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Noise-induced phase separation: Mean-field results
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We present a study of a phase-separation process induced by the presence of spatially correlated multipli-
cative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to
obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the
complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of con-
served and nonconserved systems is made at the level of the mean-field approximation.
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I. INTRODUCTION

Many theoretical and experimental observations confi
nowadays the existence of noise-induced order. Phenom
such as noise-induced transitions@1#, stochastic resonanc
@2#, and noise-induced transport@3# are examples of the or
dering features of fluctuations in purely temporal dynami
systems. Additionally, recent years have witnessed an
creasing interest in noise-induced phenomena in spatially
tended systems~see@4# for a recent review!. Some of the
topics studied in this respect include noise-induced patte
@5,6#, noise-induced phase transitions@7–9#, spatiotemporal
stochastic resonance@10,11#, noise-induced fronts@12#,
noise-supported traveling structures in excitable media@13#,
and noise-sustained convective structures@14,15#. We are
concerned in this paper with the phenomenon of no
induced phase separation, recently observed in systems
conserved dynamics@16#.

Several analytical methods have been used so far@4# to
examine the above-mentioned spatiotemporal problems
way of example, the stability of a homogeneous state w
respect to small perturbations of arbitrary wave number
be analyzed in a linear approximation. Such a linear stab
analysis shows that pattern-forming transitions are nontr
ally affected by multiplicative noise@5,17#. From a more
fundamental point of view, systems exhibiting phase tran
tions in a statistical-mechanics sense can be investigate
means of the dynamic renormalization group@18,19#, which
shows that under certain conditions a new genuine none
librium universality class arises due to the presence of m
tiplicative noise@20,21#. A third fruitful approach is based on
the well-known mean-field approximation, widely used
the context of equilibrium statistical mechanics, and that
been recently extended to nonequilibrium systems under
influence of external noise@7,22#. In this context, the ap-
proximation is introduced by assuming that the interact
between a certain spatial point and its neighbors occ
through a mean value of the field, which corresponds to
statistical average at the given point. This approach has
to the prediction of noise-induced ordering and disorder
PRE 601063-651X/99/60~4!/3597~9!/$15.00
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phase transitions~NIOTs and NIDTs!, which has been suc
cessfully verified~at least qualitatively! by numerical simu-
lations in different models@7,8,21,23#. The advantages o
this procedure as compared to, e.g., linear-stability
proaches lie in its ability to describe the system arbitrarily
from the transition point and to take into account the infl
ence of spatial coupling strength, which arises naturally
discretized systems. In this way, the mean-field analysis
successfully explain the existence of successive NIOTs
NIDTs ~also called reentrant transitions in this context! as a
single control parameter is varied.

The aim of this paper is to perform a somewhat detai
study, using the mean-field approximation technique, of
phenomenon of noise-induced phase separation. This
nomenon has been recently predicted by a linear stab
approach and confirmed by numerical simulations@4,16#. It
arises in spatiotemporal systems whose dynamics is c
served, in the sense that the spatial average of the field
not vary with time, but depends only on the initial conditio
of the system. Due to this fact, a standard mean-field
proach cannot be applied in this case, because no chan
the mean field will be observed as a given control param
is varied~and hence no phase transition can be found in
way!. Therefore, an extension of the procedure is neede
order to handle this situation. The present work is devoted
developing such an extension, and applying the results to
particular case of noise-induced phase separation mentio
above. The outline of the rest of the paper is the followin
Section II introduces the general system that will be inve
gated, along with the particular model to which the obtain
results will be applied. A comparison between conserved
nonconserved dynamics is also briefly sketched. Section
reviews the mean-field procedure for nonconserved syste
and extends it to include the effect of spatial correlation
the external noise. Section IV introduces the generali
mean-field approach for conserved systems. Section V
cusses the limit of strong spatial coupling of the procedu
and compares the corresponding results with those com
from linear stability analysis. Throughout all these sectio
a comparison with respective numerical simulations of
3597 © 1999 The American Physical Society
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3598 PRE 60IBAÑES, GARCI´A-OJALVO, TORAL, AND SANCHO
complete model is made. Finally, some conclusions
stated in Sec. VI.

II. CONSERVED AND NONCONSERVED DYNAMICAL
MODELS

The spatiotemporal dynamics of a nonequilibrium syst
in the presence of both internal and external noise can
described by the following Langevin equation@24# for the
time evolution of thed-dimensional scalar fieldf(xW ,t):

]f~xW ,t !

]t
52GF dF

df
1g~f!j~xW ,t !G1h~xW ,t !, ~1!

where the additive noiseh(xW ,t) is Gaussian and white, with
zero mean and correlation

^h~xW ,t !h~xW8,t8!&52«Gd~xW2xW8!d~ t2t8!. ~2!

The intensity of the noise is measured by the paramete«.
The existence of the factorG in correlation~2! is a sign of
the internal character of this noise, in whose only prese
(g50) the system can exhibitequilibrium properties. The
multiplicative noise termj(xW ,t), on the other hand, is exter
nal and brings the systemout of equilibrium. It may arise, for
instance, from a fluctuating control parameter. It is a
Gaussian with zero mean, but its correlation will be assum
in principle to have a nontrivial structure in space:

^j~xW ,t !j~xW8,t8!&52s2c~ uxW2xW8u!d~ t2t8!, ~3!

where c(uxW2xW8u) is the spatial correlation function of th
external noise ands2 is its intensity.

Different and physically motivated choices forG will lead
to a variety of dynamical and steady-state phenomenolog
The particular case ofG52“

2 ~calledmodel Bin the litera-
ture of critical phenomena! is appropriate to describe a sy
tem in which the global quantity*f(xW ,t)ddxW is conserved in
time. Physical realizations of this system include the cas
phase separation in binary alloys. In this case, an initial m
ture of the two components may undergo, for some value
the control parameters, a separation process which, dep
ing on the initial relative concentrations of each compone
takes the form of spinodal decomposition or nucleation@25#.
In this paper we will be mainly concerned with the co
served case, although a comparison will also be made
the corresponding nonconserved case, defined byG51
~known asmodel A!.

Even though the theoretical approach that will be p
sented here is quite general, our results will be applied,
the sake of clarity, to the particular Ginzburg-Landau fo
of the free energyF,

F5E dxFV~f!1
D

4d
u“W fu2G , ~4!

where the local potentialV(f) is

V~f!52
a

2
f21

1

4
f4. ~5!
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In the absence of noise sources, the behavior of this pote
is the following: fora<0 the homogeneous trivial solutio
f50 is stable, whereas fora.0 that solution becomes un
stable. This instability gives rise either to a phase transit
towards an ordered~ferromagnetic! phase in the noncon
served case, or to a phase separation process in the cons
case.

The external noise will be taken to be coupled to the fi
according to

g~f!5f, ~6!

which corresponds to allow the control parametera in Eq.
~5! to fluctuate in space and time. We will use the followin
Gaussian spatial correlation function:

c~ uxW2xW8u!5
1

~lA2p!d
expS 2

uxW2xW8u2

2l2 D , ~7!

whose widthl characterizes the correlation length of th
noise. The normalization is such that in the limitl→0 this
correlation goes to ad function andj(xW ,t) becomes a spatia
white noise with intensitys2.

III. MEAN-FIELD APPROACH FOR NONCONSERVED
DYNAMICS

We now review the main points of the mean-field a
proach in its application to nonconserved order-param
systems~modelA), in order to clarify the extension to con
served dynamics that will be presented in the next sect
We begin by discretizing the field equation~1! with G51 in
a regulard-dimensional lattice of mesh sizeDx51 and lat-
tice pointsxW1 , . . . ,xWN ,

df i

dt
5 f ~f i !1

D

2d (
j

D̃ i j f j1h i~ t !1g~f i !j i~ t !, ~8!

wheref i[f(xW i), f (f i)52V8(f i), and only one index is
used to label the cells, independently of the dimension of
lattice. D̃ i j accounts for the discretized Laplacian operato

“

2→(
j

D̃ i j 5(
j

~dnn(i ), j22dd i , j !, ~9!

where nn( i ) represents the set of all the sites which a
nearest neighbors of sitei.

The discrete noisesh i(t) andj i(t) are still Gaussian with
zero mean and their correlations are given by

^h i~ t !h j~ t8!&52«d i , jd~ t2t8! ~10!

and

^j i~ t !j j~ t8!&52s2cu i 2 j ud~ t2t8!, ~11!

where cu i 2 j u is a convenient discretization of the functio
c(uxW2xW8u) and specific values such asc0 ,c1 have to be com-
puted numerically@4,16# when needed. For the white-nois
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case (l50) and with the mesh size chosenDx51 it is c0
51, c150, whereas for largel, c0 scales roughly asc0
}l2d.

The corresponding Fokker-Planck equation, in the S
tonovich interpretation, for the multivariate probability de
sity P(f1 ,f2 , . . . ,t)[P($f%,t) is @4#

]P

]t
52(

i

]

]f i
F f ~f i !1

D

2d (
j Pnn(i )

~f j2f i !2«
]

]f i

2s2g~f i !(
j

cu i 2 j u
]

]f j
g~f j !GP. ~12!

In order to get the evolution equation for the single-s
probability distributionP(f i ,t), defined as

P~f i ,t !5E F)
kÞ i

dfkGP~$f%,t !, ~13!

we integrate Eq.~12! over all the variables exceptf i . Van-
ishing of the probability for the field going to6` leads to

E F)
kÞ i

dfkG ]

]f j
@g~f j !P~$f%,t !#50, j Þ i ~14!

and using the standard definition of the conditional proba
ity, one gets

(
j Pnn(i )

E F)
kÞ i

dfkGf j P~$f%,t !

[F (
j Pnn(i )

E df jf j P~f j uf i ,t !GP~f i ,t !

[2d^f~ t !&f i
P~f i ,t ! ~15!

which defineŝ f(t)&f i
as a nearest-neighbor conditional a

erage. Thus we finally find that the one-point steady pr
ability distribution follows the simpler but still exact equa
tion,

]P~f i ,t !

]t
52

]

]f i
S f ~f i !1D@^f~ t !&f i

2f i #2«
]

]f i

2s2c0g~f i !
]

]f i
g~f i ! D P~f i t !. ~16!

The mean-field approximation consists in assuming t
the conditional average in the last equation is replaced
@26#

^f~ t !&f i
5^f i~ t !&, ~17!

which is equivalent to doing directly the following assum
tion at the level of the Langevin Eq.~8!:

1

2d (
j

D̃ i j f j~ t !5^f i~ t !&2f i~ t !. ~18!

Using this approximation, and imposing the condition of s
tionary probability distribution with no flux, we get that th
single-site steady distribution satisfies
-

l-

-

t
y

-

F f ~f!1D~^f&st2f!2«
]

]f
2s2c0g~f!

]

]f
g~f!GPst~f!

50, ~19!

where subscripti has been dropped for simplicity.
The solution of the previous equation can be easily w

ten down:

Pst~f,^f&st!5N expS E df8
1

s2c0g2~f8!1«

3@ f ~f8!1D~^f&st2f8!

2s2c0g~f8!g8~f8!# D , ~20!

whereN is an appropriate normalization constant. The abo
solution is only formal, becausêf&st depends on the prob
ability distribution itself. However, bothPst and^f&st can be
determined by means of the following self-consistency re
tion, which is a signature of the mean-field approach,

^f&st5E
2`

`

fPst~f,^f&st!df. ~21!

We now apply our results to the particular model defin
by Eqs.~4!–~7!. The solution of the self-consistency equ
tion ~21! in this case is plotted in Fig. 1 versus the contr
parametera for three different values of the noise correlatio
length l. Note that the existence of multiplicative nois
shifts the critical point towards negative values ofa, which
indicates the ordering character of the external noise. T
noise-induced phase transition has been substantially stu
in the past in the case of white external noise@8,17,22#.
Figure 1 also displays the results obtained by numer
simulations of the complete model~8! for a two-dimensional
square lattice and using the mean-field results as the in

FIG. 1. Steady-state order parameter^f&st versus control param-
eter a for model A. Lines are mean-field results and points corr
spond to numerical simulations of the complete model for a tw
dimensional square lattice with 64364 cells, mesh sizeDx51, for
system parametersl50.0 ~circles and solid line!, l50.5 ~squares
and dotted line!, andl51.5 ~triangles and dashed line!. Other pa-
rameters areD53.7, «50.1, ands255.0. All simulations in this
paper use the same lattice parameters.
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conditions. It can be seen that mean-field results give
correct qualitative behavior of the system, and are also qu
titatively right far from the critical point. The agreement b
tween mean-field predictions and simulations close to
critical point improves when the correlation lengthl in-
creases.

Notice that, in this mean-field approximation, the on
effect of the finite correlation lengthl of the noise shows up
in the valuec0,1 @see Eq.~20!# of the correlation function
at zero distance. As mentioned before, this value decre
with increasingl. In other words, for nonconserved dynam
ics the disordering effect of the spatial correlation of mu
plicative noise in the mean-field approximation arises o
through a decrease of the effective noise intensity.

IV. MEAN-FIELD APPROACH FOR CONSERVED
DYNAMICS

The mean-field approach discussed above cannot
straightforwardly extended to deal with conserved-ord
parameters systems, because in these cases the mean
^f& is constant in time, depending only on the initial cond
tions and not on the control parametera. We now introduce
a generalized mean-field approximation that overcomes s
a restriction. The main ideas underlying this extension w
be first presented in the deterministic modelB.

A. Deterministic dynamics

In the absence of all noise sources, modelB takes the
form

]f~xW ,t !

]t
5¹2

dF

df
. ~22!

This model evolves in time under the following restriction

1

VE dxWf~xW ,t !5f0 , ~23!

wheref0 is fixed by the initial conditions. The phenomeno
ogy of this model is well known@25#: there is a transition
point aT(f0), such that fora,aT(f0) the homogeneous
statef5f0 is stable, whereas fora.aT(f0) the system
separates in two bulk phases,f1 and f2, fulfilling that the
spatial average off is also equal tof0. The transition from
a homogeneous state to a two-phase state is critical~i.e., of
second order! for f050, so thataT(f050)[ac .

In order to determine bothaT(f0) and ac , we look for
the steady-state solutions of Eq.~22!. These solutions fulfill
the Laplace equation¹2(dF/df)50. The analytical and
bounded solution isdF/df5h, whereh is a constant. There
fore the steady states of modelB can be interpreted as th
minima of an effective potentialFeff5F2h*dxWf, and coin-
cide with the steady states of modelA with an external con-
trol field h. Following Ref. @27#, we call h the constant ef-
fective fieldof the system. For equilibrium systems,h is
merely the chemical potential. Moreover,h is not an arbi-
trary constant, and it has to be determined by imposing
conservation law, Eq.~23!. Substitution of the Ginzburg
Landau form in the discretized version ofh5dF/df leads to
e
n-

e

es

y

be
-
field

ch
ll

e

h52af i1f i
32

D

2d (
j

D̃ i j f j . ~24!

We now need to consider separately the subthreshold
superthreshold situations.

~i! In the subthreshold~homogeneous! case, the condition
f i5f0 ,; i , has to be verified, and therefore Eq.~24! reduces
to

h52af01f0
3. ~25!

Hence the value ofh does depend on the initial condition i
the subthreshold situation.

~ii ! Above the transition point~not yet determined!, the
steady state of the system is not globally homogeneous, s
the field separates in two bulk phases with valuesf1 andf2,
respectively. The fractionx of the system in phasef1 is
given by the lever rule:xf11(12x)f25f0. For a general
free energy, a Maxwell-type construction would give us t
value of h. In the case of a locally symmetric free energ
@such as the one defined in Eqs.~4! and~5!#, a simpler argu-
ment can be used: each phase has to satisfy Eq.~24! with f i
equal to the field value of the corresponding phase, eitherf1
or f2, and, since by the symmetry of the free energy, th
two quantities verifyf152f2, andh must be zero. Conse
quently, we get

f1,256Aa, ~26!

which are the solutions of the deterministic modelA for a
value of the external control fieldh50.

Just at the transition point, there is a unique phasef
5f0 andh is identically zero. Thus the transition line~also
called in this context the coexistence line! is given by

aT~f0!5f0
2. ~27!

We also note that forf050, the critical point is obtained
aT5ac50.

We will now show that the concept of the constant effe
tive field can be used to generalize the mean-field appr
mation to conserved systemswith noise.

B. Noise-induced phase separation

We now add stochastic sources to model~22!, in the form
of both an internal additive noise and an external multiplic
tive one. The resulting model is represented by Eqs.~1!–~3!
with G52¹2. The discretized version of this model is

df i

dt
52(

j
D̃ i j S f ~f j !1

D

2d (
k

D̃ jkfk1g~f j !j j D 1h i~ t !,

~28!

with f (f j )52V8(f j ), as before. The correlation of the ad
ditive noise is now

^h i~ t !h j~ t8!&522«D̃ i j d~ t2t8!, ~29!

and that of the multiplicative noise was already introduced
Eq. ~11!. The corresponding Fokker-Planck equation, in t
Stratonovich interpretation, for the multivariate probabili
densityP($f%,t) is in this case
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]P

]t
5(

i , j

]

]f i
D̃ i j S f ~f j !1

D

2d (
k

D̃ jkfk2«
]

]f j

1s2g~f j !(
r ,s

]

]fs
D̃srcu j 2r ug~f r ! D P. ~30!

As done in the nonconserved case, we now integrate Eq.~30!
over all the variables exceptf i , in order to get the evolution
equation of the single-site probability distributionP(f i ,t)
@see Eq.~13!#,

]P~f i ,t !

]t
5

]

]f i
(

j
D̃ i j ^M j&f i

P~f i ,t !, ~31!

where

M j5 f ~f j !1
D

2d (
k

D̃ jkfk2«
]

]f j

1s2g~f j !(
r ,s

]

]fs
D̃srcu j 2r ug~f r !. ~32!

If we impose the condition of stationarity probability distr
bution with no flux,^M j&f i

must satisfy

(
j

D̃ i j ^M j&f i
Pst~f i !50. ~33!
w
s

ac
e
e

as
i

n
ti
In the deterministic conserved case it has been shown
the solution of this equation is the constant effective fie
^M j&f i

52h. We can now takej 5 i and perform the condi-

tional average ofMi . If we consider the expression analo
gous to Eq.~14! for the multiplicative noise term and mak
the standard mean-field approximation~17!, we arrive at

2hPst~f!5S f ~f!1D~^f&st2f!2«
]

]f
12ds2g~f!

3Fc1g~^f&st!
]

]f
2c0

]

]f
g~f!G D Pst~f!, ~34!

where subscripts have been dropped again for simplicity
the derivation of this equation, a generalization of the me
field approximation for the nearest-neighbor conditional a
erage of functiong(f) has been applied, namely

^g~f!&f i
5g~^f i&!. ~35!

In principle this is an uncontrolled approximation whose v
lidity needs to be assessed by the numerical simulatio
which will be presented in what follows.

The solution of Eq.~34! yields the following stationary
probability distribution:
Pst~f,^f&st,h!5N expS E df8

2ds2g~f8!@c0g~f8!2c1g~^f&st!#1«

3@ f ~f8!1D~^f&st2f8!22ds2c0g~f8!g8~f8!1h# D , ~36!

whereh and ^f&st are parameters to be determined self-consistently.
We now particularize the result obtained above to the Ginzburg-Landau model defined by Eqs.~4!–~7!. In this case, the

stationary single-site probability distribution is

Pst~f,^f&st,h!5N expS E ~a2D22ds2c0!f82f831D^f&st1h

2ds2~c0f822c1^f&stf8!1«
df8D . ~37!
are
the

iven

r

is
We now need to determine the unknown constantsh and
^f&st. Similarly to the deterministic case studied above,
consider separately the subthreshold and superthreshold
ations. We recall at this point that the mean-field appro
presented above islocal, and leads to an expression for th
probability distribution of the field at a given site of th
lattice as a function ofh and of the mean field̂f&st in the
neighborhood of the given cell. In the homogeneous c
(a,aT), this mean field is the same everywhere, and it
equal tof0. Hence onlyh is left to be evaluated, which ca
be done by means of the generalized self-consistency rela

^f&st5E
2`

`

fPst~f,^f&st,h!df ~38!
e
itu-
h

e
s

on

with ^f&st5f0.
For a.aT , the system has two phases, and thus there

two different local mean values, corresponding to each of
bulk phases (̂f&1 and^f&2). Because of the symmetry ofF
and g, these values must satisfy^f&152^f&2. Therefore,
sinceh needs to be the same for the two phases, and g
the form of the numerator in Eq.~37!, h must be zero in this
ordered state. Hence only the values of the local~symmetri-
cal! mean fieldŝ f&1 and ^f&2 need to be determined fo
a.aT . This can be done as in the case of modelA, solving
the self-consistency relation~21! using the steady probability
given in Eq. ~37! with h50. For nonsymmetric functions
F(f) andg(f), a possible extension of the Maxwell rule
to chooseh in such a way that the two solutions of Eq.~38!
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have the same value for the stationary probabi
Pst(^f&st,^f&st,h).

The bifurcation diagram resulting from the application
the self-consistency relations is plotted in Fig. 2 for thr
different values of the multiplicative-noise correlatio
length. Numerical simulation results of the complete mo
~28! are also shown. Mean-field results have been used a
initial conditions of the numerical simulations letting ea
phase evolve until its stationary value. The effects of
intensity and correlation length of the multiplicative noi
are qualitatively the same as in modelA: the noise-induced
shift of the transition point, in the direction of enhancin
order in the system, increases with noise intensity and
creases with correlation length.

Figure 3 shows the values of the constant effective fielh
obtained numerically by imposing the self-consistency re
tion ~38! until h vanishes, for a nonzero initial concentratio
f050.2. The corresponding value of the control parametea
at which h first becomes zero is the transition pointaT .
Results have been plotted for the deterministic case@which
can be calculated analytically, see Eq.~25!#, the case with

FIG. 2. Steady-state bulk order parameter^f& versus control
parametera for model B. Lines are mean-field results and poin
correspond to numerical simulations forl50.0 ~circles and solid
line!, l50.5 ~squares and dotted line! and l51.5 ~triangles and
dashed line!. Other parameters areD53.7, «50.1, ands251.25.

FIG. 3. Constant effective fieldh as a function of the contro
parametera, as obtained from mean-field theory, forD53.7 and
f050.2. All the cases with multiplicative noise have also addit
noise withe50.1.
e
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just additive noise, and three cases with also multiplicat
noise for different correlation lengths, corresponding to
situations shown in Fig. 2. The noise-induced shift of t
transition point and the influence of the noise correlat
length as well as the disordering role of the additive no
~reflected in the shift of the transition point towards the rig
when only additive noise is considered — dotted line! can be
clearly seen.

A comment on the comparative influence of multiplic
tive noise on conserved and nonconserved dynamics is w
making at this point. We note that, in the ordered stateh
50), the single-site probability distribution of the conserv
model ~36! in the presence ofwhite multiplicative noise
(c051 andc150) reduces to

Pst~f,^f&st!5NS expE df8
1

2ds2g2~f8!1«
@ f ~f8!

1D~^f&st2f8!22ds2g~f8!g8~f8!# D ,

~39!

which should be compared with the corresponding expr
sion ~20! for the nonconserved case withc051. One can
easily see that multiplicative noise has a stronger effect
the conserved model than on the nonconserved one, sin
the former case the noise intensity is multiplied by a fac
2d. In the particular case in which the two noise intensit
of the nonconserved~A! and conserved~B! models are re-
lated by

sA
252dsB

2 , ~40!

the two models are equivalent above the transition po
However, this equivalence disappears in the case ofcolored
multiplicative noise, because of the ter
2ds2c1g(f8)g(^f&st) appearing in Eq.~36!. This different
dependence indicates that spatial correlation of the nois
more relevant for the conserved model than for the nonc
served one, where the correlation length of the noise p
duces only a shift of the transition point@16#. A comparison
between the results of modelsA andB is shown in Fig. 4, for
both l50 and lÞ0. Noise intensities have been chos
here to verify expression~40!, so that in the white-noise case
mean-field results coincide for the two models. Mean-fie
results are in better agreement with simulations in the cas
modelB.

Finally, we now address the issue of whether a reentr
noise-induced phase transition towards disorder arises in
conserved modelB. Previous works have shown the exi
tence of such a transition for nonconserved models@7,8#.
This means that for fixed values ofa andD, when increasing
the multiplicative noise intensity, the system goes fi
through a phase transition from disorder to order~NIOT! and
then, for higher values of the noise, it experiments anot
transition back to disorder~NIDT!. These two transitions can
only be found when increasings2, instead ofa or D.

Mean-field theory predicts the existence of reentrant tr
sitions also for modelB, as shown in Fig. 5. This figure
shows the behavior of the mean field^f&st versus multipli-
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cative noise intensity with two different correlation lengt
(l50 and l50.5) for modelsA and B. Again, the noise
intensities for the two models have been chosen to verify
~40!, so that thel50 result is identical in the two case
However, the effect of the correlation length is different f
the two models: whereas for modelA l retards both the
NIOT and the NIDT, for modelB the NIOT is retarded, bu
the NIDT is advanced. This is an indication of the nontriv
influence of the noise correlation length in the conserv
case.

V. STRONG-COUPLING LIMIT

In the limit of strong couplingD→`, the predictions of
mean-field theory can be evaluated analytically and sho
agree with the results given by a standard linear stab

FIG. 4. Steady-state bulk order parameters^f& versus control
parametera for modelA andB with additive white and multiplica-
tive colored noises for different correlation lengths. Lines are me
field results for modelA with l50.0 ~solid line! andl51.5 ~dotted
line! and for modelB with l50.0 ~solid line! andl51.5 ~dashed
line!. Points correspond to numerical simulations of modelA
~empty symbols! and modelB ~full symbols!. Of these, circles cor-
respond to white multiplicative noise and triangles tol51.5. Other
parameters areD53.7, «50.1, sA

255, andsB
251.25.

FIG. 5. Mean field steady-state bulk order parameters^f& ver-
sus multiplicative noise intensity for modelsA with l50.0 ~solid
line! and l50.5 ~dotted line! and for modelB with l50.0 ~solid
line! andl50.5 ~dashed line!. Parameters aree51, a50.75, and
D52.66.
q.

l
d

ld
y

analysis of the model. In order to verify this agreement,
will now compute this limit for the mean-field results ob
tained so far, for both modelsA andB.

A. Model A

In the mean-field approximation and in the limitD→`,
the stationary probability distributionPst(f,^f&st) ~20! be-
comes

Pst~f,^f&st!5d~f2^f&st!, ~41!

as can be easily seen by means of a steepest-descent c
lation. This expression verifies trivially the self-consisten
relation~21!, which can thus no longer be used to determ
^f&st. In order to do that, we now integrate Eq.~19! with
respect tof, and obtain

^ f ~f!&st1s2c0^g8~f!g~f!&st50. ~42!

For D→`, these averages are evaluated trivially using
pression~41!, and Eq.~42! becomes

f ~^f&st!1s2c0g8~^f&st!g~^f&st!50, ~43!

from which ^f&st can be found. For modelA and in the case
defined by Eqs.~4!–~7!, the solutions of this equation ar
either

^f&st50 ~44!

or

^f&1,256Aa1s2c0. ~45!

This second set of solutions can only exist fora.2s2c0.
Hence, the critical point is given in this case by

ac52s2c0 , ~46!

in such a way that the ordered state appears fora.ac . The
shift of the critical point increases the ordered region, due
the effective multiplicative noise intensitys2c0. This shift,
as seen in the previous sections, increases with increa
noise intensity and decreases for increasing correla
lengths. This result coincides with the one given by a line
stability analysis of the homogeneous state@4,16,17#, as ex-
pected. However, in contrast with the linear stability ana
sis, this calculation can be extended to other situations
models not necessarily controlled by the linear term.

B. Model B

In this case, the stationary probability distribution~36!
given by the mean-field approach for each phase and foD
→` is also Eq.~41! as can be seen using the steepe
descent method, as before. Following the procedure
scribed above for modelA, we formally integrate now Eq
~34! to obtain an equation forh,

h52^ f ~f!&st12ds2@c1g~^f&st!^g8~f!&st

2c0^g~f!g8~f!&st#. ~47!

n-
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At the limit D→`, the averages appearing in the preced
expression are calculated using the stationary probability
tribution obtained above, leading to

h52 f ~^f&st!12ds2~c12c0!g8~^f&st!g~^f&st!. ~48!

In the casea,aT , the field is homogeneous and we c
replace in the above expression^f&st5f0. Thus this equa-
tion gives us the value ofh in this case as a function of th
initial condition. The results for modelB and in the case
defined by Eqs.~4!–~7! are plotted in Fig. 6 versus the con
trol parametera, along with the values ofh given by mean-
field theory for finite but largeD, obtained numerically in the
preceding section. We can see that these mean-field re
approach Eq.~48! asD increases, as it should be. The shift
the transition point increases for increasing coupl
strength, as can be seen from Fig. 6.

We now turn to the casea.aT , whereh50. Now Eq.
~48! can be solved for̂f&st, which gives the values of the
two bulk phases,

^f&1,256Aa12ds2~c02c1!, ~49!

again for the particular model~4!–~7!. The transition line is
determined by settinĝf&15f0 in the preceding expression
which leads to

aT5f0
222ds2~c02c1!, ~50!

and the critical point~for f050) is then

ac522ds2~c02c1!. ~51!

This result coincides with that coming from linear stabili
analysis@16#. As in modelA and in the previous sections, th
shift is in the direction of increasing the ordered region. D
to the factor 2d, this shift is larger than the one produced
modelA for the same noise intensities. Contrary to modeA
in the colored case, the shift does not depend only on
effective multiplicative noise intensitys2c0 but also on the

FIG. 6. Constant effective fieldh versus control parametera for
D→` ~solid line! as given by Eq.~48!, and for D53.7 ~dashed
line! andD520 ~dotted line! coming from the mean-field approac
described in Sec. IV B. Other parameters aref050.2, e50.1, s2

51.25, andl50.5.
g
s-

lts

e

e

noise correlation between first neighborsc1, which indicates
the nontrivial influence of the spatial correlation of the no
on conserved dynamics, as opposed to nonconserved dy
ics where this influence disappears in the mean-field
proach.

VI. CONCLUSIONS

Mean-field theory has been previously applied to nonc
served models with additive and multiplicative white nois
@7,8,22#. Here we have applied it in the case of spatia
correlated multiplicative noise. Our mean-field results a
numerical simulations of the complete model in two dime
sions indicate the decrease of the ordering role of multi
cative noise when its correlation length increases.

We have also extended mean-field theory to deal w
conserved models by using the concept of a constant ef
tive field. As in the case of nonconserved systems, we h
found that additive noise has a disordering role, wher
multiplicative noise has an ordering one. The latter increa
for increasing multiplicative noise intensity and for decrea
ing noise correlation length. However, the quantitative
fects of multiplicative noise are different in each model; t
transition to order occurs earlier for modelB than for model
A. Moreover, mean-field calculations show that the corre
tion length of multiplicative noise has nontrivial effects
the conserved case, while for modelA it just decreases the
effective noise intensity. Numerical simulations of the co
plete conserved model in two dimensions are in good ag
ment with mean-field predictions.

Previous works on modelA with additive and multiplica-
tive white noises have shown the presence of NIOTs
NIDTs. We have seen that, at least in the mean-field
proach, these transitions appear for higher values of the n
intensity when multiplicative noise is spatially correlate
This is explained by the fact that the effective noise intens
decreases. ModelB has also been found to go first through
NIOT and after through a NIDT when the multiplicativ
noise intensity is increased. As in modelA, the NIOT is
retarded when the correlation length of multiplicative no
increases. However, contrary to what happens in modeA,
the NIDT is advanced, which shows clearly different effec
of noise correlation length upon conserved and nonconse
models.

Finally, in the strong-coupling limit we have found an
lytical expressions for the critical-point shift and the stead
state bulk order parameter for both modelsA and B with
additive white and multiplicative colored noises. These
sults coincide with previously reported predictions comi
from linear stability analysis@16#.
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