a fine cloud of sample points. The global figures

displayed in Table 3.3 demonstrate that the error is reduced using the enrichment

both in its average and its maximum value by a factor of approximately 2.

Enriched Not enriched
Max. rel. error 1.212 3.783

Average rel. error 0.1462 0.3331

Table 3.3 – Comparative of errors of enriched and not enriched solutions.

The enriched solution shows smaller errors (approx. one half) when compared

with the non–enriched solution (Figures 3.6a and 3.6b, respectively). The histogram

of Figures 3.6, shows that the lower errors for the enriched solution occur in a much

larger number of points. In addition, the larger error (up to 3.5%) are absent for the

enriched solution.

This example demonstrates that, even in this simple problem, the enrichment

is needed to properly capture not only the discontinuities in the derivatives of the

velocity but also the values of the velocity itself.
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Figure 3.6 – Effect of the enrichment in the discretization error. Histogram of relative
errors: number of occurrences of every error value at the sample points (left). Space
distribution of relative errors for the enriched solution (a) and the not enriched solution
(b). Configuration at the time analyzed (c). Finer mesh used in the reference solution
(d) and coarser computational mesh (e).

3.6.3 Simple Rayleigh–Taylor instabilities

To test our mechanical solver we repeat some Rayleigh–Taylor instabilities sim-

ulations done by Schmeling and published on the web (http://www.geophysik.

uni-frankfurt.de/˜schmelin/presentations/Rayleigh-Taylornew.html ). His

code uses the markers technique to track material phases. Taking advantage of the

horizontal symmetry of problem, only a half diapir is simulated. In Figure 3.7 the

evolution of the models is shown: the left half corresponds to our result and the right

half corresponds to the model of Schmeling. The physical properties and boundary

conditions are shown in the figure. The qualitative comparison shows an agreement

between both simulation to an first order.

3.6.4 Sinking of a hard rectangular block

According to our physical intuitions the deformation of a rigid block sinking in a

viscous fluid vanish with increasing viscosity contrast. Dynamics of sinking at high

viscosity contrast does not depend on the absolute value of the viscosity of the block.

This test proves the accurate conservation properties of our numerical procedure in

terms of preserving the geometry at large deformation and high viscosity contrast
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ρ = 1 kg m-3

η = 1 Pa s

ρ=0,   η = 0.01 Pa s

g = 1 m s-2

1 m

0.
1 

m 0.13 m

free slip 
boundary 
conditions are
imposed in all 
the boundary

1

3

4
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Figure 3.7 – Simple Rayleigh–Taylor instability to check the mechanical solver. Left
half of each snapshot is the result of our code, right half is from Schmeling.

(1 - 106 Pa s) between the harder block and the softer surroundings. The results of

this test are displayed in Figure 3.8. The expected qualitative behavior is obtained:

as the viscosity contrast increases, the deformation of the block decreases.
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 = 1027 Pa s
16.29 My 

 = 3200 kg/m3

 = 1021 Pa s 

 = 1021 Pa s
8.82 My 

 = 3300 kg/m3

 = 1022 Pa s
13.75 My 

 = 1023 Pa s
15.67 My 

 = 1025 Pa s
16.26 My 

Figure 3.8 – Results of numerical experiments for the sinking of rectangular block
at different viscosity contrast between the block and the surrounding soft medium.
Boundary conditions: free slip at all boundaries.
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Chapter 4

Advanced numerical strategies

The previous chapter describes the basic numerical techniques used to solve the

coupled physical equations. Despite some of these techniques are applied for the

first time in geophysical modeling, these techniques are standard in other scientific

or engineering fields. In this chapter we present some original numerical ideas

and some original computational details of our approach. These further numerical

improvements have been developed to properly deal with some unresolved features

of the model. In Section 4.1 an extension of the X–FEM technique to handle a

larger number of materials is presented. The proposed approach is based on using

an ordered collection of level set functions to describe the location of the phases.

A level set hierarchy allows describing triple junctions avoiding overlapping or

“voids” between materials. Moreover, an enriched solution accounting for several

simultaneous phases inside one element is proposed. The interpolation functions

corresponding to the enriched degrees of freedom require redefining the associated

ridge function accounting for all the level sets. The computational implementation

of this scheme involves calculating integrals in elements having several materials

inside. An adaptive quadrature accounting for the interfaces locations is proposed to

accurately compute these integrals. The contents of Section 4.1 are also collected in

a manuscript currently submitted to Computational Methods in Applied Mechanics

and Engineering (Zlotnik and Dı́ez, 2008).

In Section 4.2 an adaptive scheme to track interfaces is proposed and tested.

A simple but efficient adaptive remeshing algorithm is implemented to accurately

track interfaces.

In Section 4.3 some computational aspects of the model are described. One

time–consuming task in finite element–like frameworks is the assembly of sparse

matrices. This is specially relevant in evolutionary processes where the matrices

change and have to be computed at every time step. In this section we analyze several
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factors that may influence on the efficiency of the assembly procedure. Different

insertion strategies are compared using two metrics: a Cost function (the number of

memory movements) and actual computing time. We propose an improved algorithm

implemented in Matlab. It reduces both memory operations and computing time

for all tested cases. This procedure is faster than the built-in Matlab assignment.

A paper with the contents of this section has been submitted for publication to

Communications in Numerical Methods in Engineering (Zlotnik and Dı́ez, 2007).

4.1 Hierarchical X–FEM for n–phase flow

Level set methods are becoming increasingly popular for the solution of fluid

problems involving moving interfaces (Sethian and Smereka, 2003). In the two–phase

case, the level set methods can predict the evolution of complex interfaces including

changes in topology such as deforming bubbles, break-up and coalescence, etc. This

kind of flow is encountered in a wide range of industrial and natural applications.

Despite the term multiphase is widely used in the literature, most works using

level sets for tracking material interfaces limit the number of phases to two. This

restriction comes from the use of the sign of a level set function to describe the

materials location. There are, however, some works handling n–phase models (n > 2)

based on several level set functions. For example, Tan and Zabaras (2007) use the

level set technique combined with features of front tracking methods to model the

microstructure evolution in the solidification of multi–component alloys. In their

work each component is defined by a level set function: the sign limits the solid–liquid

interface. Two algorithms to simulate triple junctions where the interfaces motion

depends on surface tension and bulk energies were proposed by Zhao et al. (1996)

and Ruuth (1998). These works use a number of level set functions equal to the

number of materials. They require adding some further restrictions to the model in

order to prevent overlapping or vacuum between phases.

We propose a different approach to describe and to model n–phase flow problems

based on X–FEM. We avoid the geometrical inconsistency (overlapping or voids) by

introducing a hierarchy between the level sets. Moreover, the enrichment of the

solution is extended to account for triple (or multiple) junctions inside an element.

This allows for handling gradient discontinuities across all interfaces. In the following

sections the hierarchy between level sets and the multiple–enrichment of elements are

presented in the context of a n–phase flow problem. Computational considerations

on how to integrate discontinuous function on elements are discussed next. Finally, in

order to show the behavior of the proposed approach we present several application
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examples of n–phase flow problems driven by gravitational forces in two and three

dimensions .

4.1.1 Phase movement

The location of the different phases is described by a collection of level set functions.

Same as in Section 3.1.2 each level set represents a material properties and it is

transported by the motion of the fluid. Equation (3.13) is now used for the evolution

of each one of the level sets

φ
(i)
t + u · ∇φ(i) = 0 (4.1)

where u is the velocity field, solution of the Stokes problem, and φ(i) is the level set

number i.

4.1.2 Describing a n–phase fluid with (n− 1) level sets

The level set technique is widely used in two and three dimensions to track one free

interface between two materials, see for example (Wagner et al., 2001; Chessa and

Belytschko, 2003; Zlotnik et al., 2007a). This section is devoted to generalize this

strategy to n–phase flows.

Two phases with a single level set

The location of the interface between two materials is described using a level set

function φ(1). The superscript (1) denotes the number of level set and it is useful

when three or more phases have to be described. This superscript is not strictly

necessary in this section, however it is used here to keep a consistent notation in the

following sections. The sign of the level set φ(1) describes a partition of the domain

Ω into two subdomains Ω1 and Ω2 using the following sign convention

φ(1)(x, t) =

⎧⎪⎨
⎪⎩

> 0 for x ∈ Ω1

= 0 for x on the interface

< 0 for x ∈ Ω2

(4.2)

where x stands for a point in Ω and t is the time. The interface is the set of points

where the level set field vanishes. An example of partition is shown in Figure 4.1.

Initially the level set φ(1) is defined as a signed distance to the interface. Far enough

from the interface, φ(1) is truncated by positive and negative cutoff values.

59



4.1. HIERARCHICAL X–FEM FOR N–PHASE FLOW

Ω

Ω1
Ω2

Figure 4.1 – One level set function splits the domain in two subdomains
corresponding to the different phases.

Tracking more than two phases: Hierarchy of level sets

One level set allows for describing only two phases (two subdomains). To include a

third subdomain Ω3 a second level set function φ(2) is needed. We propose to assign

a hierarchy to the level set functions: the subdomain Ω1 is determined by the first

level set φ(1) as

φ(1)(x, t) =

{
> 0 for x ∈ Ω1

≤ 0 for x /∈ Ω1

(4.3)

The curve where the level set φ(1)(x, t) equals zero is the interface between the first

phase and the rest of the domain. That is, either the second or the third phase. The

remaining part in the simulation domain (x ∈ Ω\Ω1) is split by the second level set

φ(2) as

for x /∈ Ω1, φ(2)(x, t) =

{
> 0 for x ∈ Ω2

≤ 0 for x ∈ Ω3

(4.4)

determining the location of the second and third sub domains. Note that the second

level set does not have any influence where the first level set is positive. We say that

the first level set is “prior to” —or has upper hierarchy than— the second level set.

Figure 4.2 shows the partition of the domain by two hierarchical level sets into three

subdomains.

This hierarchy can be extended to the general case of n phases being tracked by

n − 1 level sets. The level set number i, φ(i), defines the location of the phase i as

follows

for x /∈
i−1⋃
j=1

Ωj , φ(i)(x, t) =

{
> 0 for x ∈ Ωi

≤ 0 for x /∈ Ωi

(4.5)

for all i = 1, . . . , n − 2. The level set with lowest hierarchy, φ(n−1), determines the

60



CHAPTER 4. ADVANCED NUMERICAL STRATEGIES

Ω

Ω1

Ω2 Ω3

φ(1)

φ(2)

Figure 4.2 – Two hierarchical level sets describe three material sub domains. The
second level set φ(2) is relevant only where the first level set φ(1) is negative. Dashed
line represents the level set with lower hierarchy eclipsed by the first level set.

Ω

Ω1

Ω2
Ω3

Ω4

φ(1)

φ(2)
φ(3)

Figure 4.3 – Three hierarchical level sets allow describing four material phases. The
last level set φ(3) acts only where the first two level sets are negative.

location of the last two phases in the remaining space as

for x /∈
n−2⋃
j=1

Ωj , φ(n−1)(x, t) =

{
> 0 for x ∈ Ωn−1

≤ 0 for x ∈ Ωn

(4.6)

In this approach the positive part of the i–th level set defines the material

subdomain Ωi and the negative region have to be partitioned by the level sets with

less hierarchy. Figure 4.3 illustrates a partition into four subdomains by three level

sets.

Note that the interface described by a level set does not require to be simply

connected, thus, assigning the right hierarchy to the level sets, any material

configuration can be stated. See a more complex configuration in Figure 4.4.

A compact expression for the domains defined by the hierarchical level sets uses

the McCauley brackets defined by

〈φ〉 = 1/2 (φ + |φ|) .
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Ω

Ω1

Ω1

Ω2

Ω3

Ω4

φ(1)

φ(1)

φ(2)

φ(3)

Figure 4.4 – A complex material distribution can be described with the hierarchical
approach. Here, φ(1) describes a disconnected interface.

Thus, the domain Ωi reads

Ωi = supp

{
〈φi〉

i−1∏
j=1

〈−φj〉
}

.

4.1.3 X–FEM enrichment

The interface described by a level set does not need to conform with mesh edges.

That leads to multiphase elements with different materials inside. Across the

interface a gradient discontinuity arises and therefore the X–FEM enriches the

numerical solution in order to include gradient jumps.

The interpolation of velocity u on the enriched elements is composed by the

standard finite element part plus an enriched part. The latter involves additional

degrees of freedom aj and its associated interpolation functions Mj

uh(x, t) =
∑
j∈N

uj(t) Nj(x) +
∑

j∈Nenr

aj(t) Mj(x) (4.7)

where N is the set of standard finite element velocity degrees of freedom and Nenr is

the set of enriched degrees of freedom. The Nenr set evolves through time affecting

the nodes located along the interface and needs to be recomputed at each time step

after level set movement. The pressure field p is enriched in a similar way.

The interpolation function Mj , associated with enriched degrees of freedom, is

constructed as the product of standard nodal shape functions and a ridge function

denoted by R,

Mj = NjR. (4.8)

The R function is based on the level set and has a “crest” over the interface between

materials. Different ridge functions have been proposed in the literature, see for

example the works of Chessa and Belytschko (2003) or Moës et al. (2003). In the
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Figure 4.5 – Ridge function R based on one level set φ(1).

following, a ridge function properly defined in the elements with multiple interfaces

in introduced. The rationale follows the ideas proposed by Moës et al. (2003).

Two phases, one Ridge

In a two–phase simulation the single interface is described by a unique level set. The

enriched elements are those which are crossed by the interface (where φ(1) vanishes)

and the ridge function can be constructed as (Moës et al., 2003)

R =
∑

j∈Nenr

∣∣∣φ(1)
j

∣∣∣Nj −
∣∣∣∣∣
∑

j∈Nenr

φ
(1)
j Nj

∣∣∣∣∣ . (4.9)

Note that this function vanishes in the element edges not crossed by the level

set. Thus, the interpolation functions of enriched elements conform with those of

not–enriched elements. This kind of function is depicted in Figure 4.5.

Ridge function for two level sets

The three–phase configuration requires reviewing the basic operations in the

previously described approach for the two–phase flow. Firstly, the detection of

enriched element has to include the level set hierarchy. Secondly, the triple junction

case, where two level sets intersects one element has to be considered and properly

resolved.

The detection for elements to be enriched is the following: elements have to be

marked to enrich if they are crossed by the interface described by φ(1) or crossed by

the interface described φ(2) with φ(1) negative. This statement can be easily encoded

in a highly vectorized Matlab function which accepts any element shape in any

number of dimensions and returns if the element has to be enriched or not. See

Algorithm 1.
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Algorithm 1 Matlab code of the function to detect enriched elements

function bool = crossedByLevelSet( levelSet, tolerance )
% bool = crossedByLevelSet(levelSet, tolerance )
%
% Returns if the element has to be enriched or not
%
% INPUT
% levelSet Hierarchical level set field for one element
% Each column has one level set field
% Each row has the value of all level sets in a node
% size( levelSet ) = [numberOfElementNodes,numberOfLevelSets]
% tolerance Level set tolerance
%
% OUTPUT
% bool True if the element has to be enriched
%
if nargin < 2

tolerance = 0;
end
C = find( (˜all( levelSet < tolerance ) & ...

˜all( levelSet >= -tolerance )) == 1, 1 );
M = find( all( levelSet > -tolerance ) == 1, 1 );
bool = (isempty( M ) && ˜isempty( C )) || ...

(˜isempty( M ) && ˜isempty( C ) && C < M);

The ridge function in elements crossed by only the k–th level set is defined as in

the previous case and denoted by r(k)

r(k) =
∑

j∈Nenr

∣∣∣φ(k)
j

∣∣∣Nj −
∣∣∣∣∣
∑

j∈Nenr

φ
(k)
j Nj

∣∣∣∣∣ (4.10)

where k is 1 or 2 for elements crossed by φ(1) or φ(2), respectively. In the elements

containing only one interface the ridge function is equal to the corresponding single

ridge, that is R = r(k).

In the triple junction case, where two interfaces meet in one element, the ridge

function must account for both level sets and the hierarchy between them. In this

case R is defined as

R = r(1) + r(2)C(1) (4.11)

where the cutoff function C(1) introduces the level set hierarchy and is defined as

C(1)(x) =

{
1 if φ(1) ≤ 0

r
(1)
norm otherwise

(4.12)

Here, r
(1)
norm is the normalized ridge of the level set φ(1). The normalization process

modifies the ridge leaving its crest with a constant value equal to one. Therefore,

the cutoff function C(1) is continuous across the interface: r
(1)
norm = 1 at the interface.
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Figure 4.6 – Composite ridge based in two hierarchical level sets. Plot (a) shows the
element and the location of the interfaces. The ridge r(1) of the first level set φ(1) is
shown in (b). The cutoff function C(1) based on the first level set is shown in (c). The
ridge r(2) of the second level set is shown in (d). Plot (e) shows the product r(2)C(1).
Finally, (f) shows the complete composite ridge R = r(1) + r(2)C(1).

The normalized ridge function, r
(1)
norm, is defined as

r(1)
norm =

∑
j∈Nenr

∣∣∣φ(1)
j

∣∣∣Nj −
∣∣∣∣∣
∑

j∈Nenr

φ
(1)
j Nj

∣∣∣∣∣∑
j∈Nenr

∣∣∣φ(1)
j

∣∣∣Nj

(4.13)

The cutoff function C(1) restricts the full effect of the second ridge r(2) to the region

where the first level set φ(1) is negative. Moreover it smoothly kills the value of r(2)

in the side of the first interface where φ(1) is positive. Despite the definition (4.13)

does not include the time explicitly, it inherits the time dependence of the level

sets location, so r(i) (and consequently R) changes through time. The illustration

of the proposed ridge function for an element crossed by two level sets is shown in

Figure 4.6.

The elements where this multiple–enrichment has to be applied are more than
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Figure 4.7 – Example of elements whose ridge must be based on both level sets. Note
that the second level set, φ(2), does not define an interface where the first level set
φ(1) is positive (element 3). Nevertheless, the ridge function in the element 3 must be
constructed using both level sets to guarantee continuity.

the obvious: some of them cannot be detected at the first glance and an accurate

analysis is required to avoid forgetting them. The obvious criterion is: an element

is required to be multiple enriched if it is crossed by two active interfaces. This is

not sufficient to guarantee the overall consistency (continuity) of the interpolation.

This is illustrated in the following example. The elements numbered 1 and 2 in

Figure 4.7 require multiple–enrichment because they have three different materials

in its interior. Note that due to the hierarchy of level sets, the element number 3 has

only two materials inside. Nevertheless, element number 3 must be multiple–enriched

to guarantee the continuity of the interpolation functions. The multiple–enrichment

of element 3 is required to guaranty the conformity with its neighbors: the left side

of the element 3 matches with element 2 because both accounts for both level sets.

The right side of the element is not affected by the second level set, as its ridge is

zero on this edge. Finally, the ridge R on the upper side of element 3 is zero because

of the ridge r(1), corresponding to the level set φ(1), which vanishes on that side.

General case

The latter example is extended to the general case where n level sets simultaneously

cross one element. The general definition of the resulting ridge is

R = r(1) +
n−1∑
i=2

r(i)C(i−1) (4.14)

Note that the ridge function r(i) of a level set not crossing the element is zero, thus

adding all ridges r(i) to obtain R only accounts for pertinent level sets. The C(i)
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cutoff function defined as

C(i)(x) =

{
1 if φ(i)(x) ≤ 0

r
(i)
norm otherwise

(4.15)

Same as for r
(1)
norm, the normalized ridge r

(i)
norm is the ridge r(i) with unitary crest, that

is

r(i)
norm =

∑
j∈Nenr

∣∣∣φ(i)
j

∣∣∣Nj −
∣∣∣∣∣
∑

j∈Nenr

φ
(i)
j Nj

∣∣∣∣∣∑
j∈Nenr

∣∣∣φ(i)
j

∣∣∣Nj

= 1−

∣∣∣∣∣
∑

j∈Nenr

φ
(i)
j Nj

∣∣∣∣∣∑
j∈Nenr

∣∣∣φ(i)
j

∣∣∣Nj

. (4.16)

4.1.4 Numerical integration in multiphase elements

The X–FEM implementation requires computing integrals of discontinuous functions

in elements crossed by the level set. The traditional quadrature rules, for example

Gauss quadratures, are designed to integrate polynomials and regular functions

that are fairly approximated by polynomials. These quadratures are not expected

to show a good performance integrating discontinuous functions. To preclude the

problem associated with discontinuities and to calculate the integrals accurately

it is usual to split multiphase elements in single–material subdomains. In these

subdomains functions are continuous and standard quadratures provide accurate

results. The computational effort and algorithmic involvement of defining each

integration subdomain depends on the shape of the elements and on the number

of spatial dimensions involved. For example, with only one level set, triangular

elements are split into one triangle and one quadrilateral or into two triangles.

This geometrical splitting is coded straightforwardly based on the element geometry

and the level set. The same operation for quadrilateral elements is much more

cumbersome because the number of possible geometrical divisions is much higher.

In particular, the splitting of a quadrilateral generates three–, four– and five–sides

polygons. Further subdivisions are required to integrate on five–sided shapes with

standard quadratures.

In three dimensions the number shapes generated by cutting elements by one

level set increases rapidly. Tetrahedral elements crossed by a plane interface must
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by split into five single–material tetrahedra. This partition of the element is much

more complicated to code and computationally demanding. The element subdivision

is increasingly involved if the number of phases is larger.

Using the hierarchical level set approach the elements are split in polygonal

single–material subdomains with any number of sides. The general case of detecting

each one of the n–side polygons is complex to code and computationally expensive.

In this situation a numerical quadrature acting in the whole element (without any

geometrical subdivision) is even more interesting.

The first trial is using a simple (low order) but very populated quadrature rule.

Intuitively, it is clear that a large number of quadrature points should allow for

integrating the discontinuity accurately. A uniformly refined overkill quadrature

should be accurate enough, though ignoring the location of the interface where

the discontinuity takes place. This integration method should be used only in

elements crossed by several level sets. As they are expected to be only a few of

such elements, the use of a costly quadrature does not affect in practice the overall

computation time. This strategy is used in a triangular element crossed by one

level set with a trapezoidal quadrature on a uniformly refined triangular submesh.

This approach is straightforward to implement as a recursive function and thus

the number of quadrature points can be increased to any desired value. Moreover,

due to the simplicity of the quadrature (first order) is expected to be robust and to

minimize the error in the region where the function is discontinuous. The quadrature

is implemented recursively based in the split of a triangular element into four similar

triangles. It is tested in the computation of an elementary matrix corresponding to

the discretization of the Stokes problem. The element under consideration is affected

by only one level set; the exact solution is, in that case, easily calculated by splitting

the element into three triangles.

The accuracy obtained with this trapezoidal quadrature is disappointing: to

obtain a relative error of 10−2 in all the coefficients of the elementary matrix, 8385

integration points are needed. To decrease this error to 6 × 10−3, the number of

integration points required is 33153. A larger number of integration points does

not reduce the order of the relative error: using 525825 integration points still

produces a relative error larger than 10−3. This number of integration points exceeds

the computationally acceptable. Table 4.1 displays the relative errors obtained for

different levels of recursion.

We conclude that the previous integration method has to be discarded and an

alternative integration procedure is required. Therefore, we propose an adaptive

scheme which increases the resolution along the interfaces described by the level
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sets. This adaptive quadrature is designed to optimize the location of the integration

points. The resolution of the quadrature is improved along the interface using the

following recursive scheme: starting from a coarse subdivision of the element into four

similar triangles, we further subdivide each triangle if it contains an interface. This

is illustrated in Figure 4.8, showing six levels of adaptive refinement. The Matlab

implementation of the adaptive quadrature is shown in the Algorithm 2.

Algorithm 2 Matlab code of the adaptive quadrature

function [pip,wip] = adaptiveQuadrature( Xe, LSe, r, ppg, wpg )
%
% builds a quadrature to integrate a triangular element crossed by one or
% more hierarchical level sets. This quadrature is based on a
% quadrature defined on ppg and wpg
%
% INPUT
% Xe nodal coords
% LSe nodal level set. Each column is a different level set
% r level of recursion
% ppg position of quadrature points used in each sub triangle
% wpg weight of quadrature points used in each sub triangle
%
% OUTPUT
% pip position of integration points
% wip weight of integration points
%
if r == 1

N = [ppg(:,1), ppg(:,2), 1-ppg(:,1)-ppg(:,2)];
pip = N*Xe;
A1 = cross( [Xe(3,:) - Xe(2,:), 0], [Xe(1,:) - Xe(2,:), 0] );
wip = A1(3) * wpg;

else
% Six nodes
Xn = [Xe; reshape( mean( reshape( Xe([1 2 2 3 3 1],:), 2, 6 ) ), 3, 2 )];
% Level set in the nodes
LSn = [LSe; reshape( mean( reshape( LSe([1 2 2 3 3 1],:), 2, ...

53*size( LSe, 2 ) ) ), 3, size( LSe, 2 ) )];
% Local conectivity
ix = [1 4 6; 4 2 5; 6 5 3; 4 5 6];
pip = []; wip = [];
for I = 1:4

if crossedByLevelSet( LSn(ix(I,:),:) )
ri = r - 1;

else
ri = 1;

end
[np,nw] = adaptiveQuadrature( Xn(ix(I,:),:), LSn(ix(I,:),:), ri, ppg, wpg );
pip = [pip; np]; wip = [wip; nw];

end
end

A simple Gaussian–type quadrature is sufficient to integrate the subdivisions not

affected by the discontinuity. In the particular case of the Stokes problem (3.3) the

integrated functions are polynomials of degree four at most. Thus, a seven–point

gaussian quadrature of order four is selected in every single subdivision.

Using a large but reasonable amount of integration points, this adaptive

quadrature drastically improves the accuracy with respect to the uniform trapezoidal

69



4.1. HIERARCHICAL X–FEM FOR N–PHASE FLOW

level = 1

interface

Ω1
Ω2

level = 2 level = 3

level = 4 level = 5 level = 6

Figure 4.8 – Location of integration points in the adaptive quadrature. The number
of integration points in the successively refined quadrature are 7, 29, 49, 112, 259 and
574. The accuracy obtained is shown in Table 4.1.

Trapezoidal quadrature
Recursive Number of Max rel

level points error
1 3 55.6
2 6 13.3
3 15 3.7
4 45 1.6
5 153 0.4
6 561 0.08
7 2145 0.03
8 8385 0.01
9 33153 0.006

10 131841 0.0038
11 525825 0.0019

Adaptive quadrature
Recursive Number of Max rel.

level points error
1 7 5.4
2 28 0.51
3 49 0.38
4 112 0.076
5 259 0.036
6 574 0.0047
7 1225 0.0019
8 2548 0.00029
9 5215 9.65× 10−5

10 10570 1.90× 10−5

11 21301 8.71× 10−6

Table 4.1 – Accuracy of the uniform trapezoid and adaptive quadratures. The relative
error refers to the maximum in the coefficients of the elementary matrix for the Stokes
problem. The location of the interface is same as in Figure 4.8.

integration. Recall that this strategy is only needed in the elements affected by the

interface. However, the computational effort to integrate the stiffness matrices in

these elements is important.

An alternative integration procedure is based in the Constrained Delaunay

Triangulation (or tetrahedralization, in both cases corresponding to the acronym

CDT), as used for instance by Gerstenberger and Wall (2007). This idea is allowing
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Figure 4.9 – Convergence behavior of different quadrature rules

to automatically split the element into monophasic subdomains and thus to use in

each subdomain a simple quadrature. Comparing the cost of these two approaches

is beyond the scope of this work.

The proposed adaptive quadrature is used in examples presented in next section

providing satisfactory results.

4.1.5 Numerical examples

The strategy developed in the previous sections is tested here in some standard

application examples. The n–phase X–FEM approach is used to simulate gravita-

tional Rayleigh–Taylor instabilities in two and three dimensions. The models are

composed by n ≥ 3 immiscible materials governed by the Stokes equation (3.3).

The only driving force in these models is the gravity; the density contrast makes the

buoyant layers (with lower density than the overlying layers) to flow upward and

the denser layers to flow downward.

Two–dimensional three–phase instabilities

The initial configuration of the following examples is given by the location of three

materials, as shown in Figure 4.10. Two level sets are regarded to describe this

configuration. The first level set in hierarchy is the one corresponding to the upper

denser material. The second level set describes the vertical interface between the

two lighter materials. Note than the vertical interface does not continue through the

upper material due to the level set hierarchy. The upper layer is ten times denser

than the two lower materials. The lower materials have different viscosity, thus the

resulting configuration (the formed diapir) looses its vertical axis of symmetry.
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Figure 4.10 – Initial configuration composed of three materials. The upper material is
denser than the other two. The viscosity of the materials for each particular simulation
is indicated on the caption of Figure 4.12.
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Figure 4.11 – The velocity of the growing diapir is used to check the consistency
of the solution. Two series of models are shown: the triangles correspond to uniform
mesh refinements, the circles correspond to adaptive mesh refinements.

Some simple configurations of two–phase Rayleigh–Taylor instabilities allow for

an analytical calculation of the growing velocity. This macroscopic velocity is a

meaningful quantity of interest that can be compared with analogical experiments.

Nevertheless, for the three–phase case no analytical solution is available. Therefore,

no direct quantitative error assessment can be performed. A numerical convergence

analysis is carried out for this problem. Figure 4.11 shows the convergence of the

diapir growing velocity as a function of the number of elements in the mesh. Two

series of simulation are performed: one refining the mesh uniformly (marked with

triangles), the other refining the mesh with an adaptive scheme near the interface

(marked with circles). The adaptive scheme, described in Section 4.2, helps to

converge faster and with less elements than the uniform refinement. A uniform mesh

and several adaptive meshes with different refinement levels displayed in Figure 4.16.
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Figure 4.12 – Evolution of the 3–phase diapir. The models (a), (b), (c) and (d) differ
in the viscosity of the lower right material, which is 1, 5, 10 and 100, respectively. The
other two materials have viscosity η = 1. The upper denser layer has a density of 10,
while the two buoyant lower materials have a density of 1.

The evolution of four models with different viscosity contrast between the two

lower layers is shown in Figure 4.12. The (a) row corresponds with a model where

all the materials have the same viscosity η = 1. In this conditions the two buoyant

materials behave as a unique fluid and a standard symmetric diapir develops. The (b)

row shows the evolution of the diapir when the viscosity of the right lower material

is five times the viscosity of the left material. In this case the symmetry is lost. The

evolution of the left half of the model is similar to the (a) row while the right half of
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the model is controlled by the viscosity contrast between the right material and the

overburden layer. The models of the (c) and (d) rows have a viscosity ratio between

the two lower layers of 10 and 100, respectively. The viscous material of the last

model is almost stopped and the left material develops the diapir. In this example

the main pattern of generated flow changes: at early stages (1st and 2nd snapshots)

the high viscosity of the right material inhibits the movement of the right half of the

model and thus flow is concentrated in the left part of the domain. This configuration

results in a bending of the diapir to the left. Once the material gains enough height

to loose the influence of the viscous layer (last two snapshots), the main flow moves

to the right half of the model because there is more space facilitating the return

flow. This latter inflexion bends the diapir rightward.

The conclusion on this qualitative test, is that the results show a complex

behavior corresponding with the nature of the problem analyzed.

Three–dimensional instabilities

Two examples of gravitational instabilities in 3D are presented next. Firstly,

a Rayleigh–Taylor instability similar to the previous 2D example is presented.

Secondly, an instability where the material phases lays horizontally is shown. In

both cases the domain is a cube.

The first example involves three materials: an upper and denser phase, and two

lower and buoyant fluids with a viscosity ratio of five between them. Same as in the

previous case the level set φ(1) (with highest hierarchy) determines the location of the

upper material and has a initial sinusoidal perturbation to induce the development

of the instability. The second level set represents the interface between the two lower

fluids and is initially set parallel to one wall of the domain. A uniform structured

mesh of 512 (8× 8× 8) 27–noded hexahedra is used in this simulation.

Figure 4.13 shows the location of both level sets after some time steps. In panel

(a) the two level sets are shown. Due to the hierarchy, the vertical level set is only

relevant below the red surface. Panel (b) shows another view of the same surfaces

painted with different colors to emphasize the similarity with the 2D model. Note

that the contact between colors is where the second interface (described by φ(2))

intersects. This 3D example is comparable to the (b) row of Figure 4.12. A snapshot

of the 2D model is included in panel (c), showing the comparable asymmetric pattern

developed.

The second example, involves five different materials. The physical properties

are described in Table 4.2. The contacts between these materials are described by

four level sets. The initial setup and two snapshots of the evolution are shown in
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Figure 4.13 – Interfaces described by two level sets (a). The blue arrows show the
velocity field. Colors in the upper surface of (b) show the contact between different
materials. The generated shape corresponds to the 2D case shown in panel (c) (taken
from Figure 4.12 row (b)).

Figure 4.14 panels (a), (b) and (c).

Layer Viscosity Density
1 1 1
2 10 100
3 10 50
4 10 25
5 10 12

Table 4.2 – Physical properties of materials for the layered 3D model. Layers are
numbered bottom up.

Same as in the previous example, the lower phase is less dense than the overlying

materials and a gravitational instability develops. In this case the buoyant lower

material induces deformation in all the upper layers. Vertical cross–sections in

the center of the model show how this deformation evolves (see Figure 4.14). A

uniform non–structured mesh of 23461 four–noded tetrahedra elements is used in

this simulation. The number of elements corresponds with a uniform mesh with 15

elements per side.

The examples presented in this section show how the multiphase flow evolution is

resolved when i) the level sets intersects each other and triple junction occurs inside

one element and ii) the level sets are parallel inside an element and are convected

keeping parallelism. Both cases behave consistently.
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Figure 4.14 – Initial state (a) and snapshots (b) and (c) of the level set location during
the evolution of the layered model. Panels (d), (e) and (f) show vertical cross–sections
of the model, where the deformation of the layers is appreciated.

4.1.6 Concluding remarks

In this section the classical X–FEM is extended to handle n different materials.

This approach is proposed here in the context of a n–phase flow problem but can

be extended to other problems where the phases are described using level set and

X–FEM. The location of the materials is described by an ordered collection of level

set functions, for which a hierarchy is established. The enrichment of the solution

is also restated to include cases where more than a single interface lies inside one

element. To do this, a ridge function accounting for all level sets and the hierarchy

between them is proposed.

A numerical study on the strategies to compute integrals in the multiphase

elements is also carried out. An adaptive quadrature accounting for the interface

location yields an approximation with sufficient accuracy.

The n–phase X–FEM approach is successfully applied to a multiphase flow

problem in 2 and 3 dimensions, using triangular, tetrahedral and hexahedral

elements.
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4.2 Mesh adaptivity

The accuracy of the solution is related with the discretization of the domain1.

In geodynamic simulations, some quantities of interest may have a much smaller

size than the overall simulated domain. Additionally, these features may change its

location through time. As the problem is described in a Eulerian framework, to

reproduce small features accurately one must either refine the mesh in the entire

region where the interesting feature moves, or adopt a dynamic scheme capable of

track the feature. The first option is a static approach, the same mesh is used

in the entire simulation. The second is a dynamic approach where the mesh is

updated through time, only refining places where more elements are needed. The

main difference between the static and the dynamic approach is the computational

cost. It is theoretically possible to obtain any desired accuracy in a small region by

refining the entire mesh but, in practice, the computational cost of such approach

is prohibitive.

For example, Moresi et al. (1996) studied the behavior of finite element codes to

solve an incompressible Stokes flow problem with variable viscosity. They conclude

that the accuracy of the solution does not decrease with the global viscosity contrast

across the mesh but on the ratio of viscosities associated within individual elements.

In that case the contrast of viscosities can be used as a metric to measure the need

of more and smaller elements.

An example of a small–scale geometric feature in geodynamic models is the

oceanic crust with typical thicknesses of 7 to 10 kilometers, that is less than 0.01%

of the height of the model. To describe it using level sets over a uniform mesh, the

number of elements required increases the running time of a serial code to several

months. A non–uniform mesh can also be used. To preserve accuracy, this mesh

requires to be refined in all the places where the crust may be present during the

simulation. In a slab breakoff problem, for example, this region is an important

percentage of the simulation domain.

Therefore, an adaptive scheme to update the mesh dynamically is an attractive

option. This procedure should detect places where more resolution is needed to

increase the number of elements, while leaving the mesh coarse where the solution

can be easily interpolated. As the model evolves, the dynamic scheme recalculates

the mesh to adapt it to the current situation. This adaptive scheme reduces the

computational cost by decreasing the number of elements. Or, in other words, it

allows for more accurate models with the same computational cost by placing the

1The mesh
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Figure 4.15 – Evolution of the adaptive mesh along time.

elements where they are required.

We developed a very simple but effective adaptive scheme to accurately track

interfaces described by level sets. In that case high element density is needed close

to the interfaces. Our approach uses a coarse mesh with uniform element density as

a base mesh. Its enriched elements, that is, elements crossed by the level set will be

refined into four smaller elements. This procedure is repeated d times. The parameter

d, called the depth of the refinement, controls the final size of the elements; in the

refined regions the expected average element–size is, the element–size of the base

mesh divided by 4d. The pseudo code of this scheme is shown in the Algorithm 3

Figure 4.15 shows the evolution of the mesh along time of a three–phase diapir

simulation. The mesh, refined up to depth d = 3, closely follows the interfaces

between materials defined by the hierarchical level sets. In Figure 4.16 the effect of

the refinement depth from zero to five is shown.

Figure 4.17 compares the same stage of evolution of several models with

increasing refinement depth. The simulations involve three different materials.

Despite the second level set continues below the upper layer, it does not represents

an interface because of the level set hierarchy (see Section 4.1) and, therefore, the

region is not refined. The obtained description of the material locations is clearly

improved as the depth of the refinement increases. The improvement does not only

concern the smoothness of the interface, but also the evolution of the curve. In panels

(a) and (b) of Figure 4.17 the left lower material disappear near the bottom of the

model. This is not due to the size of the elements; the mesh is able to describe the
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Algorithm 3 Pseudo code of the adaptive scheme

Ensure: level set field φ, refine depth d
1: return new mesh, level set supported by new mesh
2: Use the base mesh as the actual mesh
3: Pass the input level set φ to the actual mesh
4: for i = 1 to d do
5: c← 0
6: end for
{Assembly}Assembly the matrix in a traditional way (using EbE– or single–
insertion)

7: for all element e do
8: Find the elements to refine in the actual mesh
9: Refine actual mesh

10: Pass the input level set φ to the actual mesh
11: end for
12: Set the new mesh as the actual mesh

interface. It is related to the accuracy of the mechanical solution.

4.3 Matrix assembly

Assembling a global sparse matrix from elementary matrices is a key operation

in finite element–like frameworks. Despite the great effort that has been done to

optimize sparse algorithms and operations, details of how to set a sparse matrix

are usually not mentioned in the literature. Nevertheless, the matrix assembly is

a time consuming process which, under unfavorable conditions, can overcome the

computing time of the sparse solver.

One of the scenarios where the assembly is time consuming is the solution of

transient multiphase Stokes flow. In this kind of problems matrices have to be

assembled in each time step and the pattern of the matrices is unknown. When

partition of the unity methods are used to enrich the discretization, degrees of

freedom are created and destroyed dynamically at each time step. In practice this

increases dramatically the assembly time.

Matlab is a programming platform frequently used to implement finite element

codes for both research and engineering practice. The reminded of this section is

devoted to analyze both from the theoretical and practical viewpoint the assembly

procedure in Matlab. Moreover, the best option found is provided as open code that

reduces the assembly time in all the cases.
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Figure 4.16 – Uniform mesh (a) and different levels of mesh refinement (b) to (f). All
meshes correspond to the same moment during the evolution of different simulations.
Number of nodes (nn) and number of elements (ne) are indicated for each mesh

4.3.1 Storage and creation of sparse matrices

In Matlab sparse matrices are stored in the classical Compressed Sparse Row format

(CSR) (Mathworks, 2006). The CSR data structure is based in three arrays pr,

ir, and jc. A matrix K composed of m rows and n columns, with nnz non–zero

coefficients is stored in three arrays: 1) the real array pr with length nnz containing

the non–zero values aij stored by column, 2) the integer array ir with length nnz

containing the row indices of the elements of pr and, 3) the integer array jc with

length n + 1 containing the pointers to the beginning of each row in the arrays pr

and ir. The last position of jc contains the number nnz.

That means that, in CSR storage, the non–zero values aij are stored in pr sorted

by columns. When a new value is added it has to be inserted in its corresponding

place. This can lead to moving large chunks of memory if the insertion is done at
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Figure 4.17 – Same stage of evolution of several model with increasing refinement
depth. The improvement of the discretization affects the solution of the flow problem;
in panel (a) and (b) the interface disappears at the left bottom due to the coarse
resolution of the velocity field.

the beginning of the array. Despite memory operations are fast, the large number of

insertions during the assembling process is time consuming.

To study the efficiency of insertions during sparse matrix assembly we define the

Cost of an insertion in a sparse matrix as the number of coefficients moved in pr to

add a new value. The insertion at the end of pr and the modification of an existing

coefficient, both have Cost zero. For example, a full n× n matrix filled sequentially

following the storage sorting has zero assembly Cost. If the same matrix is filled in

the reverse order, the Cost would be n2(n2 + 1)/2.

Two different alternatives are analyzed to minimize the Cost of the assembly

process: i) reduce the Cost of each insertion by node and element renumbering and,

ii) group insertions to make place for several new coefficients in a unique operation.

In Sections 4.3.2 and 4.3.3 we assume that the pattern of the matrix, that is all

its non–zero positions, is completely unknown before the assembling process. The

case of a known, or partially known, pattern is analyzed in Section 4.3.4.

4.3.2 Influence of node numbering

The Cost of the insertion of each coefficient during assembly process depends on the

order in which degrees of freedom are added to the matrix. If degrees of freedom

are added in reverse order, each insertion must move all previously inserted values,

maximizing the Cost of the assembly and wasting computation time. Therefore, the

Cost will be highly influenced by the numbering of the mesh nodes and elements.

Node renumbering procedures have been proposed in the literature to minimize

the bandwidth of a sparse matrix (e.g. Akhras, 1987; Boutora et al., 2007; Cuthill

and McKee, 1969; Kaveh, 1993; Lai, 1998). A lower bandwidth implies that the
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difference of numbering between related degrees of freedom is minimal. A deep

analysis of different renumbering procedures is out of the scope of this work (we

refer the reader, for example, to Lohner (1993)). The efficiency of different ordering

algorithms in finite element models was studied by Kaveh and Behfar (1995).

The classic reverse Cuthill–McKee (RCM) algorithm is used here as a reference

tool to study the influence of the node and element numbering into the Cost of the

assembly procedure. The following assembly procedure in Matlab is considered,

for e = 1:numberOfElements

Te = T(e,:);

Ke = calculateElementalMatrix( e );

K(Te,Te) = K(Te,Te) + Ke;

end

where Ke is the elementary matrix, K the global matrix, T the connectivity array

and Te contains the global numbering of the nodes of element e. The Cost of this

assembly procedure is evaluated for a set of meshes, with and without renumbering.

Figure 4.18 shows the Cost of each insertion during the assembly of the global

matrix corresponding to an unstructured mesh of 104 linear triangular elements.

The assembly Cost for renumbered and non–renumbered cases is shown. The total

Cost of the assembly is the sum of all those values (the area below the curve). During

assembly of the non–renumbered case of the mesh, 32606 coefficients where moved,

while in the renumbered case only 4730 coefficients where moved. In this case, node

and element renumbering allows reducing the Cost by a factor of seven.

Table 4.3 shows the assembly Cost for different meshes. The examples correspond

to different element types (triangle/quadrangle, linear/quadratic). As expected, the

node numbering has a high influence in the efficiency of the assembly process. In most

cases, renumbering reduces the Cost of the assembly. Nevertheless, in two cases the

RCM algorithm increases the bandwidth and the Cost (Meshes 3 and 4 in Table 4.3).

This is due to the fact that these two meshes are structured and, consequently, the

initial numbering of the nodes is somehow optimized. The heuristic RCM algorithm

is designed for general meshes and does not account for the particular features of

every concrete mesh. RCM is therefore expected to perform well for a general mesh

but it is not ensuring a lower bandwidth for all meshes. In particular, this remark

applies to meshes following a very special pattern as, for instance, structured meshes.
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Figure 4.18 – The Cost of the insertion of each element during assembling process
is shown for non–renumbered (a) and renumbered (b) cases. The total Cost is the
area below the curve. The pattern of the matrices, associated with a mesh of 104
linear triangles, is shown in panels (c) and (d). Matrices have bandwidth of 65 and
14, respectively.

Mesh Structured Elem. shape #Nodes #Elem Cost(×104) CostR(×104) Cost/CostR
1 no � 3 104 3.2 0.4 8.0
2 no � 3 4312 2104.7 109.9 19.15
3 yes � 4 400 14.2 19.1 0.7
4 yes � 9 400 670.0 945.7 0.7
5 yes � 3 800 8.0 5.4 1.5
6 yes � 4 800 871.7 55.3 15.7
7 yes � 6 200 41.7 33.4 1.24

Table 4.3 – Comparative of Cost of assembly with and without renumbering for
several meshes. Cost and CostR are the total assembly Cost without and with
renumbering, respectively.

4.3.3 Inserting matrix components by packages

A strategy of inserting matrix components by packages consist on inserting several

coefficients in the global sparse matrix in a unique high–level operation. If the

location of several coefficients in the pr array is known, it is possible to optimize

the insertion algorithm reducing the number of memory movements. In particular,

we compare the single–insertion of every component and the possibility of inserting

all the coefficients of every elementary matrix in a unique high level operation.

Single–insertion versus package–insertion

The two extreme grouping cases are: single–insertion when the position of only

one coefficient is known, and fully ordered–insertion when the complete pattern

83



4.3. MATRIX ASSEMBLY

of the matrix is known and all coefficients (the complete matrix) are inserted in

one operation. The assembling Cost using the single–insertions is the sum of each

individual insertion and the Cost of the fully ordered–insertion is zero. In the later

case the complete pattern of the matrix is known, thus the position of each coefficient

in pr can be calculated in advance and no memory movements are required.

Both cases can be easily implemented in Matlab. The widely used assignment

instruction using matrix–indexes

K(Te,Te) = K(Te,Te) + Ke (4.17)

implements the single–insertion case2. On the other hand, the instruction

sparse(i,j,s,m,n) implements the fully ordered–insert case. This instruction

uses i, j, and s to generate an m–by–n sparse matrix S such that S(i(k),j(k))

= s(k). The main drawback using sparse is that all elementary matrices and all

indices must be stored in memory before calling the sparse function. The memory

needed to store all elemental matrices is, in average, six times larger than nnz for

a triangular mesh, four times for a quadrilateral mesh, 24 times for a tetrahedral

mesh, and eight times for an hexahedral mesh. Therefore, this procedure can only

be used if memory restrictions are not critical.

The EbE–insertion algorithm

Between these two previous extreme cases is the insertion of all the components

of every elementary matrix in a unique operation. Packing the information in a

element–by–element basis is a natural option in finite element context, where one

element is processed at time. Additionally, the package at element level, leads to

minimal changes in existing codes to include the proposed procedure.

We call element–by–element insertion, or EbE–insertion to the insertion of

an elementary matrix in a package. The idea of the algorithm is, first locate all

the positions corresponding to the inserted elements in pr. Some positions may

correspond to already allocated positions in the global matrix. The modification of

existing values is straightforward. The other positions need a modification of pr

to create the places for the new coefficients. As several new places are created in a

single operation, the movements of chunks of pr are reduced.

In other words, inserting every coefficient individually results in moving some

2The algorithm used in Matlab to implement matrix indexing is not available in Matlab
documentation. However, an accurate analysis of execution times indicates that the strategy is
likely based in a single–insertion and, hence, not efficient. A brief discussion is given at the end of
Section 4.3.3.
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components of the pr array several times, especially the components at the end

of the array. Instead of that, we determine the space needed to insert all values

in pr, and then, only one movement of each already allocated coefficient in pr is

performed. Each coefficient is moved as many places as the number of new values

are inserted before it, but just once.

Algorithm 4 lists the pseudo code of the EbE–insertion algorithm used to insert

a elementary matrix Ke into the global matrix K at global positions Te.

Our implementation in C language of this algorithm can be downloaded

from http://www.ija.csic.es/gt/sergioz/. It is ready to build a Matlab

external file (mex file) and it is designed to be used it in any Matlab program with

minimal code changes: only one line of code has to be replaced (the assembly). This

code has been successfully tested in Windows and Linux environments and in 32

and 64 bits processors.

Counting operations

The complexity of the insertion algorithms3 is analyzed by counting the operations

needed to insert a square element matrix of size me in a global square sparse matrix

of size m. The worst case of the the single–insertion algorithm uses

O (
m2

e (b + m + nnz)
)

operations. Where b and nnz are, respectively, the max bandwidth, and the number

of non–zero coefficients of the global matrix. The worst case of the EbE–insertion

algorithm as implemented in this work uses

O (
m2

e b + m + nnz

)
operations. The average case for both algorithms modifies the term nnz changing

it by the average number of pr coefficients reallocated. This number is difficult to

estimate in a general case.

Numerical tests

Analysis of the insertion Cost. To test the EbE–insertion algorithm

proposed in Section 4.3.3 we compare the assembling Cost using both single– and

EbE–insertion procedures. The same meshes of Section 4.3.2 are used here. For

3The complexity of an algorithm is the amount of resources required for its execution as a
function of the size of the inputs. In this case we count the number of memory movements as a
function of the size of the involved matrices.
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Algorithm 4 Pseudo code of EbE–algorithm

Require: global sparse matrix K (stored in the arrays pr, ir and jc), element
matrix Ke, insertion indices Te

Ensure: updated matrix K
{Sort}sort the indices Te and accordingly the element Ke matrix

1: sort Te

2: sort Ke

{Find positions}find the position in K where each coefficient of Ke will be stored.
Each position may be already allocated or not. If not, memory movements are
needed to store the new coefficient in its corresponding place. The position
of the coefficients to be inserted is stored in the newPositions array. The
columns of the K matrix corresponding to the new positions are stored in the
columnNewPositions array.

3: for all coefficient c in Ke do
4: p = find position of c in pr
5: if the position p is not already allocated then
6: add p to the newPositions list
7: add the column to the columnNewPositions list
8: end if
9: end for
{Fix jc}fix the jc array by increasing all values from the columns where the new
coefficients are inserted to the end of the array.

10: for i from 1 to size(modifiedColumns) do
11: increase all coefficients of jc between modifiedColumns[i] and

modifiedColumns[i + 1]
12: end for
{Fix pr}make place in the array pr (and ir) to store the new coefficients.

13: add the size of pr to the end of newPositions array
14: for i from size(newPositions) to 1 step −1 do
15: move i places the segment of pr from

newPositions[i]− 1 to newPositions[i− 1]
16: end for
{Insert}at this point all position in pr were created. Finally, the coefficients of
Ke have to be inserted (or added) to their corresponding locations in pr. Only
rest inserting (or adding) the coefficients of Ke in its corresponding position.

17: for all coefficient c in Ke do
18: insert c
19: end for

each mesh, the node numbering with minimal bandwidth has been used (the RCM

renumbered version of the triangular meshes, and the non–renumbered version of

the square structured meshes). Note that the worst is the node numbering, the

larger is the difference between EbE– and single–insertion algorithms (favoring

EbE–insertion). Therefore, using a different numbering would result in a even better

performance of the EbE–insertion algorithm.
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Figure 4.19 – Comparison of the assembly Cost for single– and EbE–insertion
strategies for different meshes. The mesh and the pattern of the assembled matrix
is shown at the right of each Cost plot. The element type is displayed inside each Cost
plot. The reduction in Cost obtained using the EbE–insertion is displayed in boldface.

Figure 4.19 shows the Cost plots for both algorithms. In each panel the mesh and

the pattern of the resulting matrix is also shown. As expected, the assembly using

EbE–insertion has lower Cost for all the tested meshes. The improvement for high

order elements is much greater than in low order elements. The reduction in Cost

obtained by the EbE–insertion algorithm for second–order square elements is 95.9%
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(the Cost is divided by more than 20). For the linear triangles the Cost reduction is

between the 45 and 28%.

This analysis corresponds to a scalar problem, with only one degree of freedom

per node. For vectorial unknowns, with more than one degree of freedom per node,

the gain using EbE–insertion is even larger.

Analysis of the assembly computing time. The ultimate goal of the proposed

algorithm is to reduce assembling time. The Cost, as defined in this work, is a

theoretical measure that is used as an indicator but it cannot be directly related

with computing time.

To study the time relation between the algorithms, a finite element global matrix

is assembled and the insertion time of each elementary matrix is registered. The

single–insertion is implemented with the matrix indexing Matlab assignment and

the EbE–insertion is implemented in a mex file.

Figure 4.20 shows the measured times for several meshes. The total assembly

time is the sum of all elementary insertions or, graphically, the area below the

curve. The EbE–insertion algorithm reduces the computation time in all tested cases.

The same behavior as with the Cost indicator is obtained: higher order elements

have a larger improvement compared with simpler elements. Assembly time for

mesh 3 (nine–noded quadratic squares) has been reduced in 90% compared with

single–insertion time, even for a small size mesh with 400 elements.

The reduction in assembly time is more significant if the number of elements or

its complexity type increases. This is confirmed comparing the results corresponding

to the meshes with the same element type. See, for instance, meshes 2, 6 and

1 (composed by mini–elements) with 4300, 800 and 104 , respectively. The gain

obtained using EbE strategy is however also important for simple elements. In fact,

even for the simplest 2D elements, the linear triangles, the assembly time is reduced

in 26%.

Since single–insertion is implemented in a Matlab built-in function and

EbE–insertion is a mex file4, the time measured can be biased by different factors

like interpreter time, dynamic link library calls, etc. To fairly compare single–

and EbE–insertion algorithms, a single–insertion routine was implemented in a

mex file and compared with the built-in Matlab assigned function. The mex

implementation is observed experimentally to be of about 10% faster than the

Matlab assignment, probably due to parameter checking. The reduction percentages

displayed in Figure 4.20 refer to the standard Matlab built-in function which is

4Matlab external file.
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Figure 4.20 – Comparison of the computing time used to assembly a global matrix
with different insertion algorithms. The time used to insert each element in the global
matrix is measured. The total assembly time is the sum of all these times, that is,
the area below the plotted curve. Single–insertion algorithm is implemented with the
Matlab matrix assignment. EbE–insertion is coded in C and included as a Matlab
external (mex) file. Same meshes as in Section 4.3.3 are used. In meshes number one
and two a central bubble node is included. Element type is displayed at the right
of each panel. The reduction in the global matrix assembly time obtained using the
EbE–insertion is displayed in boldface.

the natural choice for a standard Matlab user. If expressed with respect to the

mex implementation of the single–insertion, the gain obtained by the EbE–insertion

would be slightly lower.
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The fact that the relation between the built-in Matlab insertion and the mex

single–insertion time is roughly a constant (it does not depend on the element

order or the number of elements), indicates that the number of operations done

by both algorithms are of the same order. This suggest that the Matlab assignment

instruction uses this algorithm.

4.3.4 Using (previous) matrix pattern in a time marching

scheme

In a time marching procedure, where matrices with similar pattern have to be

assembled at each time step, the efficiency of the assembly may be improved using

the pattern of the matrix at the previous step. If the pattern of the matrix completely

changes from step to step, for example if a complete remesh is performed, no piece of

information from previous step can be used and the situation is similar as in previous

Sections. If the pattern of the matrix remains unchanged, all information on the

positions of the coefficients in pr is available, allowing for a zero Cost assembly in

all steps after the first one. An intermediate case happens when most of the pattern

is fixed and only a few positions change. Examples of this case are the mesh updating

methodology proposed by Knupp (2007) and the procedures adding new degrees of

freedom in a partition of the unity framework (Zlotnik et al., 2007a).

A very simple algorithm, taking advantage of the information of the previous

pattern can be implemented by maintaining the ir and jc vectors from the previous

step and resetting the pr to zero. The scheme of this algorithm is summarized in

the Algorithm 5. In the first step the sparse matrix K is cleared keeping the pattern

in the ir and jc vectors. Note that after this step K is not a valid sparse matrix

because it stores zero coefficients. The second step is a standard assembly process.

All inserted coefficients will be added to existing positions in pr. As pr have been

set to zero, the resulting pr vector is the same as starting from a empty matrix.

If the pattern of the matrix is exactly the same of the previous step, all positions

in pr will be set to its new value. If a new coefficient needs to be stored in a

previously non–existent position, the insertion algorithm will generate the required

place. Finally, when the assembly has been done pr needs to be checked to assure

that no zero–coefficients remains. If there are zeros stored they have to be removed

to preserve sparsity. That is done in the third step.

Note that the implementation of this strategy in an existing code is not as simple

as replacing the insertion instruction (4.17), which was the case of the EbE–insertion

algorithm. In fact, this strategy involves intermediate states of non–valid sparse

matrices. The first step (initialization) and the third (fix sparsity) are not standard
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Algorithm 5 Scheme of the pattern–reutilization algorithm

Ensure: global K matrix
{Initialization}Set all coefficients in pr to be zero and left ir and jc unchanged.
Note that after this step K is not a valid sparse matrix because there are zeros
stored (in fact, all stored values are zero)

1: for all coefficient c in pr do
2: c← 0
3: end for
{Assembly}Assembly the matrix in a traditional way (using EbE– or single–
insertion)

4: for all element e do
5: compute the element matrix Ke

6: insert the Ke matrix in the global matrix K
7: end for
{Fix sparsity}If, after assembly, some coefficient of K remains zero, remove it

8: for all coefficient c of K do
9: if c = 0 then

10: remove c from K
11: end if
12: end for

in Matlab. This is because they produce (the first) and fix (the third) non–acceptable

sparse matrices.

The Matlab external routine provided here can also be used to perform these

two operations (using the proper input options). The current implementation is

only valid for matrices K with constant size (the sparsity pattern may change but

the global dimensions m and n must be kept constant). The gain in computing

time obtained by using this strategy in a evolutionary process has been found to

be of about 10%. The outcome of the numerical experiment, with a mesh of 3200

triangular mini–elements, is shown in Figure 4.21.

4.3.5 Summary and conclusions

In this section the assembly of sparse matrices in a finite element–like framework has

been analyzed. A new EbE–insertion algorithm is proposed. It reduces significantly

the assembly computing time. The role of node numbering and the different insertion

strategies have been tested based on a theoretical Cost indicator and computing

time.

Node and element numbering is an important factor, with a high influence in

the efficiency of the assembly process of sparse matrices. Algorithms designed to

reduce matrix bandwidth help to reduce the assembly time in most cases. Bad

node numbering considerably increases the assembly computing time, eventually
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Figure 4.21 – Time of assembly a sparse global matrix in 10 consecutive time steps.
Pure EbE–insertion and the algorithm taking advantage of the pattern of the matrix
in the previous step are compared.

overcoming the time of solving the system.

A simple program based on grouping the insertions of a elemental matrix has

been proposed and tested. This EbE–insertion strategy is natural in finite element

frameworks and requires minimal changes to include it in previous Matlab codes.

This program performs better than the Matlab built-in assignment. In some cases,

reducing the assembly time in 90%.

In evolutionary problems, stiffness matrices must be assembled at each time step

and the pattern of the previous step can be used to improve the assembly. Using

this idea, the assembly time in a standard test is found to be reduced in 10%.

The implementation presented here is a C code that can be compiled to a Matlab

external file (mex file) and straightforwardly included in any existing Matlab code.
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Chapter 5

Stability of the oceanic lithosphere

Oceanic lithosphere is being continuously created at mid–ocean ridges, where

adjacent plates move apart from each other in a process called seafloor spreading.

As the plates diverge, hot mantle rocks ascend to fill the gap and partially melt.

Upon subsequent conductive cooling, these rocks become rigid and form new

oceanic lithosphere. The complementary process of plate consumption occurs along

subduction zones, where plates bend and descend into the Earth’s mantle. The

entire process of creation, lateral displacement, and eventual subduction of oceanic

lithosphere can be thought of as a large–scale convection cell, where the oceanic

lithosphere represents the upper thermal boundary layer.

As oceanic plates move away from ridges, they cool from above, thicken, and

become denser by thermal contraction. This cooling is reflected on the dependence

of geophysical observables on the age of the plate t (McKenzie, 1967; Parsons and

Sclater, 1977). For plates younger than about 70 Ma, both seafloor topography and

surface heat flow (SHF) decrease linearly as
√

t, consistent with predictions from

the half–space cooling model (Turcotte and Oxburgh, 1967). In this model a purely

conductive cooling takes place in an infinite rigid half space.

For larger ages, however, this relation breaks down and bathymetry and heat flow

decrease less rapidly, reaching almost constant values in ocean basins (Parsons and

Sclater, 1977; Schroeder, 1984; Stein and Stein, 1992). Since these observables reflect

the thermal structure of the lithosphere, their flattening implies a similar behavior

for the isotherms within the plate. These features are included in the popular plate

model (McKenzie, 1967), which considers the lithosphere as a cooling plate with a

horizontal isothermal lower boundary. Although this model can explain the observed

flattening of both seafloor topography and SHF, it does not propose any particular

mechanism by which the isotherms are maintained at constant depth. In practice

the plate model demands to add a basal heat to the oceanic lithosphere.



There are mainly two proposals that are aimed to explain this extra heat supplied

to the lithosphere. First, the extra heating is attributed to thermal instabilities

that may occur dynamically below a relatively old lithosphere (sublithospheric

small–scale convection (SSC)) (Parsons and Sclater, 1977; Parsons and McKenzie,

1978; Yuen and Fleitout, 1985). In this model the material at the bottom of the

lithosphere is warmed conductively by the extra heat transported by secondary

convection at the bottom of the lithosphere. Deep lithospheric mantle rocks

consequently become soft enough to creep but, being denser than the underlying soft

upper mantle, they will plunge into it. This process prevents the lithosphere from

continuous cooling as predicted by the half space cooling model. The low viscosity

needed to develop the small–scale convection at the bottom of the lithosphere

is justified by the dependency of the mantle viscosity on the combined effects

of temperature and pressure(Yuen and Fleitout, 1985). Second, the deviations in

observations are believed to be caused by convective processes associated with the

deep mantle, in particular the mantle upwelling plumes (Schroeder, 1984; Davies,

1988; Morgan and Smith, 1992). This model assumes that the departure may be due

to dynamic topography linked to lower mass anomalies or mantle return flows.

Small–scale convection has been studied using theoretical (e.g. Parsons and

McKenzie, 1978; Yuen et al., 1981; Jaupart and Parsons, 1985), numerical (e.g.

Yuen and Fleitout, 1985; van Hunen et al., 2003; Huang and Zhong, 2005; van Hunen

et al., 2005; Huang et al., 2003; Korenaga and Jordan, 2004; Dumoulin et al., 2001)

and analogue models (e.g. Curlet, 2001). All these studies have been focused on the

general conditions for the existence of SSC, but non of them attempted a systematic

exploration of the effects of all relevant physical parameters on SSC. Moreover, either

seismically derived thermal structures or SHF and seafloor topography data have

been used to test the reliability of the results, but no study has combined these three

observables into a single consistent model. This is of particular relevance because

seismic observations seem to favor half–space cooling models over plate models,

while SHF and seafloor topography observations suggest the opposite.

In this chapter a systematic study on the influence of several rheological and

thermo–physical parameters on SSC, its expression in geophysical observables, and

its role in determining the thickness of oceanic lithosphere is presented. Predictions

of seismic velocities, SHF and seafloor topography are used to ensure compatibility

with current observations. In the following sections the statement of the problem

and the applied numerical methods are firstly introduced; then the approach to

calculate the relevant geophysical observables is described; finally, the results and

their implications on the evolution of the oceanic lithosphere are discussed.
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CHAPTER 5. STABILITY OF THE OCEANIC LITHOSPHERE

5.1 Model description

5.1.1 Governing equations

The Earth’s mantle behaves as a highly viscous fluid over the long time scale

(t > 104yr) (cf. Busse, 1989; Schubert et al., 2001). Since the physical properties

of this fluid are strongly dependent on temperature, the physical model involves

a mechanical flow problem coupled to a thermal problem. We consider an

incompressible fluid in a rectangular domain. Due to the almost infinite Prandtl

number of the fluid, inertial terms are neglected and the problem becomes

quasi–static. The transient character of the solution is due to the evolution of the

temperature field. Under the Boussinesq approximation (i.e. the effects of density

variations other than in the body–force terms are neglected), the three unknowns,

velocity u, pressure p and temperature T , are determined by solving the conservation

of momentum, mass, and energy equations introduced in Chapter 2. A similar

approach, including the incompressible and Boussinesq assumptions, has been used

in previous numerical studies of SSC (e.g. McKenzie et al., 1974; Yuen and Fleitout,

1985; Schmeling and Marquart, 1991; Huang et al., 2003; van Hunen et al., 2005,

and others).

5.1.2 Constitutive equation

Convective flow in the Earth’s mantle is possibly due to the high–temperature

creep of mantle rocks. This solid–state deformation mechanism occurs due to

the thermally activated motion of atoms associated with lattice defects such as

dislocations and vacancies (cf. Ranalli, 1995). There is general agreement that

two main creep mechanism are likely responsible for most of the deformation in

the mantle: diffusion creep (Herring–Navarro and Coble creep) and dislocation

creep (Kirby, 1983; Ranalli, 1995). Although there are significant uncertainties

associated with the extrapolation of laboratory results (performed at low pressures

and high strains rates) to mantle conditions, a comparison of microstructures

on experimentally and naturally deformed peridotites indicates that the same

deformation mechanisms detected in laboratory take place in the mantle as well

(Ranalli, 1995; Hirth and Kohlstedt, 2003). Deformation caused by dislocation creep

is evidenced in lithospheric mantle samples (e.g. xenoliths, peridotitic massifs) and

indirectly inferred in the shallow upper mantle from seismic anisotropy studies (see

Nettles and Dziewonski (2008) for a recent review). On the other hand, diffusion

creep may be dominant over dislocation creep at depths > 250 – 300 km, where
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stresses are low and pressure effects become dominant (i.e. the activation volume of

diffusion creep seems to be smaller than that of dislocation creep, (Ranalli, 1995)).

This change in deformation mechanism with depth is consistent with the lack of

significant anisotropy at such depths, although not conclusive (Mainprice et al.,

2005).

Theoretical treatments and experimental observations demonstrate that the

macroscopic creep behavior of rocks is well described using a “power–law” of the

form (Ranalli, 1995; Karato and Wu, 1993; Regenauer-Lieb et al., 2006)

ε̇ = A(σ′/μ)n(b/d)m exp

(
−E + pV

R T

)
(5.1)

where d is the average grain–size, σ′ the deviatoric stress, A the pre-exponential

factor, μ the shear modulus, b the length of the Burgers vector, n the stress exponent,

m the grain–size exponent, E the activation energy, V the activation volume, and

R the gas constant (see Table 6.1). The combination of equation (5.1) with the

definition of viscosity (η = 1
2
σ′/ε̇), allows isolating an explicit expression for η in

terms of T , p and ε̇. This expression is then used to solve equation (2.15).

To compute the viscosity we assume a constant material parameter

AD =
1

2
A−1/nμ−1 (b/d)−m/n ,

including the pre-exponential factor A, the grain–size dependence, and the shear

modulus. Although grain–size may change due to grain growth and dynamic

recrystallization processes, its dependence on stress is not well known. Thus, we

consider only constant grain sizes.

Diffusion and dislocation creep act simultaneously in the mantle (Ranalli, 1995).

In order to account for the effect of the two mechanisms, two different viscosities

ηdiff and ηdisl are computed separately and then combined into an effective viscosity

ηeff , which is computed as the harmonic mean of ηdiff and ηdisl:

1

ηeff
=

(
1

ηdiff
+

1

ηdisl

)
. (5.2)

This expression is truncated if the resulting viscosity is either greater or lower than

two imposed cutoff values (1018 to 1024 Pa s−1). The viscosity ηdiff is computed using

n = 1 while for ηdisl we use m = 0. The values of the rest of the parameters are

described in Section 5.2.

The viscosity is greatly affected by the water content of the rocks and mineralogy.

Its influence on viscosity is detailed in the next section.
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CHAPTER 5. STABILITY OF THE OCEANIC LITHOSPHERE

5.1.3 Phase transitions, mineral and chemical domains

At least four main solid–solid mineral phase transitions occur in the mantle re-

gion considered in this study: plagioclase–spinel, spinel–garnet, olivine–wadsleyite,

and wadsleyite–ringwoodite. Other phase transitions (e.g. orthoenstatite to clinoen-

statite) may occur within the domain, but their effect on the type of gravitational

instabilities of interest are negligible. Here we consider explicitly the spinel–garnet,

olivine–wadsleyite, and wadsleyite–ringwoodite phase changes, which are the most

relevant in terms of density and viscosity contrasts that may exert a control on

the vertical structure of SSC. Each of these phase transitions is characterized by

a particular Clapeyron slope, which we approximate as linear functions in the

temperature–pressure domain (See Table 2.3). To accurately reproduce the Clapey-

ron curve of the spinel–garnet transformation, two different linear functions are used.

The olivine–wadsleyite and wadsleyite–ringwoodite transitions occur at ∼ 410 and

510 km depth, respectively, in a pyrolitic adiabatic mantle. The spinel–garnet tran-

sition occur between ∼ 40 – 80 km depth. The depth variability in the latter is due

to the exothermic nature of the reaction and the rapid horizontal temperature vari-

ation in the shallow oceanic upper mantle. The spinel–garnet phase change occurs

deep enough to be affected by SSC, and given its exothermic nature and associated

density change (0.8 – 1.0 %, Afonso et al. (2007)), it could influence on SSC through

buoyancy enhancement (cf. Schubert et al., 2001).

The phase transitions not only affects to density and thermal conductivity but

also the viscosity. A viscosity increment of a factor ∼ 10 has been reported in the

transition zone due to the wadsleyite–ringwoodite transition at ∼ 410 km depth

(Hager and Richards, 1989).

Within the lithosphere chemical boundaries may also greatly influence the

density and viscosity distributions. The oceanic lithosphere forms as the residue

of partial melting beneath mid–ocean ridges, which are driven by passive upwelling.

The partial melting process on the ocean ridges results in a mantle residue that

is not only chemically buoyant but also dehydrated, the latter resulting in an

increase of intrinsic viscosity, see Figure 5.1 . These effects of the residual layer

are to compete against the development on convective instabilities. There are two

important consequences of melt extraction. Firstly, the residue becomes intrinsically

lees dense because the dense minerals, garnet and clinopyroxene, are exhausted and

the proportion of Fe relative to Mg decreases. Secondly, the progressive dehydration

of the solid residue due to the incompatible nature of H2O during partial melting.

The intersection of the mantle adiabat and the mantle solidus represents the depth at

which dry melting initiates and the peridotite residue can be completely dehydrated.
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Using the parameterizations of the degree of melting, F , depending on pressure

taken from Afonso et al. (2008)

F (p) =

{
25.23− 16.19p if p < 1.25 GPa

10.0− 4.0p if p > 1.25 GPa
(5.3)

and assuming a linear decrease in water content, W , between 0 and 3% of melt,

W (F ) =

⎧⎪⎨
⎪⎩

1 if F = 0

0 if F > 3

1− F
3

otherwise

(5.4)

we compute the dry–wet viscosity transition within the oceanic lithosphere, shown

in Figure 5.1, as a linear combination of the fully wet and fully dry cases

ηeff = ηwetW + ηdry(1−W ) (5.5)

where ηwet is the viscosity based on diffusion and dislocation deformation

mechanisms and ηdry is incremented in two orders of magnitude.

5.1.4 Geophysical constraints to mantle dynamics

Geophysical observables are commonly used to infer the physical state of the Earth’s

interior. Available data sets that help to constrain, to different extents, mantle

dynamics include ocean floor topography, surface heat flux and seismic velocities.

As a post–process of our simulations, we estimate these observables.

Seafloor topography. Seafloor topography is estimated assuming local isostasy

(i.e. mass per unit area of a vertical column is compared with respect to a reference

value taken at the ridge). Following Jarvis and Peltier (1982), we define the isostatic

topography wiso as

wiso =

∫ surface

dcom

(ρ− ρref) dz (5.6)

where dcom is a compensation depth and ρref is the density at the reference column.

Although the choice of dcom is somewhat arbitrary, it should be taken close to the

depth of the deepest isotherm with a dominant conductive component. Isotherms

significantly deflected by convection are associated with dynamic loads that are not

isostatically compensated (see dynamic topography below).
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Figure 5.1 – Transition from dry to wet rheology due to dehydration produced
by partial melting in the mid–ocean ridges. The thermal bottom of the lithosphere
(dashed line) is determined by the 1603 K isotherm. Profiles at ∼ 60 km from the ridge:
(b) strain rate (log scale), (d) dimensionless water content. The effective viscosity is
computed in terms of the dislocation and diffusion creep laws as an harmonic mean.
At ∼ 410 km depth, the wadsleyite–ringwoodite transition produces an increment in
viscosity of one order of magnitude (Hager and Richards, 1989). In the dry zone within
the lithosphere, the viscosity is incremented two orders of magnitude (Lee et al., 2005).

Dynamic topography. Vertical components of mantle flow may result in a

modification of the surface topography. The resulting topography arising from this

mechanism is known as dynamic topography, to distinguish it from that part of the

topography resulting from the isostatic compensation of static loads (see above).

Following McKenzie (1977), we estimate the dynamic component of topography

wdyn as

wdyn =
σzz

ρ g
(5.7)

where σzz is the vertical stress component acting on the surface, ρ the density, and g

the vertical component of the gravity acceleration. Convective shear stresses acting

at the base of the lithosphere would also have an effect in the dynamic topography.
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However, they typically represent less than 5% of the dynamic topography generated

by vertical stresses and therefore they can be neglected (Marquart and Schmeling,

1989). In all our simulations the dynamic topography associated with SSC never

exceeds ± 150 m. This number would be reduced by as much as 75 % if we included

the elastic strength of the plate (Marquart and Schmeling, 1989).

Seismic velocities. The calculation of seismic velocities [V 2
p ρ = KS + 4/3G and

V 2
s ρ = G] requires knowing the elastic moduli of each stable phase, the density of the

bulk rock at the pressures and temperatures of interest, and estimations of anelastic

attenuation. Here we compute these properties by a free energy minimization

procedure (see details in Connolly, 2005) within the system CFMAS (CaO-FeO-

MgO-Al2O3-SiO2). These five major oxides make up more than 98% of the Earth’s

mantle, and therefore they constitute an excellent representation of mantle’s

composition. The minimization program (PerpleX) requires a thermodynamic

database for pure end–members and solution models to compute the properties

of stable phases (usually solid solutions of two or more end–members). The

thermodynamic database used in the energy–minimization is that of Stixrude and

Lithgow-Bertelloni (2007) with solution models as listed in Table 2.2 of Chapter 2.

The thermal and pressure fields necessary to calculate the seismic velocities are

obtained from the thermo–mechanical simulation. This generates an unavoidable

inconsistency between the density values used to calculate buoyancy forces in

the thermo–mechanical problem and those used to calculate seismic properties

in the energy–minimization scheme (densities from the energy–minimization are

systematically greater than those from the thermo–mechanical simulation). Parallel

computations indicate that this inconsistency translates into errors of � 1.1 % in

our calculated absolute seismic velocities. However, the seismic structure (i.e. spatial

velocity distribution) generated by our models is not significantly affected.

Anelastic effects are computed as a function of grain size, d, oscillation period,

To, T , p, and empirical parameters A, E, and α as Karato (1993); Afonso et al.

(2008)

Vθ = Vθo(P, T )
[
1− ζ cot

(πα

2

)
Q−1

s (To, T, p, d)
]

(5.8)

where Vθo(p, T ) is the unrelaxed high frequency wave velocities at a given

temperature and pressure (i.e. including anharmonic effects) and θ stands for either

P–wave or S–wave velocities. The term ζ takes the values 2/9 and 1/2 for P–waves

and S–waves, respectively (Afonso et al., 2008). The quality factor is represented as

Q−1
s (To, T, p, d) = A

[
To d−1 exp

(−E + V p

RT

)]α

(5.9)
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with A =750 s−α μmα , α = 0.26, E = 424 kJ mol−1, V = 1.2−1.4×10−5 m3 mol−1,

and R the universal gas constant (Jackson et al., 2002; Faul and Jackson, 2005).

5.1.5 Model setup and boundary conditions

The simulation domain is a rectangular box representing a vertical plane parallel to

the plate motion, see Figure 5.2a. The box is divided into approximately 13000

triangular elements representing a vertical thickness of 660 km in nature. The

horizontal dimension is 7000 km wide, unless indicated otherwise. Since the oceanic

crust does not play any significant role on the dynamics of SSC, it is neglected in

our model. Temperature boundary conditions assume constant temperatures at the

surface and at the bottom of the simulation domain and zero–flux on the domain

sides. The initial internal temperature distribution follows the half–space cooling

model, which is calculated in terms of the surface temperature Tsurf , temperature

at the bottom of the lithosphere Tlith, and thermal diffusivity κ as Schubert et al.

(2001)

T (t, z) = (Tsurf − Tlith) erfc

(
z

2
√

κ t

)
+ Tlith (5.10)

where t is the age of the plate, z is the depth and erfc is the complementary error

function. The age t is directly related to the horizontal space dimension through

the plate velocity. This model gives “conductive” temperatures above a specific

isotherm Tlith, which represents the base of the lithosphere. For temperatures below

this isotherm, a linear interpolation is done between Tlith (here chosen = 1603 K) and

the temperature at the bottom of the box, Tbot. The latter is chosen to be 1880 K,

in accordance with results from high–pressure and high–temperature experiments

on mineral phase equilibria (e.g. Katsura et al., 2004). On the laterals the normal

flow is set to zero.

A constant horizontal velocity is imposed at the top of the model, everywhere

but near the corners (see Figure 5.2a). Imposing a constant velocity at the top of

the entire domain generates singularities in the upper corners (and nearby regions)

where the strain rate reaches unrealistic high values. We avoid this undesired effects

by allowing a free–slip condition in regions near both corners, which leads to the

generation of a smoother corner flow. For similar reasons, we further introduce two

small weak zones near the upper corners (see Figure 5.2a), as commonly done in

similar studies (Huang and Zhong, 2005). The viscosity in these regions is divided

by 10, 100 or 1000 depending on the model. In the other three sides of the domain

free slip boundary conditions are imposed. To avoid excessive heating generation at

the corners of the model, shear heating is turned off within two rectangular areas
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Figure 5.2 – Boundary (a) and initial (b) conditions for SSC models. The gray areas
in panel (a) are the regions were viscosity is decreased. The dashed lines delimit areas
where shear heating is neglected.

at the ends of the domain (see Figure 5.2a). Each rectangle represents 10% of the

total domain length. Since we are interested in the generation and evolution of SSC

regions well outside these regions, the neglect of shear heating within them does not

affect our results and conclusions.

5.2 Results

This section is organized in two parts. In the first part the main features of SSC and

its effect on the thermal structure of both lithosphere and sublithospheric mantle is

described. In the second part systematical analysis of the influence of key physical

parameters on the generation and evolution of SSC is presented.

5.2.1 General features of small–scale convection

In this section an illustrative model in which SSC is fully developed is presented. The

imposed upper velocity is 3.5 cm yr−1, comparable to absolute velocities reported for

oceanic plates (Gripp and Gordon, 2002). The only internal heating term included in

the energy equation is the adiabatic heating (i.e. shear heating and radiogenic heat

production are set = 0). The wet to dry rheology transition is not included in this

model. Instead, we assume a pure Newtonian rheology with the following parameters:

activation energy E = 120 kJ mol−1, activation volume V = 4 ×10−6 m3 mol−1,

and pre-exponential factor AD = 7.6 × 10−16 Pa−1 s−1. Similar values have been

extensively used in earlier studies on SSC (e.g. van Hunen et al., 2003; Huang

and Zhong, 2005; van Hunen et al., 2005; Huang et al., 2003), allowing qualitative

comparisons between these and our models. We emphasize, however, that the chosen
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Figure 5.3 – Typical temperature (a), viscosity (b) and vertical velocity (c) when
small–scale convection develops. Temperature expressed in K, viscosity in Pa s. See
text for details.

activation energy and pre-exponential factor values are too low to be consistent

with currently available laboratory experiments on diffusion creep (e.g. Karato and

Wu, 1993; Hirth and Kohlstedt, 2003). A complete discussion on the effects of these

parameters on the development and evolution of SSC is provided in the next section.

Figure 5.3a shows the resulting thermal structure after the dynamic steady–state

is reached At this stage, the onset of SSC occurs at ∼ 2100 km from the ridge (dotted

line in Figure 5.3) or when the lithosphere is ∼ 60 Ma old. At shorter distances

(younger lithosphere), the isotherms follow closely the initial thermal structure
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predicted by the half–space cooling model. The wavelength of the instabilities is

of the order of 150 – 200 km throughout the entire model. Some isotherms (in

Kelvin) are plotted to show the perturbing effect of SSC. The 1603 K isotherm,

which is typically assumed to represent the base of the lithosphere, is completely

distorted due to SSC (advection–dominated). Even the 1473 K isotherm shows an

advective component, although considerably less than hotter isotherms.

The resulting viscosity structure is plotted in Figure 5.3b. In order for SSC

to develop, we find that the viscosity of the upper 300 km of mantle needs to

remain lower than 1020 Pa s, since values inhibits SSC. This value is similar

to those previously reported by different authors (Korenaga, 2002; Huang and

Zhong, 2005; van Hunen et al., 2005). Figure 5.3c shows the vertical component

of the velocity vector. Small–scale convection produces a significant vertical flow.

Maximum velocities reach values of about 6 cm yr−1, which is a factor of two greater

than the imposed surface velocity. Strain rate values are within the range of 10−14 –

10−15 s−1 between 100 and 500 km depth; the greatest values in the entire domain

are always associated with SSC cells.

The dashed line, at about 3750 km, shows the correspondence of the drippings

of lithospheric material with high values of viscosity and downward velocity. The

viscosity is increased because cold lithospheric material is downwelled to higher

pressures. No dripping instabilities are seen close to the ridge. The dotted line at

about 2100 km shows the place of the onset of SSC determined by simple observation.

This distance to the ridge corresponds with a 60 Ma old lithosphere.

As expected, SSC slows down the conductive cooling of the lithosphere by

replacing cold mantle with hotter mantle, effectively reducing its thermal thickness

when compared with predictions from the half–space cooling model. Likewise, the

underlying sublithospheric mantle is cooled by the cold downwellings. We illustrate

this effect in Figure 5.4. This Figure compares temperature profiles across the mantle

at different simulation times, starting from the initial temperature distribution

given by the half–space cooling model (red line in Figure 5.4). The profiles are

located at 3000 km away from the ridge, where the plate is 85.7 My old. To remove

short–wavelength temperature anomalies, the temperature is horizontally averaged

in a 400 km region (from x = 2800 to 3200 km). The profiles in panel (a) clearly

show that the lithosphere reaches a “steady” thermal thickness after ∼ 60 My of

simulation time. However, a closer inspection (panel c) reveals that this steady

thickness is reached after only ∼ 30 My of simulation time. During this time, about

50 km of unstable lithospheric material is removed, thinning the thermal thickness

plate by an equal amount. This indicates that the temperature structure predicted
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Figure 5.4 – Temporal evolution of temperature at 3000 km away from ridge.
Panel (a) and (c): temperature profiles at different times. Panel (b) temperature
variation between 1 and 180 My. The model includes shear heating and radiogenic
heat production of 2× 10−8W m−3

by the half–space cooling model for plates older than 65 Ma is extremely unstable

in a convecting mantle characterized by the present physical parameters.

At the base of the lithosphere, temperature increases by about 200 K with

respect to predictions from the half–space cooling model (see panel (b)). At depths

between 200 and 400 km, the temperature variation is < ± 25 K with respect

to the initial “adiabatic” profile, but this difference increases to > 75 K (i.e.

colder) in the transition zone. However, the latter value needs to be taken with

caution, since our energy equation does not include the effect of latent heat of phase

transformations (olivine–wadsleyite and wadsleyite–ringwoodite). It has been shown

that the temperature increase across the transition zone along an adiabat can be as

much as 100 K (Katsura et al., 2004). Therefore, if we take into account this effect,

the temperature difference between our initial “adiabatic” and the final profiles is

reduced to � 10 – 20 K. This supports our choice for the temperature at the bottom

of the simulation box.
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Table 5.1 – Oceanic models

Model SH RHP (W m−3)
09 no 0
14 yes 0
15 no 2.0× 10−8

16 yes 2.0× 10−8
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Figure 5.5 – Lithospheric base defined by the averaged 1603 K isotherm.

5.2.2 Influence of key physical parameters

Effect of shear heating and radiogenic heat production. In the following

set of numerical experiments, the effects of shear heating and radioactive heat

production (RHP) are tested for a model with identical rheological parameters as

in the previous section. Table 5.1 lists the models and whether they include or not

shear heating and RHP. The adopted RHP rate per unit mass is at the high end of

estimated values for the mantle (Ranalli, 1995; Labrosse and Jaupart, 2007). Model

09 was described in the previous section and is shown in Figure 5.3. We note that

SSC is active in all four models.

In order to make a meaningful comparison between our results and those from

conductive plate models, we calculate the averaged depth of the 1603 K isotherm by

applying a moving–average filter to the depths of the isotherms. Since the wavelength

of SSC is 150 – 200 km, a window size of 250 km removes the intrinsic local variability

caused by SSC without adding significant diffusion.

The averaged 1603 K isotherm, defining the bottom of the lithosphere, for

the four models is shown in Figure 5.5. We find that values of shear heating

associated with SSC are of the same order as the RHP (10−8 W m−3), although some

punctual values can become one order of magnitude greater. Nevertheless, as shown

in Figure 5.5 the shear heating has little or no influence on the final lithospheric
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thickness. Models 09 and 14 exhibit an average lithospheric thickness of ∼ 200 km in

plates 100 My old. This value is well outside the ranges of all existing plate models

(cf. Schubert et al., 2001), and predicts patterns of seafloor topographies and SHF

that do not fit observed data satisfactorily (Figure 5.6). On the other hand, the

inclusion of RHP brings the average thickness of old oceanic lithosphere to values

around 125 km, closer to results from theoretical plate models (Parsons and Sclater,

1977; McKenzie et al., 2005) and combined geophysical–petrological models (Afonso

et al., 2007). This result is in agreement with those from Huang and Zhong (2005).

Influence of adiabatic heating. In the absence of other sources of heat, a fluid

element would undergo changes in temperature due to variations in pressure. In

a convecting mantle, major changes in pressure are related to vertical motion of

material. Without adiabatic heating, the density difference between downwellings

and upwellings increases, enhancing SSC. We illustrate this by setting to zero the

adiabatic heating term in one of our previous models (model 95 in Figure 5.5).

In this case, the vigor and eroding capacity of the convective cells is dramatically

increased. Average lithospheric thicknesses are now 25 to 50 km thinner than in the
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case with adiabatic heating. As a result, seafloor topography and SHF data are more

closely reproduced, although a continuous decrease with time is still seen in both

observables (i.e. no flattening, Figure 5.6).

Adiabatic heating has been neglected in most studies addressing SSC (e.g. van

Hunen et al., 2003, 2005; Huang et al., 2003; Dumoulin et al., 2001; Zaranek

and Parmentier, 2004). Huang and Zhong (2005) state that adiabatic and shear

heating was explicitly included in their calculations, but no assessments of their

influence on SSC or on the thermal structure of the plate were provided. Our

results indicate that adiabatic heating exerts a major control on the final structure

of the oceanic lithosphere (Figure 5.5). Consequently, any attempt to explain its

thermal structure and associated geophysical observables using thermo–mechanical

models should consider this effect. In principle, this conclusion also applies to other

gravitational instabilities such as lithospheric delamination and unroofing, although

further studies are needed. In this context, we emphasize that it is widely accepted

that the temperature increase within most of the Earth’s mantle follows closely the

condition of uniform entropy (i.e. adiabatic profile, cf. Schubert et al., 2001).

Influence of plate motion. A positive relation between the onset time of

SSC and plate velocity has been reported in several studies (Houseman, 1983;

Huang et al., 2003; van Hunen et al., 2003). Using isoviscous convection models,

Houseman (1983) found a clear delay in the SSC onset when increasing plate velocity.

This author suggested that sufficiently high plate motions may even preclude the

development of gravitational instabilities. van Hunen et al. (2003) described a similar

behavior in their 2D Newtonian simulations; on the other hand, Dumoulin et al.

(2001) found no significant correlation between the onset time of the first dripping

instability and plate velocity.

We have run five Newtonian models to test the role of plate velocity on the

development of SSC. The parameters used in these models are those of model 16

in Table 5.1. We found a positive correlation between plate velocity and the onset

of SSC. For velocities of 2, 4, 6, 8, and 10 cm yr−1, the first drippings appear

when the plate is 28, 43, 70, 72, and 80 My old, respectively, in agreement with the

observations reported in van Hunen et al. (2003) and Houseman (1983).

Influence of rheological parameters. We run fourteen Newtonian models in

which we varied the pre-exponential factor AD and the activation energy E to test

the sensitivity of SSC to these parameters. Figure 5.7 shows which models developed

vigorous SSC (in green) and which ones failed to do so (red). The results suggest a

quasi–linear relation between E and AD that defines the region where SSC can be
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Figure 5.7 – Models varying the activation energy E and the material parameter AD.
Models marked with cross do not initiate SSC, models marked with tildes do initiate
SSC. A linear relation between E and AD defines the region where SSC is active. The
gray region indicates ranges in agreement with laboratory experiments. Numbers at
the side of the markers are the run number.

active. Moreover, the range of values that define this boundary seems to be rather

limited (see e.g. experiments 69–64 and 9–48), indicating that the development of

SSC is extremely sensitive to these parameters, and hence to viscosity. In fact, the

straight line in Figure 5.7 separates the models with average upper mantle viscosities

� 1020 Pa s (green) and > 1020 Pa s (red). This viscosity value is found to be a limit

above which vigorous SSC cannot develop. When the average viscosity of the upper

mantle is above this threshold, the cooling of the oceanic lithosphere follows closely

the HSC model. Although some small instabilities may develop at the base of the

lithosphere, they cannot evolve into well defined drippings due to the high viscosity

of the mantle below. This in turn precludes any significant thermal erosion of the

lithosphere. A similar result was also found by Huang et al. (2003). On the other

hand, if the average viscosity of the upper mantle is below ∼ 2×1019 Pa s, velocities

associated with SSC reach unrealistic values (> 10 m yr−1), the lithosphere is

strongly eroded, and SHF and seafloor topography depart significantly from the

observed values.

The shaded box in Figure 5.7 represents the range of values for E and AD from

laboratory experiments (Ranalli, 1995; Karato and Wu, 1993; Hirth and Kohlstedt,

2003). Three of our models (labeled as 63, 69, and 73) that developed SSC are well

within this range. Note also that the parameters used in our previous Newtonian

examples (taken from previous studies) are far from experimental results. Figure 5.6

shows the observables predicted by model 69. In this model, both elevation and SHF
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Figure 5.8 – Synthetic Vs seismic structure

increase steadily with age, in contrast to what it is observed. However, its seismic

structure (Figure 5.8) resembles closely those recently obtained from tomography

studies in the Pacific as well as in other oceans (compare with Figure 10 in Maggi

et al. (2006) and Figure 11 in Ritzwoller et al. (2004)). Other similar models (not

shown here) give identical results. This discrepancy between what is inferred from

seismic data and from other observables (i.e. SHF, bathymetry) is a fundamental,

yet not solved, problem in geodynamics.

To this respect, it is worth noting that van Hunen et al. (2005) recently concluded

that dislocation creep (i.e. non–Newtonian rheology) is the main deformation

mechanism in the upper mantle, based on a comparison between their numerical

simulations and the tomography from Ritzwoller et al. (2004) in the Pacific. The

lithospheric thermal structure derived by (Ritzwoller et al., 2004) shows a distinctive

flattening of the isotherms (strictly, isovelocity contour lines) between 70 and

100 Ma, which these authors associate with a period of lithospheric reheating.

van Hunen et al. (2005) showed that this reheating could be modeled only with

non–Newtonian models, if the adopted rheological parameters are taken to be

consistent with laboratory experiments. However, the unrealistic thermal structure

used in the numerical simulations (see their Figure 3), as well as the neglect

of activation volumes and internal heating, make their conclusions ambiguous.

Moreover, Maggi et al. (2006) has recently presented a tomography for the Pacific

in which no flattening of the isovelocity contours is observed. These authors pointed

out that the flattening observed by Ritzwoller et al. (2004) may be an artifact

due to insufficient path coverage. If this is true, and at the light of our results

with Newtonian models, the argument used by van Hunen et al. (2005) favoring
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dislocation over diffusion creep in the upper mantle becomes invalid.

There is, however, abundant independent evidences that point to dislocation

creep as the main deformation mechanism in the upper mantle (Ranalli, 1995; Karato

and Wu, 1993; Hirth and Kohlstedt, 2003). We have run experiments with combined

dislocation–diffusion creep rheologies, always restricting rheological parameters to

realistic ranges (i.e. within the shaded box in Figure 5.7 for diffusion creep, and

n = 3.5, E = 500, V = 17 and AD = 2.42× 10−14 for dislocation creep), to test the

potential eroding effect of dislocation creep. In our simulations, dislocation creep

becomes dominant in the first 250 – 300 km (i.e. ηdisl < ηdiff ) and generates an

extra 20 – 50 km of erosion at the bottom of the lithosphere (Figure 5.5). Due to

the greater activation volume of dislocation creep, and the small convective stresses

generated below ∼ 250 km depth (� 0.1 MPa), diffusion creep becomes dominant

below this depth. Interestingly, the resulting seafloor topography and SHF exhibit

wide regions where the signals become flat (Figure 5.6), but the overall fitting to

observed data is still poor.

Influence of partial melting and water content at mid–ocean ridges.

Water content has a large effect on the viscosity. Due to the incompatibility of

water, a small degree of partial melting (3 – 5%) is enough to dehydrate mantle

rocks, leading to a much more viscous residue and viscosity can be increased by

10 – 100 (Karato, 1986; Hirth and Kohlstedt, 2003; Lee et al., 2005).

This increment in viscosity due to the dehydration of rocks at oceanic ridges

has a first order influence on the thermal evolution of the oceanic lithosphere.

Considering a wet rheology for the upper mantle and including the transition

from wet to dry rheology within the lithosphere greatly enhances the flattening

effect of SSC. Lithospheric thickness, heat flow and ocean floor depth, all show

an important flattening for lithospheric ages older ∼ 70 Ma as shown in Figure 5.9.

This simulation, which includes the simple melting model described in Section 5.1.3,

reproduces accurately the geophysical observables and the expected onset time of

SSC.

The parameters of the melting and dehydration models are subjected to

uncertainties, thus we test its influence on the evolution of the lithosphere. Two

parameters, the depth at which the partial melting F starts and the percentage

of melting needed to completely dehydrate a mantle peridotite, are considered.

The results, in terms of viscosity profiles and lithospheric thickness is shown in

Figure 5.10. We consider two extreme depths, 80 and 110 km, at which partial

melting starts (Hirth and Kohlstedt, 1996). Results of these models are plotted
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Figure 5.9 – Flattening due to the wet–dry transition at mid–ocean ridges. Heat flow
(a), relative seafloor depth (b), and temperature in K (c). The thick line of panel (c)
indicates the averaged lithospheric thickness defined by the 1603 K isotherm.

with dashed and solid lines respectively. The behavior of the oceanic lithosphere is

greatly affected: the depth at which the viscosity jumps to values corresponding to

dry peridotites is linearly controlled by the melting depth. This leads to ∼ 20 km of

difference in the lithospheric thickness.

The depth at which the melting starts in a ridge is supposed to by a function of

the rate at which ocean floor is produced. If that is the case, fast and slow ridges

would produce dry domains with different thicknesses, leading to different viscosity

profiles, different lithospheric thicknesses and different onset times for SSC.

Variations in the degree of melting required to completely dehydrate the mantle

rocks have less influence on the evolution of the model. This is a consequence of the

high derivative of the degree of melting F with respect to pressure (or depth). The

profiles shown in Figure 5.11 show very similar trends when this parameter is varied

from 3% to 5%.

The phase transition of the aluminium minerals, spinel to garnet, may also play a

role in the stability of the oceanic lithosphere (Wood and Yuen, 1983). Because it is

an exothermic reaction its effect is to reduce instabilities, avoiding the formation of

SSC. The average depth at which this transition occurs is between 40 and 80 km. We

tested the effect of the spinel to garnet transition at this two depths and found little
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or no influence on the resulting lithospheric thickness as shown in Figure 5.11. This

is probably due to the small density change (∼ 1%) associated with this transition.

5.3 Conclusions

We have studied the development and evolution of small–scale gravitational

instabilities under the Earth’s oceanic lithosphere using numerical simulations. Our

results can be summarized as follow:

• The influence of three different heating terms was tested. Shear heating has
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negligible influence on the overall temperature of the model as well as on

SSC. In contrast, heat from radiogenic sources increases mantle temperatures,

favors the development of SSC, and reduces the average thermal thickness of

the lithosphere. The inclusion of adiabatic heating reduces the temperature

contrasts between ambient mantle and downwellings/upwellings. This in turn

diminishes the vigor of SSC and lithospheric erosion.

• A low viscosity region below the lithosphere is needed to develop and maintain

SSC. The height of this zone has to be similar to the horizontal wavelength

of instabilities (� 200 km). For realistic rheological parameters, the average

viscosity in this region cannot be higher than ∼ 1020 Pa s.

• Small–scale convection can be generated using experimentally derived rheo-

logical parameters. Nevertheless, the activation of SSC does not always result

in significant lithospheric erosion. To reduce the lithospheric thickness consid-

erably, Newtonian models need activation energy and pre-exponential factor

values that are too low in comparison with those reported in laboratory studies.

In models where both diffusion and dislocation deformation mechanisms are
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present, the low viscosity zone is dominated by dislocation and considerable

lithospheric erosion occurs.

• A positive relation is observed between plate velocity and SSC onset time, in

agreement with previous studies.

• Phase transition of aluminium minerals occurring within the lithosphere does

not affect the first order evolution of the oceanic lithosphere.

• Dehydration of mantle rocks in mid–ocean ridges due to partial melting

generates a lithospheric domain where dry rheology law prevails. This

generates a dry–wet viscosity contrast which allows for an efficient flattening

of the oceanic lithosphere in terms of its thickness, topography and heat flow.

115





Chapter 6

Slab breakoff and slab dip models

6.1 A numerical study of slab breakoff

Several subduction zones exhibit a clear gap in the hypocentral distribution between

100 and 300 km depth. These gaps are believed to be an expression of a mechanically

decoupling of the descending slab (slab detachment or slab breakoff) relative

to the subducting lithospheric plate. This interpretation is supported by seismic

tomography (e.g. Fuchs et al., 1979; Xu et al., 2000), theoretical considerations

(Blanckenburg and Davies, 1995), geochemical data (Astis et al., 2006), gravity

modeling (Ioane and Lillie, 2004) and numerical and analogous modeling (Gerya

et al., 2004; Buiter et al., 2002; Faccenna et al., 2006). Slab breakoff has been

proposed in many zones around the world, for example in New Hebrides (Isacks and

Molnar, 1969; Pascal et al., 1973), the Carpathians (Fuchs et al., 1979; Oncescu

et al., 1984; Wortel and Spakman, 2000), the Hellenic arc (Spakman, 1988), Italy

(Wortel and Spakman, 1992, 2000; Macera et al., 2008), the Alps (Blanckenburg and

Davies, 1995), Iran (Molinaro et al., 2005), Indonesia (McCaffrey et al., 1985), etc.

Detachment of subducted slab is expected to cause changes in a subduction

zone system which may be observed at the Earth’s surface. Among the predicted

surface effects are uplift (e.g. Westaway, 1993; Buiter et al., 2002; Gerya et al.,

2004), a temporal change in stress regime (Meijer and Wortel, 1996), magmatism,

metamorphism and rapid exhumation (Blanckenburg and Davies, 1995; Davies and

von Blanckenburg, 1995).

Slab breakoff has been successfully modeled with the incorporation of complex

rheologies and physical processes related to plate subduction (e.g. Yoshioka and

Wortel, 1995; Davies and von Blanckenburg, 1995; Gerya et al., 2004). A common

characteristic of all the models is the use of Lagrangian markers to determine the

conditions under which slab detachment is produced. In this section we present a
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numerical experiment to simulate the breakoff and sinking of a subducting slab by

using X–FEM with a two–fold goal. On one hand, we use previous slab breakoff

simulations to benchmark our numerical code and to demonstrate the capability of

X–FEM to model complex geodynamic processes. On the other hand, we explore the

role of shear heating, adiabatic heating, mineral phase changes and plate thickness

as factors controlling the slab detachment. Rheological factors, like the maximum

imposed viscosity are also studied. To be able to recognize the expressions of slab

breakoff in geological observations, a knowledge of the magnitudes of the surface

effects that may be expected is required. Therefore, we include a quantification of

the changes in topography related with the detachment process.

6.1.1 Model setup

We consider the following setting for slab detachment: after consumption of an ocean

basin subduction of oceanic lithosphere ceases. The detachment process initiates

when the down–dip movement almost stops, so that extensional forces inside the

slab can increase to values large enough to produce breakoff. The subducted slab

sinks into the mantle due its negative buoyancy. We do not assume a zone of weakness

to promote detachment or to localize necking in a particular zone.

The main gravitational forces acting on the subducting lithosphere are the

negative buoyancy of the slab (slab pull), the ridge push, and the negative and

positive buoyancy of the mineral phase changes from olivine to wadsleyite at 410 km

depth and from wadsleyite to perovskite and magnesiowüstite at 660 km depth. In

order to include these forces in our model, the density is calculated as a function

of temperature and pressure as described in Section 2.9. Here we include two

mineral phase transitions incorporating sharp increments in the density field. The

temperature and pressure region of stable mineralogy is delimited by the Clapeyron

curves of the mineral transition reactions.

It is worth noting that the ridge push force is not included in the model because

the detachment process is expected to happen after cessation of active subduction.

In other words, in our simulation the convergence velocity is zero.

This model involves two material phases described by a level set: the lithosphere

and the underlying mantle. In our approach we have used the thermal definition

of lithosphere and therefore the interface between the lithosphere and the

sublithospheric mantle coincides with the initial 1300◦C isotherm. Actually, the level

set and the 1300◦C isotherm roughly coincides during the whole evolution of the

model due to the low thermal conductivity values of rocks which makes advection to

be dominant over diffusion. In addition, the density ρ0 assigned to the lithospheric
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Figure 6.1 – Mesh geometry (a) used to simulate slab detachment. Initial temperature
distribution (b), the dashed white line represents the level set location. Initial viscosity
field (c). The vertical dashed line shows the location of profiles shown in Figure 6.2.

material is an average bulk density for the lithosphere and incorporates the lower

density of crustal materials. Another configuration that might be used —and would

give more accurate results— to model slab break-off, is to different materials for the

crust and the mantle. We discarded this option because of the reduced thickness of

the oceanic crust (usually < 10 km) which requires to greatly increase the number

of elements and consequently the computation time. We consider that the chosen

material configuration is a good trade off between computation time and accuracy

of the model. This fact is demonstrated by the similarity between our results and

those from previous numerical studies.

The initial configuration of all the models is shown in Figure 6.1b and corresponds

to a subduction zone with the slab reaching a depth of 400 km. This initial thermal

structure has been generated by a previous simulation where a horizontal velocity of

2.5 cm yr−1 is imposed on the subducting plate while the overriding plate is fixed.

Temperature structure of the subducting plate is horizontally homogeneous. Its

thickness, defined by the 1300◦C isotherm, is laterally uniform corresponding with a

plate older than 80 Ma. During the evolution of the model the temperatures at the

surface and the bottom of the model are imposed to be zero and 1771◦C, respectively.

Across the side walls of the model domain a null heat flux is imposed.

Assuming that the detachment process will start only after the cessation of plate

convergence (Yoshioka and Wortel, 1995), the surface of the model is considered as
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(e) viscosity, (f) strain rate. The position of the profiles is shown in Figure 6.1c.

a free surface and no horizontal velocity is imposed on it. Free slip conditions are

also used in the bottom and side walls of the domain.

6.1.2 Results

In this section we study the influence of the key parameters on the slab detachment

process. We generate a reference model using the parameters listed in Table 6.1.

The influence of each parameter is evaluated by comparison against the reference

model. The initial viscosity is shown in Figure 6.1c and profiles of mechanical and

thermal properties across the whole mantle are shown in Figure 6.2.

Reference model. The evolution of the detachment process corresponding to

the reference model can be followed in Figure 6.3. The first stage (∼ 24 My) of

the detachment process is characterized by thermal diffusion of the slab. In this

period the slab increases its dip until reaching almost 90 degrees with respect

to the lithosphere at the surface. The second stage of the detachment is a fast

(∼ 2 My) necking process where the strain is localized at depths between 150

– 200 km. The deformation is driven by the negative buoyancy of the cold slab.
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Symbol Meaning Value used Dimension
g gravity acceleration vector (0,-9.8) m s−1

R gas constant 8.314510 J mol−1 K−1

T0 reference temperature 273 K
p0 reference pressure 0.1 MPa
ρol reference density 3300 kg m−3

α thermal expansion coefficient 3× 10−5 K−1

β compressibility coefficient 5× 10−5 MPa−1

Cp thermal Capacity 1200 J kg−1 K−1

fr radiogenic heat production 0 W m−1 K−1

Sol-wa Clapeyron slope for the 410 phase change 2.5 MPa K−1

Swa-ri Clapeyron slope for the 660 phase change -2.5 MPa K−1

Tol-wa reference temperature of the 410 phase change 1700 K
Twa-ri reference temperature of the 660 phase change 1873 K
pol-wa reference pressure of the 410 phase change 13500 MPa
pwa-ri reference pressure of the 660 phase change 23100 MPa
Δρol-wa density increment in the 410 phase change 250 kg m−3

Δρwa-ri density increment in the 660 phase change 250 kg m−3

Dislocation creep
E activation energy 540 kJ mol−1

V ∗ activation volume 14 J MPa−1 mol−1

n power law exponent 3.5 -
A pre-exponential factor 7.6×10−16 Pa−n s−1

Diffusion creep
E activation energy 300 kJ mol−1

V activation volume 4.5 J MPa−1 mol−1

n power law exponent 1 -
A pre-exponential factor 6.07×10−11 Pa−n s−1

Table 6.1 – Parameters, notation and value

Necking concentrates extensional deformation in a narrow zone of the slab producing

large stresses and shear heating (Figure 6.3, 25 My row). The slab detachment is

characterized by a high strain rate and a spread shear heating all around the slab

(Figure 6.3, 26 My row). Once the detachment has been produced, the slab sinks

towards the bottom of the upper mantle. The shear heating controls the dynamics of

the system not only during the necking, but also during the sinking of the detached

slab. Moreover, the temperature increment due to the shear heating decreases the

viscosity around the slab lubricating the sinking. Values of shear heating up to

3 × 10−5 W m−3 are obtained. This amount of heating is about three orders of

magnitude larger than the radioactive heating of the mantle and are in accordance

with values reported by Gerya et al. (2004).

A summary of relevant results like the maximum values of strain rate second

invariant, shear heating, stress second invariant and velocity are listed in Table 6.2

together with the corresponding time and average depth at which these maximum

values have been obtained.

Modifications of the surface topography are calculated as a post–process as
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Figure 6.3 – Evolution of the detachment calculated with the reference model. (a)
Temperature, velocity and level set position, (b) viscosity, (c) strain rate second
invariant, (d) shear heating, (e) stress second invariant.

described in Section 5.1.4. The topography changes related with the detachment

process are shown in Figure 6.4. Previous works (Buiter et al., 2002; Gerya et al.,

2004) reported a period of uplift that reaches about 1.5 km after slab detaches.

This uplift is mainly localized in a ∼ 300 km wide area within the overriding plate

immediately above the detached slab. Initially the uplift area is characterized by a

significant (∼ 2 km) depression developed during the initial period of slab bending

and thermal diffusion.

Our estimated uplift is consistent with values obtained by Gerya et al. (2004)
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ε̇II Shear heating σII Velocity

Model max time depth max time depth max time depth max time depth

s−1 My km Wm−3 My km MPa My km cm yr−1 My km

ref 7.6×10−14 26 243 1.1×10−5 26 252 423 23 158 10.1 26 400

noSH 2.4×10−14 40 278 0 - - 450 35 158 3.5 40 423

noAH 5.2×10−14 25 468 1.1×10−5 22 208 565 19 166 29.3 23 397

no410 3.2×10−14 48 253 5.0×10−6 47 224 230 38 147 4.7 48 239

no660 6.8×10−14 26 219 2.4×10−5 26 235 428 23 166 9.2 26 223

max η 8.2×10−14 41 220 1.6×10−5 41 241 456 25 130 10.86 41 400

lith70 1.3×10−13 23 184 3.1×10−5 23 184 273 21 107 16.8 23 383

Table 6.2 – Maximum values for the second invariant of strain rate, shear heating,
second invariant of stress and velocity for each model. Second and third columns of
each box are the time and depth where the maximum values are obtained. Model
labels: ref for the reference model, noSH for the model without shear heating, noAH
for the model without adiabatic heating, no410 for the model without the 410 km
depth mineral phase transition, no660 for the model without 660 km depth mineral
phase transition, max η for the model with increased maximum allowed viscosity and
lith70 for the model with 70 km thick lithosphere.
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Figure 6.4 – Elevation evolution (a) and relative topography changes (b) during slab
detachment. Dotted lines indicates the approx. detachment time.

but is significantly smaller than the values reported in Buiter et al. (2002) (∼ 6 km).

This difference is due to the different rheological models assumed. Since our model

does not account for the lithospheric elasticity (our model is purely viscous), the

estimated uplift values are significantly lower than those obtained using more

complex rheologies. Calculated uplift rates reach values of 400 m My−1.
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Shear heating. Shear heating exerts a first order control on the dynamics of the

detachment process. When shear heating is not considered the detachment occurs

about 20 My later and the sinking velocity of the slab is about one third of the

velocity obtained with the reference model. The shear heating helps in focusing the

deformation in a narrow area of the slab.

Adiabatic Heating. The adiabatic heating term is important to reproduce the

behavior of the mantle at great depths. Numerically it acts reducing the coupling

between the mechanical and the thermal equations. As shown in Figure 6.5, the

obtained mantle structure for a model without adiabatic heating greatly differs from

the reference solution, even before the detachment occurs. Therefore, excluding the

adiabatic heating produces that hot material from the deeper part of the model is

upwelled forming large convective cells that involve the whole mantle. The mantle

surrounding the slab at 200 – 300 km depth is hotter than in the reference model

enhancing the thermal diffusion and accelerating the detachment process, which

happens about 1 My before.

Mineral phase transitions. The role of mineral phase transitions at 410 and

660 km depth is crucial in determining the depth distribution of the mantle

density. It is well known that the endothermic character of the olivine–wasleyite

reaction developing at 410 km depth increases the slab pull force, and therefore

helps the detachment to occur. According to this, the slab detachment may

be delayed by about 20 My with respect to the reference model when the

olivine–wasleyite phase transition is not considered. Moreover, the maximum stress

reached is about one half of that obtained with the reference model. The role

of the wasleyite–to–perovskite+magnesiowüstite exothermic transition occurring at

660 km depth is less noticeable. In the absence of this phase change, the detachment

occurs at the same time and the maximum stresses and strain rates are similar to

those obtained with the reference model and happen at similar times and depths.

The main obvious difference is that the sinking velocity of the detached slab is not

reduced when reaches the depth of 660 km since, in this case, any discontinuity is

imposed at this depth.

Viscosity bounds. The effects of varying the mantle rheology have been also

examined. Increasing the upper bound of the allowed viscosity to values of 1026 Pa s

delays the breakoff by about 15 My although it is not enough to inhibit the

detachment of the slab. The time at which the maximum strain rate is reached

undergoes also a similar delay but the maximum stress occurs 2 My later when
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Figure 6.5 – (a) Thermal structure and velocity field at 26 My after convergence
cessation obtained with a model excluding the adiabatic heating term. (b) Thermal
structure and velocity field at 26 My for the reference model.

compared with the reference model. In fact, the time at which the strain rate reaches

its maximum value is a good proxy of the detachment time, while the time interval

during which the stress is maximum is a proxy of the necking process.

Lithospheric thickness. Finally, reducing the lithospheric thickness to 70 km

(the reference lithosphere is 100 km thick) produces that the slab detaches 2 My

earlier. The breakoff occurs at a depth about 60 km shallower and the magnitudes

of the generated stresses are almost a half with respect to the reference model.

6.1.3 Discussion and conclusions of the slab breakoff model

In this work, we have presented a thermo–mechanical numerical study of the slab

detachment process. The influence of the key parameters controlling the process

have been investigated. Using realistic values of physical properties of mantle rocks,

we have demonstrated the dynamic feasibility of the detachment process as caused

by thermal diffusion of subducted slabs after cessation of active subduction. Some

of the presented results are quantitatively similar to those found in previous studies

demonstrating the correct behavior of the code.

Our results show that the slab detachment process is characterized by a period

dominated by thermal diffusivity, followed by a fast slab necking and the sink

of the detached slab. The adiabatic heating term, i.e. the heat exchange due to

adiabatically compression or decompression of materials, plays a major role in

mantle models, specially if gravitational instabilities are expected. Neglecting this

term greatly enhances temperature contrasts favoring instabilities. Moreover, the
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upper crust
lower crust
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Figure 6.6 – Schematic evolution of two different detachment models. Model A shows
a shallow detachment generating lithospheric thinning. Model B reproduces the results
obtained in this work, which result in a increase in the lithosphere thickness.

detachment process is accelerated due to the strain–rate softening and focusing

of thermal effects related to significant thermal feedback from shear heating. This

feedback is also enhanced by the non–Newtonian rheology.

Mineral phase transitions act as expected although further work should include

the effect of a metastable olivine wedge, which may modify the buoyancy of the slab.

Some works, for example Molinaro et al. (2005); Ioane and Lillie (2004);

Schoonmaker et al. (2005), propose a slab detachment process in order to explain

a locally thinned lithosphere. In these works the lithospheric thickness is usually

inferred from geophysical observables (topography, gravimetry, etc). This hypothesis

does not match with present dynamical simulation of slab detachment: we always

observe a thickened lithosphere after detachment, as shown in Figures 6.5 and 6.3.

A similar thickening is observed in the results of (Gerya et al., 2004).

To obtain a net lithosperic thinning after detachment, the lithospheric necking

related to slab breackoff must occur at shallower depths. See the Figure 6.6 model

A for an schematic evolution of the process.

There are clear differences between the geological implications produced by the

shallow detach model A and deep detach model B. The thinned lithosphere induces
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a thermal uplift not associated with the detachment but with hot mantle rocks

replacing the detached material. In this thinned model the fast uplift of mantle

rocks may cause decompression melting, increasing the surface heat flow and likely

generating vulcanism. These effects are not expected in the model B.

Because of the innate differences between a breakoff model which reduces the

thickness of the lithosphere and one which increases it, our results are not an

appropriate support for a tectonic history similar to the model A of Figure 6.6.

The lithospheric thickening obtained in the simulations may be caused by the

fact that our model does not explicitly includes the inter–plate fault or subduction

channel. Another possible cause of differences is the absence in our model of the

lower crust, which has a ductile behavior and thus may concentrate and propagate

deformation quickly.

A more accurate geometry accounting for continental crust and preexisting

faults may also influence the location of the detachment. The slab breakoff may

preferentially take place in the transition zone between oceanic and continental

crust. Bending forces should concentrated in this region due to the buoyancy of

the continental crust which resists the downward pull of the slab. Additionally, this

region may be already weakened by extensional fault zones which developed during

the opening of the ocean.

Future directions in the modeling of slab detachment will test the influence

of existence of a subduction channel and a ductile lower crust. More complicated

starting geometries and thermal structures of slabs matching initiation of continental

collision are also required. Other interesting parameters to study are the effects of

phase transformations within the crust and the mantle (e.g. Lee et al., 2005); and the

influence of slab visco–elasticity. We note that the presence of visco–elasticity in the

slab bending region may potentially store an abundant amount of elastic potential

energy, which can be converted into localized shear heating (K. Regenauer-Lieb,

1998).

6.2 On the relation between convergence velocity

and slab dip

The correlation between different subduction parameters has been an active topic

in geophysics since the acceptance of plate tectonics. Relations between geometrical

parameters, for example slab dip or arc curvature and kinematic parameters as

convergence velocity or trench absolute movement, are expected to give some insight

on the dynamics of subduction zones.
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The relation among slab dip and convergence rate was one of the first to be tested

Luyendyc (1970). However, there are several competing processes with opposite

trend which may influence the relation between velocity and slab dip. Some processes

favor a direct relation while others predict an inverse relation.

A direct relation, the faster the plate the steeper the slab, can be explained

as follows: a fast downgoing plate has no time to equilibrate thermally with the

surrounding mantle. The thermal contrast leads to a density contrast which, in

turn, leads to an increased negative buoyancy. It is expected that the less buoyant

is the plate, the steeper is the dip of the subducted slab. In a slow downgoing slab

we expect the opposite behavior: small thermal and density contrasts leading to a

buoyant plate, which goes down with shallower dip.

On the other hand, an inverse relation, the faster the plate the shallower the

slab, is expected based on the viscous forces of the mantle resisting the penetration

of the slab. A different explanation supporting an inverse relation is that the vertical

downward velocity is a constant, thus the dip is controlled by the horizontal plate

velocity as sin(dip)=sinking rate/convergence rate. This relation was proposed by

Luyendyc (1970) based on examination of the Tonga, Java and Kamchatka–Kurile

subduction zones.

Furlong et al. (1982) relates inversely the convergence rate with the upper

plate velocity. Roeder (1975) proposed that convergence rate changes may cause

dip changes. However, Tovish and Schubert (1978) compared deep slab dips to

convergence rate for 39 subduction zones and found little correlation between both.

The analysis of Jarrard (1986) confirms these results. The statistical analysis of

Lallemand and Heuret (2005) shows that slab dip does not correlate with the

convergence rate and it neither does with the magnitude of slab pull, the age of

subducting plate, the thermal regime of the subducted lithosphere, or the subduction

polarity (east versus west).

One of the difficulties that appears in the study of the oceanic lithosphere is

to find unperturbed sections. The oceanic lithosphere may show of changes in the

crustal thickness, in the overlying sediment thickness, or it may be affected by mantle

plumes, or may be close to a ridge or an island arc, etc. All these perturbations to

the ”normal” oceanic lithosphere have effects on its evolution and, consequently,

on the subduction system. In this context numerical models allows for a systematic

study, where the influence of a single parameter can be isolated while leaving the

rest of the conditions and properties unaltered.

Here we address the relation between the subducting plate velocity and the slab

dip by means of a systematic numerical study. The goal of the simulation is to
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find a relationship between the convergence rate and the geometry of the subducted

oceanic plate (slab). The geometry of the slab is parameterized by the slab dip (angle

with respect to the horizontal) and the curvature at the bottom of the transition

zone (660 km depth).

6.2.1 Model setup

The problem statement is illustrated in Figure 6.7. The simulation is performed to

reproduce approximately 1360 km of plate convergence, that is, one plate moves

1360 km against the other. The upper plate remains fixed, thus the convergence

rate is equal to the lower plate velocity. The velocity of the plates at the surface

is imposed by the boundary conditions, as explained in Section 6.2.1. In order to

test the influence of the velocity in the slab dip, the surface velocity is changed

during each simulation. Three different realistic values for the velocity are used:

low (2.5 cm yr−1), moderate (5 cm yr−1) and high (10 cm yr−1). Each simulation

uses two of these velocities. The transition from one velocity to another is either

gradual or sudden.

Initial and boundary conditions

The boundary conditions for the mechanical problem (3.3) are described in

Figure 6.7a. The velocity is imposed on the top of the domain. It is set to be

zero on the left half and it is imposed certain horizontal velocity on the right side.

At the center point between these two domains, a downward velocity (55◦ with the

horizontal) is prescribed. A free slip condition is adopted at the bottom (uz = 0,

zero shear forces). Along the sides, labeled as Γs on Figure 6.7, periodic boundary

conditions are imposed. This allows material to flow through the sides of the model

in a confined domain. Finally, as a reference for the pressure field, a node on the

surface is set to have null pressure (See Section 3.1). In this study the mechanical flow

problem is linearized by using the velocity values of the previous step to compute

the viscosities.

The model domain is a 2D, 1000 km depth and 8000 km wide rectangle. The

initial thermal state corresponds to that of a 100 km thick oceanic plate subducting

beneath another plate with identical features (shown in Figure 6.7b). This simple

thermal state is used to avoid the influence of variations in plate thickness. The

location of the material interface and the velocity field are set accordingly to this

configuration. The white line corresponds to the 1573 K isotherm which is the base

of the tectonic plates. During simulation this isotherm closely follows the interface
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Figure 6.7 – Problem statement for the simulation of subduction: computational
domain and boundary conditions (a); initial thermal state (dimensionless) (b); initial
density (c) (note that two discontinuities occur at 410 and 660 km depth due to the
phase transitions olivine–wasleyite–ringwoodite) and initial viscosity (d).

defined by the level set. Figure 6.7c and d are the initial density and viscosity fields,

respectively. These fields are computed by a simple post–process of a static Stokes

problem with the boundary conditions described above. The density accounts for

the main mineral phase transitions at 410 and 660 km depth.

The boundary conditions that complete the thermal problem are of Dirichlet

type at the surface and bottom of the model, and periodic at its sides. The imposed

temperatures at the surface and bottom are Tsurf = 273 K and Tbot = 2053 K,

respectively. The lateral sides are set as periodic to be consistent with the mechanical

problem.

6.2.2 Results

Observations of real subduction zones reveal that the slab dip increases gradually

from the surface to a depth of 80 – 150 km. Below this depth, it remains almost

constant down to the limit between the upper and the lower mantle at 660 km

depth, where the slab may deflect. In our models the slab dip is computed between
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models is ∼ 1300 km Complete computational domain (a) and zoom into the zone of
interest (b) to (f). The slab dip is indicated for each simulation. All models have the
same shortening.

200 and 400 km depth. Ignoring the upper 200 km precludes the influence from the

shallow dip, possibly biased by the surface boundary conditions. The lower 400 km

limit is above the curved part of the slab caused by the deflection at 660 km.

The slab dip is computed by a linear least squares fitting of the position of the

interface between the subducted lithosphere and the upper mantle. Note that this

interface is described by the level set function. The slab dip is computed at many

stages in each simulation. Figure 6.8 shows the final dimensionless temperature

distributions for five different simulations, and the slab dip measurements. Due to

the extremely low conductivity, the temperature field is a good proxy for identifying

the slab geometry.

Figure 6.9 shows the results of a set of numerical simulations in terms of slab dip

and convergence rate: every circle in the plot corresponds to a specific measurement

in each simulation, all with different conditions. A clear correlation is found: high

velocities are associated with low subduction angles. Taking into account all the

velocity–dip measurements (a grand total of 412 corresponding to 39 different

simulations) the correlation parameter is R = −0.71. The same analysis performed

only with the measurements taken after a period of constant velocity (at the end of

the simulation or before the velocity change, that is 61 measures) gives a correlation

parameter of R = −0.88. If the linear regression is applied to the cases where the

slab reaches the 660 km discontinuity (a grand total of 209 measures) the correlation

is even better: R = −0.93.
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Figure 6.9 – Velocity–dip values

An analysis of the relations between plate curvature at 660 km depth and other

known parameters showed no evident correlation. At the end of every simulation,

the slab remains buoyant at the 660 km discontinuity. Moreover, no systematic

relationship is found between the final slab geometry and the type of velocity

transition (sudden or gradual) or the acceleration of the slab (positive or negative).

Figure 6.10 shows six velocity–dip paths, three corresponding to sudden velocity

transitions and three to gradual transitions. It is observed that the average dip rate

is 2 degrees My−1 for shallowing slabs and 2.7 degrees My−1 for steepening slabs.

The velocity–dip path for the model with a constant convergence rate of

10 cm yr−1 (see Figure 6.11) shows a clear increment in slab dip, until the plate

is deflected at 660 km depth. Similar behavior was found in other examples.

According to the simulations, the slab dip does not depend on the length of

the subducted lithosphere, nor on the thermal state of the slab (slabs of slower

subduction zones have more time to adjust its temperature to the surrounding

mantle). A clear dependence is found between the slab dip and the convergence

rate (velocity). The smoother velocity–dip paths correspond to the gradual velocity

transition models and corroborate the velocity–dip correlation.

6.2.3 Discussion and conclusions of the slab dip study

The results of the simulations performed here show a clear inverse relation between

the convergence rate (or lower plate velocity) and the slab dip. This correlation is

supported by velocity changes during the evolution of each model.

We interpreted that two forces are in competition to control the slab dip: the
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viscous force of the mantle resisting the slab penetration, which depends on the plate
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6.2. ON THE RELATION BETWEEN CONVERGENCE VELOCITY AND
SLAB DIP
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Figure 6.11 – Velocity–dip path for a constant velocity model (10 cm yr−1).

velocity, and the mass excess caused by the lateral density contrast, depending on

the temperature contrast between the slab and the mantle (the slab–pull force). If,

as it is found in the present simulations, the velocity correlates with the slab dip,

the mechanical viscous forces have a greater influence in the slab geometry than the

gravitational forces. The effect of the thermal state is in this case of second order.

The relation dip–velocity in real subduction zones does not follow the linear

behavior found here (Jarrard, 1986; Heuret and Lallemand, 2005; Lallemand and

Heuret, 2005). The causes of this first order deviations can be diverse: the influence

of more complex rheologies like visco–elastic (our result are purely viscous) acting

on the subducting plate; the influence of variations in the oceanic crust thickness;

the mantle wedge suction controlled by the wedge viscosity controlled, in turn by

volatiles released by the subducting plate (Manea and Gurnis, 2007).
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Chapter 7

Summary and conclusions

This thesis deals with the complete process of modeling the dynamic behavior of the

oceanic lithosphere; we describe the physics governing the problem, its mathematical

statement and the numerical approach used to solve the equations. Additionally a

computational implementation of the numerical methods is provided. Moreover, the

generated code is used to study different aspects of the dynamics of the oceanic

lithosphere: its stability along time, the relation between convergence rate and

geometry of subduction zones and the influence of key parameters on the detachment

of a subducted slab. These studies may help to understand the complex geodynamic

processes acting within the Earth.

Physical Model

Our transient multiphase thermo–mechanical model is based on the usual

conservation equations. It accounts for complex non–linear rheologies based on

diffusion and dislocation creeping mechanisms, which are likely responsible for

mantle deformation. The physical properties of rocks (density, thermal conductivity,

thermal expansivity, etc.) are calculated based on temperature and pressure by

means of widely used and accepted theoretical or empirical formulas. The variation

of the physical properties with major mineral phase transitions is also included

in the model. Because of the abundance of olivine in the mantle (more than

the 60%), including its successive transformations (olivine–wadsleyite–ringwoodite–

perovskite+magnesiowüstite) allows to reproduce most important density and

viscosity discontinuities. Adiabatic–, viscous– and radiogenic–heating terms are

accounted for in the energy balance equation. These heat sources are of great

importance in the simulation of gravitational instabilities as demonstrated in the

application examples.



Numerical approach

We use several numerical techniques to solve the partial differential equations. The

base of our approach is the eXtended Finite Element Method (X–FEM), which

is used for the first time in geophysical applications. This technique, common in

engineering applications, allows for describing and accurately solving multiphase

problems in an Eulerian framework. The X–FEM adds two new ingredients to the

standard FEM: a level set technique to locate the interface between materials and a

enrichment technique to improve the accuracy of the solution across this interface.

The application of level sets to geophysical problems was proposed in two almost

simultaneously published works (Zlotnik et al., 2007a; Gross et al., 2007).

Most geodynamic codes use the markers technique instead of level sets. There

are several differences between these techniques: Level sets successfully describe the

interface between deforming materials with the same resolution as for the mechanical

problem. The markers technique requires a much denser grid, penalizing computer

time. If marker density is not enough, some regions of the domain may run out of

markers leaving some elements without properties. On the other hand, the markers

approach allows to control the accuracy of the mechanical problem and the location

of the phases independently. One advantage of the level set approach is that it does

not requires any averaging processes to pass data from nodes to markers and vice

versa. Moreover, the X–FEM approach described here is especially well suited to use

adaptive mesh refinement. This allows increasing locally accuracy of the numerical

method and obtaining an accurate answer with the minimum computational cost.

A very attractive advantage of level sets its straightforwardness in moving to 3D

simulations: the simplicity of the coding is similar to the 2D case. Moreover, the

increase in the computational cost for the 3D case is much lower than for the markers

approach. These desirable properties of the level sets are demonstrated by examples

using a mesh adaptive scheme and examples of three dimensional models.

Advanced numerical strategies

Further numerical improvements have been developed to properly deal with some

unresolved features of our multiphase thermo–mechanical model. We have proposed

and tested an original methodology to extend the X–FEM technique (usually

accounting for two phases) to deal with a larger number of material phases. This

is useful, for example, in detailed lithospheric models including the upper crust,

the lower crust, the mantle, sediments, etc. The proposed X–FEM extension is

based on a hierarchical ordering of several level set functions and an extension of
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the enrichment technique. The ridge function, base of the enriched interpolation, is

restated to include all the level sets and the hierarchy between them. Our method

has the advantage of avoiding overlapping and void problems between materials,

which exist in previous n–phase models. We also provide a computational strategy

to solve efficiently the integrals that appear in the formulation of the problem.

In transient models, where the matrices change and have to be computed

at every time step, the assembly of sparse matrices is a time–consuming task.

We analyze several factors that may influence on the efficiency of the assembly

procedure and propose an improved algorithm reducing both memory operations

and computing time for all tested cases. This procedure is faster than that built-in

Matlab assignment. Its use reduces the running time of our model to 60% and the

assembly time to one half.

Evolution of oceanic lithosphere

The evolution of oceanic lithosphere is thought to be controlled by small–scale

convection cells. These cells provide the extra heat needed to reduce the cooling

of the lithosphere inferred from the seafloor depth and surface heat flow data. We

present a numerical study of the evolution of the oceanic lithosphere. Emphasis is

put on i) the influence of various rheological and thermo–physical parameters, always

within the ranges dictated by laboratory studies, and ii) the ability to reproduce

geophysical observables. We found that the water content of the lithopheric rocks,

determined by the amount of partial melting at mid–ocean ridges, is possibly the

responsible of the flattening of observables in old lithospheres. This dehydrated layer

has been proposed by several authors as a control of the lithospheric evolution (e.g.

Karato, 1986; Morgan, 1997; Lee et al., 2005) but its real influence was never tested

before in dynamic codes.

We found that shear heating plays no significant role either in the onset of

the instabilities or in reducing the lithospheric thickness. In contrast, radiogenic

heat sources and adiabatic heating exert a major control on both the vigor of

convective cells and the thermal structure of the lithosphere. It is found that

either dislocation creep, diffusion creep, or a combination of these mechanisms, can

generate small–scale convection with rheological parameters given by laboratory

experiments.

The seismic structures predicted by our models closely resemble tomography

studies from the Pacific. Nevertheless, the accuracy of present tomographies seems

not to be enough to distinguish between the two competing models aiming at explain
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the evolution of the oceanic lithosphere.

Slab breakoff, slab dip and 3D models

We have performed a numerical study of the breakoff of the subducted slab to

study its evolution and the influence of key parameters controlling the process.

Using realistic physical properties of mantle rocks, we have demonstrated the

dynamic feasibility of the detachment process as caused by thermal diffusion of

subducted slabs after cessation of active subduction. Our results show that the slab

detachment process is characterized by a period dominated by thermal diffusivity

(∼ 20 My), followed by a fast slab necking (∼ 2 My) and the sink of the detached

slab. The adiabatic heating term plays a major role in mantle models, specially

if gravitational instabilities are expected. Neglecting this term greatly enhances

temperature contrasts favoring instabilities. Moreover, the detachment process is

accelerated due to the strain–rate softening and focusing of thermal effects related

to significant thermal feedback from shear heating. This feedback is also enhanced by

the non–Newtonian rheology. Further work should include the effect of a metastable

olivine wedge, which may modify the buoyancy of the slab.

The slab detachment process has been proposed in the literature to explain

the thinning of the lithosphere (e.g. Molinaro et al., 2005; Ioane and Lillie, 2004;

Schoonmaker et al., 2005). Our results do not support for such interpretation and

neither do other geodynamic models. The causes of this differences may rely on the

simplified treatment of the inter–plate fault and further work is needed to gain some

insights on the process.

Finally, a possible relation between slab dip and convergence rate is studied. Our

results show a clear inverse relation between the convergence rate (or lower plate

velocity) and the slab dip. Nevertheless, this relation is not observed in nature. The

causes of this first order deviations can be diverse: the influence of more complex

rheologies like visco–elastic (our result are purely viscous) acting on the subducting

plate; the influence of variations in the oceanic crust thickness; the mantle wedge

suction controlled by the wedge viscosity controlled, in turn by volatiles released by

the subducting plate (Manea and Gurnis, 2007), etc.

Flexibility of the developed code

Our model is designed keeping in mind that in most cases realistic geodynamic

applications require accounting for the three spatial dimensions. To emphasize the
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(a) (b)

(c) (d)

Figure 7.1 – Evolution of a Rayleigh–Taylor instability. The red surface is the
interface between two materials described by the level set. The blue triangles indicate
the velocity directions and magnitude. The viscosity ratio is η1/η2 = 1 and the initial
lower layer thickness h = 1/3

abilities and flexibility of our numerical approach we show here two 3D examples.

Firstly, Rayleigh–Taylor instabilities allow us to show how our model, based on the

X–FEM, can be easily extended to 3D. Secondly, a global mantle model shows how

geometrically complex boundary conditions can be imposed and how a spherical

geometry can be used.
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η1/η2=0.01, h=1/3 η1/η2=100, h=1/3 η1/η2=1, h=0.1 η1/η2=1, h=0.05

Figure 7.2 – Two snapshots of the evolution of four different Rayleigh–Taylor
instabilities. The viscosity ratios and thickness h of the lower layer determines the
shape of the plume.

3D Rayleigh–Taylor instabilities

In many geological and geodynamic contexts compositional differences produce

gravitationally unstable configurations. In this situations a relatively light material

is overlaid with a denser layer. Examples of that are salt domes, granitic batholiths,

or the entrainment of a chemically distinct D” layer in the lower mantle. Some

of these processes are similar to those presented in previous Sections and therefore

temperature dependent. Nevertheless, for the sake of simplicity, we will only consider

the compositional aspect (multiphase mechanical behavior) in order to show the

capabilities of the X–FEM in 3D simulations.

Figure 7.1 shows the evolution of a Rayleigh–Taylor instability with a viscosity

ratio η1/η2 = 1 and a dimensionless lower layer thickness of 1/3 . The plotted surface

corresponds to the interface between the two materials described by the level set.

Figure 7.2 shows some snapshots of models with different viscosity ratios and

different initial thicknesses of the lighter underlying material. In general terms, the

viscosity ratio controls the size of the diapir head and the velocity at which the

initial stratification overturns (Figure 7.2a and b). On the other hand, the initial

thickness of the underlying layer mainly controls the velocity at which the head of

the diapir rises and hence, the length of the tail.

These examples show the capability of X–FEM to reproduce the geometry of the

interface evolution between two (or more) deforming materials in three dimensions.
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Earth mantle model

A simplified model for the whole mantle is presented here as an example of i) a

3D mechanical model, ii) a model using spherical geometry, and iii) very complex

boundary conditions. The domain is an empty sphere, representing the whole

mantle, from the Moho to the core–mantle boundary. The physical properties of the

material are radially averaged. We calculate a steady–state velocity field based on

the present plates movement. Radial boundary conditions (normal to the inner and

outer surfaces) are free slip. Tangential boundary condition in the outer surface are

imposed to represent present plates velocities. The surface of the Earth is partitioned

in 51 tectonic plates following Gripp and Gordon (2002). The surface velocity for

each plate is computed using the Euler pole and angular velocity listed in Table 7.1

Plate Lat. Long. Rot. (deg. My−1) Plate Lat. Long. Rot.
Africa +59.16 -73.17 0.93 Amur +57.65 -83.74 0.93
Antarctica +64.31 -83.98 0.87 Altiplano +33.64 -81.18 0.92
Arabia +59.66 -33.19 1.16 Aegean Sea +74.28 -87.24 0.65
Anatolia +56.28 +8.93 1.64 Australia +60.08 +1.74 1.07
Birds Head +12.56 +87.96 0.30 Balmoral Reef +45.90 -111.00 0.20
Banda Sea +16.01 +122.44 2.13 Burma +8.89 -75.51 2.67
Caribbean +54.31 -79.43 0.90 Caroline +10.13 -45.57 0.31
Cocos +36.82 -108.63 2.00 Conway Reef -12.63 +175.13 3.61
Easter +28.30 +66.40 11.40 Eurasia +61.07 -85.82 0.86
Futuna -10.16 -178.31 4.85 Galapagos +9.40 +79.69 5.28
India +60.49 -30.40 1.10 Juan de Fuca +35.00 +26.00 0.51
Juan Fernandez +35.91 +70.17 22.52 Kermadec +47.52 -3.12 2.83
Mariana +43.78 +149.21 1.28 Manus -3.04 +150.46 51.30
Maoke +59.59 +78.88 0.89 Molucca Sea +11.10 -56.75 4.07
North America +48.71 -78.17 0.75 North Bismarck -4.00 +139.00 0.33
North Andes +58.66 -89.00 0.70 New Hebrides +13.00 -12.00 2.70
Niuafo‘ou +6.87 -168.87 3.25 Nazca +55.58 -90.10 1.36
Okhotsk +55.42 -82.86 0.84 Okinawa +48.35 +142.41 2.85
Pacific +0.00 +0.00 0.00 Philippine Sea -1.20 -45.80 1.00
Rivera +26.70 -105.20 4.69 South America +55.00 -85.75 0.64
South Bismarck +10.61 -32.99 8.44 Scotia +48.63 -81.45 0.65
Shetland +63.12 -97.08 0.86 Somalia +58.79 -81.64 0.98
Solomon Sea +19.53 +135.02 1.48 Sunda +55.44 -72.95 1.10
Sandwich -19.02 -39.64 1.84 Timor +19.52 +112.18 1.51
Tonga +28.81 +2.26 9.30 Woodlark +22.13 +132.33 1.55
Yangtze +69.07 -97.72 1.00

Table 7.1 – Plate velocities after Gripp and Gordon (2002); location of the Euler
pole and rotational velocity.

In Figure 7.3 two views of the Earth are shown. Green colors show places where

the radial flux is negative (descending streams) corresponding with subduction

zones. Red colors are places where the radial flux is positive (ascending streams)

and are associated with mid–ocean ridges. The first view (panels a, b and c) of

Figure 7.3 corresponds to South America, Nazca, Cocos, and part of the Pacific

plates. In panel b, showing the radial velocity at 150 km depth, the Pacific Ridge and

the subduction zone below South America are well developed. The South Atlantic

Ridge can also be seen. At 300 km depth (panel c) the same features, with much
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less intensity, are found. In the second view, most of the western Pacific subduction

zones are well developed: Kamchatka, Japan, all zones surrounding the Philippine

Sea, the Andaman–Sumatra–Java Arc, New Hebrides and Tonga. The shortening

between India and Asia and the ridge between Antarctica and Australia are also

well developed. All these features are, of course, induced by the surface boundary

conditions.

This model shows only a steady state flow of the mantle compatible with the

current plate movements. In addition to the simplified rheology, the absence of hot

spots makes the obtained flow much more simpler than the real mantle. Nevertheless,

a first order match of the major tectonic features of the Earth can be reproduced

even with this simple model.

Future work

As shown in the previous examples the development of a full thermo–mechanical

code in 3D is one of the possible future work lines. However, there are also other

very interesting features to add to the model; our present approach suffers of a lack

of consistency mainly due to the incompressibility approach. Despite we are dealing

with solid rocks, at mantle conditions the pressure reaches values high enough to

consider the rocks compressible. Moreover, the mineral phase transitions responsible

of jumps in the density field also produce appreciable volumetric changes. The

importance of the adiabatic heating term in our results indicates how much the

rocks can be compressed.

Another interesting work line is the coupling between a dynamical model like

ours, with a petrological model like PerpleX (Connolly, 2005). The petrological

model calculates in a thermodynamical consistent way, the equilibrium mineral

assemblage at a given temperature, pressure and composition. Using this information

the physical properties of the rocks can be accurately computed accounting for

solid–solutions and all mineral phase transformations.

Finally, both the 3D and the petro–dynamical models will be extremely

demanding of computational power, thus requiring the use of parallelization

techniques to obtain results in a reasonable amount of time. Therefore, any further

improvement our of our code should contemplate running in a cluster of computers

or in parallel machines.
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Figure 7.3 – Mantle radial velocity. The three upper globes show the plate
configuration (a), radial velocity at 150 km depth (b) and radial velocity at 300 km
depth (c). The three lower globes show same data as the upper globes for a different
view. In (a) and (d) the coastlines are drawn in black. The plate boundaries are drawn
in colors.
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Appendix A

Resumen en castellano

Introducción

La Tectónica de Placas está basada en la división de la superficie terrestre en

un grupo relativamente pequeño de placas en movimiento. Según su génesis y en

consecuencia su composición y evolución, las placas se clasifican como continentales

u oceánicas. Éstas últimas son las responsables de la dinámica del sistema: la

litosfera oceánica es creada en las dorsales oceánicas, donde dos placas adyacentes

se separan dando lugar a la generación de magmatismo. La nueva placa oceánica

es generada por el material extruido una vez que éste se enfŕıa y se vuelve ŕıgido.

Este proceso de creación de fondo oceánico está equilibrado con su destrucción en

las zonas de subducción. De esta manera las placas oceánicas son creadas en las

dorsales, se desplazan lateramente mientras se enfŕıan y se engrosan hasta que,

en algún momento son consumidas en una zona de subducción. La Tectónica de

Placas es capaz de asimilar una inmensa cantidad de evidencia geológica y geof́ısica

proveniente de diversas ramas. Por ejemplo, la ubicación de los grandes arcos

volcánicos y todos los terremotos profundos están relacionados con las zonas de

subducción; las dorsales oceánicas producen vulcanismo y sismicidad moderada en

la continua generación de la corteza oceánica; la batimetŕıa, el flujo de calor y las

señales gravimétricas del fondo oceánico están relacionados con el envejecimiento

de la litosfera; prácticamente toda la deformación tectónica del planeta se produce

en los bordes de las placas. A pesar del éxito de la Tectónica de Placas en predecir

y explicar todos estas observaciones entre muchas otras, es una teoŕıa puramente

cualitativa, que brinda una explicación del funcionamiento del planeta, sin proponer

los fundamentos f́ısicos que la sostienen. De hecho, la dinámica de la Tierra y de los

procesos descritos por la Tectónica de Placas aun hoy siguen sin ser comprendidos

completamente. Algunos temas de investigación actual sobre la dinámica de la



litosfera y el manto son, por ejemplo, la causa de la estabilización de las litosferas

oceánicas antiguas, las variables que controlan el régimen de deformación en las

zonas de tras arco , las variables que controlan el ángulo conque subducen las placas,

cómo comienza un proceso de subducción, etc. Entre las diferentes metodoloǵıas

utilizadas para estudiar la litosfera y el manto terrestre encontramos observaciones

indirectas, geológicas y geof́ısicas, por ejemplo el flujo de calor superficial, las señales

gravimétricas o la signatura geoqúımica de los volcanes, que nos permiten conocer el

estado actual y los procesos activos. Los estudios de laboratorio brindan información

sobre las propiedades f́ısicas de los materiales que componen la Tierra. Y por último,

de las ondas śısmicas que viajan por el interior del planeta podemos inferir datos

importantes sobre composición, cambios de fase mineralógicos, grado de fusión, etc.

Sin embargo, la amplia mayoŕıa de estas fuentes brindan información sobre el estado

actual de la Tierra pero describen pobremente la dinámica de los procesos que actúan

en ella. Es por esto que el modelado numérico es una herramienta útil a la hora de

estudiar los procesos geodinámicos.

Modelado numérico

La complejidad de la dinámica, la cantidad y variedad de procesos concurrentes

y los grandes contrastes de propiedades que se presentan en los modelos que

describen el comportamiento terrestre, requiere de técnicas numéricas avanzadas

para aproximar las ecuaciones f́ısicas resultantes. Numéricamente los modelos de

convección incluyendo placas ŕıgidas han sido un desaf́ıo desde mediados de los años

80. Sin embargo, en muchos sentidos el desaf́ıo computacional es mayor hoy que

hace dos décadas, principalmente debido a la complejidad creciente de las reoloǵıas

involucradas. La manera en que se deformarán las rocas es altamente dependiente

de la temperatura, la presión, el estado tensional y su composición. La tendencia

a localizar la deformación debido al comportamiento no lineal de las ecuaciones

constitutivas, los altos gradiente de temperatura y los cambios composicionales,

todos producen cambios bruscos de propiedades materiales en pequeñas escalas

espaciales comparadas con el tamaño del sistema. Modelos reológicos complejos son

ya habituales, por ejemplo incluyendo visco–plasticidad (e.g. Tackley, 1998, 2000;

Bercovici, 2003), dependencia del tamaño de grano (e.g. Solomatov, 2001) o el efecto

de volátiles (e.g. van Keken et al., 2002; Arcay et al., 2005; Abers et al., 2006).
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APPENDIX A. SUMMARY IN SPANISH

Objetivos

Esta tesis tiene dos objetivos principales: el primero el desarrollo de un herramienta

informática para el estudio de modelos geodinámicos. ésta debe resolver las

ecuaciones f́ısicas que gobiernan el problema (conservación de masa, momento y

enerǵıa) de manera eficiente y flexible, de tal manera que sea sencillo agregar

procesos secundarios como por ejemplo cambios de fases mineralógicos, procesos

de fusión, etc. Para contrastar las simulaciones con datos reales es necesario proveer

de observables sintéticos calculados a partir de los resultados del modelo, por

ejemplo topograf́ıa, flujo de calor, anomaĺıas gravimétricas, etc. Los elementos

finitos extendidos (X–FEM) son una herramienta de reciente desarrollo actualmente

aplicada en problemas de ingenieŕıa, entre otras cosas, a problemas de flujo multifase.

Uno de los objetivos de este trabajo es estudiar la eficiencia de esta metodoloǵıa

aplicada a problemas geof́ısicos. El segundo objetivo de este trabajo en la aplicación

de la herramienta generada para el estudio de diferentes aspectos de la dinámica de

la litosfera oceánica.

Modelo f́ısico

En este caṕıtulo se describen las ecuaciones que gobiernan el comportamiento f́ısico

de la litosfera y del manto. El modelo está basado en dos problemas f́ısicos: un

problema de mecánica de fluidos y un problema térmico. Ambos están acoplados

expĺıcita e impĺıcitamente, por ejemplo en el término convectivo de la ecuación

térmica o en la dependencia de las propiedades f́ısicas de la presión (solución del

problema mecánico) y la temperatura (solución del problema f́ısico).

Térmica

En el interior de la tierra actúan tres mecanismos de transferencia de calor:

convección, conducción y radiación. éste último se vuelve apreciable a temperaturas

superiores a 1500 K. La importancia relativa entre los diferentes mecanismos

determina tres reǵımenes térmicos: las regiones con un gradiente térmico cercano

al gradiente adiabático1 donde el transporte advectivo es dominante. Este es el caso

del manto superior y de la zona de transición. Las regiones donde la conducción

es comparable a la advección, por ejemplo la litosfera oceánica. Y por último

las regiones en donde el transporte conductivo es dominante, por ejemplo en la

litosfera continental. La ecuación (2.6) gobierna el balance de enerǵıa. El último

1el gradiente provocado por la compresión adiabática de los materiales

147



término de ésta incluye distintas fuentes de calor: un término constante debido a la

desintegración de elementos radioactivos, un término fuente por disipación viscosa de

calor (shear heating) descrito por la ecuación (2.7) y un término adiabático debido a

la compresión y descompresión adiabática de materiales descrito en la ecuación (2.8).

El manto superior está dominado por celdas convectivas en donde la convección

térmica es dominante. Este proceso tiende a homogeneizar las temperaturas dando

lugar a un gradiente casi adiabático. El régimen térmico de las placas oceánicas es

más controversial; durante los primeros 70 Ma no hay dudas en que la placa sufre

principalmente un enfriamiento conductivo (McKenzie, 1967; Parsons and Sclater,

1977). Este enfriamiento se ve reflejado en la batimetŕıa y en el flujo superficial de

calor: ambos son funciones de la edad de la placa. Sin embargo, una vez superada

esa edad estos observables cambian su tendencia y su señal se hace casi constante

indicando un estancamiento del enfriamiento de la placa (Parsons and Sclater,

1977; Schroeder, 1984; Stein and Stein, 1992). Este comportamiento es reproducido

por un modelo emṕırico llamado “modelo de placa” que es capaz de predecir los

valores observados pero no aporta ninguna explicación f́ısica del porqué se rompe la

tendencia puramente conductiva. En las aplicaciones de este trabajo se tratará con

más detalles la evolución en el tiempo de la litosfera oceánica.

Mecánica

A pesar de que el manto superior está compuesto en su 99% por rocas en estado

sólido, su comportamiento mecánico a escalas de tiempo geológicas (> 104 años)

es fluido. La deformación en estado sólido ocurre debido a procesos de movimiento

de átomos dentro de la estructura cristalina (Ranalli, 1995). El comportamiento

del manto es usualmente modelado como un fluido cuasi estático gobernado por la

ecuación de Stokes (Busse, 1989; Schubert et al., 2001). El uso de esta ecuación

asume: i) que las rocas con casi incompresibles, ii) dado que el numero de Prandtl

del manto es prácticamente infinito, los términos inerciales son despreciados, y iii)

dado que el numero de Rayleigh que caracteriza la convección del manto no es

excesivamente grande, se desprecia el régimen de convección turbulenta. Teniendo

en cuenta las asunciones anteriores y asumiendo la aproximación de Boussinesq

extendida, el problema mecánico queda gobernado por la ecuación de conservación

de masa (2.10) y de conservación de momento (2.15).
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Viscosidad

El comportamiento mecánico de un fluido está caracterizado por su viscosidad. Ésta

relaciona los esfuerzos que actúan sobre el fluido con la velocidad de deformación.

La viscosidad del manto ha sido estimada usando observaciones geof́ısicas y estudios

de laboratorio. La deformación de los minerales del manto en condiciones del manto

suele seguir una ley exponencial en la cual la velocidad de deformación depende de

una potencia de los esfuerzos no isótropos. Dos procesos a nivel atómico se consideran

responsables de la mayor parte de la deformación del manto: la deformación por

difusión y la deformación por dislocaciones (Kirby, 1983; Ranalli, 1995). Trabajos

teóricos y experimentales indican que la ecuación constitutiva de las rocas del manto

dependiendo de la temperatura, la presión y el estado tensional sigue una ley como

la expresada en la ecuación (2.17). Usando la definición de viscosidad (2.18), se

obtiene la fórmula expĺıcita para la viscosidad (2.19). Las propiedades involucradas

en esta ecuación son el parámetro pre exponencial AD, la potencia n, la enerǵıa de

activación E, el volumen de activación V y la constante de gases R. A proceso de

deformación le corresponde un juego de estos parámetros. A bajas temperaturas,

(< 700 K) la deformación ocurre mayormente en forma frágil. Para incluir este

comportamiento se utiliza una ley simplificada de Mohr–Coulomb como la descrita

en la ecuación (2.21) (Ranalli, 1995; Brace and Kohlstedt, 1980).

Cambios de fases minerales

Los minerales del manto son estables dentro de un rango de presión y temperatura,

una vez fuera de sus ĺımites se transforman en la fase más estable a las nuevas

condiciones. Estas variaciones mineralógicas son las responsables de la mayor parte

de las variaciones de las propiedades f́ısicas de las rocas. En el manto superior

las transformaciones que más influyen son: plagioclasa–espinela–granate que ocurre

entre 40 y 80 km de profundidad, la olivina que se transforma sucesivamente en

wadsleita y luego en ringwoodita a 410 y 510 km de profundidad respectivamente.

A mayores presiones lo hace en magnesiowustita y ferropericlasa luego de los 660 km.

Para incluir en el modelo la influencia de la mineraloǵıa estable en las propiedades

f́ısicas se definieron cuatro dominios minerales separados por las transformaciones

descritas. Cada uno de estos dominios representa la mineraloǵıa estable a 200, 420,

600 y 750 km de profundidad. La composición mineralógica de estos dominios fue

tomada del trabajo de Stixrude and Lithgow-Bertelloni (2007) y se muestra en

la Figura 2.1 y en la Tabla 2.4. Para determinar qué dominio corresponde a una

determinada presión y temperatura se utilizan las curvas de Clapeyron, aproximadas
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por rectas como se muestra en la Figura 2.2.

Coeficiente de expansión térmica

Para aproximar esta propiedad se utiliza la fórmula de Schutt and Lesher (2006)

junto con los datos de Fei (1995) que definen la variación del coeficiente para cada

mineral. Ponderando luego estos valores con la cantidad presente de cada mineral

se consiguen los parámetros correspondientes a cada dominio mineral descrito en la

sección anterior. La dependencia de la presión se hace siguiendo a Chopelas (2000)

y a Afonso et al. (2005).

Conductividad térmica

La conductividad térmica de los cristales suele ser no isótropa, sin embargo dada

la distribución aleatoria de los minerales en las rocas, es válido considerar la

conductividad de las rocas como isótropa. Ya que las medidas experimentales de

conductividad incluyen el efecto de la radiación, los coeficientes obtenidos incluyen

el efecto de ambas. En este trabajo se han utilizado dos leyes emṕıricas para modelar

las variaciones de conductividad térmica con la presión y la temperatura: la fórmula

emṕırica de (Clauser and Huenges, 1995) con los datos de (Gerya et al., 2004) y el

modelo propuesto por (Hofmeister, 1999) (ecuaciones (2.24) y (2.25)). La variación

de la conductividad con la profundidad para ambos modelos se muestra en la

Figura 2.3.

Modelo numérico

Los problemas mecánico y térmico descritos en el caṕıtulo anterior no disponen

de soluciones anaĺıticas. Por lo tanto es necesario utilizar métodos numéricos para

aproximar las ecuaciones en derivadas parciales que los gobiernan. En este trabajo

se utiliza el método de los elementos finitos para resolver dichas ecuaciones. El

contenido de este Caṕıtulo está descrito en dos art́ıculos originales (Zlotnik et al.,

2007a,b).

Problema mecánico

Para resolver el problema mecánico descrito por las ecuaciones (2.15) y (2.10) se

utilizan elementos finitos mixtos, llamados de esta manera debido a que trabajan

con dos tipos de incógnitas: las de velocidad y las de presión. Cada una debe
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ser discretizada de manera diferente. Para asegurar que el sistema de ecuaciones

generado es resoluble estas discretizaciones deben ser distintas y mantener una cierta

relación. En este trabajo se utiliza el elemento mini mostrado en la Figura 3.1,

que garantiza la no singularidad del sistema. Nótese que el planteo del problema

mecánico descrito por estas ecuaciones no contempla la existencia de distintos

materiales. El método de los elementos finitos se basa en una formulación débil de

las ecuaciones y en una discretización del dominio. El problema, escrito en su forma

fuerte en la ecuación (3.3), queda completamente definido cuando se incorporan las

condiciones de contorno. La formulación débil equivalente queda definida como se

expresa en las ecuaciones (3.10).

Problemas multifase y la técnica de Level Sets

Los problemas de flujo están definidos naturalmente con una descripción Euleriana,

donde la malla computacional está fija en el espacio y el fluido se mueve con

respecto a ella. Esta descripción cinemática facilita la descripción de las grandes

deformaciones que sufre un fluido. Sin embargo, la descripción Euleriana tiene el

inconveniente de complicar la descripción de interfaces móviles entre diferentes

materiales. La técnica de level sets, inicialmente propuesta por Osher and Sethian

(1988), permite describir la posición de dichas interfaces en el espacio y en el tiempo

de una manera computacionalmente eficiente. La posición de la interface entre dos

materiales queda determinada por una función φ, llamada función level set, definida

en todo el dominio del problema. Su signo genera una partición del dominio siguiendo

la convención definida en la ecuación (3.12). Es usual utilizar la función “distancia

a la interface” como aproximación inicial de φ, usando valores positivos para un

material y valores negativos para el otro. De esta manera la interface entre materiales

queda definida por la curva en donde la función level set se anula. En la Figura 3.2

se muestran las fases, la interface y la función level set. En la práctica la función

φ es discretizada sobre la misma malla de velocidades de los elementos finitos. Su

actualización en el tiempo se realiza resolviendo la ecuación de convección pura

(3.13), donde la velocidad u es la solución del problema de mecánico de Stokes.

Discretización en el espacio y soluciones enriquecidas

Como las propiedades f́ısicas de los materiales cambian a un lado y al otro de la

interface, es razonable esperar una solución con gradiente discontinuo a través de la

interface. Sin embargo dentro de cada elemento, el gradiente de la solución brindado

por el método de los elementos finitos es continuo. Como la técnica de los level
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sets permite describir interfaces que corten los elementos, es usual enriquecer la

solución para permitirle un gradiente discontinuo alĺı donde se encuentre la interface.

La combinación de estás dos técnicas, level sets y una solución enriquecida, con

el Método de los Elementos Finitos se suele llamar en la literatura Elementos

Finitos eXtendidos o X–FEM. Las discretizaciones espaciales de la velocidad, la

presión y la función level set se describen en las ecuaciones (3.15), (3.14) y

(3.16) respectivamente. Usando la función ridge definida en la ecuación (3.17)

para construir las funciones de interpolación M asociadas a los grados de libertad

enriquecidos, las discretizaciones de la velocidad y de la presión enriquecidas quedan

descritas en la ecuaciones (3.18) y (3.19). Usando la formulación de Galerkin el

problema (3.10) discretizado en el espacio queda formulado de forma matricial

como (3.23), con las matrices definidas de la manera indicada. Dado el carácter

cuasi estático del problema mecánico, es decir dado que el número de Prandtl se

puede considerar infinito y los términos inerciales son despreciables, éste no necesita

discretización en el tiempo; su evolución se debe exclusivamente a los cambios en el

campo térmico y en la posición de los materiales.

Problema térmico

El problema térmico (2.6) debe ser discretizado en el espacio y en el tiempo. La parte

espacial es tratada de manera similar a la descrita para la ecuación de Stokes, la parte

temporal se hace utilizando el algoritmo de Padé. La ecuación térmica se vuelve no

lineal debido a la dependencia de la densidad y la conductividad térmica de la propia

temperatura. Sin embargo, como se esperan grandes cambios en la temperatura entre

dos pasos de tiempo consecutivos, las propiedades materiales con calculadas a partir

del campo térmico del paso anterior. Las formas fuerte y débil del problema se

brindan en las ecuaciones (3.24) y (3.25). Su discretización resulta en el sistema

lineal (3.27). La discretización temporal se realiza usando el algoritmo de Padé

descrito en (3.28) que, en la práctica, resulta en a resolución de una serie de sistemas

lineales definidos por la ecuación (3.29). La función level set se discretiza como (3.30)

en el espacio. En el tiempo se utiliza el método de Taylor–Galerkin de dos pasos y

orden tres, descrito en (3.32b). Al aplicar este algoritmo a la ecuación (3.13) resultan

los sistemas de ecuaciones (3.34). Para asegurar la estabilidad el incremento del

tiempo Δt de un paso a otro debe cumplir que el número de Courant satisfaga

la ecuación (3.34). Este criterio se combina con el criterio (3.36) que asegura la

estabilidad de la parte difusiva del problema térmico.
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Métodos numéricos avanzados

En este caṕıtulo se describen los aportes originales numéricos que se han desarrollado

en esta tesis. La Sección 4.1 propone una extensión de X–FEM para X–FEM

para incluir cualquier número de materiales. El Seccion forma parte de un art́ıculo

enviado a Computational Methods in Applied Mechanics and Engineering (Zlotnik

and Dı́ez, 2008). La Sección 4.2 describe un esquema adaptativo de remallado

para incrementar la precisión en la descripción de la posición de las interfases.

La Sección 4.3 describe algunos aspectos computacionales de la implementación de

nuestro modelo. Una tarea que requiere una cantidad no despreciable de capacidad

de cálculo es el ensamblado de matrices ralas2. Para realizar esta tarea se propone

un nuevo algoritmo que reduce tanto las operaciones de memoria necesarias, como el

tiempo de ensamblado. El contenido de esta Sección fue enviado a Communications

in Numerical Methods in Engineering para ser publicado (Zlotnik and Dı́ez, 2007).

X–FEM jerárquico para modelos de flujo con n–fases

El Método de los Elementos Finitos eXtendidos es usualmente usado para el

modelado de flujo con dos materiales. Esta restricción sobre el número de materiales

está impuesta por el uso del signo de la función leve set para describir la ubicación

de los mismos. Diferentes metodoloǵıas han sido propuestas para incrementar este

número basadas en el uso de varias funciones leve set. Sin embargo todas ellas

sufren de la posibilidad de generar regiones donde no se puede asignar ningún

material, ya sea porque no se dispone de información o porque la información

es contradictoria. En esta Sección se describe una metodoloǵıa basada en un

ordenamiento jerárquico de las funciones level set que evita de manera natural

dichos problemas. La metodoloǵıa se describe en el contexto de un problema de

flujo multifase, pero es posible utilizarla en cualquier contexto donde X–FEM sea

aplicable.

Ubicación de n materiales mediante level sets jerárquicos

En modelos de dos materiales, la ubicación de los mismos queda determinada por el

signo de una función level set como se indica en la ecuación (4.2). Para ser capaces de

describir la posición de cualquier número de fases materiales se propone incrementar

el número de funciones level set asignando una jerarqúıa entre ellas. La primer

fase material quedará definida por la parte positiva de la primera función level set,

φ(1), como se indica en la ecuación (4.3). La parte del dominio en donde la primer

2sparse matrices
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función (4.3) sea negativa quedará determinada por el resto de las funciones level

set. De esta manera la segunda función level set, φ(2), determina la posición de la

segunda fase en la región del dominio en donde φ(1) toma un valor negativo como se

indica en la ecuación (4.4). La región donde el level set con menor jerarqúıa toma

un valor negativo representa la posición del último de los materiales. Esta idea de

jerarqúıa puede extenderse a cualquier número de materiales como se muestra en

las equaciones (4.5) y (4.6). En la Figura 4.3 se muestra un ejemplo de partición del

domino en cuatro materiales con tres level sets.

Enriquecimiento de elementos con varios materiales

La jerarqúıa de level sets recién descrita permite que algunos elementos sean cortados

por varias interfaces y contengan en su interior varios materiales. En este caso el

enriquecimiento de la solución debe tener en cuenta cada una de las interfaces y la

jerarqúıa entre ellas. La interpolación de la velocidad u está compuesta por una parte

standard de los elementos finitos mas la parte enriquecida según la ecuación (4.7),

donde los grados de libertad enriquecidos aj son interpolados con las funciones de

forma Mj . Éstas últimas se consiguen multiplicando las funciones de forma standard

N por una función ridge, R, que posee derivada discontinua sobre la interfase

entre materiales como se muestra en la Figura 4.5. En el caso de problemas que

involucran dos materiales la función ridge se define como (4.9) (Moës et al., 2003).

La extensión de la función ridge a problemas de varios materiales se realiza de la

siguiente manera. Se define el ridge asociado al level set k–ésimo como (4.10). De

esta manera los elementos cruzados por sólo la interfase k–ésima, utilizan el ridge

R = r(k). En elementos multifase, que tienen varias interfases en su interior, la

función ridge se construye usando los ridges de cada una de ellas, como se describe

en la ecuación (4.11). La función C(1) introduce la jerarqúıa entre las interfaces y

está definida en la ecuación (4.12). El ridge normalizado, r
(1)
norm, tiene la propiedad

que su cresta tiene un valor constante igual a uno. Su definición se encuentra en la

ecuación (4.13). En la Figura 4.6 se ilustra el proceso de construcción de un ridge

para el caso de un elemento triangular con tres materiales en un interior.

Integración en elementos con varios materiales

El Método de los Elementos Finitos requiere resolver integrales dentro de cada

elemento. Las cuadraturas tradicionales, por ejemplo las de Gauss, están diseñadas

para integrar polinomios y funciones regulares, pero no garantizan un buen

resultado sobre funciones discontinuas como las generadas dentro de los elementos

enriquecidos. La integración en un elemento cortado por una única interfase se
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suele realizar partiendo éste en dos subdominios, cada uno con un único material

en su interior. Por lo tanto cada subdominio contendrá funciones continuas bien

condicionadas para la integración. En el caso de elementos triangulares el cálculo de

los subdominios es trivial. A medida que los elementos se vuelven más complejos o

que las dimensiones del problema aumentan, la determinación de los subdominios

se vuelve más cara y algoŕıtmicamente más compleja. Cuando además existe la

posibilidad de la existencia de varias interfaces dentro de un elemento, como en

el caso aqúı propuesto, los subdominios generados pueden tener cualquier forma

poligonal aumentando aun más el costo de su determinación. En este contexto la

idea de una cuadratura que no requiera del cálculo expĺıcito de los subdominios

materiales resulta atractiva. Por lo tanto aqúı se propone una cuadratura adaptativa

que, teniendo en cuenta las interfases entre materiales y su jerarqúıa, permite

integrar en el elemento entero sin realizar particiones. La distribución de los puntos

de integración se basa en la posición de las interfases, incrementando su densidad

cerca de las mismas. A pesar de que el costo computacional de dicha cuadratura

puede resultar alto, ésta solo se aplicará a muy pocos elementos del dominio, por lo

cual se espera que su influencia en el costo total sea despreciable. El Algoritmo 2

determina la cuadratura propuesta basada en una subdivisión recursiva del elemento

como la mostrada en la Figura 4.8.

Ejemplos numéricos

El método descrito en las secciones anteriores es aplicado aqúı a un problema de

inestabilidad gravitacional incluyendo varios materiales en dos y tres dimensiones.

Ejemplo 1: Inestabilidades en 2D. La disposición inicial de los materiales es

la mostrada en la Figura 4.10. El material superior es más denso que los inferiores y,

por lo tanto, se forma una inestabilidad gravitacional. Los dos materiales inferiores

tienen distinta viscosidad y por lo tanto la inestabilidad generada es asimétrica

horizontalmente. En la Figura 4.12 se muestra la evolución del modelo para cuatro

diferentes configuraciones de viscosidad. La fila (a) corresponde a tres materiales con

idéntica viscosidad y por lo tanto se comporta de forma isótropa. En el modelo de

la columna (b) el material blanco es cinco veces más viscoso que el resto. A medida

que el contraste de viscosidades aumenta en los casos (c) y (d), con contrastes de

10 y 100 respectivamente, la inestabilidad generada es cada vez más asimétrica.

Este ejemplo cualitativo nos permite mostrar como el comportamiento complejo del

sistema es reproducido por el modelo.
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Ejemplo 2: Inestabilidades en 3D. Dos ejemplos de inestabilidades en tres

dimensiones nos permiten analizar el comportamiento del modelo en dos situaciones

distintas. Primero, una configuración similar a la del caso anterior en 2D muestra

como el mismo efecto observado se obtiene también en tres dimensiones. El segundo

ejemplo está compuesto por estratos horizontales. Ambos dominios son cubos. La

configuración del primer ejemplo es similar a la del caso anterior, el material superior

es mas denso que los inferiores, que tienen distinta viscosidad entre si. La interfase

inicial entre el material superior y los dos inferiores tiene una perturbación sinusoidal

para inducir la inestabilidad en el centro horizontal del dominio. La Figura 4.13

muestra la disposición de los materiales durante la evolución del modelo. Debido

a la jerarqúıa entre los level sets, la interfase vertical sólo afecta debajo de la

superficie roja. En el panel (b) se muestra el mismo momento desde una perspectiva

distinta para facilitar su comparación con el modelo en dos dimensiones (c) con

las mismas viscosidades. El segundo ejemplo involucra cinco materiales distintos.

Las propiedades f́ısicas de los mismos se describe en la Tabla 4.2. La configuración

inicial y dos estados intermedios durante la evolución se muestra en la Figura 4.14.

En este caso el material inferior, con menor densidad, induce la deformación de las

capas superiores. Las secciones verticales del modelo muestran la evolución de la

deformación. Estos dos ejemplos en 3D muestran como el flujo se resuelve cuando

i) existen puntos triples, donde dos interfases se juntan dentro de un elemento y ii)

cuando varias interfaces son paralelas dentro de un elemento y son transportadas

manteniendo el paralelismo. Ambos casos se comportan consistentemente.

Adaptatividad de la malla

La precisión de la solución obtenida está relacionada con la discretización del dominio

(la malla) utilizada. En problemas geodinámicos es común que alguna cantidad de

interés tenga un tamaño pequeño con respecto al tamaño del dominio. Además, la

ubicación de la cantidad de interés puede variar con el tiempo. Como la descripción

del modelo es Euleriana, o bien se refina la malla por donde se espera que se necesite

mayor detalle o se adopta un esquema dinámico que modifique la malla de acuerdo

con las necesidades en cada momento. La primera opción es estática, la misma malla

será utilizada durante toda la simulación, mientras que la segunda es dinámica en

el sentido que la malla será modificada en cada momento para tener más detalle

alĺı donde sea necesario. En este trabajo se ha desarrollado un esquema simple pero

efectivo de adaptación de la malla basado en las funciones level set utilizadas para

describir las interfaces entre elementos. El algoritmo se basa en una malla grosera

inicial, que se irá refinando en cada paso solamente en los elementos cortados por
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las interfases. Este procedimiento se repite en forma recursiva una cantidad fija de

veces, llamado nivel de refinamiento d. El tamaño aproximado de elemento en las

regiones finas de la malla será el del elemento de la malla base dividido por 4d. El

pseudo código del algoritmo de refinamiento está descrito en el Algoritmo 3. En la

Figura 4.15 se puede ver como la parte fina de la malla sigue fielmente la posición de

las interfases entre materiales. En este caso se utiliza un nivel de refinamiento d = 3.

En la Figura 4.16 se comparan distintos niveles de refinamiento de la malla desde

d = 0 hasta d = 5. Se puede observar como la jerarqúıa entre interfaces es respetada

por el esquema de refinamiento. Por último, en la Figura 4.17 se compara un estado

intermedio en la simulación de cuatro modelos con distinto nivel de refinamiento.

La suavidad y precisión de las interfaces generadas se incrementan con el nivel de

refinamiento. Pero las mejoras no se restringen a eso, sino que también se mejora la

evolución de las interfaces: en la parte inferior izquierda de los paneles (a) y (b) de

la Figura 4.17 el material verde desapareció. Esto no se debe a que la malla no es

capaz de describirlo, los elementos gruesos pueden definir la posición de la interfaz,

sino que está relacionado con la precisión de la solución mécanica obtenida.

Ensamblado de matrices ralas

El ensamblado de matrices ralas es una operación crucial dentro del ambiente de los

Elementos Finitos. Esta operación puede resultar un cuello de botella, deteriorando

el tiempo de ejecución si las condiciones son desfavorables. Un escenario donde el

ensamblado resulta costoso es, por ejemplo, un problema de flujo multifase. En

éste, varias matrices deben ser ensambladas en cada paso pero, debido a los grados

de libertad enriquecidos que se crean y destruyen dinámicamente, la estructura

de la matriz vaŕıa en cada paso. En esta sección se analiza el procedimiento de

ensamblado de matrices en Matlab. Además se propone un algoritmo que presenta

mejores resultados que la función propia de Matlab tanto en número de accesos a

memoria como en tiempo de ejecución.

Almacenamiento de matrices ralas

En Matlab las matrices ralas se almacenan en el formato comprimido por columas3

(Mathworks, 2006). Este formato está basado en tres vectores pr, ir, y jc. Una

matriz K compuesta de m filas y n columnas, con nnz coeficientes distintos de

cero es almacenada de la siguiente manera: 1) el vector de reales pr de longitud

nnz contiene el valor de los coeficientes no nulos aij ordenados por columnas; 2) el

3Compressed Sparse Row format (CSR)
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vector de enteros ir con longitud nnz contiene las filas de lada elemento de pr y,

3) el vector de enteros jc con longitud n +1 contiene punteros al comienzo de cada

columna en pr y ir. La última posición de jc contiene el número de elementos

no nulos nnz. Este esquema de almacenamiento requiere que, al insertar un nuevo

coeficiente, se respete su posición en pr. Si la posición correspondiente se encuentra

al comienzo de pr, será necesario mover grandes bloques de memoria para obtener

el espacio en donde se debe realizar la inserción. En este contexto se define el Costo

de una inserción como la cantidad de coeficientes que se deben mover para realizar

una inserción.

Influencia de la numeración de los nodos

El Costo del ensamblado de una matriz depende del orden en el que se agreguen

los coeficientes. Por lo tanto la numeración de los nodos y de los elementos tendrá

gran influencia en el Costo total del ensamblado. Diferentes algoritmos han sido

propuestos para minimizar el ancho de banda de una matriz (por ejemplo Akhras,

1987; Boutora et al., 2007; Cuthill and McKee, 1969; Kaveh, 1993; Lai, 1998).

Estos mismos algoritmos mejoran Costo de ensamblado. En este trabajo se utilizará

el clásico algoritmo de Cuthill–McKee (RCM) como herramienta para estudiar la

influencia de la numeración en el ensamblado. Se considera el siguiente código Matlab

for e = 1:numberOfElements

Te = T(e,:);

Ke = calculateElementalMatrix( e );

K(Te,Te) = K(Te,Te) + Ke;

end

donde Ke es la matriz elemental, K la matriz global, T el vector de conectividades

y Te contiene la numeración global de los nodos del elemento e. La influencia de la

numeración es evaluada calculando el Costo de ensamblado de matrices generadas

por distintas mallas. La Figura 4.18 muestra el costo de la inserción de cada matriz

elemental durante el proceso de ensamblado de una matriz global. El panel (a)

corresponde al caso donde no se ha aplicado el algoritmo de ordenación. En este

caso, ordenando los nodos mediante el algoritmo RCM la cantidad de movimientos

de memoria requeridos durante el ensamblado se redujo en un factor de 7. En

la Tabla 4.3 se compara el Costo de ensamblado de distintas mallas con y sin

renumerado de nodos.
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Inserción por paquetes

Llamamos inserción por paquetes a una estrategia en donde varios coeficientes

son insertados en una única operación de alto nivel. Esto permite ubicar

simultáneamente la posición de varios coeficientes en el vector pr y aśı reducir el

número de movimientos en memoria. Un agrupamiento natural en la implementación

del Método de Elementos Finitos está definido por las matrices elementales ya que

los elementos son procesados uno a uno. Llamamos inserción elemento a elemento o

EbE al algoritmo que contempla este nivel de agrupamiento. La idea es ubicar todas

las posiciones necesarias para la inserción de todos los coeficientes del elemento y

luego con esta información, minimizar los movimientos en memoria necesarios. El

pseudo código del algoritmo EbE se muestra en el Algoritmo 4.

Ejemplos de ensamblado

En esta sección se analizan las propiedades del algoritmo propuesto en la sección

anterior, comparándolo con el algoritmo de inserción simple de Matlab. En la

Figura 4.19 se comparan los costos de ambos algoritmos para distintas mallas. En

todos los casos se elige la mejor numeración de elementos y nodos disponible. El

Costo de ensamblado usando el algoritmo EbE es menor en todos los casos probados,

en algunos casos llegando a reducir más de 20 veces el Costo generado. Ya que la

finalidad de este análisis es reducir los tiempos de ejecución, además de analizar

Costos, se compara los tiempos de cálculo que lleva ensamblar matrices con ambos

algoritmos. En la Figura 4.20 se muestra el tiempo de cada inserción elemental

durante el proceso de ensamblado. El tiempo total de ensamblado está representado

por el área bajo la curva. Al igual que con el Costo, el tiempo de ensamblado es

menor con el algoritmo EbE en todos los casos.

Evolución de la litosfera oceánica

La litosfera oceánica es creada continuamente en las dorsales oceánicas, donde dos

placas se mueve lateralmente, alejándose de la dorsal. A medida que la distancia a

la dorsal aumenta, la litosfera se enfŕıa y se hace más densa debido a la contracción

térmica. Este enfriamiento se refleja en la dependencia de la batimetŕıa y de flujo

de calor superficial en la edad de la litosfera (McKenzie, 1967; Parsons and Sclater,

1977). Para placas con edad menor que 70 Ma ambas señales decrecen linealmente

con
√

t, consistentemente con las predicciones del modelo Half–Space Cooling (HSC)

(Turcotte and Oxburgh, 1967). Este modelo se basa en un enfriamiento puramente
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conductivo en una placa ŕıgida de longitud infinita. Sin embargo, cuando las placas

oceánicas superan la edad de 70 Ma, la relación de los observables con la edad se

interrumpe y ambas señales toman valores prácticamente constantes (Parsons and

Sclater, 1977; Schroeder, 1984; Stein and Stein, 1992). Como estas señales reflejan el

enfriamiento litosférico, sus valores constantes implican un comportamiento similar

en la estructura térmica de la placa. El modelo de placa (McKenzie, 1967) es capaz de

reproducir este comportamiento, sin embargo no brinda ninguna explicación f́ısica al

hecho de que la placa oceánica deje de enfriarse. Una de las propuestas que intentan

explicar de dónde proviene el calor extra necesario para evitar el enfriamiento es la

existencia de pequeñas celdas convectivas actuando en la base de la litosfera (Parsons

and Sclater, 1977; Parsons and McKenzie, 1978; Yuen and Fleitout, 1985). En este

caṕıtulo se estudiara este proceso de convección en pequeña escala y la influencia

parámetros reológicos y f́ısicos sobre él. Se prestará especial importancia en i) las

señales de batimetŕıa y flujo de calor superficial generadas, ii) el uso de valores

para los parámetros f́ısicos compatibles con los valores brindados por estudios de

laboratorio.

Modelo f́ısico

El modelo utilizado es el descrito en el Capitulo 2. El modelo se complementa con

un modelo de fusión parcial de las rocas en la dorsal y un modelo de deshidratación.

Ésta genera diferentes dominios qúımicos dentro de la litosfera oceánica de acuerdo

con el contenido de agua. El dominio “seco” posee una viscosidad uno o dos órdenes

de magnitud mayor que el dominio “húmedo”. El modelo de fusión parcial está

determinado en la ecuación (5.3). Asumiendo un decrecimiento lineal del contenido

de agua con el grado de fusión, el primero queda determinado según la ecuación (5.4).

Observables geof́ısicos

Batimetŕıa. Las estimaciones de batimetŕıa son realizadas asumiendo un modelo

de isostasia local, es decir, la masa por unidad de área de una columna vertical se

compara con un valor de referencia, usualmente tomado en la dorsal. El cálculo de

la isostasia local se realiza según Jarvis and Peltier (1982), como se indica en la

ecuación (5.6).

Topograf́ıa dinámica. La componente vertical del flujo en el manto puede

generar variaciones en la topograf́ıa, llamadas topograf́ıa dinámica para distinguirlas

de la topograf́ıa generada por compensación isostática. De la misma manera que
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McKenzie (1977), la topograf́ıa dinámica se estima según la ecuación (5.7).

Velocidades śısmicas El cáclulo de las velocidades śısmicas [V 2
p ρ = KS + 4/3G

and V 2
s ρ = G] se basa en el modulo elástico de cada fase mineral estable, en la

densidad de la roca a la temperatura y presión de interés, y en estimaciones del

componente de atenuación anelastico. El cálculo de estas propiedades se realiza

mediante el proceso de minimización de la enerǵıa libre utilizando el método

propuesto por Connolly (2005). Los efectos anelásticos son calculados usando las

ecuaciones (5.8) y (5.9) según Karato (1993); Afonso et al. (2008).

Model setup and boundary conditions

El dominio del modelo es un rectángulo que representa un plano vertical paralelo al

movimiento de la placa como se muestra en la Figura 5.2a. La malla compuesta de

aproximadamente 13000 elementos representa una sección de 660 km de profundidad.

La corteza oceánica no juega ningún papel en el proceso de convección de pequeña

escala y por lo tanto no está incluida en el modelo. La temperatura está impuesta

en los lados superior e inferior del modelo, mientras que en los laterales se impone

flujo cero. El campo térmico inicial se calcula usando el modelo HSC según la

ecuación (5.10) (Schubert et al., 2001).

Resultados

Esta sección está dividida en dos partes, en la primera se describe las caracteŕısticas

principales de la convección de pequeña escala y sus efectos en la estructura térmica

de la litosfera y el manto superior. En la segunda parte se estudia la influencia de

los principales parámetros y procesos f́ısicos en la evolución de dicha convección.

Caracteŕısticas generales. En esta sección se muestra un ejemplo sencillo donde

la convección de pequeña escala está bien desarrollada. La velocidad superficial

está impuesta a 3.5 cm yr−1 comparable con las brindadas por Gripp and Gordon

(2002) para algunas placas oceánicas. Este primer ejemplo incluye como única fuente

de calor la componente adiabática y su reoloǵıa está basada en el mecanismo de

deformación por difusión (Newtoniano) sin tener en cuenta el contenido de agua

de las rocas. Los parámetros reológicos utilizados son una enerǵıa de activación

E = 120 kJ mol−1, un volumen de activación V = 4 ×10−6 m3 mol−1, y un factor

pre exponencial AD = 7.6 × 10−16 Pa−1 s−1. Valores similares a estos han sido

utilizados en trabajos previos (van Hunen et al., 2003; Huang and Zhong, 2005; van
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Hunen et al., 2005; Huang et al., 2003), lo que nos permite realizar comparaciones

cuantitativas de los resultados. Sin embargo estos valores están fuera de los rangos

estimados en estudios de laboratorio (Karato and Wu, 1993; Hirth and Kohlstedt,

2003).

En la Figura 5.3a se muestra la estructura térmica obtenida luego de alcanzar

un estado estad́ısticamente estacionario. Las inestabilidades se forman en la parte

inferior de la litosfera oceánica cuando ésta llega a aproximadamente los 60 Ma

de edad. A edades más tempranas, la evolución térmica sigue el enfriamiento

conductivo inicial. El campo de viscosidad asociado al campo térmico se muestra

en la Figura 5.3b. Para que las inestabilidades se produzcan es necesario que la

viscosidad en el manto sublitosférico sea menor a 1020 Pa s. Valores similares han sido

obtenidos por Korenaga (2002); Huang and Zhong (2005); van Hunen et al. (2005).

La convección de pequeña escala reduce la velocidad de enfriamiento litosférico

cuando ésta se compara con la predicha por el modelo HSC. El mismo proceso enfŕıa

el manto sublitsférico como se ilustra en la Figura 5.4, donde se comparan distintos

perfiles de temperatura durante la evolución del sistema. Durante la simulación se

remueven aproximadamente 50 km de material inestable de la base de la litosfera. El

enfriamiento del manto superior, de aproximadamente 200 K, no debe ser tomado

como valor de referencia, ya que nuestro modelo no incluye el efecto del calor latente

relacionado con los cambios de fase mineralógico.

Influencia de los parámetros f́ısicos. Primero se estudia la influencia de la

generación de calor por desintegración de elementos radioactivos y por difusión

viscosa. Para esto se ejecutan cuatro modelos con idénticos parámetros según la

Tabla 5.1. Los grosores litosféricos obtenidos son estimados usando la isoterma de

1603 K. En la Figura 5.5, donde se muestra el resultado de los cuatro modelos, se

puede observar que el calor radiogénico ejerce una gran influencia en la evolución

litosférica, mientras que el calor por difusión es despreciable.

Trabajos anteriores han encontrado una correlación entre la edad en donde

comienzan las inestabilidades y la velocidad de la placa (Houseman, 1983; Huang

et al., 2003; van Hunen et al., 2003). Para probar esta hipótesis, hemos hecho cinco

modelos variando la velocidad en 2, 4, 6, 8, y 10 cm yr−1. La primer inestabilidad se

produjo a las edades 28, 43, 70, 72, y 80 My respectivamente. Estas observaciones

son similares a las obtenidas por van Hunen et al. (2003) y Houseman (1983).

Teniendo en cuenta el efecto reológico de la deshidratación de las rocas en

la dorsal, la batimetŕıa y la producción de calor superficial reproducen fielmente

la aśıntota a valores constantes cuando la litosferas alcanza la edad de 70 Ma,
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como se muestra en la Figura 5.10. Variando la profundidad a la que comienza

la fusión parcial se obtienen distintos grosores litosféricos. Los perfiles de viscosidad

obtenidos en cada caso se muestran en la Figura 5.10. Las transiciones mineralógical

relacionadas con los minerales ricos en aluminio (plagioclasa–espinela–granate) no

afectan la evolución del modelo.

Conclusiones

Se ha realizado un estudio de la evolución de la litosfera oceánica y su relación con

la convección de pequeña escala. Nuestros resultados se resumen en los siguientes

puntos:

• Se estudió la influencia de tres fuentes de calor. El calor por difusión viscosa

no tiene influencia sobre la generación de celdas convectivas. En cambio el

calor de origen radiogénico favorece el desarrollo de las celdas disminuyendo

drásticamente el grosor litosférico. El efecto del calor adiabático es el de

disminuir contrastes térmicos y en consecuencia, reducir la efectividad de

celdas convectivas para erosionar la litosfera.

• Para la generación de celdas convectivas de pequeña escala es necesaria una

región de baja viscosidad (< 1020 Pa s) bajo la litosfera.

• Las celdas convectivas pueden ser generadas usando parámetros reológicos

compatibles con los experimentos de laboratorio. Sin embargo la activación de

la convección de pequeña escala no implica que las señales superficiales lleguen

a tener valores constantes.

• Los transisiones mineralógicas de los minerales ricos en aluminio no parecen

afectar a la evolución de la litosfera oceánica.

• La deshidratación de las rocas del manto, debido a la fusión parcial sufrida en

las dorsales parece ser la responsable de la cáıda de la batimetŕıa y el flujo de

calor a valores constantes.
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Desprendimiento de un slab y ángulo de sub-

ducción

Desprendimiento de un slab

El desprendimiento de la litosfera oceánica subducida (slab) ha sido propuesto

por numerosos autores para explicar la falta de sismicidad a profundidades

intermedias en algunas zonas de subducción (e.g. Fuchs et al., 1979; Xu et al.,

2000; Blanckenburg and Davies, 1995; Ioane and Lillie, 2004). Se espera que este

proceso tenga consecuencias superficiales tales como un aumento en la elevación (e.g.

Westaway, 1993; Buiter et al., 2002; Gerya et al., 2004), magmatismo, metamorfismo

(Blanckenburg and Davies, 1995; Davies and von Blanckenburg, 1995), etc. En esta

sección se presenta un estudio numérico del proceso de desprendimiento. Se estudia

la influencia de distintos parámetros en el proceso y se predicen consecuencias

superficiales. La configuración inicial del modelo es la mostrada en la Figura 6.1b,

ésta corresponde a una zona de subducción donde el slab alcanza los 400 km de

profundidad. Se supone que el proceso de desprendimiento comienza una vez que la

convergencia se detiene, por lo tanto se impone una velocidad superficial nula.

Resultados

La influencia de los distintos parámetros es estudiada comparando cada modelo de

la Tabla 6.1 con un modelo de referencia. La evolución del modelo de referencia se

muestra en la Figura 6.3. El desprendimiento del slab tiene una primera etapa de

difusión térmica en donde éste incrementa su ángulo. Luego, un rápido proceso de

estrechamiento en la litosfera subducida termina con su desprendimiento mecánico.

Este peŕıodo está caracterizado por una alta velocidad de deformación y un alto

calentamiento viscoso. Los valores máximos obtenidos en cada modelo de velocidad

de deformación se muestran en la Tabla 6.2. La evolución de la topograf́ıa generada

por el desprendimiento se muestra en la Figura 6.4. Se alcanza un máximo de 1.5 km

de elevación en un área localizada de unos 300 km de extensión. El calentamiento

por difusión viscosa ejerce un gran efecto sobre el proceso de desprendimiento, ya

que favorece la concentración de esfuerzos. Si este término no es tenido en cuenta el

desprendimiento se retarda en un 50%. El calentamiento adiabático tiene el mismo

efecto que el explicado anteriormente: actúa como estabilizador, decreciendo los

contrastes térmicos.
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Discusión

El desprendimiento de la litosfera subducida a sido propuesto en varios trabajos para

explicar un adelgazamiento litosférico en una zona de colisión continente–continente

(Molinaro et al., 2005; Ioane and Lillie, 2004; Schoonmaker et al., 2005). Nuestros

resultados, y otros trabajos similares, no soportan esa hipótesis ya que los grosores

litosféricos resultantes luego del desprendimiento siempre se incrementan. En la

Figura 6.6 se muestran las dos evoluciones propuestas para el desprendimiento. Es

posible que el resultado de los modelos se vea afectado por una reoloǵıa demasiado

simplificada (viscosa pura) o por la ausencia de la falla entre placas. Es necesario

realizar nuevos estudios para investigar la influencia de estos elementos.

Conclusiones

En esta tesis se describe todo el proceso de modelado de la litosfera oceánica

y el manto. Se expone la f́ısica que gobierna el problema, las ecuaciones que

describen su comportamiento y los métodos numéricos utilizados para resolver estas

ecuaciones. Además se brinda una implementación computacional de estos métodos.

La herramienta generada es utilizada para estudia distintos aspectos de la dinámica

de la litosfera oceánica: su estabilidad a lo largo del tiempo, la relación entre la

velocidad de convergencia y la geometŕıa de las zonas de subducción y la influencia

de distintos parámetros en el desprendimiento de la litosfera subducida.

El modelo f́ısico propuesto está basado en las ecuaciones de conservación de

enerǵıa, masa y momento. Éste incluye comportamiento reológicos no lineales

basados en los mecanismos de deformación que actúan en el manto. Las propiedades

f́ısicas de las rocas se calculan en función de la temperatura y la presión. Las

transformaciones minerales más importantes están incluidas en el modelo, aśı como

las tres fuentes de calor principales.

Para la resolución de las ecuaciones se han utilizado diversas técnicas numéricas.

La base de nuestro modelo es el Método de los Elementos Finitos eXtendido

(X–FEM), usado por primera vez en aplicaciones geof́ısicas. El método permite

describir la ubicación de fases materiales en un entorno Euleriano, agregando

dos nuevos ingredientes a los Elementos Finitos tradicionales: level sets y un

enriquecimiento de la solución. La aplicación de level sets a problemas geof́ısicos

a sido propuesta por dos trabajos simultáneos (Zlotnik et al., 2007a; Gross et al.,

2007).

Para tratar con determinados aspectos de nuestro modelo se han desarrollado

o extendido algunas técnicas numéricas. El Método de los Elementos Finitos
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eXtendido en su versión standard es capaz de tratar con dos materiales distintos.

Como parte de esta tesis, se ha propuesto una mejora del método que permite tratar

cualquier número de materiales. Por otro lado, en modelos transitorios en donde en

cada paso temporal es necesario el ensamblado de varias matrices, el algoritmo de

ensamblado repercute en el tiempo total de ejecución. Aqúı se presenta un estudio

de los parámetros que afectan al ensamblado y se propone un algoritmo que mejora

la cantidad de operaciones de memoria y el tiempo de ensamblado con respecto a

las funciones brindadas por Matlab. Con este procedimiento el tiempo de ejecución

de nuestro modelo se redujo en un 60% y el tiempo de ensamblado se redujo a la

mitad.

Usando la herramienta desarrollada hemos estudiado la evolución de la litosfera

oceánica en el tiempo y su relación con la convección de pequeña escala. Usando

parámetros f́ısicos y reológicos compatibles con los estudios de laboratorio, hemos

reproducido los observables geof́ısicos superficiales (batimetŕıa y flujo de calor) y

profundos (velocidades śısmicas). Nuestros resultados muestran que la cáıda de la

batimetŕıa y flujo de calor a valores constantes está relacionada con la estratificación

de la litosfera oceánica debida a la deshidratación de las rocas en las dorsales.

Los estudios de desprendimiento de la placa oceánica subducida muestran que el

proceso es factible f́ısicamente y que sus respuestas superficiales son apreciables

geológicamente. Se destaca la importancia del calor por disipación viscosa que

acelera el proceso de desprendimiento y de hundimiento de la placa. A pesar de que

varios autores han usado este proceso para explicar un adelgazamiento litosférico,

nuestros modelos predicen un engrosamiento. Esta diferencia puede deberse a la

reoloǵıa simplificada de nuestro modelos o a la falta de un buen modelo para la falla

entre las placas.

Para mostrar la flexibilidad de nuestra implementación, presentamos dos modelos

en tres dimensiones. Primero, inestabilidades gravitacionales nos permiten mostrar

que los Elementos Finitos eXtendidos pueden ser fácilmente usados en 3D. Luego un

modelo simple de manto global nos permite mostrar un dominio esférico en donde

se imponen condiciones de contorno complejas. Los resultados de estos dos modelos

se muestran en las Figuras 7.1, 7.2 y 7.3.

Trabajo futuro

Los ejemplos previos nos muestran que el desarrollo de un código completo en tres

dimensiones es una interesante ĺınea de trabajo. Otra posibilidad es la extensión

de el modelo f́ısico para incorporar la compresibilidad de los materiales. En las
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condiciones del manto terrestre la presión es suficiente como para considerar a las

rocas como compresibles. Una tercera continuaci’on interesante es la combinación

de un código dinámico, como el que aqúı se presenta, con un código petrológico

como PerpleX (Connolly, 2005). Esto permitiŕıa conocer las propiedades f́ısicas de

los materiales con una certeza mucho mayor. Cualquiera de las dos ĺıneas de trabajo

propuestas generará un código que demandará un gran poder computacional. Por lo

tanto un requisito fundamental será un diseño que permita la ejecución en clusters

o en máquinas paralelas.

167





Bibliography

G. A. Abers, P. E. van Keken, E. A. Kneller, A. Ferris, and J. C. Stachnik.

The thermal structure of subduction zones constrained by seismic imaging:

implications for slab dehydration and wedge flow. Earth Planet. Sci. Lett., 241:

387–397, 2006.

J. C. Afonso, G. Ranalli, and M. Fernández. Thermal expansivity and elastic

properties of the lithospheric mantle: results from mineral physics of composites.

Phys. Earth Planet. Inter., 149:279–306, 2005.

J. C. Afonso, G. Ranalli, and M. Fernàndez. Density structure and buoy-
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Computational approaches to studying non-linear dynamics of the crust and

mantle. Phys. Earth Planet. Inter., 163:69–82, 2007.

L. N. Moresi and M. Gurnis. Constraints on lateral strength of slabs from 3–D

dynamic flow models. Earth Planet. Sci. Lett., 138:15–28, 1996.

J. P Morgan. The generation of a compositional lithosphere by mid-ocean ridge

melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth

Planet. Sci. Lett., 146:213–232, 1997.

J. P Morgan and W. H. S. Smith. Flattening of the sea–floor depth–age curve as a

response to asthenospheric flow. Nature, 359:524–527, 1992.

M. Nettles and A. M. Dziewonski. Radially anisotropic shear-velocity structure of

the upper mantle globally and beneath norht america. J. Geophys. Res., 113,

2008. doi: doi:10.1029/2006JB004819.

A. R. Oganov, J. P. Brodholt, and G. D. Price. Ab initio elasticity and thermal

equation of state of MgSiO3 perovskite. Earth Planet. Sci. Lett., 184:555–560,

2001.

M.C. Oncescu, V. Burlacu, M. Anghel, and V. Smalbergher. Three-dimensional

p-wave velocity image under the carpathian arc. Tectonophysics, 106:305–319,

1984.

C. O’Neill, L. Moresi, D. Müller, R. Albert, and F. Dufour. Ellipsis 3d: A particle–in–

cell finite–element hybrid code for modelling mantle convection and lithospheric

deformation. Computers & Geosciencies, 32:1769–1779, 2006.

S. Osher and R. Fedkiw. Level set methods: an overview and some recent results.

Journal of Computational Physics, 169:463–502, 2001.

S. Osher and J. A. Sethian. Front propagating with curvature dependent speed:

algorithms based on Hamilton-Jacobi formulations. Journal of Computational

Physics, 79:12–49, 1988.

B. Parsons and D. McKenzie. Mantle convection and thermal structure of the plates.

J. Geophys. Res., 83:4485–4496, 1978.

B. Parsons and J. G. Sclater. An analysis of the variation of ocean floor bathymetry

and heat flow with age. J. Geophys. Res., 82:803–827, 1977.

178



BIBLIOGRAPHY

G. Pascal, J. Dubois, M. Barazangi, B. L. Isacks, and J. Oliver. Seismic velocity

anomalies beneath the New Hebrides island arc: evidence for a detached slab in

the upper mantle. Geophysics, 78:6998–7004, 1973.

G. Ranalli. Rheology of the Earth. Chapman and Hall, 2–6 Boundary Row, London,

second edition, 1995.

K. Regenauer-Lieb, B. Hobbs, D. A. Yuen, A. Ord, Y. Zhang, H. B. Mühlhaus, and
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