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Sidebranching induced by external noise in solutal dendritic growth
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We have studied sidebranching induced by fluctuations in dendritic growth. The amplitude of sidebranching
induced by internal~equilibrium! concentration fluctuations in the case of solidification with solutal diffusion
is computed. This amplitude turns out to be significantly smaller than values reported in previous experiments.
The effects of other possible sources of fluctuations~of an external origin! are examined by introducing
nonconserved noise in a phase-field model. This reproduces the characteristics of sidebranching found in
experiments. Results also show that sidebranching induced by external noise is qualitatively similar to that of
internal noise, and it is only distinguished by its amplitude.
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I. INTRODUCTION

Dendritic growth in nonequilibrium systems has been
tensively studied during the last few years@1–7#. A feature
which remains a main point of interest is the study of sid
branching, which is the secondary branches that appea
both sides of the main dendrite. The question of how
frequency and amplitude are determined has not yet b
fully solved. Two scenarios have been proposed to exp
the origin of sidebranching. One of them states that perio
deterministic oscillations at the tip@8–10# generate corre-
lated branches on both flanks of the dendrite@8,9#. A pos-
sible source of these tip oscillations was suggested in R
@11#, where it was argued that the spreading rate of the w
packet that characterizes sidebranching might become l
enough so that the tip could undergo oscillations or ot
instabilities. This is predicted to occur in the limit of sma
surface tension anisotropy. The other scenario proposes
sidebranching is due to selective amplification of fluctuatio
near the tip of the dendrite@12–27#. In this case, branche
appear to be mostly uncorrelated. In this paper we will stu
this second scenario by means of a phase-field model@25–
40# and, in particular, we will focus on the issue of an ext
nal vs internal origin of the noise.

In a frame of reference moving with the tip of the de
drite, sidebranching can be seen as a wave that propag
along the dendrite away from the tip at the same velocity
the tip. An appropriate characterization is provided by
amplitude and wavelength. Barberet al. @14# studied the
evolution of time-dependent deformations of the needle c
tal ~Ivantsov! solution of the two-dimensional symmetr
model of solidification in the limit of small Pe`clet number
within a WKB approximation. The amplitude of a localize
wave packet grows exponentially asz1/4, where z is mea-
sured from the tip along the symmetry axis of the dendr
as the packet moves down, provided the initial packet c
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tains modes of arbitrarily small frequencies. Moreover,
wavelength of the packet increases asz1/4. Pieters@15# ob-
tained the same amplitude and wavelength dependencez
as in Ref.@14# both analytically and by numerical integratio
of the boundary-layer model. Langer@16# concluded, from a
similar analysis to that of Ref.@14# but performed in three
dimensions, that noise of some kind can be the origin
sidebranching, but that thermal fluctuations are not stro
enough to entirely explain the phenomena. However, m
recently, Brener and Temkin@17# considered anisotropic
needle crystals in three dimensions and concluded that
perimentally observed sidebranching could be explained
considering noise of a thermal origin. The growth of t
sidebranching amplitude was found to behave exponenti
as a function ofz2/5, which is faster than thez1/4 dependence
obtained in the axisymmetric case@16#. The sidebranching
wavelength was found to be a function ofz1/5, very similar to
that obtained in the axisymmetric case. Doughertyet al. @18#
studied sidebranching in NH4Br dendrites, where rather un
correlated variations in phase and amplitude of the branc
were observed. They determined the amplitude of the s
branching and its mean wavelength by looking at the pow
spectrum of the data obtained by measuring the half-width
the dendrite at a fixed distancez from the tip at different
times. The behavior of the amplitude was qualitatively sim
lar to that predicted in Ref.@14# up to a certain value ofz,
after which the linear theory is presumably no longer val
An equivalent exponential growth of the amplitude withs1/4,
wheres is the arclength, was also found in Ref.@19#. How-
ever, in Ref.@18# no variation of the mean frequency in th
spectral peak was obtained for differentz. Finally, Dough-
erty et al.also observed that side branches separated by m
than about six times the mean wavelength were uncorrela
Weak correlation between opposite sides of the dend
when no external forcing was applied to it was also found
Ref. @20#. The common feature of all these experiments
that sidebranching appears to be due to the selective am
fication of natural noise and not to the existence of so
intrinsic oscillation or limit cycle.

Bisang and Bilgram@21,22# found quantitative agreemen
d-
©2001 The American Physical Society02-1
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between the predictions for the linear regime in Ref.@17# and
their results in experiments on xenon dendrites in three
mensions. They concluded that Brener and Temkin’s the
correctly describes the sidebranching behavior of dendr
for any pure substance with cubic symmetry and thus th
mal noise was concluded to be the origin of the sidebran
ing observed in their experiments.

In the last decade there has been an increasing us
phase-field models to deal with dendritic growth problem
They are a very useful and practical tool to simulate su
kind of processes and a good alternative to the integrodif
ential equation which can be derived from the classi
sharp-interface model. In the phase-field models an o
parameter or phase fieldf is defined, which avoids tracking
the interface and naturally includes the physical bound
conditions at the interface.

Up to now, few studies of sidebranching phenomena w
the phase-field model have been carried out. It has b
shown that the inclusion of a noise source in the phase-fi
model equations enhances the emergence of uncorre
sidebranching@28# without affecting the velocity and radiu
of the tip @29#. Moreover, when the dendrite tip is period
cally forced, the sidebranching appears to be correlate
both sides of the dendrite@33# as has been observed in som
experiments@20,24#. In particular, sidebranching can b
regulated by spatially homogeneous time-periodic variat
of the melting point induced by oscillations in the extern
pressure or by periodic heating generated by a dissipa
electric current@40#.

The deepest insight into the study of sidebranching wit
phase-field model have been carried out recently in Ref.@26#.
They included thermal noise in a two-dimensional pha
field model of solidification controlled by heat diffusion in
way which was consistent with both bulk and interfac
equilibrium fluctuations, as has been done previously w
the sharp-interface model equations@41,42#. Karma and Rap-
pel @26# obtained good quantitative agreement between
computed sidebranching amplitude as a function of dista
to the tip and the prediction of the linear WKB theory f
anisotropic crystals in two dimensions. Sidebranching wa
length very close to the tip was found to increase withz
faster than predicted by the WKB theory, but this could
explained after considering that perturbations generally
stretched as they travel along the sides of curved fronts.
ther from the tip, the value of the sidebranching wavelen
saturates.

Although there is general agreement in that thermal~in-
ternal! fluctuations are enough to explain the amplitude
the dendritic sidebranching, one should be aware that
dence along these lines has been achieved in experimen
heat-controlled solidification of pure substances. As up
now there is a lack of predictions of sidebranching amp
tudes for solutal dendrites, experiments of these dend
can only show qualitative agreement with theoretical resu
In this paper we address the question of sidebranching c
acteristics in the presence of external vs internal fluctuatio
First of all, we obtain a prediction of the effects of intern
noise on sidebranching amplitudes for solutal dendrites
comparison of the theory with available quantitative expe
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mental results@18# shows that there are serious indicatio
that in some experiments internal thermodynamical fluct
tions could not account for observed sidebranching activ
In this case some other source of fluctuations, of an exte
origin, should be called on. Some of the consequences
rived from adding a nonconserved noise source in a tw
dimensional phase-field model are examined. This noise i
a different nature to what one should employ to provide
account of internal fluctuations@25–27,41,42#. However, our
simulations qualitatively reproduce the properties of t
noise-induced sidebranching derived analytically@17,26# and
observed experimentally@18,19#. We conclude that although
thermal noise is not always the main origin of dendritic sid
branching, its qualitative characteristics are common
noise-induced sidebranching independently of its origin.
detailed quantitative study of sidebranching activity cou
therefore be useful to elucidate the origin of the noise
specific experiments.

In Sec. II we predict the sidebranching amplitudes
solutal dendrites with thermal fluctuations. In Sec. III t
model and the numerical method used to solve the equat
are described. Numerical results on the behavior of the s
branching characteristics as well as comparison with theo
ical predictions and experimental results are described
Sec. IV. Conclusions derived from these results are outli
in Sec. V.

II. SIDEBRANCHING AMPLITUDE IN SOLUTAL
SOLIDIFICATION

Available theoretical predictions on sidebranching amp
tudes have been formulated for dendrites grown from a p
substance and controlled by heat diffusion. Here we w
consider dendrites appearing in isothermal growth of m
tures controlled by diffusion of the solute. We start from t
Langevin formalism for solidification due to Karma@41,42#.
In this formalism the usual sharp-interface model for soli
fication is completed with noise terms constructed with
requirement that they give the correct bulk and interfac
equilibrium fluctuations. The resulting diffusion equation f
a mixture in isothermal conditions is

]Cn

]t
5DnDCn2“•qn~r ,t !, ~2.1!

with the following boundary conditions at the interface:

~CL2CS!vn5n̂•@DS“CS2DL“CL#1n̂•@qL2qS#,
~2.2!

mECL1Gk1
vn

m
5TM2T1h~r ,t !, ~2.3!

where n5S, L denotes the phase,Cn is the concentration,
TM2T is the undercooling,Dn is the diffusion coefficient,
mE is the absolute value of the~negative! T(CL) slope of the
coexistence curve, andk, n̂, and vn are the curvature, the
normal unitary vector, and the normal velocity of the inte
face, respectively.G5sT/L, s is the surface energy andL
2-2
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FIG. 1. Amplitude vs distance
to the tip z of the sidebranching
induced by internal noise in the
experiments of Ref.@18#. Line:
theoretical prediction of Eq.~2.10!

with an overestimated value ofS̄;
crosses: experimental resul
~taken with permission from Ref
@18#!. Quantities are expressed i
micrometers.
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the latent heat per unit volume.q andh are random forces
whose statistical properties are given by

^qi
n~r ,t !qj

n~r 8,t8!&52DnCn~r ,t !d~r ,r 8!d~ t2t8!d i j
~2.4!

^h i
n~r' ,t !h j

n~r'8 ,t8!&52
kBT2

mL

d~r' ,r'8 !d~ t2t8!

A11u“'j~r' ,t !u
,

~2.5!

where the interface is parametrized by the vectorr'1jn̂.
These equations can be mapped under several approx

tions into the corresponding Langevin model for free soli
fication of a pure substance@26,41,42#. First we assume a
constant concentration gap in the mass conservation
~2.2!, i.e., CL2CS[DC'DCeq, the value corresponding t
equilibrium at temperatureT. This is in principle valid for
small curvatures and velocities. A similar approximation
assumed in the intensity of the bulk noiseqi

n(r ,t), substitut-
ing Cn(r ,t) by the equilibrium valueCn

eq in Eq. ~2.4!. Fur-
thermore in the intensity of the interfacial noiseh i

n(r' ,t) we
employ the Clausius-Clapeyron equation for dilute allo
@42# to make the substitutionkBT2/mL'CL

eqmE /mDCeq in
Eq. ~2.5!. Within these approximations the process of is
thermal solidification of an alloy is equivalent~including
thermodynamical fluctuations! to the ~heat diffusion con-
trolled! solidification of a pure substance, whose spec
heat, latent heat, and melting temperature are given by

cp5kB

~CL
eq!3

~DCeq!2
, ~2.6!

L5kB

~CL
eq!3

DCeq
mE , ~2.7!
05160
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T̄M5
~CL

eq!2

DCeq
mE , ~2.8!

where the diffusion field is now a temperature field given

T̄~r ,t !2T̄M5~Cn2Cn
eq!mE ~2.9!

and the rest of parameters remain unchanged. This ca
checked by direct substitution in the Langevin equatio
Therefore, the sidebranching induced by thermodynam
fluctuations should be the same in both situations. Si
branching amplitude is predicted to depend on the distanz
along the dendrite axis as@17#

A~z!5rS̄expS 2

3 F x0
3~z!

3s* zr2G 1/2D , ~2.10!

wherer is the tip radius,x0(z) is the shape of the dendrite
and the operating mode of the dendrite is given by the
rameters* defined by

s* 52D d0 /r2V, ~2.11!

where V is the selected velocity andd0 is the capillary
length. The dimensionless noise amplitude, for
d-dimensional thermal dendrite, is then known to be@17,26#

S̄25
2kBTM

2 cpD

L2r11dV
. ~2.12!
2-3
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FIG. 2. Dendrite obtained with
the phase-field model with a nois
term included, as is described i
the text. Ticks denote number o
grid points.
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Applying the mapping above, the corresponding result fo
d-dimensional solutal dendrite is

S̄25
2CL

eqD

~DCeq!2r11dV
. ~2.13!

This result will be used below to compare the prediction
the case of internal noise with experiments on solutal d
drites, for which there are not many quantitative experim
tal results available. We focus on the experiments perform
in Ref. @18# with ammonium bromide dendrites growin
from supersaturated aqueous solution in isothermal co
tions. In this experiment the precipitate front advances
incorporating solute particles instead of rejecting the
which makes it differ by several details from standard solu
solidification. Nevertheless, the above result@Eq. ~2.13!# can
be obtained by slightly adapting the performed mapping
this case the system is on the high concentration side of
phase diagram of the mixture, for whichTM is that of the
solvent, no longer close to the temperature of the experim
In this case it is convenient to write the Gibbs-Thoms
equation as

mE~C`2CL!1Gk1
vn

m
5TS2T1h~r ,t !, ~2.14!

whereC` is the concentration of the dilution,TS is the satu-
ration temperature for that concentration, andmE is now the
~positive! T(CL) slope. The same results of Eqs.~2.10! and
~2.13! are obtained by applying the mapping of Eqs.~2.6!,
~2.7!, and~2.8! with a diffusion field
05160
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T̄~r ,t !2T̄M5~Cn
eq2Cn!mE , ~2.15!

where we have used the relationTS2T5mE(C`2CL
eq).

Now we compare the prediction of Eqs.~2.10! and~2.13!
with the experimental results on supersaturated solution
Ref. @18#. These experiments were performed at a supers
ration D5(C`2Ceq)/(CS2Ceq)50.007 and a saturation
temperature of 56 °C. The characteristics of the selected d
drite arer54.0 mm, V51.44 mm/s, ands* 50.081. We
have employed a value ofD52.631025 cm2/s and the val-
ues corresponding to a temperature of 100 °C for the e
librium concentrations CL

eq50.993104NA molecules/m3

and CS
eq52.483104NA molecules/m3. Since this tempera-

ture is much higher than that of the experiment, the result
value S̄55.9631025 constitutes an overestimation of th
theoretical value.

In Fig. 1 we show the calculated amplitudeA(z) of the
sidebranching induced by internal fluctuations for this va
of S̄. We consider the theoretically predicted shapex(z)

5( 5
3 z)3/5, as was considered in Ref.@17#. The result corre-

sponding to the actual temperature of the experiment wo
be placed below the represented curve. In the same figur
plot the experimental results of Ref.@18#. We see that ex-
perimental amplitudes are approximately one order of m
nitude larger than the overestimated theoretical values.

Therefore the predicted amplitude of the sidebranch
when it is due to statistical noise is, for the experiments
Ref. @18#, at least one order of magnitude smaller than
amplitude experimentally observed. Thus, we are led to c
clude that thermodynamical fluctuations are not enough
explain the sidebranching amplitude in some experiments
this estimation we have assumed three-dimensional dend
even though the experiments of Ref.@18# are intended to be
quasi-two-dimensional. The analogous calculations in t
2-4
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SIDEBRANCHING INDUCED BY EXTERNAL NOISE IN . . . PHYSICAL REVIEW E63 051602
dimensions show an even lower sidebranching amplitu
i.e., a larger discrepancy with the experiments.

There is a shortcoming in the predictions above wh
applied to supersaturated experiments. By their own nat
supersaturated dilutions are not in the diluted limit, as
sumed in the theoretical analysis@42#. In the experiments of
Ref. @18# the concentration is as high as 16% of solute m
ecules. Indeed, the whole Langevin formalism is construc
in order to guarantee that the concentration fluctuations
small volumeDV is

^~DCn!2&5
Cn

DV
, ~2.16!

which is the equilibrium value for diluted solutions. In fac
for a concentrated solution Eq.~2.16! should be replaced by

^~DCn!2&5
1

DV

T

S ]m

]CD
P,T

. ~2.17!

Since the sidebranching amplitude in supersaturated s
tions has been found to be at least 1 order of magnit
larger than predicted in the diluted approximation, one c
cludes that it would be necessary that the derivative of
chemical potential is 2 orders of magnitude greater than
given by the diluted approximation]m/]C'T/C in order to
explain the experiments by internal noise. Therefore, m
likely this internal noise is really not strong enough to a
count for the observed sidebranching. As we are not awar
quantitative data on thermodynamical properties of sup
saturated solutions that would permit us to improve the e
mations above, a definitive answer on the amplitude of s
branching in these dendrites remains open. In any case t
results call for experimental quantitative measurements
solutal dendrites grown in diluted conditions, where E
~2.13! properly applies.

III. MODEL AND NUMERICAL PROCEDURE

We have performed simulations of dendritic growth
employing a phase-field model for solidification. In th
model both phases and their interface are treated indistin
and discriminated by an effective nonconserved order par
eter or phase fieldf, which takes different values in eac
phase (0 and 1 in our simulations!. This field changes
smoothly across an interface region of finite thickness,
its dynamics is coupled to that of the diffusion field in su
a way that the sharp-interface model is recovered in the l
of vanishing interface thickness, controlled by a new sm
parametere. The equations of the model read explicitly

e2t~u!
]f

]t
5f~12f!S f2

1

2
130ebDuf~12f! D

2e2
]

]x Fh~u!h8~u!
]f

]y G
1e2

]

]y Fh~u!h8~u!
]f

]x G1e2
“@h2~u!“f#,

~3.1!
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1

D
~30f2260f3130f4!

]f

]t
5“

2u1c~x,y,t !,

~3.2!

whereu(r ,t) is the diffusion field andD is the dimensionless
undercooling. Lengths are scaled in some arbitrary refere
lengthv, while times are scaled byv2/D. In these equations
u is the angle between thex axis and the gradient of the
phase field.h(u) is the anisotropy of the surface tensio
The anisotropy of the kinetic term is then given b
t(u)/h(u). b is equal toA2v/12d0 andd0 is the capillary
length.

The external noise is introduced through the additive te
c in the heat equation. This choice is not unique and
justified here only for simplicity. Because of its external o
gin, the noise is not assumed to satisfy a fluctuatio
dissipation relation. Furthermore, it is generally assumed
be nonconserved, as opposed to the more usual case of
mal noise, which would enter the model equations as a
chastic current~i.e., conserved noise! in the heat equation
and an additional stochastic term in the phase-field equa
@26#. In our simulations the noise term is evaluated at ea
uncorrelated cell of lateral sizeDx simply asI •r , where I
denotes the amplitude of the noise, andr is a uniform ran-
dom number in the interval@20.5,0.5#. The phase-field
model equations have been solved on rectangular lattices
ing first-order finite differences on a uniform grid with mes
spacingDx. An explicit time-differencing scheme has bee
used to solve the equation forf, whereas for theu equation
the alternating-direction-implicit~ADI ! method was chosen
which is unconditionally stable@29#. The kinetic term has
been taken as isotropic, which leads tot(u)5mh(u) with
constantm. A fourfold free energy anisotropys5s(0)@1
1g cos(4u)# has been considered. This gives rise to de
drites growing with perpendicular side branches. The val
of g taken were always smaller than 0.0625, which ensu
that we obtained rounded shapes such as a parabola be
forbidden directions were avoided@5#.

The growth morphologies were obtained by setting
small vertical seed (f50, u50) in the center of either of
the two shortest sides of the system and imposingf51 and
u521 on the rest of the system. We have considered s
metric boundary conditions forf andu on the four sides of
the system, although they do not influence the results p
sented in this paper.

We have used a set of phase-field model parameters
give rise to a growing needle without sidebranching for e
ery anisotropyg considered when no noise is added to t
simulations. This ensures that the sidebranching obse
when noise is present is not due to computational round
The fixed phase-field model parameters for all the simu
tions areb5400, m520, ande50.003. The values ofD
and g have been varied in the range 0.520.7 and 0.045
20.060, respectively. The noise amplitude is varied in
range 52150. The time and spatial discretizations were ke
constant in all the simulations with valuesDx50.01 and
Dt51024. Two system sizes were used in the simulations
2-5
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FIG. 3. Half-widthhz(t) of the
dendrite and its power spectrum
Pz( f ) (P in square grid points
times dimensionless time and fre
quency in cycles per dimension
less time! for z540 grid points.
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system with 100031500 grid points was used to obser
fully developed sidebranching including tertiary arms and
have enough statistics in order to compare with meas
ments of the sidebranching correlation at both sides of
dendrite. Additionally a 5003500 grid points system wa
used when the data sets did not require very extensive st
tics. In Fig. 2 a growing dendrite is shown withg
50.045, D50.6, I 511 at a timet51.5. The velocity and
the radius of the tip are very weakly affected when noise
introduced. However, side branches appear at both side
the main dendrite, yielding approximately a 90° angle,
05160
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was observed in Ref.@18#. Further down the tip one can
clearly observe competition between branches which gi
rise to a coarsening effect. When branches reach the ver
boundaries of the system, they are stopped by the effec
the symmetric boundary conditions. This did not affect t
measurements presented in this paper, where we have
cused on the region between the tip and a point appr
mately 150 grid points down from the tip~grid points are
marked on the axes of Fig. 2!. This region corresponds ap
proximately to that considered in the experimental work
Ref. @18# and, moreover, it is an appropriate region in ord
2-6
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FIG. 4. Half-widthhz(t) of the
dendrite and its power spectrum
Pz( f ) (P in square grid points
times dimensionless time and fre
quency in cycles per dimension
less time! for z5100 grid points.
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to compare the behavior of sidebranching with the analyt
results obtained from linear perturbation theory. In the lon
runs, and in order to avoid working with unnecessarily lar
systems, we have performed periodic shifts of the comp
system. We have checked that this did not affect the res
of the simulation.

IV. SIDEBRANCHING CHARACTERISTICS

In order to study the sidebranching induced by noise
have measured the half-widthhz(t) of the dendrite at various
distancesz behind the tip as a function of time. In order
05160
l
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e
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e

have a comparable amount of data as in Ref.@18# ~they re-
corded around 240 oscillations of the amplitude for eachz)
we needed to simulate a dendrite four times longer (t56)
than the one shown in Fig. 2. The half width of the dendr
as a function of time at a distancez540 grid points from the
tip as well as its power spectrumPz( f ) are shown in Fig. 3.
The same type of data corresponding to a point further fr
the tip (z5100 grid points! is shown in Fig. 4. The data use
to compute the power spectra were six times the leng
shown. Both sets of data have a strong resemblance to t
obtained experimentally@18#. We also computed the cross
correlation function
2-7
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FIG. 5. Square root of the are
under the spectral peak as a fun
tion of z ~both in grid points!. The
line indicates exponential growth
with z2/5.
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C~ t8!5^@hLz~ t1t8!2h̄Lz#@hRz~ t !2h̄Rz#&/sLsR ,
~4.1!

wherehLz(t), hRz(t), sL , andsR are the half-width func-
tions and their standard deviations for the two sides of
dendrite at the same distance from the tip. We found t
C(0) is approximately 0.4 for points very close to the tip a
that its value decreases very quickly to 0 when increasinz.
Moreover, in the points closer to the tip,C(t8) drops to zero
after six oscillations, that is, the time to nucleate six s
branches. The same behavior was observed in the ex
ments in Ref.@18#. In simulations where we used a small
data set, the values ofC(t8) were larger than those found i
the experiments, as was to be expected.

In addition to the predictions for the amplitude com
mented on above, the behavior of the wavelength is ano
main feature of sidebranching. It depends very weakly oz
@17,26#: l;z1/5. Despite the fact that experiments@18,19#
showed the predicted dependence of the amplitude onz, the
same frequency of the spectral peak for differentz was
found.

In order to observe the dependence of the sidebranc
amplitude onz in the simulations, the phase-field mod
simulations were run on a 5003500 grid points system. In
Fig. 5 we show the square root of the area under the spe
peak as a function ofz. This representation gives the amp
tude behavior of the sidebranching as a function of the
tance to the tip. The data were obtained withg50.045, D
50.6, I 519 until a timet50.5. The amplitude is found to
increase exponentially withz2/5 for distancesz,100. Thus
the behavior of the data obtained in the simulations is c
sistent with the linear analysis@17,26# up to a certain value
of z. In Ref. @18# similar behavior was found in the linea
regime, although they found a saturation of the amplitu
further down from the tip. This could be due to some boun
ary effects which stop the growth of the side branches.
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The dependence of the sidebranching wavelength on
distance to the tip was studied with the data recorded in
same simulation as for Fig. 5 and after performing the pow
spectrum. The wavelength was found to remain constan
the interval of consideredz, which is consistent with the
observations in Ref.@26#.

V. CONCLUDING REMARKS

We have studied the sidebranching induced by fluct
tions in dendritic growth, for which there is good quantit
tive agreement between theory and experiment for ther
dendrites~i.e., controlled by heat diffusion!. This agreement
has only been qualitative for solutal dendrites, as there
no prediction available for their sidebranching amplitudes
order to be able to perform a quantitative comparison,
have obtained an estimation of sidebranching amplitu
originated by internal fluctuations in solutal diluted de
drites. The resulting values appear as much smaller~at least
one order of magnitude! than those observed in some expe
ments~performed in concentrated solutions!. This can be at-
tributed to the effect of other noise sources, of an exter
origin. To confirm this conclusion, it would be necessary
make use of quantitative experimental results obtained
more diluted conditions.

We have obtained the effects of noninternal fluctuatio
on dendritic sidebranching by introducing nonconserv
noise in a phase-field model for solidification. Our simu
tions qualitatively reproduce well previous experimental a
analytical results. In particular, we have reproduced the
pendence of the sidebranching amplitude on the dista
from the tip, confirming the validity of what was previous
obtained with a linear theory including internal noise. Thu
the qualitative behavior of the sidebranching amplitud
2-8
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when this is due to the selective amplification of fluctuatio
is basically independent of the origin of the noise. In conc
sion, qualitative concordance between experimental res
does not directly imply a common source of fluctuations a
therefore, a careful quantitative study of sidebranching ac
ity may help to elucidate the origin of the dominant noise
each experiment.

The phase-field model appears to be a versatile metho
study dendritic growth in general and sidebranching cha
teristics in particular. It has been shown to be adapted to
into account thermodynamical fluctuations@25–27#, but al-
ternative ways to introduce noise~such as the one employe
in this work! appear to be appropriate to qualitatively repr
duce the behavior of sidebranching when the noise is o
external origin. Our results on sidebranching can also
helpful for further simulations where qualitatively realist
-
or

e
P.

O
s
m

ett

ro

05160
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sidebranching needs to be distinguished from that gener
by numerical noise due to the round-off of the computer.
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