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Numerical signs for a transition in the two-dimensional random field Ising model atT =0
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Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising
model atT =0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the
data suggests the existence of a transitioor &t 0.64+0.08. Results are compared with existing theories and
with the study of metastable avalanches in the same mpB&063-651%99)50602-9

PACS numbegps): 75.10.Nr, 05.40-a

The study of systems with quenched disorder has been @aussian distribution of fields. Our goal is to look for signs
challenging problem for many years. The interplay betweerof the existence of a phase transition at a certgirfrom a
thermal fluctuations and disorder has a great influence on tHerromagnetic ordered state for<o. to a disordered state
existing phase transitions. Many systems are known to exor >0 . For the 3D RFIM afT =0, ground state studies
hibit such phase diagrams highly determined by the degref6,7] and renormalization group argumefi®g reveal the ex-
of disorder (vacancies, impurities, dislocations, ¢tdhe istence of such phase transition, but to our knowledge no
most typical examples can be found in magnetism, superconesults for the 2D case have been published. Figure 1 sum-
ductivity, structural phase transitions, etc. For such systemsarizes the finite size scaling study presented in this paper.
different models have been proposed. The Ising model witlData correspond to estimations @f_, obtained using dif-
quenched disorder is one of the simplest and it has the aderent methods, as a function of the linear system kiZg
vantage that the pure model is well known. The disorder cattwhere 1/=0.5 is the exponent characterizing the correla-
be of two types:(i) symmetry breaking terms, such as tion length divergenge The standard extrapolation tb
random-fields or random magnetic impurities, &iigl non-  —oo, as will be discussed, rendesg=0.64+0.08 different
symmetry breaking, such as random-bonds, vacancies, etitom zero.

For all of the cases different probability distributions of dis- We consider the 2D RFIM on BX L square lattice with
order have been studied. Here we will focus on the study operiodic boundary conditions and with the Hamiltonikin

the random field Ising modelRFIM) in two dimensions =—Ein,?513j—2iN:13hi , Wherei andj are indices sweeping
(2D) with a Gaussian distribution of fields. For many yearsthe full lattice (,j=1,... N=LXL), the sum refers to
there has been discussion concerning the possibility ofiearest-neighbor@n) pairs,S=+1 are spin variables, and
whether a 2D model with symmetry breaking random fieldsh, are independent random fields distributed according to the
exhibits order at low temperatures. The initial studies lead t@aussian probability density witth) =0 and(h?)= 2. The

a certain controversy: the Imry-MglL] argument suggests advantage of using a continuous distribution is that, for al-
that the lower critical dimension, below which ferromagneticmost any configuration of fieldgh;} the ground state is not
order is destroyed, ifl|<2, with d=2 being the limiting

case. Renormalization group expansid@$ around d=6 ‘ —
lead to the “dimensional reduction” argument suggesting :?j
that d,=3, discarding the possibility for ordering in the 2D 25 ¢
RFIM. It has also been suggesti] that there are different
types of order ford>1. This controversy is probably due to 20 &
the difficulty in balancing the two ingredients of such mod- q
els: disorder and thermal fluctuations. °

More recently a different approach to disordered systems
has been proposed, namely the study of disordered systems
atT=0, i.e., without thermal fluctuations. From a theoretical 10 ¢
point of view this simplifies the problem without making it
trivial. Moreover, several experimental systems exhibit 0,5] ‘ ‘ s \ s ‘
phase transitions that can be catalogued into this “athermal” 00 01 02 03 04 05 06

Uv

category: two examples are ferromagnetism at low tempera- L

tures under an external magnetic fi¢ht], and martensitic FIG. 1. o, versusL ~ . The results have been obtained using
transformationg5]. Both systems present a first-order phasewr at zero and higher orders, stars; exact solution of finite lattices,
transition that can be crossed by sweeping a control paran®, [, ¢, A, and V; and studies of the metastability behavior,
eter and are greatly affected by the presence of quenchegack triangles from Ref15]. Typical error bars are displayed. The
disorder. We will concentrate on the study of the 2D RFIM inset shows an example of the ground state bfe64 system, with
atT=0 for different values of the standard deviatieof the  ¢=1.0

1.5

1063-651X/99/562)/12954)/$15.00 PRE 59 R1295 ©1999 The American Physical Society



RAPID COMMUNICATIONS

R1296 CARLOS FRONTERA AND EDUARD VIVES PRE 59
degenerated. The order parameter is the magnetization of the 1.0
system defined am=2=S,/N. Because the ground state is
unique, thermal averages are meaningless. Since we are in- 08
terested in the dependence of the system properties with the )
amount of disordew, the only possible averages with physi-
cal meaning are the ensemble averades)(o)] performed 0.6 r
over different realizations of the random fields with a certain = _._
fixed degree of disorder. Experimentally this has to be ”g 04
~ U.

understood as averaging measurements on different samples

that have been prepared with the same amount of disorder.
The zeroth-order mean fieldMF) theory was proven 0.2

many years agd9]. A solution with the order parameter

(m)(0)#0 appears for<o,=8/\2m, and the phase tran-

sition is continuous. Of course this MF result cannot be ex- 0.0 ‘ : :

pected to be correct, or to reflect any dependence on dimen- 0.0 1.0 2.0 3.0 4.0

sionality. Moreover, the MF studies can be extended to FIG. 2. Behavior ofy(m?)(c) for L2 16, 32, 34, and 128. The

higher orders by exactly treating larger and larger clusters ohset shows the same data scaled usjfig —0.038 and ¥

spins. For thermal phase transitions this is known to extrapo=0.50.

late to the exact value of the critical temperature. The first-

order approximation is the Bethe approximation, which conyanavior of¢, (o). The peak gives an independent measure

sists of exactly solving a cluster of a central spin and its fourys .. The continuous line is an estimation &) for L

nn. The method can be extended to larger clusters. We have ., ‘that will be discussed later. Note that the behavior of
found a continuous phase transitioncat=2.76, 2.48, 2.12,

- the curves is compatible with the finite size scaling hypoth-
and 1.98 for clusters dii=5, 13, 25, and 41 spins, respec-

. S : gy esis, i.e. . follows the behavior corresponding to the infi-
tively. These results are indicated with stars in Figcan- | i:q system up to a certaify, .= KL. (Data are compatible

sideringL = VN). _ _ with K=0.08. A final estimation ofo,, can be obtained
A Dbetter z_;\pproach consists pf looking for exact grounds.q, g.(). For all of the studied sizes, (o) takes a low
states by using the max-flow min-cut theorg8). We have \51¢ for larger and reaches the value 2/3 at a ceriajq .
designed an algorithm that solves a set of differemalues  p.c estimation is independent bfas suggested in Ref7].
with a minimization time that grows ds*. We have studied \ye want to note thag=0, which means that the order pa-
lattices withL=4, 8, 16, 32, 64, and 128, and have taken ymeter increases very quickly to=1 after the transition.
averages over £010%, 10%, 5x10%, 10°, and 30 realizations A |ow-o first-order expansion renders—n~10"1 for o
of random fields, respectively. The inset in Fig. 1 shows a_g g This fact may also explain why it is very difficult to

typical example of a ground state for=1.0 andL =64. We o455 ray (o) with enough numerical accuracy to check for
have focused on the computation of different magnitudes

) a crossing point, which is the standard procedure to locate
The order parameter has been estimated ftpm) (o) and e transition. Also note tha8~0 anda=2 would suggest

\/{m2_>,_(a). The subscriptL indicate; that such quantities ot m exhibits a lack of self averagind.0].
will, in general, depend on system size. We have alsg Mea- The different estimations, as explained in the previous
sured the susceptibilty asy (0)=N(m?*).=(Im)¥)  paragraph, obr, , are plotted in Fig. 1 in front of ~*. The
(which, for largeo, tends to 1 independently &f) and Bind-
er's cumulang, (o) =1—(m*, /(3(m?)?). Also, the corre-
lation length&, (o) can be computed by fitting an exponen-
tial decay to the spin-spin correlation function.

Figure 2 shows the behavior g{m?), as a function ofr
for different system sizes. One can estimatg as the in-
flection point of a fitted third-order polinomium. Data can be
scaled using the standard finite size scaling assumption: 1000

(m?) ~LAM[LY"(6— 0¢)], whereM is the correspond-

ing scaling function. The exponengsandv can be estimated 2
by fitting the power laws (m?)(oc=0¢)~L? and
dy(m?/do(oc=0¢)~LA*Y. One gets B=-0.038
+0.009 and ¥=0.54+0.04. The scaled data is shown in 500
the inset in Fig. 2. A similar scheme can be applied to the
study of {(|m|) (o), rendering8=—0.026-0.017 and W
=0.54+0.05. Susceptibilityy, (), shown in Fig. 3, exhib-
its a peak ato=o0_, which shifts and increases when in-
creasinglL. Data can also be scaled usigg~L*¥[LY" (o 0 — .
—o.)]. Power law fits to the height and curvature of the 0.0 1.0 2.0 3.0
peak rendera=1.89+0.03 and 1/=0.46+0.05. Scaled FIG. 3. Behavior ofy, (o) for L=16¢32, 64, and 128. The inset
data are shown in the inset of Fig. 3. Figure 4 shows thehows the same data scaled using 1.89 and 1#=0.46.
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FIG. 4. Correlation lengtt€, (o) for systems withL =16, 32, FIG. 5. Histograms of the magnetization distribution foiLa
64, and 128. The continuous line shows the behavioé-efA(o =64 system and fowr=1.20, 1.15, 1.10, 1.05, and 1.G@rom

—0¢) "[1+C(o—0)] with 0,=0.64 andv=2. The inset shows bottom to top. The distribution evolves from a single peak at
the finite size dependence of,? versus In[."%). Data are the same > o to a two-peak distribution for<o,. The curves are shifted
as in Fig. 1(0J). The continuous line is the standard scaling used in0.2 units each to clarify the plot.

this work and the dashed one is the best fit of the theory by Binder

et al.in Ref.[13]. We have tested the validity of this theory by studying the
corresponding finite size scaling hypothefl8,14: 1/o?,
open symbols correspond to the estimation frgm|), (o), «In(L™1). The inset in Fig. 4 shows the comparison of this

(O); ‘/<m2> , (@) xL(0), (0); €.(0), (A); and g, (o), behavior with the standard one we propose in this work, on
(V). In order to extrapolate the datalte—oo, we have used top of the data corresponding to the estimations gf from
the standard expansion for the divergence,afp to second the inflection point iny(m?), (both fits have two free pa-
order: é~(o—o¢) "[1+C(o—0.)]. Now, supposing that rameters The standard theory works better. We have also
o is determined by the conditio§=KL, one getso,,  tested that, assuming the standard hypothegis-(|(o
=0, +C,L Y"+C,L~?”. Such parabolic fits are also —o¢)/oe|LY"+A)™"), the finite size scaling of, is bet-
shown in Fig. 1 with continuous lines. The extrapolated ter than using Binder's hypothesis. Moreover, Binder’'s
all lay within 0.=0.64+0.08. To get an idea of the error theory proposes that, for large enough systems, the configu-
margins, we have also fitted the first-order expansiGn ( rations with totalm=0 will be more and more frequent. We
=0) leaving v free, renderingc.=0.65-0.1 andv=1.8 have not observed the existence of many “slab” configura-
+0.2, or fixing v=2, which rendersr.=0.56=0.06. tions but have found ground states with closed domains, such
The existence of this phase transition is in apparent conas those in the inset of Fig. 1. Figure 5 shows the probability
tradiction with previous results. It has been proyad] that P(m) obtained from the computations of a very large num-
the RFIM has a unique Gibbs state in the thermodynamider of exact ground states for a system with 64. Clearly,
limit, i.e., for a given configuration of the random fields the for <o, the configurations witrm=0 have much less
ground state is unique. This can be misunderstidd] as  probability than the configurations wittn=1. The reason
proof that the ordered phase cannot exist. When considerinigr the failure of Binder's theory could be that, in order to
the ensembile of all possible realizations of the random fieldgyerform the thermodynamic limit, he uses a very anisotropic
corresponding to a certain value @f it may well be that the system with open boundary conditions.
distribution of magnetizations changes from a single peak Our data can be compared with the studies of the evolu-
one (for large o) to a bimodal one for small values @f.  tion of the RFIM atT=0, obeying a local relaxation dynam-
Thus, the phase transition we are proposing should be undeics. It has been found that, when sweeping the external field,
stood as existing in this ensemble rather than for a singl¢he system evolves by avalanches between metastable states.
system for which the ground state is unique. It is true thatAt a certain degree of disorder. the distribution of ava-
there is an open question here concerning the size of thimnches becomes critical. In Fig. 1 we show the values of the
ensemble: in the thermodynamic limit, is there more tharno , corresponding to the 2D case from REE5]. The be-
one realization of disorder compatible with a certaihWe  havior is very similar to the equilibrium data. Different ex-
understand that given the discreteness of the Ising lattice arteapolations toL—c have been reporte@r.=0.75+0.03
the continuity of the random fields one can still consider thg15], o.=0.54+=0.04[16]) but all are close to the equilib-
existence of such an ensemble. rium extrapolation. Concerning the exponents for the meta-
Another interesting point is the comparison of our resultsstable studies, the expongdhas also been found to be very
with other studies, suggesting an exponential divergence afmall, while previous reported values foare 1.6-0.1[15]
the correlation lengtli~exp{—B/(oc—o0,)"}. On the basis of and 5.3-1.4[16]. Therefore, we suggest that the metastabil-
the study of the interfaces separating regions with0 and ity phenomena, found in the out-of-equilibrium studies,
m<0, Binder[13] derived a theory withr=2 ando.=0. might be associated with a real underlying equilibrium phase
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transition ato< o for zero external field. It should be men-  In conclusion, we have presented a finite size scaling
tioned that in the context of these out of equilibrium phaseanalysis of numerical data for systems ug_te 128, which
transitions, Sethna and collaborators h4¥6] proposed a suggests that the RFIM with a Gaussian distribution of fields
theory with exponential divergence gfwith 7=1 ando,  at T=0 exhibits a phase transition at,=0.64+0.08. The
=0.42+0.04. Our data are not consistent with such theorye€nsemble average of the magnetization changes ffiomn

If we perform a fit in the evolution ofr,, (L), leavingo, =0 for o>o¢ to a state with(m)#0 for ¢<o. The tran-
and  free, we getr=0.6 ando,=0.25. We can still obtain Sition is characterized by the exponents20.5+0.05, B
a good fit(and good scalingsby taking 7=1 and o.=0, =-0.03£0.02, ande=1.89+0.03. The possibility of ex-

although we cannot provide any physical explanation fofPonential divergencé~exp®/o) cannot be excluded.

such behavior. We finally want to point out that the phase \ye acknowledge financial support from CICyT under
transition we have found at=0 may also be related to the project Nos. mat95-0504 and mat98-0315, CRAY, and FCR.
change in the type of growth found at=0.33 in the studies C.F. also acknowledges the Comissionat per a Universitats i
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