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Effects of small surface tension in Hele-Shaw multifinger dynamics:
An analytical and numerical study
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We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in
the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer@Philos. Trans. R. Soc.
London, Ser. A343, 155 ~1993!# and Siegel and Tanveer@Phys. Rev. Lett.76, 419 ~1996!#, as well as direct
numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley@J. Comput. Phys.
114, 312 ~1994!#. We demonstrate the dramatic effects of small surface tension on the late time evolution of
two-finger configurations with respect to exact~nonsingular! zero-surface-tension solutions. The effect is
present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection
theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a
drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a
recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally
unstable flow, restoring the hyperbolicity of multifinger fixed points.
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on
em
he
t
te
n
o

rit
si
le

t
pl
w
a

he
ti

a
x
o

t

e
u
in
tio

f t
in

ur

tio

ant
el,

lu-
sed
h.

xact
bal

ero-

gu-
sion

ul-
er
l

le
f.
n-
ow

ro-
tion
ed
or-
r-

m
n-
ly
r-
I. INTRODUCTION

The displacement of a viscous fluid by a less viscous
in a Hele-Shaw cell, the so-called Saffman-Taylor probl
@1–5#, is a prototypical pattern formation problem. Since t
seminal work of Saffman and Taylor@1# a considerable effor
has been aimed at understanding both steady and uns
interfacial patterns formed during this flow. The Saffma
Taylor problem is the simplest member of a wide class
interfacial pattern formation problems such as free dend
growth, directional solidification, or chemical electrodepo
tion @6–8#. As such, a theoretical understanding of He
Shaw flow may help elucidate generic behavior common
many pattern forming systems. Despite its relatively sim
formulation and the large amount of work devoted to it, ho
ever, several aspects of interfacial dynamics in Hele-Sh
flow are still poorly understood, in particular concerning t
highly nonlinear and nonlocal dynamics of finger compe
tion.

One of the reasons for the recent interest in Hele-Sh
flow, at least from a mathematical point of view, is that e
plicit time-dependent solutions can be found in the case
zero surface tension@9–12#. However, it is also known tha
the zero-surface-tension Saffman-Taylor~ST! problem is ill
posed as an initial value problem@13# and finite-time singu-
larities appear frequently@14#. Nevertheless, rather larg
classes of zero-surface-tension solutions have been fo
which exhibit the variety of morphologies observed both
experiments and numerical simulations. Then, the ques
that naturally arises is to what extent smooth~nonsingular!
zero-surface-tension solutions reproduce the dynamics o
physical problem with finite surface tension, in particular
the limit of vanishing dimensionless surface tension,B→0.

It is well known that surface tension is a singular pert
bation to the zero-surface-tension problem@13#. This singu-
lar character shows up dramatically in the classical selec
1063-651X/2002/66~4!/046205~13!/$20.00 66 0462
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problem posed by Saffman and Taylor@1# and only solved
three decades later@15–18#. Another manifestation of the
singular nature of surface tension which is directly relev
to the present work is its effect on the dynamics. Sieg
Tanveer, and Dai@19,20# showed that interfacial evolution
for the regularized problem~i.e., vanishingly smallB) may
differ significantly from that for theB50 problem in order
one time.

The physical content of exact zero-surface-tension so
tions with polelike singularities has been recently addres
in Refs. @5,21,22# using a dynamical systems approac
Through a detailed study it has been shown that the e
zero-surface-tension phase flow, considered in a glo
sense, is structurally unstable. Consequently, the z
surface-tension phase dynamics arenot topologically equiva-
lent to the phase-space flow of the physical problem, re
larized by surface tension. Indeed, the zero-surface-ten
phase flow omits the necessary saddle-point structure of m
tifinger fixed points, which is crucial to the physical fing
competition process@22#. A natural extension of the wel
known solvability mechanism~first applied to ‘‘select’’ a fin-
ger of width 1/2 out of a continuum of solutions in the sing
finger case! was proposed for multifinger solutions in Re
@22#; this helps clarify how the introduction of surface te
sion modifies the global phase-space structure of the fl
and restores the hyperbolicity of multifinger fixed points.

The approach of Ref.@22#, however, was qualitative in
nature and could not quantify the extent to which ze
surface-tension trajectories might resemble the evolu
with small surface tension. In particular it was recogniz
that, while some trajectories appear to be qualitatively c
rect for infinite time, others may have a dramatically diffe
ent evolution.

A satisfactory analytical understanding of the proble
with BÞ0 has been achieved in two regimes: the initial li
ear instability of the flat interface followed by the weak
nonlinear regime@23#, and the asymptotic regime, where su
©2002 The American Physical Society05-1
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face tension selects the width of the single finger@15–18#.
The highly nonlinear intermediate regime that connects
quasiplanar interface with the asymptotic single-finger
gime has mostly been studied through numerical comp
tion @see, e.g., Refs.@24–28## also combined with qualitative
techniques@29,30#. Dai and Shelley@31# showed that for
small B numerical computations are extremely sensitive
the precision used in the computations. As a conseque
noise level has to be controlled with care in order to ens
that the computation is sufficiently accurate. Computatio
using very high-precision arithmetic are reported in Re
@32,33#.

An analytical treatment of this highly nonlinear and no
local free-boundary problem faces challenging difficulties.
particular, a perturbative study for smallB is complicated by
the ill posedness of the zero-surface-tension problem. T
veer @13# was able to overcome this obstacle by embedd
the zero-surface-tension problem in a well-posed one. In
dition, this well-posed extension of theB50 problem al-
lowed Bakeret al. @34# to develop a numerical method t
compute the time evolution of zero-surface-tension dynam
in a well-posed manner. Once theB50 problem is formu-
lated in a well-posed way theBÞ0 case can be studied usin
a perturbative approach. The main result of the asympt
perturbative theory developed by Tanveer@13# is that the
effect of very small surface tension may be significant in
O(1) time. Siegelet al. @20# have extended the work of Re
@13# to later stages of the evolution, and through numeri
computation for very small values ofB they confirmed the
predictions of the perturbative theory. The zero-surfa
tension solutions studied by Siegelet al. @19,20# in the chan-
nel geometry were single-finger solutions with an asympto
width l, specifically chosen to be incompatible with sele
tion theory for vanishing surface tension. They found that
singular effect of surface tension was to widen the finge
order to reach the selected width. The surprising feature th
was that the effect of surface tension is felt in order-one tim
i.e., that the time lapse for which the regularized solut
approaches the unperturbed one asB→0 is bounded.

The present paper expands the work of Refs.@19,20# in
the spirit of Ref.@22#, towards the study of multifinger solu
tions. However, unlike the studies of@19,20# we choose zero-
surface-tension multifinger solutions that are compati
with selection theory, to isolate the effects on finger com
tition from the effects on the selection of the width. We fin
that the effect of small surface tension on finger competit
can be quite dramatic.

The paper is organized as follows. In Sec. II the equati
describing Hele-Shaw flow are introduced, and a class
two-finger zero-surface-tension solutions relevant to tw
finger competition is presented and briefly discussed. In S
III the basic features of the asymptotic theory are recall
and the theory is applied to the zero-surface-tension s
tions introduced in the previous section. The numerical co
putations with finite~but small! B are presented in Sec. IV
Section V discusses and summarizes the results obtaine
previous sections.
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II. ZERO-SURFACE-TENSION

In this section we present the equations which govern
interfacial dynamics in a rectilinear Hele-Shaw cell, follow
ing the formalism of Ref.@13#. We consider a class of exac
time-dependent zero-surface-tension solutions that are
evant to the finger competition problem, and briefly descr
the solutions within this class.

Consider Hele-Shaw flow in the channel geometry,
which a fluid of negligible viscosity displaces a viscous li
uid. The equations governing the interfacial evolution can
conveniently formulated by first introducing a conform
mapz(z,t) which takes the interior of the unit semicircle i
the z plane into the region occupied by the viscous fluid
the complex planez5x1 iy, in such a way that the arcz
5eis for sP@0,p# is mapped to the interface and the diam
eter of the semicircle is mapped to the channel walls@37#
The mapping function z(z,t) has the form z(z,t)5
2(2/p)ln z1i1 f (z,t), and inside and on the unit semicirc
we requiref (z,t) to be analytic andzz(z,t)Þ0. In addition,
we require that Imf 50 on the real diameter of the sem
circle. This latter condition ensures thatz maps the diamete
to the channel walls. Under suitable assumptions@see, Ref.
@13## the Schwartz reflection principle may be applied
show thatf is analytic andzzÞ0 for uzu<1.

The effective velocity field, averaged across the plate g
is a two-dimensional potential flow satisfying Darcy’s la
u5“w. Here w is a velocity potential defined byw5
2(b2/12m)p, wherep is the pressure,m is the viscosity and
b is the gap width. Under the assumption of incompressi
ity (“•u50) the potential satisfies Laplace’s equation¹2w
50. Incompressibility also implies the existence of a stre
function c. Therefore, one can define a complex veloc
potentialW(z,t)5w1 ic which is analytic forz in the fluid
region of the channel. Its form as a function ofz reads

W~z,t !52~2/p!ln z1 i1v~z,t !, ~1!

wherev(z,t) is an analytic function inside the unit circle. I
the absence of surface tension,v50 @see Eq.~3!#.

At the interface we impose the usual boundary conditio
The kinematic boundary condition states that the norm
component of fluid velocity at a point on the interface equ
the normal velocity of the interface at that point, and tak
the form

ReF zt

zzz
G5

1

uzzu2
Re@zWz#. ~2!

The dynamic boundary condition specifies that the press
jump across the interface is balanced by surface tension,
is given by

Rev52
B

uzzu
ReF11z

zzz

zz
G . ~3!

The parameterB is the nondimensional surface tension and
defined byB5b2T/12mVa2, whereT is the surface tension
V is the fluid velocity at infinity anda is half the cell width.
5-2
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EFFECTS OF SMALL SURFACE TENSION IN HELE . . . PHYSICAL REVIEW E 66, 046205 ~2002!
Eqs. ~1!–~3! are in nondimensional form, with lengths an
velocities nondimensionalized bya andV, respectively.

WhenB50 it is well known that pole singularities inzz

~i.e., in f z) present in the exterior of the unit disk are pr
served under the dynamics, i.e., such singularities are ne
created nor destroyed, although the location of those wh
are initially present will evolve with time. ExactB50 solu-
tions consisting of a collection of pole singularities with co
stant amplitude have been the focus of extensive studies@see
e.g., Ref.@9##. The simplest such solution leading to no
trivial finger competition consists of a pair of singularites
the upper halfplane ofuzu.1, located at positions that ar
symmetric with respect to they axis. A second pair of poles
conjugate to the first pair is required to satisfy the symme
restriction Imf 50. This exact solution takes the form
@5,21,22#

z~z,t !52
2

p
ln z1

1

p
~12l1 i e!lnS 12

z2

zs~ t !2D
1

1

p
~12l2 i e!lnS 12

z2

z̄s~ t !2D 1d~ t !1 i , ~4!

wherel and e are real constants with 0,l,1 ande>0,
and d(t) is real. The singularity locations are given by th
complex parameterzs(t), which satisfies a simple differen
tial equation given in Ref.@21#. Analyticity of f (z,t) in the
unit circle implies thatuzs(t)u.1. We employ the conven
tion thatzs(t) is a complex number in the first quadrant. T
amplitudes of the singularities, given here by the numb
12l1 i e and its conjugate, are chosen so that
asymptotic form of the solution consists of one or tw
steadily propagating fingers of total widthl. The parameter
e determines the nature of the finger competition forB50.

We summarize the features of the solution~4! that are
most relevant to the study of finger competition. Consid
first e50. In this case the asymptotic configuration consi
of one or two fingers of total widthl, depending on the
initial condition. The singularities move toward the unit dis
with the limit as t→` denoted byzs(t)→eiu. Whenu50
the asymptotic configuration is a single Saffman-Taylor fi
ger growing in the center of the channel@this asymptotic
configuration is denoted ST~R!#, for u5p/2 it is a ‘‘side’’
Saffman-Taylor finger i.e., a pair of half fingers of total wid
l with tips located at the cell walls@denoted ST~L!#, and for
u5p/4 it is a ‘‘double’’ Saffman-Taylor finger, namely two
identical fingers of widthl/2 with tips atx50,61 ~denoted
2ST!. For any other value ofu the asymptotic configuration
consists of two unequal steadily growing fingers, as a con
quence of the continuum of fixed points that is present in
phase portrait of the dynamical variables, nam
@Rezs(t),Imzs(t)#. Therefore, fore50 the solution~4! does
not exhibit finger competition. In addition, it is important
note that the evolution of Eq.~4! with e50 is free of finite-
time singularities, i.e.,zzÞ0 in the domainuzu<1 for all
time. In order to correspond to the notation of Ref.@21#
introduce the variablea(t)5a8(t)1 ia9(t)51/@ i zs

2(t)#.
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Then the planar interface corresponds toa50; the fixed
point ST~R! to a52 i ; ST~L! to a5 i ; and 2ST toa51.

For eÞ0 the continuum of fixed points is removed, as
the double Saffman-Taylor finger fixed point 2ST. Cons
quently, the solution to Eq.~4! exhibits ‘‘successful’’ compe-
tition, in the sense that the asymptotic interface shape c
sists of a single Saffman-Taylor finger or side Saffma
Taylor finger. The price to pay is the appearance of fini
time singularities for a certain subset of initial conditions,
the form of a zero ofzz impacting the unit disk@this is a
generic feature of conformal map solutionszz composed of a
finite number of pole singularities—see Ref.@9##. Then, only
the subset of initial conditions free of finite-time singulariti
is capable of sustaining finger competition all the way to
t→` outcome. Nevertheless, one may ask whether the c
of B50 solutions that are free of finite-time singularitie
may describe, at least qualitatively, the physical finger co
petition for positive surface tension in the limitB→0.

III. ASYMPTOTIC THEORY

Little is known about the effect of finite~but small! sur-
face tensionB on the dynamics of zero-surface-tension m
tifinger solutions, and in particular on the class of exact
lutions ~4!. For single-finger configurations, steady sta
selection theory predicts that the finger cannot have an a
trary width. Indeed, for vanishing surface tensionB→0 the
width l51/2 is selected, asymptotically in time. Thus, it
clear that surface tension has a critical influence on sin
finger solutions withlÞ1/2, as was shown by Siegel, Tan
veer, and Dai@19,20#.

Consider now the effect of small surface tension on
exact (B50) two-finger solution~4!. When 0,B!1 the
asymptotic perturbation theory developed in Refs.@19,13,20#
can be applied. This perturbation theory describes the eff
of the introduction of a small amount of surface tension
initial data z(z,0) specified in the extended complex plan
i.e., in a domain including the ‘‘unphysical’’ regionuzu.1
~the extended domain is required to make theB50 problem
well posed!. The effect of finiteB is most important near
isolated zeros and singularities ofzz(z,0), where a regular
perturbation expansion inB breaks down. For the class o
solutions~4! we are discussing, the isolated singularities
zz(z,0) are simple poles. The theory suggests that the in
duction of finite surface tension modifies the poles (zs) by
transforming them into localized clusters of24/3 singulari-
ties, but this has no significant influence on the interfac
shape.

The influence of surface tension on the zeros ofzz(z,0) is
more complex. Each initial zero instantly gives birth to tw
localized inner regions, i.e., regions where theB50 and
B.0 solutions differ byO(1) ~the theory predicts that thes
inner regions also contain clusters of24/3 singularities!.
One of the two inner regions moves, at least initially, acco
ing to theB50 dynamics of the original zeroz0 @38#, and
has a negligible influence on the interface in the case
study. The second inner region created aroundz0(0) moves
differently: to leading order inB it moves like asingularity
of the zero-surface-tension problem and this speed is dif
5-3
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ent form the speed of the zeroz0(t), which spawned the
cluster. As this singularity cluster approaches the phys
domain it may perturb the flow and the interface shape m
differ significantly from that atB50 shape. The location o
this singularity cluster will be denoted byzd(t), and follow-
ing Ref. @13# we shall call it the daughter singularity. W
emphasize that the dynamics of the daughter singularit
determined at lowest order solely by theB50 solution
z0(z,t), at least until it arrives at the surroundings of the u
circle, and therefore can be simply computed once the in
locations of the zeros ofzz(z,0) are determined.

The daughter singularity evolution equation is given
~see Ref.@13#!

żd~ t !52q1
0~zd~ t !,t !; zd~0!5z0~0!, ~5!

whereq1
0 is defined by

q1
05

z

2p i Ruz8u51

dz8

z8

z1z8

z82z

Re@z8Wz
0~z8,t !#

uzz
0~z8,t !u2

~6!

and the superscript zero denotes that the function evalua
are done using the correspondingB50 solution. The func-
tion 2q1

0(z,t) also gives the characteristic velocity of a po
or branch point singularity ofzz(z,t) located at positionz in
the regionuzu.1. The daughter singularity approaches t
unit circle @13# and it can impact it in a finite timetd , the
daughter singularity impact time, satisfynguzd(td)u51. In
the limit B→0, the daughter singularity impact timetd sig-
nals the time when the effects of the surface tension are
on the physical interface. For times larger thantd the B50
interface and theB→0 are expected to differ significantly.

For the family of exactB50 solutions the mapping func
tion ~4! has four polelike singularities:6zs and 6 z̄s , and
four zeros6z01 and6z02 of zz located at

z01
2 5

2~l1 i e!zs
22~l2 i e!z̄ s

2

2~122l!

1
A@~l1 i e!zs

21~l2 i e!z̄ s
2#214~122l!uzsu4

2~122l!
,

~7a!

z02
2 5

2~l1 i e!zs
22~l2 i e!z̄ s

2

2~122l!

2
A@~l1 i e!zs

21~l2 i e!z̄ s
2#214~122l!uzsu4

2~122l!
.

~7b!

For the particular casel51/2 this solution presents only on
pair of zeros6z0 located at

z0
25

uzsu4

2@~l1 i e!zs
21~l2 i e!z̄ s

2#
. ~8!
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In the following it will be useful to define the real quantit

b52(l1 i e)zs
22(l2 i e) z̄s

2 which appears in Eqs.~7! and
~8!.

Depending on the value ofl the initial data may have
zeros on both the real and imaginary axes, or all the ze
may lie on a single axis. This difference has significant co
sequences in the finite surface tension dynamics. More
cifically, whenl,1/2 the zeros described in Eqs.~7a! and
~7b! are located on both the real and imaginary axes ofuzu
.1, namely at6uz01u and6 i uz02u. The situation is differ-
ent for l.1/2, which is further divided into two cases, d
pending on whetherb214(122l)uzsu2.0 or ,0. In the
former case all four singularities lie on the real axis~for b
.0) or on the imaginary axis~for b,0). In the latter case
the four zeros are located off the axes in conjugate pairs,
at 6z0 and6 z̄0. Finally, whenl51/2 the solution~4! has
only two zeros, located on the real axis at6uzsu2/A22b
whenb,0 and on the imaginary axis at6uzsu2/A2b when
b.0. Note that forl51/2 theB50 solution has two less
zeros than forlÞ1/2.

The initial zero locations described above have a criti
bearing on whether the daughter singularity will impact t
unit disk @39#. Although all daughter singularities approac
the unit disk, their impact may be shielded by the presenc
an inner region corresponding to a pole singularity. Mo
precisely, sincezd andzs obey the same dynamical equatio
they will move together if they get close enough to ea
other. However, the inner region around a pole moves
leading order like theB50 pole, i.e., it moves exponentiall
slowly toward uzu51 when uzsu21!1, and does not im-
pinge upon the unit disk in finite time@9#. In this case the
O(B1/3) inner region around the daughter singularity will n
affect the dynamics onuzu51, at least untilt5O(2 ln B).
Before this time, we expect the interface to be uninfluenc
by the presence of the daughter singularity. This shield
mechanism is discussed in the context of single fingers
Ref. @20#.

Knowledge of thet→` asymptotic state and the initia
locations of zeros can be used to ascertain whether shiel
can occur. TheB50 asymptotic state corresponds tozs

2(t
→`)→61. Thus, forl,1/2, only one pair of daughte
singularities may be shielded—never both— so at least
pair of daughter singularities will impinge on the unit dis
The daughter singularities will also not be shielded whenl
.1/2 andb214(122l)uzsu2,0. However, forl.1/2 and
b214(122l)uzsu2.0 it is possible for all the daughter sin
gularities to be shielded, since they lie on a single axis. T
daughter singularities can also be completely shielded w
l51/2. The different possibilities are schematically depict
in Fig. 1.

We have numerically computed the daughter singula
impact timetd for various values ofl and e, using initial
conditions close to the planar interface,uzsu2520 and vari-
ous values of Arg@zs

2#. Figure 2 shows the phase portrait fo
different values ofl and e with the daughter singularity
impact indicated. From the plots it is immediately seen t
for l,1/2 at least one daughter singularity always hits
unit circle, and forl>1/2 some trajectories are free from
5-4
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EFFECTS OF SMALL SURFACE TENSION IN HELE . . . PHYSICAL REVIEW E 66, 046205 ~2002!
daughter singularity impact. In addition, it is observed th
for fixed l a larger value ofe causes the daughter singula
ties to hit in shorter times~or less developed fingers! than a
smaller value ofe, and for fixede larger l implies larger
impact times. We have also checked that the daughter si
larity impact occurs well before a finite-time singularity, i.e
the impact of a zero ofzz . Thus, the effect of surface tensio
is significant well before the curvature in the zero-surfa
tension solution becomes large.

It is noted that thel dependence of the daughter sing
larity impact is consistent with the results of steady st
selection theory@15–18#. According to selection theory, fo
small B the possible values ofl are discretized:l must
satisfy the relationl5ln(B), given to leading order by

ln~B!5
1

2
$11~ 1

8 p2CnB!2/3% n50,1,2, . . . , ~9!

FIG. 1. ~a! Schematic representation of the dynamics of polezs

and daughterzd singularities forl,1/2. ~b! Schematic representa
tion of one of the two possible dynamics of polezs and daughterzd

singularities forl.1/2.
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wheren parametrizes the branch of solutions. Note thatln
.1/2 for all n. The steady finger shape is to leading orde
Saffman-Taylor finger, with the above values ofln substi-
tuted for the widthl. On the other hand, fore.0 the
asymptotic state of Eq.~4! is a Saffman-Taylor finger of
width l. From Eq.~9! it is clear there exists a steady solutio
with width ln(B) close to a Saffman-Taylor finger of arb
trary width l.1/2. Thus the shielding of the daughter si
gularity, which leads to the persistence of a Saffman-Tay
solution with l.1/2 over long times, is consistent wit
steady state selection theory@40#. In contrast forl,1/2
there are no nearby steady solutions. Thus, a Saffman Ta
finger with l,1/2 cannot persist over a long time. We s
that the impact of a daughter singularity provides a mec
nism for the onset of finger competition, finger widenin
and selection of a widthl.1/2.

For e50 the scenario is similar, except there is an add
class of exactB.0 solutions. Magdaleno and Casademu
@35# have shown that two-finger solutions composed
steadily propagating but unequal fingers do exist for sm
nonzeroB. The introduction of a small nonzero surface te
sion selects a discrete set of solutions from the continuum
fixed points of theB50 phase portrait. The solutions ar
parametrized by the total width of the fingersl5l11l2 and
the relative widthq5l1 /l, and the introduction of finiteB
discretizes the possible values of the parameters. In par
lar, they must satisfy a condition of the forml5ln(B) and
q5qn,m(B), wheren andm are integers. The expression fo
ln(B) at lowest order is equivalent to Eq.~9!, but with dif-
ferent coefficientsCn . The shape of these solutions are giv
to leading order~in the limit t→`) by Eq. ~4! with allowed
value of ln(B) substituted for the widthl. Again, ln(B)
.1/2, and the consistency between daughter singularity
pacts and steady state selection theory follows as above

We conjecture that the outcome of interfacial shape e
lution after the daughter singularity impinges is in gene
independent of the particular finger on which the impact fi
occurs i.e., independent of the point at whichzd(t) impacts
on uzu51. More specifically, we surmise that impact on e

FIG. 2. Phase portraits for~a! l51/3 ande50.1, ~b! l52/3
and e50.1, and~c! l51/3 ande51/2. The daughter singularity
impact is indicated by the symbols. The1 symbol corresponds to
the impact ofzd1 , 3 to the impact ofzd2 , and * to the simulta-
neous impact ofzd1 andzd2 .
5-5
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ther the shorter~trailing! or larger~leading! finger retards the
velocity of that finger, and is accompanied by the widen
of the leading finger, so as to maintain a constant fluid flux
infinity. The widened leading finger then shields the traili
finger, preventing it from further growth. Thus, the fing
that is leading at the time of the daughter singularity imp
‘‘wins’’ the competition, in the sense that it will evolve fo
t→` to the ST steady finger. To examine this conjecture a
study the dynamics of finger competition with finite~but
small! surface tension we have numerically computed
evolution of an interface with initial conditions given by E
~4!. The results are reported in the following section.

IV. NUMERICAL RESULTS

Numerical computations have been performed forB.0,
using an initial interface corresponding to the explicitB50
solutions discussed in Sec. II. The effect of positive surf
tension on this class of solutions is explored for various v
ues ofe and a variety of initial pole positions. To isolate th
effects inherent to finger competition from those of wid
selection, we will concentrate onB50 solutions with l
51/2, the value selected by surface tension in the li
B→0.

We employ the numerical method introduced by H
et al. @28# and used in other studies of small surface tens
effects in Hele-Shaw flow@19,20,32#. The method is de-
scribed in detail in Ref.@28#. It is a boundary integral metho
in which the interface is parametrized at equally spa
points by means of an equal-arclength variablea. Thus, if
s(a,t) measures arclength along the interface then the qu
tity sa(a,t) is independent ofa and depends only on time
The interface is described using the tangent angleu(a,t) and
the interface lengthL(t), and these are the dynamical va
ables instead of the interfacex andy positions. The evolution
equations are written in terms ofu(a,t) andL(t) in such a
way that the high-order terms, which are responsible of
numerical stiffness of the equations, appear linearly and w
constant coefficients. This fact is exploited in the constr
tion of an efficient numerical method, i.e., one that has
time step constraint associated with the surface tension
yet is explicit in Fourier space. We have used a linear pro
gator method that is second order in time, combined wit
spectrally accurate spatial discretization. Results in this s
tion are specified in terms of the scaled variables

t̃ 5pt, B̃5p2B, x̃5px, ỹ5py, ~10!

instead of the original ones used in previous sections.
The number of discretization points is chosen so that

Fourier modes ofu(a,t) with amplitude greater than round
off are well resolved, and as soon as the amplitude of
highest-wave-number mode becomes larger than the fi
level the number of modes is increased, with the amplitu
of the additional modes initially set to zero. The time stepDt
is decreased until an additional decrease does not chang
solution to plotting accuracy, nor lead to any significant d
ferences in any quantities of interest. In a typical calculat
512 discretization points are initially used, and the init
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time step isDt5531024. For small values of surface ten
sion numerical noise is a major problem, and the spuri
growth of short-wavelength modes induced by roundoff er
must be controlled. To help prevent this noise-induc
growth at short-wavelengths spectral filtering@36# is applied.
Additionally, we minimize noise effects and also assess
time at which these effects become prevalent by employ
extended precision calculations, as described in the follo
ing section.

A. Solutions with eÄ0

We first consider parameter valuesl51/2 ande50. A
typical set of interfacial profiles is shown in Fig. 3. Th
initial data is given by the mapping function Eq.~4!, with
l51/2, e50, d(0)50, andzs

2(0)520 exp(ip/6). With this
value of zs

2(0) the initial interface is well inside the linea

regime. Evolutions are shown for different values ofB̃, and
the B50 interface evolution is also plotted for compariso
In all these evolutions the filter level is set to 10213, although
later we shall make comparisons to profiles computed
higher precision.

For the largest value of surface tension the compu
B.0 and the exactB50 solutions first differ appreciably a
the seventh curve, corresponding tot̃'3. At this point the
velocity of the small finger~at the channel sides! begins to
decrease and it is clearly left behind when compared with
small finger evolution in theB50 solution. Eventually, the
advance of the small finger is completely suppressed and
larger finger widens to attain a width close to 1/2 of t
channel, the width singled out by selection theory for va
ishingB. For a smaller value of surface tension, for instan
B̃50.001, the evolution displays qualitatively the same b
havior. The B.0 interface differs appreciably from th
B50 sightly later than before~i.e., at the eighth curve! and
the region where the two solutions differ most is to som
extent more localized around the small finger than for lar
values ofB. Additionally, for this value of surface tension th
effect of numerical noise is clearly exhibited in the interf
cial profiles. Here the tip-splitting and side-branching acti
ties are a clear effect of numerical noise, as can be ea
checked redoing the computation with a different noise fil
level.

In order to suppress or delay the branching induced
numerical noise that appears for small values of surface
sion it is necessary to use higher precision arithmetic,
quadruple precision~128-bit arithmetic!. The filter level can
then be reduced by a large amount and the outcome of
rious oscillations is substantially delayed. Figure 4 shows
effect of reducing the filter level to 10227. TheB50 solution
is plotted, as well as the computation with double precisi
For B̃50.001 the branching is totally suppressed, at least
the times we have computed, but for smaller values ofB̃ the
use of quadruple precision is only able to delay the bran
ing and not totally suppress it. The quadruple precision co
putation confirms the results observed with lower precisi
the introduction of finite~but small! surface tension results in
the suppression of the small finger. From Fig. 4 one can a
5-6
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FIG. 3. Evolution of an initial condition of the form~4! with l51/2, e50, andzs
2(0)520 exp(ip/6). The solid lines correspond to

surface tensionB̃ values~a! 0.01,~b! 0.005,~c! 0.001, and~d! 0.0005. The dashed lines correspond to the zero-surface-tension evolution
time difference between different curves is 0.5. The physical channel in they direction extends from the origin to the dotted line, and t
region above is plotted for better visualization of the lateral finger.
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see that for long times, when the interface is clearly affec
by numerical noise~in the double precision curve!, the noise-
induced branching is restricted to the large finger, and
small finger is basically unaffected by noise. This obser
tion suggests that the small finger shape, as well as its
velocity and tip curvature, can be trusted even when the la
finger has developed tip splittings and side branchings du
the spurious growth of roundoff error.

Figure 5 shows the tip velocity of both fingers versust̃ for
decreasing values of surface tension. It can be seen tha

FIG. 4. Evolution of an initial condition of the form~4! with
l51/2, e50, andzs

2(0)520 exp(ip/6). The solid lines correspond

to B̃50.001 with a filter level equal to 10227, the dotted line cor-

responds to the sameB̃ but with the filter level equal to 10213, and
the dashed line corresponds to the zero-surface-tension solu
The time difference between curves is 0.5. As in Fig. 3, the phys
channel in they direction extends from the origin to the dotted lin
04620
d

e
-
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e
to

the

velocity of the large finger is only slightly affected by su
face tension, whereas the velocity of the small finger is s
stantially reduced by the inclusion of finiteB. As B̃ is de-
creased the tip velocity of the small finger is more faithful

n.
al

FIG. 5. Computed tip velocities for the initial condition of Fig
4: ~a! corresponds to the central~large! finger and~b! to the lateral

~small! finger. The daughter singularity impact timet̃ d is indicated

by the1 symbol. The value ofB̃ is: 0 ~solid line!, 0.0002~dotted
line!, 0.0005~dashed line!, 0.001 ~long dashed line!, 0.005 ~dot-
dashed line!, and 0.01~dot-dot-dashed line!.
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E. PAUNÉ, M. SIEGEL, AND J. CASADEMUNT PHYSICAL REVIEW E66, 046205 ~2002!
the B50 evolution before the daughter singularity impa
~shown by a cross!, and clearly veers away from theB50
velocity later in the evolution, consistent with asympto
theory. Note that at the smallest value ofB̃ the tip velocity of
the large finger drastically differs from theB50 velocity at
late times. This discrepancy is a manifestation of noise
fects in the neighborhood of the large finger tip. However,
previously seen, the small finger is basically unaffected
noise at the times we have plotted.

In order to further verify that the daughter singularity im
pact is responsible for the observed change in the small
ger tip speed we follow the scheme introduced in Ref.@20#.
Define tp as the time when the computed tip velocity diffe
by p from the B50 tip velocity. According to asymptotic
theory@13# this tp will be a linear function ofB1/3 in the limit
B→0, as long asp is small enough. Figure 6 showst̃ p

versusB̃1/3 for various values ofp, and it can be seen thatt̃ p
exhibits the predicted behavior. Moreover, we have extra
lated theB50 value of t̃ p using the two points of lowestB̃
and the result is very close tot̃ d , whose value is represente
by a3 symbol. We conclude that the impact of the daugh
singularity is associated with the dramatic change of theB
.0 solution when compared to the zero-surface-tension
lution, reducing the velocity of the small finger and even
ally suppressing it. In contrast, for theB50 dynamics the
small finger ‘‘survives,’’ propagating with the sam
asymptotic speed as the larger finger. Note that the ave
interface advances at unit velocity, and a tip velocity bel
one implies that the finger isretreatingin the reference frame
of the average interface.

It is noted that for the initial condition we have studie
the daughter singularity impact takes place on the tip of
small finger. Therefore, the influence of surface tension
the interface should be significant first around the imp
point, that is, the small finger tip. Our numerical results sh
that in fact this is the case; the initial effect of the daugh
singularity impact is to slow and then completely stop t

FIG. 6. The timet̃ p ~defined in the text! versusB̃1/3. From top to
bottom, p50.1, 0.05, 0.02, 0.01, 0.005. The daughter singula

impact time t̃ d is indicated by a3 symbol, and the curves ar
linearly extrapolated for comparison.
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growth of the small finger. Later on, as the singularity clus
centered inzd spreads over the unit circle, the effect of su
face tension is felt by the whole interface and the large fin
widens.

We have also studied the finite surface tension dynam
for a more general class of initial conditions. More precise
we have studied initial conditions of the formzs

2(0)
520 exp(i np/12), wheren50,61, . . . ,66, and have ob-
tained the same qualitative results as in the case previo
studied, namely that the presence of small surface ten
suppresses the growth of the finger which is trailing at
time of daughter singularity impact. In order to compare t
B50 and theBÞ0 dynamics in a compact and global wa
we have plotted the phase portrait forB50 using the the tip
velocities v1 , v2 as dynamical variables. In the laborato
frame they read

v15
11 i~zs

22 z̄ s
2!1zs

2z̄ s
2

zs
2z̄ s

21 i~zs
22 z̄ s

2!/2
, ~11a!

v25
12 i~zs

22 z̄ s
2!1zs

2z̄ s
2

zs
2z̄ s

22 i~zs
22 z̄ s

2!/2
. ~11b!

Now a comparison between dynamics forB50 andBÞ0 is
straightforward since the trajectories can be plotted toge
and compared. In addition, the tip velocity is a useful va
able because it contains geometric information; specific
the inverse of the tip velocity is equal to the width of th
finger in the asymptotic (t→`) regime. It is important to
note that (v1 ,v2) are dynamical variables for theB50 prob-
lem, so that the plot of the zero-surface-tension trajecto
onto the space (v1 ,v2) is a true phase portrait. On the oth
hand (v1 ,v2) are not state variables of the problem wi
finite surface tension, so in this case we simply obtain
projection onto the (v1 ,v2) space of the originalBÞ0 tra-
jectory, which is embeded in the infinite-dimensional pha
space of interface configurations.

Figure 7 shows the phase portrait forB50 together with
the tip velocities obtained from the initial conditions d
scribed above forB̃50.01. From the figure it is evident tha
the introduction of finite surface tension has substantia
changed the global phase dynamics of the problem. Only
B̃50.01 trajectory connects the planar interface (1,1) a
the 2ST point (2,2), corresponding to the unsteady dou
Saffman-Taylor finger. Any otherB̃50.01 trajectory ends in
one of the two ST finger points, ST~L! at (2,0) and ST~R! at
(0,2). In contrast, the (2,2) point, equivalent to the co
tinuum of fixed points present with the (a8,a9) or
(Rezs ,Imzs) variables, has a finite basin of attraction f
B50. The introduction of finite surface tension has drama
cally changed the zero-surface-tension (v1 ,v2) trajectories,
to the extent that theB50 phase portrait and theBÞ0 pro-
jection are not topologically equivalent. This result is no
complete surprise, since it was anticipated from the struct
instability of the dynamical system governing the evoluti
of Eq. ~4! for e50 @21#. A more dramatic example of topo

y
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EFFECTS OF SMALL SURFACE TENSION IN HELE . . . PHYSICAL REVIEW E 66, 046205 ~2002!
logical inequivalence of phase portraits will be given in t
following section, when we consider the caseeÞ0.

Although the use of the variables (v1 ,v2) has allowed us
to project the finite surface dynamics onto the zero-surfa

FIG. 7. Plot of the evolution of initial conditions of the form~4!
with l51/2, e50, and zs

2(0)520 exp(inp/12) and n50,
61, . . . ,66 in the (v1 ,v2) or tip speed space. The solid line co

responds toB̃50.01 and the dashed line toB̃50.

FIG. 8. Comparison between theB̃50 trajectories and the pro

jected evolutions withB̃50.01, for the initial conditions of Fig. 7

The solid line corresponds toB̃50 and the dashed line to the pro

jection of theB̃50.01 evolutions. The daughter singularity impac
are indicated by a circle.
04620
e-

tension phase portrait this projection has one major lim
tion: it only considers a local quantity, the tip velocity. W
have also considered a projection that takes more glo
properties of the interface into account. Specifically, give
computedBÞ0 solution for an initial condition of the form
~4!, one can use a suitable norm to define a ‘‘distance’’ b
tween the computed interface and theB50 interface ob-
tained from the mapping function Eq.~4!. We choose this
‘‘distance’’ to be the area enclosed between the two int
faces at a given time. Additionally, we define a projection
the BÞ0 interface onto theB50 phase space@with phase
space variables (Rezs ,Im zs)] by selecting the value ofzs
that minimizes the ‘‘distance’’ between the two interface
with the restriction that the position of the two mean inte
faces must be the same. The latter condition ensures tha
projection satisfies mass conservation.

Figure 8 shows theB50 phase portrait and the corre
sponding projected evolution for surface tensionB̃50.01.
Again, the plot clearly shows that the introduction of fini
surface tension modifies the phase portrait ofB50. The pro-
jected trajectories are initially close to theB50 dynamics,
but for well developed fingers~corresponding touau;1) the
projection departs from theB50 trajectory towards the
Saffman-Taylor fixed point, located ata850, a951. The
projected trajectory only remains close to the correspond
B50 trajectory when the latter evolves towards t
Saffman-Taylor fixed point. More precisely, the continuu
of fixed points present forB50 has been removed by su
face tension and the Saffman-Taylor fixed point is the u
versal attractor of the dynamics for finite surface tension

In Fig. 9 the projection for decreasing values ofB̃ is plot-

FIG. 9. Comparison between theB̃50 trajectories and the pro
jection of the evolution of the initial condition given by Eq.~4! with
l51/2, e50, andzs

2(0)520 exp(ip/6), wherem corresponds to

B̃50.001, L to B̃50.005, h to B̃50.01, and3 to B̃50. The
daughter singularity impacts are indicated by a plus.
5-9
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E. PAUNÉ, M. SIEGEL, AND J. CASADEMUNT PHYSICAL REVIEW E66, 046205 ~2002!
ted, using the initial conditionzs
2(0)520 exp(ip/6). As B̃ is

decreased the projected trajectory gets closer to theB50
trajectory, but as it approaches the point when the daug
singularity impinges the unit circle~this point is signaled by

FIG. 10. Plot of the evolution of initial conditions of the form
~4! with l51/2, e50.1, and zs

2(0)520 exp(inp/12) and n50,
61, . . . ,66 in the (v1 ,v2) or tip speed space. The solid line co

responds toB̃50.01 and the dashed line toB̃50. The computed
trajectory that most nearly separates the two basins of attractio
also plotted. Note that the long time behavior of the third and fou

B̃50.01 curves~counting from the upper left trajectory in clock
wise direction! is dramatically different from the correspondin

B̃50 solutions.
04620
er

a cross! the projection departs from theB50 trajectory and
approaches the Saffman-Taylor fixed point, consistent w
asymptotic theory.

B. Solutions with eÅ0

The continuum of fixed points present fore50 is absent
for eÞ0, but in this case finite-time singularities in the for
of zeros ofzz impinging on the unit disk do appear for som
initial conditions. Therefore, we can expect that the effect
finite surface tension will be somewhat different than fore
50. First, the presence of surface tension should elimin
finite-time singularities, and secondly, finiteB could modify
the basin of attraction for the two attractors of theB50
dynamical system, namely the side Saffman-Taylor fin
and the center Saffman-Taylor finger.

To explore this, we have performed computations w
l51/2 and e50.1 with initial conditions zs

2(0)
520 exp(inp/12) and n50,61, . . . ,66. Initially we set
B̃50.01 and use a value of the noise filter level equal
10213, which suffices due to the relatively large value
B̃. The easiest way to compare both dynamics, finiteB and
B50, is to plot their trajectories in velocity space. Thus,
Fig. 10 the tip velocities (v1 ,v2) of theB̃50.01 computation
are plotted together with the tip velocities forB50. For
arbitrarye andl the tip velocities of theB50 solution read

v15
11 i~zs

22 z̄ s
2!1zs

2z̄ s
2

zs
2z̄ s

22e~zs
21 z̄ s

2!1 il~zs
22 z̄ s

2!2~122l!
, ~12a!

v25
12 i~zs

22 z̄ s
2!1zs

2z̄ s
2

zs
2z̄ s

21e~zs
21 z̄ s

2!2 il~zs
22 z̄ s

2!2~122l!
. ~12b!

is
h

. The
FIG. 11. Evolution of an initial condition of the form~4! with l51/2, e50.1, andzs
2(0)520 exp(2ip/6). The solid lines correspond to

surface tensionB̃ values~a! 0.01,~b! 0.005,~c! 0.001, and~d! 0.0005. The dashed lines correspond to the zero-surface-tension evolution
time difference between different curves is 0.5. The physical channel in they direction extends from the origin to the dotted line.
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From the plot one can see that mostB̃50.01 velocity trajec-
tories follow ~at least qualitatively! their B50 counterparts,
in the sense that they end up in the same fixed point. H
ever, the second, third, and fourth trajectories~counting from
the upper left trajectory in clockwise direction! differ signifi-
cantly from their B50 counterparts. The secondB̃50.01
trajectory moves apart from theB50 solution simply be-
cause the latter develops a finite-time singularity, which
regularized by the introduction of finite surface tensio
However, the third and fourth trajectories exhibit a quite s
prising behavior: the computed interface withB̃50.01 ends
up in a different fixed point than the exactB50 solution,
despite the fact that theB50 solution is smooth for all time
and has the asymptotic width that would be selected by v
ishing surface tension.

In order to get further insight into this behavior we ha
computed the evolution for decreasing values ofB̃ using the
specific initial pole positionzs

2(0)520 exp(2ip/6), with l
51/2 ande50.1. Quadruple precision has been used whe
has been necessary. Figure 11 shows its evolution for
values of the surface tension parameter, together with thB
50 solution. The differences between the two interfaces
long times are readily apparent. WhenB50 the finger in the
central position stops growing and the side finger wins
competition, whereas forB.0 we encounter the opposit
situation—namely, the central finger surpasses the side fi
and wins the competition. For the smaller values ofB the
finger on the sides has not quite stopped growing when
computation is stopped, although its tip speed show

FIG. 12. Computed tip velocities for the initial condition of Fig
11: ~a! corresponds to the central finger and~b! to the lateral finger.

The daughter singularity impact timet̃ d is indicated by the1 sym-

bol. The value ofB̃ is: 0 ~solid line!, 0.0002~dotted line!, 0.0005
~dashed line!, 0.001~long dashed line!, 0.005~dot-dashed line!, and
0.01~dot-dot-dashed line!. The deviations observed at late times f

B̃50.0002 andB̃50.0005 in~b! are due to numerical noise.
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marked decrease over that forB50 and is less than that o
the central finger. The side finger tip speed is also decrea
at the final stage of the computation. The tip speed trend
the limit B→0 is further illustrated in Fig.~12!. This figure
shows the tip speed versus time of each finger for a sequ
of decreasingB. The plot suggests that upon impact of th
daughter singularity the side finger velocity levels off a
eventually decreases, whereas the velocity of the center
ger is nearly unaffected and continues to increase. The tr
is indicative of the center finger ‘‘winning’’ the competitio
in the B.0 dynamics, while the opposite occurs forB50.
Finally, it is noted that the influence of surface tension is fi
felt by the smaller finger, which is the recipient of the daug
ter singularity impact. Afterwards the leading finger begi
to widen, in a manner consistent with the conjecture in S
III. Further remarks on this point are made in Sec. V.

The projection method described in the previous sect
has been also applied to this case, and the results are
played in Fig. 13 in the particular caseB̃50.01. It can be
seen that for most trajectories the projection stays close
theB50 curves, even for long times. The daughter singul
ity impact still leads toO(1) differences between theB50
and B.0 solutions, although the impact does not produ
changes in the outcome of finger competition. However,
expected some of the trajectories~namely, the third and
fourth as measured clockwise from the bottom! do indicate
significant qualitative differences in the long time evolutio

FIG. 13. Comparison between theB̃50 trajectories and the pro

jected evolutions withB̃50.01, for the initial conditions of Fig. 11

The solid line corresponds toB̃50 and the dashed line to the pro

jection of theB̃50.01 evolutions. The daughter singularity impac
are indicated by a circle. Note that the fourthB.0 trajectory~as
measured counterclockwise from the bottom! reverses direction and
heads toward the fixed point (0,21).
5-11
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E. PAUNÉ, M. SIEGEL, AND J. CASADEMUNT PHYSICAL REVIEW E66, 046205 ~2002!
The plot provides a simple depiction of the topological
equivalence of theB.0 andB50 dynamics@41#

It has been shown that the introduction of a finiteB has
not changed the attractors of the problem, but it has chan
their basins of attraction. Interestingly, in theB50 case there
does not exist a single separatrix trajectory between the
Saffman-Taylor attractors, but rather a finite region, cor
sponding to the set of trajectories ending in cusps, that
as an effective separatrix. Since for finite surface tens
there are no cusps, it can be assumed that there is a s
trajectory that separates the two basins of attraction. O
ously, this trajectory will depend on the value of the surfa
tension parameter. More precisely, the initial conditionzs

2(0)
corresponding to the separatrix trajectory will be a funct
of the surface tensionB. To quantitatively characterize thi
set of initial conditions we have studied the dependence
the separatrix trajectory in a neighborhood of the planar
terface fixed point as a function ofB̃, using initial conditions
of the form zs

2(0)520 exp(iu). For a given initial condition

zs(0) introduce the parameterusep(B̃), defined as the unique
value for which the evolution is attracted toward the fix
point ST~L! whenu.usep and to the fixed point ST~R! when
u,usep.

Figure 14 shows the plot ofusep versusB̃, and it is ob-
served that asB̃ decreases,usep saturates to a fixed value
namelyusep(B̃→0)520.484360.0009. It is interesting to
compare this value to the position of the separatrix region
B50, which is located betweenu1

B50520.95758 and

u2
B50521.04796. The separatrix for finiteB̃ lays outside

and far away from the separatrix region forB50, even for
vanishing surface tension. Our evidence, therefore, sugg
that anyB50 trajectory located between the trajectories d
fined byusep(B̃→0) andu1

B50 will not describe, even quali-

tatively, the regularized dynamics in the limitB̃→0, since
the finger that will ‘‘win’’ the competition under theB50
dynamics will ‘‘lose’’ under theB→0 dynamics. Thus, there
exists a positive measure set of initial conditions of the fo
~4! such that the evolution withB→0 cannot be qualitatively

FIG. 14. Plot ofusep versusB̃ for initial conditions of the form
~4! with l51/2, e50.1, andzs

2(0)520 exp(iu).
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described by its evolution underB50 dynamics. This is a
dramatic consequence of the singular nature of surface
sion on the dynamics of finger competition that is not rela
to steady state selection, but confirms the ideas of the
posed dynamical solvability scenario in Ref.@22#.

V. SUMMARY AND CONCLUDING REMARKS

The asymptotic theory developed in Refs.@13,20# predicts
the existence of regions of the complex plane where the z
surface-tension solution and the finite surface tension s
tion differ by O(1). These regions are the daughter singul
ity clusters, and their influence is felt in the physic
interface when they are close to the unit circle. Daugh
singularities move towards the unit circle, and when th
motion is not impeded by other singularities they reach
unit circle in O(1) time. When the distance between th
daughter singularity and the unit circle isO(B1/3) the inter-
face can displayO(1) discrepancies with respect the inte
face of theB50 solutions.

Since the precise effect of the daughter singularity can
be established by the asymptotic theory it is necessary to
numerical computation in order to establish the effects
daughter singularity on the dynamics of the interface.
have focused our efforts on uncovering the role of surfa
tension in the dynamics of two-finger configurations, a
two different types of two-finger zero-surface-tension so
tions have been studied. The first type (e50) does not ex-
hibit finger competition whenB50 but rather contains
asymptotic configurations consisting of two unequal stea
fingers advancing with the same speed. Numerical comp
tions with small surface tension show that the introduction
a smallB triggers the competition process which was abs
for B50 by restoring the saddle-point~hyperbolic! structure
of the appropriate multifinger fixed point. The second ty
(eÞ0) of two-finger solution we have studied exhibits fing
competition forB50, but the numerical computation wit
small B has shown that the long time configuration of t
computed interface isqualitatively different from theB50
solution for a broad set of initial conditions, in the sense t
the finger that ‘‘wins’’ the competition is not the same wi
and without surface tension. Thus, the presence of sur
tension seemingly can change the outcome of finger com
tition even in configurations that are well behaved a
smooth for all time and whose asymptotic width is ful
compatible with the predictions of selection theory for va
ishing surface tension. This unexpected result shows that
face tension plays also an essential role in multifinger
namics through a drastic reconfiguration of the phase-sp
flow structure.

Our calculations support the conjecture that impact
either the shorter or larger finger retards the velocity of t
finger, and is accompanied by the widening of the larg
finger. As a consequence, in general the outcome of fin
competition is independent of the particular finger on wh
the impact first occurs, and the finger which is leading at
time of the daughter singularity impact ‘‘wins’’ the compet
tion. This recipe fails only for interfacial configurations wit
very similar fingers, when not only the position of the fing
5-12
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~which finger is leading! but also the tip velocities~a trailing
finger can have for a certain time a larger velocity than
leading one! at the impact time may play a role.

The main conclusion of the present work is that surfa
tension is essential to describe multifinger dynamics and
ger competition, even when the corresponding zero-surfa
tension evolution is well behaved and compatible with sel
tion theory. That is, we have detected singular effects
surface tension on the dynamics of finger competition t
are not directly related to steady state selection. These ca
properly interpreted in the context of an extended dynam
selection scenario as described in Ref.@22#, where the recon-
figuration of phase-space flow by surface tension can
. A

C
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ch

A

.
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traced back to the restoring of hyperbolicity of multifing
fixed points.
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