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Numerical signs for a transition in the two-dimensional random field Ising model atT50
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Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising
model atT50, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the
data suggests the existence of a transition atsc50.6460.08. Results are compared with existing theories and
with the study of metastable avalanches in the same model.@S1063-651X~99!50602-8#
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The study of systems with quenched disorder has be
challenging problem for many years. The interplay betwe
thermal fluctuations and disorder has a great influence on
existing phase transitions. Many systems are known to
hibit such phase diagrams highly determined by the deg
of disorder ~vacancies, impurities, dislocations, etc.! The
most typical examples can be found in magnetism, superc
ductivity, structural phase transitions, etc. For such syste
different models have been proposed. The Ising model w
quenched disorder is one of the simplest and it has the
vantage that the pure model is well known. The disorder
be of two types:~i! symmetry breaking terms, such a
random-fields or random magnetic impurities, and~ii ! non-
symmetry breaking, such as random-bonds, vacancies,
For all of the cases different probability distributions of d
order have been studied. Here we will focus on the study
the random field Ising model~RFIM! in two dimensions
~2D! with a Gaussian distribution of fields. For many yea
there has been discussion concerning the possibility
whether a 2D model with symmetry breaking random fie
exhibits order at low temperatures. The initial studies lead
a certain controversy: the Imry-Ma@1# argument suggest
that the lower critical dimension, below which ferromagne
order is destroyed, isdl<2, with d52 being the limiting
case. Renormalization group expansions@2# around d56
lead to the ‘‘dimensional reduction’’ argument suggesti
that dl53, discarding the possibility for ordering in the 2
RFIM. It has also been suggested@3# that there are differen
types of order ford.1. This controversy is probably due t
the difficulty in balancing the two ingredients of such mo
els: disorder and thermal fluctuations.

More recently a different approach to disordered syste
has been proposed, namely the study of disordered sys
at T50, i.e., without thermal fluctuations. From a theoretic
point of view this simplifies the problem without making
trivial. Moreover, several experimental systems exh
phase transitions that can be catalogued into this ‘‘atherm
category: two examples are ferromagnetism at low temp
tures under an external magnetic field@4#, and martensitic
transformations@5#. Both systems present a first-order pha
transition that can be crossed by sweeping a control par
eter and are greatly affected by the presence of quenc
disorder. We will concentrate on the study of the 2D RF
at T50 for different values of the standard deviations of the
PRE 591063-651X/99/59~2!/1295~4!/$15.00
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Gaussian distribution of fields. Our goal is to look for sig
of the existence of a phase transition at a certainsc from a
ferromagnetic ordered state fors,sc to a disordered state
for s.sc . For the 3D RFIM atT50, ground state studie
@6,7# and renormalization group arguments@8# reveal the ex-
istence of such phase transition, but to our knowledge
results for the 2D case have been published. Figure 1 s
marizes the finite size scaling study presented in this pa
Data correspond to estimations ofscL , obtained using dif-
ferent methods, as a function of the linear system sizeL1/n

~where 1/n50.5 is the exponent characterizing the corre
tion length divergence!. The standard extrapolation toL
→`, as will be discussed, renderssc50.6460.08 different
from zero.

We consider the 2D RFIM on aL3L square lattice with
periodic boundary conditions and with the HamiltonianH
52( i , j

nnSiSj2( i 51
N Sihi , wherei and j are indices sweeping

the full lattice (i , j 51, . . . ,N5L3L), the sum refers to
nearest-neighbors~nn! pairs,Si561 are spin variables, and
hi are independent random fields distributed according to
Gaussian probability density witĥh&50 and^h2&5s2. The
advantage of using a continuous distribution is that, for
most any configuration of fields$hi% the ground state is no

FIG. 1. scL versusL21/n. The results have been obtained usi
MF at zero and higher orders, stars; exact solution of finite lattic
s, h, L, n, and ,; and studies of the metastability behavio
black triangles from Ref.@15#. Typical error bars are displayed. Th
inset shows an example of the ground state of aL564 system, with
s51.0
R1295 ©1999 The American Physical Society
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degenerated. The order parameter is the magnetization o
system defined asm5(Si /N. Because the ground state
unique, thermal averages are meaningless. Since we ar
terested in the dependence of the system properties with
amount of disorders, the only possible averages with phys
cal meaning are the ensemble averages@^¯&~s!# performed
over different realizations of the random fields with a cert
fixed degree of disorders. Experimentally this has to be
understood as averaging measurements on different sam
that have been prepared with the same amount of disord

The zeroth-order mean field~MF! theory was proven
many years ago@9#. A solution with the order paramete
^m&(s)Þ0 appears fors,sc58/A2p, and the phase tran
sition is continuous. Of course this MF result cannot be
pected to be correct, or to reflect any dependence on dim
sionality. Moreover, the MF studies can be extended
higher orders by exactly treating larger and larger cluster
spins. For thermal phase transitions this is known to extra
late to the exact value of the critical temperature. The fi
order approximation is the Bethe approximation, which co
sists of exactly solving a cluster of a central spin and its f
nn. The method can be extended to larger clusters. We h
found a continuous phase transition atsc52.76, 2.48, 2.12,
and 1.98 for clusters ofN55, 13, 25, and 41 spins, respe
tively. These results are indicated with stars in Fig. 1~con-
sideringL5AN!.

A better approach consists of looking for exact grou
states by using the max-flow min-cut theorem@6#. We have
designed an algorithm that solves a set of differents values
with a minimization time that grows asL4. We have studied
lattices withL54, 8, 16, 32, 64, and 128, and have tak
averages over 105, 104, 104, 53103, 103, and 30 realizations
of random fields, respectively. The inset in Fig. 1 show
typical example of a ground state fors51.0 andL564. We
have focused on the computation of different magnitud
The order parameter has been estimated from^umu&L(s) and
A^m2&L(s). The subscriptL indicates that such quantitie
will, in general, depend on system size. We have also m
sured the susceptibility asxL(s)5N(^m2&L2^umu&L

2)
~which, for larges, tends to 1 independently ofL! and Bind-
er’s cumulantgL(s)512^m4&L /(3^m2&L

2). Also, the corre-
lation lengthjL(s) can be computed by fitting an expone
tial decay to the spin-spin correlation function.

Figure 2 shows the behavior ofA^m2&L as a function ofs
for different system sizes. One can estimatescL as the in-
flection point of a fitted third-order polinomium. Data can
scaled using the standard finite size scaling assump
A^m2&L;LbM̃ @L1/n(s2scL)#, whereM̃ is the correspond-
ing scaling function. The exponentsb andn can be estimated
by fitting the power laws A^m2&(s5scL);Lb and
dA^m2&/ds(s5scL);Lb11/n. One gets b520.038
60.009 and 1/n50.5460.04. The scaled data is shown
the inset in Fig. 2. A similar scheme can be applied to
study of ^umu&L(s), renderingb520.02660.017 and 1/n
50.5460.05. SusceptibilityxL(s), shown in Fig. 3, exhib-
its a peak ats5scL , which shifts and increases when in
creasingL. Data can also be scaled usingxL;Lax̃@L1/n(s
2scL)#. Power law fits to the height and curvature of t
peak rendera51.8960.03 and 1/n50.4660.05. Scaled
data are shown in the inset of Fig. 3. Figure 4 shows
the
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behavior ofjL(s). The peak gives an independent meas
of scL . The continuous line is an estimation ofj~s! for L
→` that will be discussed later. Note that the behavior
the curves is compatible with the finite size scaling hypo
esis, i.e.,jL follows the behavior corresponding to the infi
nite system up to a certainjmax5KL. ~Data are compatible
with K.0.08!. A final estimation ofscL can be obtained
from gL(s). For all of the studied sizesgL(s) takes a low
value for larges and reaches the value 2/3 at a certainscL .
This estimation is independent ofL as suggested in Ref.@7#.
We want to note thatb.0, which means that the order pa
rameter increases very quickly tom.1 after the transition.
A low-s first-order expansion renders 12m;10211 for s
50.6. This fact may also explain why it is very difficult t
measuregL(s) with enough numerical accuracy to check f
a crossing point, which is the standard procedure to loc
the transition. Also note thatb.0 anda.2 would suggest
that m exhibits a lack of self averaging@10#.

The different estimations, as explained in the previo
paragraph, ofscL , are plotted in Fig. 1 in front ofL21/n. The

FIG. 2. Behavior ofA^m2&(s) for L516, 32, 34, and 128. The
inset shows the same data scaled usingb520.038 and 1/n
50.50.

FIG. 3. Behavior ofxL(s) for L516, 32, 64, and 128. The inse
shows the same data scaled usinga51.89 and 1/n50.46.
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open symbols correspond to the estimation from^umu&L(s),
~s!; A^m2&L, ~h!; xL(s), ~L!; jL(s), ~n!; and gL(s),
~,!. In order to extrapolate the data toL→`, we have used
the standard expansion for the divergence ofj, up to second
order: j;(s2sc)

2n@11C(s2sc)#. Now, supposing tha
scL is determined by the conditionj5KL, one getsscL
5sc1C1L21/n1C2L22/n. Such parabolic fits are als
shown in Fig. 1 with continuous lines. The extrapolatedsc
all lay within sc50.6460.08. To get an idea of the erro
margins, we have also fitted the first-order expansion (C2
50) leaving n free, renderingsc50.6560.1 and n51.8
60.2, or fixingn52, which renderssc50.5660.06.

The existence of this phase transition is in apparent c
tradiction with previous results. It has been proved@11# that
the RFIM has a unique Gibbs state in the thermodyna
limit, i.e., for a given configuration of the random fields th
ground state is unique. This can be misunderstood@12# as
proof that the ordered phase cannot exist. When conside
the ensemble of all possible realizations of the random fie
corresponding to a certain value ofs, it may well be that the
distribution of magnetizations changes from a single p
one ~for large s! to a bimodal one for small values ofs.
Thus, the phase transition we are proposing should be un
stood as existing in this ensemble rather than for a sin
system for which the ground state is unique. It is true t
there is an open question here concerning the size of
ensemble: in the thermodynamic limit, is there more th
one realization of disorder compatible with a certains? We
understand that given the discreteness of the Ising lattice
the continuity of the random fields one can still consider
existence of such an ensemble.

Another interesting point is the comparison of our resu
with other studies, suggesting an exponential divergenc
the correlation lengthj;exp$2B/(s2sc)

t%. On the basis of
the study of the interfaces separating regions withm.0 and
m,0, Binder @13# derived a theory witht52 and sc50.

FIG. 4. Correlation lengthjL(s) for systems withL516, 32,
64, and 128. The continuous line shows the behavior ofj5A(s
2sc)

2n@11C(s2sc)# with sc50.64 andn52. The inset shows
the finite size dependence ofscL

22 versus ln(L21). Data are the same
as in Fig. 1~h!. The continuous line is the standard scaling used
this work and the dashed one is the best fit of the theory by Bin
et al. in Ref. @13#.
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We have tested the validity of this theory by studying t
corresponding finite size scaling hypothesis@13,14#: 1/scL

2

} ln(L21). The inset in Fig. 4 shows the comparison of th
behavior with the standard one we propose in this work,
top of the data corresponding to the estimations ofscL from
the inflection point inA^m2&L ~both fits have two free pa
rameters!. The standard theory works better. We have a
tested that, assuming the standard hypothesis (jL;(u(s
2scL)/scLuL1/n1A)2n), the finite size scaling ofjL is bet-
ter than using Binder’s hypothesis. Moreover, Binde
theory proposes that, for large enough systems, the con
rations with totalm.0 will be more and more frequent. W
have not observed the existence of many ‘‘slab’’ configu
tions but have found ground states with closed domains, s
as those in the inset of Fig. 1. Figure 5 shows the probab
P(m) obtained from the computations of a very large nu
ber of exact ground states for a system withL564. Clearly,
for s,sc , the configurations withm.0 have much less
probability than the configurations withm.1. The reason
for the failure of Binder’s theory could be that, in order
perform the thermodynamic limit, he uses a very anisotro
system with open boundary conditions.

Our data can be compared with the studies of the evo
tion of the RFIM atT50, obeying a local relaxation dynam
ics. It has been found that, when sweeping the external fi
the system evolves by avalanches between metastable s
At a certain degree of disordersc the distribution of ava-
lanches becomes critical. In Fig. 1 we show the values of
scL , corresponding to the 2D case from Ref.@15#. The be-
havior is very similar to the equilibrium data. Different ex
trapolations toL→` have been reported~sc50.7560.03
@15#, sc50.5460.04 @16#! but all are close to the equilib
rium extrapolation. Concerning the exponents for the me
stable studies, the exponentb has also been found to be ver
small, while previous reported values forn are 1.660.1 @15#
and 5.361.4 @16#. Therefore, we suggest that the metastab
ity phenomena, found in the out-of-equilibrium studie
might be associated with a real underlying equilibrium pha

n
er

FIG. 5. Histograms of the magnetization distribution for aL
564 system and fors51.20, 1.15, 1.10, 1.05, and 1.00~from
bottom to top!. The distribution evolves from a single peak ats
.sc to a two-peak distribution fors,sc . The curves are shifted
0.2 units each to clarify the plot.
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transition ats,sc for zero external field. It should be men
tioned that in the context of these out of equilibrium pha
transitions, Sethna and collaborators have@16# proposed a
theory with exponential divergence ofj with t51 andsc
50.4260.04. Our data are not consistent with such theo
If we perform a fit in the evolution ofscL(L), leaving sc
andt free, we gett50.6 andsc50.25. We can still obtain
a good fit ~and good scalings! by taking t51 and sc50,
although we cannot provide any physical explanation
such behavior. We finally want to point out that the pha
transition we have found atT50 may also be related to th
change in the type of growth found ats50.33 in the studies
of the depinning transition in the same model@17#.
.
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e

.

r
e

In conclusion, we have presented a finite size scal
analysis of numerical data for systems up toL5128, which
suggests that the RFIM with a Gaussian distribution of fie
at T50 exhibits a phase transition atsc50.6460.08. The
ensemble average of the magnetization changes from^m&
50 for s.sc to a state witĥ m&Þ0 for s,sc . The tran-
sition is characterized by the exponents 1/n50.560.05, b
520.0360.02, anda51.8960.03. The possibility of ex-
ponential divergencej;exp(B/s) cannot be excluded.
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