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Sidebranching induced by external noise in solutal dendritic growth
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We have studied sidebranching induced by fluctuations in dendritic growth. The amplitude of sidebranching
induced by internalequilibrium) concentration fluctuations in the case of solidification with solutal diffusion
is computed. This amplitude turns out to be significantly smaller than values reported in previous experiments.
The effects of other possible sources of fluctuatidof an external origiih are examined by introducing
nonconserved noise in a phase-field model. This reproduces the characteristics of sidebranching found in
experiments. Results also show that sidebranching induced by external noise is qualitatively similar to that of
internal noise, and it is only distinguished by its amplitude.
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I. INTRODUCTION tains modes of arbitrarily small frequencies. Moreover, the
wavelength of the packet increaseszi4. Pieters[15] ob-
Dendritic growth in nonequilibrium systems has been ex-tained the same amplitude and wavelength dependenee on
tensively studied during the last few yedis-7]. A feature  as in Ref[14] both analytically and by numerical integration
which remains a main point of interest is the study of side-of the boundary-layer model. Langel6] concluded, from a
branching, which is the secondary branches that appear aimilar analysis to that of Refl4] but performed in three
both sides of the main dendrite. The question of how itsdimensions, that noise of some kind can be the origin of
frequency and amplitude are determined has not yet beesidebranching, but that thermal fluctuations are not strong
fully solved. Two scenarios have been proposed to explaienough to entirely explain the phenomena. However, more
the origin of sidebranching. One of them states that periodicecently, Brener and Temkifl7] considered anisotropic
deterministic oscillations at the tiflB—10 generate corre- needle crystals in three dimensions and concluded that ex-
lated branches on both flanks of the dendfBe9]. A pos- perimentally observed sidebranching could be explained by
sible source of these tip oscillations was suggested in Retonsidering noise of a thermal origin. The growth of the
[11], where it was argued that the spreading rate of the wavsidebranching amplitude was found to behave exponentially
packet that characterizes sidebranching might become larges a function o&%5, which is faster than the'* dependence
enough so that the tip could undergo oscillations or othepbtained in the axisymmetric ca&6]. The sidebranching
instabilities. This is predicted to occur in the limit of small wavelength was found to be a functionzf®, very similar to
surface tension anisotropy. The other scenario proposes thetat obtained in the axisymmetric case. Doughettgl.[18]
sidebranching is due to selective amplification of fluctuationsstudied sidebranching in NfBr dendrites, where rather un-
near the tip of the dendritel2—27. In this case, branches correlated variations in phase and amplitude of the branches
appear to be mostly uncorrelated. In this paper we will studywere observed. They determined the amplitude of the side-
this second scenario by means of a phase-field mi@fet  branching and its mean wavelength by looking at the power
40] and, in particular, we will focus on the issue of an exter-spectrum of the data obtained by measuring the half-width of
nal vs internal origin of the noise. the dendrite at a fixed distanaefrom the tip at different
In a frame of reference moving with the tip of the den-times. The behavior of the amplitude was qualitatively simi-
drite, sidebranching can be seen as a wave that propagates to that predicted in Ref.14] up to a certain value of,
along the dendrite away from the tip at the same velocity agfter which the linear theory is presumably no longer valid.
the tip. An appropriate characterization is provided by theAn equivalent exponential growth of the amplitude wstf,
amplitude and wavelength. Barbet al. [14] studied the wheres is the arclength, was also found in REf9]. How-
evolution of time-dependent deformations of the needle crysever, in Ref[18] no variation of the mean frequency in the
tal (Ivantsoy solution of the two-dimensional symmetric spectral peak was obtained for differentFinally, Dough-
model of solidification in the limit of small Réet number ertyet al.also observed that side branches separated by more
within a WKB approximation. The amplitude of a localized than about six times the mean wavelength were uncorrelated.
wave packet grows exponentially @¥* wherez is mea- Weak correlation between opposite sides of the dendrite
sured from the tip along the symmetry axis of the dendritewhen no external forcing was applied to it was also found in
as the packet moves down, provided the initial packet conRef. [20]. The common feature of all these experiments is
that sidebranching appears to be due to the selective ampli-
fication of natural noise and not to the existence of some
* Author to whom correspondence should be addressed. Email adhtrinsic oscillation or limit cycle.
dress: ricard@fa.upc.es Bisang and Bilgranf21,22| found quantitative agreement
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between the predictions for the linear regime in R&¥] and  mental result§18] shows that there are serious indications
their results in experiments on xenon dendrites in three dithat in some experiments internal thermodynamical fluctua-
mensions. They concluded that Brener and Temkin’s theor§ions could not account for observed sidebranching activity.
correctly describes the sidebranching behavior of dendritel this case some other source of fluctuations, of an external
for any pure substance with cubic symmetry and thus therorigin, should be called on. Some of the consequences de-
mal noise was concluded to be the origin of the sidebranchtved from adding a nonconserved noise source in a two-
ing observed in their experiments. dim.ensional phase-field model are examined. This noi_se is of
In the last decade there has been an increasing use 8fdifferent nature to what one should employ to provide an
phase-field models to deal with dendritic growth problemsaccount of internal fluctuatiorj25-27,41,42 However, our
They are a very useful and practical tool to simulate suctfimulations qualitatively reproduce the properties of the
kind of processes and a good alternative to the integrodiffer?0ise-induced sidebranching derived analyticglly,26 and
ential equation which can be derived from the classicaPPServed experimental18,19. We conclude that although
sharp-interface model. In the phase-field models an orgdhermal noise is not always the main origin of dendritic side-

parameter or phase fielfl is defined, which avoids tracking Pranching, its qualitative characteristics are common for

the interface and naturally includes the physical boundary©iSé-induced sidebranching independently of its origin. A

conditions at the interface. detailed quantitative study of sidebranching activity could
Up to now, few studies of sidebranching phenomena witiiherefore be useful to elucidate the origin of the noise in

the phase-field model have been carried out. It has beePPECIfiC experiments. . _ _

shown that the inclusion of a noise source in the phase-field N Sec. Il we predict the sidebranching amplitudes for

model equations enhances the emergence of uncorrelatsglutal dendrites with thermal fluctuations. In Sec. Il the

sidebranching28] without affecting the velocity and radius Model and the numerical method used to solve the equations

of the tip [29]. Moreover, when the dendrite tip is periodi- &€ described. Numerical results on the behavior of the side-

cally forced, the sidebranching appears to be correlated dranching characteristics as well as comparison with theoret-

both sides of the dendrif@3] as has been observed in someic@l predictions and experimental results are described in

experiments[20,24. In particular, sidebranching can be S€C- V. Conclusions derived from these results are outlined

regulated by spatially homogeneous time-periodic variatiod? S€c- V.

of the melting point induced by oscillations in the external

pressure or by periodic heating generated by a dissipative Il. SIDEBRANCHING AMPLITUDE IN SOLUTAL

electric curren{40]. SOLIDIFICATION

The deepest insight into the study of sidebranching with a Available theoretical predictions on sidebranching ampli-

phase-field model have been carried out recently in [Rél. .
. S . ! tudes have been formulated for dendrites grown from a pure
They included thermal noise in a two-dimensional phase-

field model of solidification controlled by heat diffusion in a subs_tance and. controlied _by .he".’u diffusion. Here we V\."”
way which was consistent with both bulk and interfacial consider dendrites appearing in isothermal growth of mix-

tures controlled by diffusion of the solute. We start from the

equilibrium fluctuations, as has been done previously witr]_ . : e
. : ~ Langevin formalism for solidification due to Karnhd1,42.
the sharp-interface model equatiqed,42. Karma and Rap In this formalism the usual sharp-interface model for solidi-

pel [26] obtained good quantitative agreement between th(ﬁcation is completed with noise terms constructed with the

computed sidebranching amplitude as a function of distance . . X .
to the tip and the prediction of the linear WKB theory for requirement that they give the correct bulk and interfacial

anisotropic crystals in two dimensions. Sidebranching Wave_equmbrlum fluctuations. The resulting diffusion equation for

length very close to the tip was found to increase with a mixture in isothermal conditions is

faster than predicted by the WKB theory, but this could be 9C

explained after considering that perturbations generally get "=D,AC,—V-q”(r,t), (2.9

stretched as they travel along the sides of curved fronts. Fur- at

tsr;irjrf;(t)g'the tip, the value of the sidebranching wavelengthwith the following boundary conditions at the interface:
Although there is general agreement in that therfiral

terna) fluctuations are enough to explain the amplitude of

the dendritic sidebranching, one should be aware that evi-

dence along these lines has been achieved in experiments of

heat-controlled solidification of pure substances. As up to meC_+ Tk + szM—TvL 7(r,1), (2.3

now there is a lack of predictions of sidebranching ampli- 2

tudes for solutal dendrites, experiments of these dendrites ) _

can only show qualitative agreement with theoretical resultswhereé »=S, L denotes the phas€,, is the concentration,

In this paper we address the question of sidebranching chaf-v — T is the undercoolingD, is the diffusion coefficient,

acteristics in the presence of external vs internal fluctuationd is the absolute value of tHeegative T(C,) slope of the

First of all, we obtain a prediction of the effects of internal coexistence curve, and, n, andv, are the curvature, the

noise on sidebranching amplitudes for solutal dendrites. AMormal unitary vector, and the normal velocity of the inter-

comparison of the theory with available quantitative experi-face, respectivelyl'=¢T/L, o is the surface energy and

(CL—cs>vn=ﬁ-[stcs—DLVCL]+ﬁ-[qL—qS],(2 )
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the latent heat per unit volumeg.and » are random forces —(C9?
whose statistical properties are given by M= " oq ME: (2.8

AC®d

Y(r,H)gl(r',t")y=2D,C(r,t)8(r,r")8(t—t")&; e ) .
(@i(r.nej(r'.t) (r,)a(r.r’) & ) "(2.4) where the diffusion field is now a temperature field given by

keT? 8(r, ,r1)é(t—t')

v e’ 1)) =2 T/ T = _ e
CAGRILAGIRS) L 1+|VL§(|’L,U|,(25) T(r,t)=Ty=(C,—CJ)me (2.9

. and the rest of parameters remain unchanged. This can be

where the interface is parametrized by the vector én. checked by direct substitution in the Langevin equations.

These equations can be mapped under several approximéherefore, the sidebranching induced by thermodynamical
tions into the corresponding Langevin model for free solidi-fluctuations should be the same in both situations. Side-
fication of a pure substand®6,41,43. First we assume a branching amplitude is predicted to depend on the distance
constant concentration gap in the mass conservation E@long the dendrite axis 447]
(2.2, i.e.,C_,—Cg=AC~AC"® the value corresponding to
equilibrium at temperaturd@. This is in principle valid for
small curvatures and velocities. A similar approximation is o 2
assumed in the intensity of the bulk noig&r,t), substitut- A(z)=pSexp(§
ing C,(r,t) by the equilibrium valueCt%in Eq. (2.4). Fur-
thermore in the intensity of the interfacial noigé(r, ,t) we
employ the Clausius-Clapeyron equation for dilute alloyswherep is the tip radiusxy(z) is the shape of the dendrite,
[42] to make the substitutioRg T2/ uL~C%Mmg/uAC® in and the operating mode of the dendrite is given by the pa-
Eg. (2.5. Within these approximations the process of iso-rameterc™* defined by
thermal solidification of an alloy is equivaleriincluding
thermodynamical fluctuationsto the (heat diffusion con-
trolled) solidification of a pure substance, whose specific a*=2Ddy/p?V, (2.1)
heat, latent heat, and melting temperature are given by

(2.10

Xg(Z) ll/Z)

30* zp?

. where V is the selected velocity andy is the capillary
oy length. The dimensionless noise amplitude, for a
(2.6

P B(ACeQ)2’ d-dimensional thermal dendrite, is then known to[b&,26
(CE93 —, 2kgTycpD
L=kBEmE, (27) :szl—*'d\/. (212)
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Applying the mapping above, the corresponding result for a ﬁr t)—?M=(Ceq—C )Me (2.15
' v v ’ .

d-dimensional solutal dendrite is

where we have used the relatidg— T=mg(C..— C9.

Now we compare the prediction of Eq2.10 and(2.13
== (2.13  With the experimental results on supersaturated solutions of
(ACeY2pttdy Ref.[18]. These experiments were performed at a supersatu-

ration A=(C,—Cgp)/(Cs—Cgy)=0.007 and a saturation

. ) . temperature of 56 °C. The characteristics of the selected den-
This result will be used below to compare the prediction for ;e arep=4.0 um, V=1.44 umls, ando* =0.081. We

the case of internal noise with experiments on solutal deng o employed a value &=2.6x 10" cm?/s and the val-

drites, for Wh|c_:h there are not many quantitative experimeny, ¢ corresponding to a temperature of 100°C for the equi-

tal results available. We focus on the experiments performe brium concentrations C&%=0.99x 10°N, molecules/r
LY A

in Ref. [18] with ammonium bromide dendrites growing eq_ . .
from supersaturated aqueous solution in isothermal condl"Zmd C§'=2.48< 10N, molecules/m. Since this tempera-

tions. In this experiment the precipitate front advances b)}ure is_much higher than that of the experiment, the resulting
incorporating solute particles instead of rejecting themvalue S=5.96x10°° constitutes an overestimation of the

which makes it differ by several details from standard solutafheoretical value. .
solidification. Nevertheless, the above re$ii. (2.13] can In Fig. 1 we show the calculated amplitudéz) of the
be obtained by S||ght|y adapting the performed mapp|ng |r§ide_branChing induced by internal fluctuations for this value
this case the system is on the high concentration side of thef S. We consider the theoretically predicted shag{a)
phase diagram of the miXture, for Wh|dh\/| is that of the :(22)3/5' as was considered in RQﬂ?] The result corre-
solvent, no longer close to the temperature of the experimeng,onding to the actual temperature of the experiment would
In this case it is convenient to write the Gibbs-Thomsonpe placed below the represented curve. In the same figure we
equation as plot the experimental results of RdfL8]. We see that ex-
perimental amplitudes are approximately one order of mag-
nitude larger than the overestimated theoretical values.
Therefore the predicted amplitude of the sidebranching
when it is due to statistical noise is, for the experiments of
Ref. [18], at least one order of magnitude smaller than the
amplitude experimentally observed. Thus, we are led to con-
whereC., is the concentration of the dilutiofl,g is the satu- clude that thermodynamical fluctuations are not enough to
ration temperature for that concentration, angis now the  explain the sidebranching amplitude in some experiments. In
(positivel T(C,) slope. The same results of Eq8.10 and  this estimation we have assumed three-dimensional dendrites
(2.13 are obtained by applying the mapping of E¢®.6),  even though the experiments of REE8] are intended to be
(2.7), and(2.8) with a diffusion field quasi-two-dimensional. The analogous calculations in two

2. 2CSD

U
Me(C,—C) +Tk+ ;n=TS—T+ p(r,t), (2.14

051602-4



SIDEBRANCHING INDUCED BY EXTERNAL NOISE IN . .. PHYSICAL REVIEW E53 051602

dimensions show an even lower sidebranching amplitude, sy 1 b
i.e., a larger discrepancy with the experiments. il K(30¢2_ 606> + 30¢4)W =V2U+g(x,y,1),
There is a shortcoming in the predictions above when 3.2
applied to supersaturated experiments. By their own nature, '
supersaturated dilutions are not in the diluted limit, as as-
sumed in the theoretical analy$#2]. In the experiments of . e . . .
Ref.[18] the concentration is )js h?gh as 16%pof solute mol-whereu(r,t) is the diffusion field and\ is the dimensionless
ecules. Indeed, the whole Langevin formalism is constructegindercooling. Lengths are scaled in some arbitrary reference
in order to guarantee that the concentration fluctuations in ¥ngthe, while times are scaled bhy?/D. In these equations

small volumeAV is 0 is the angle between the axis and the gradient of the
c phase field.n(6) is the anisotropy of the surface tension.
((AC,)%) =2, (2.1  The anisotropy of the kinetic term is then given by

AV 7(6)/7(6). B is equal to\2w/12d, andd, is the capillary

which is the equilibrium value for diluted solutions. In fact, length.
for a concentrated solution E¢R.16 should be replaced by The external noise is introduced through the additive term
¢ in the heat equation. This choice is not unique and is
)2y=—— T _ (2.17) justified here only for simplicity. Because of its external ori-
AV [du gin, the noise is not assumed to satisfy a fluctuation-
aC - dissipation relation. Furthermore, it is generally assumed to
be nonconserved, as opposed to the more usual case of ther-
Since the sidebranching amplitude in supersaturated solunal noise, which would enter the model equations as a sto-
tions has been found to be at least 1 order of magnitudghastic currenti.e., conserved noigén the heat equation,
larger than predicted in the diluted approximation, one congnd an additional stochastic term in the phase-field equation
cludes that it would be necessary that the derivative of thexg] |n our simulations the noise term is evaluated at each
chemical potential is 2 orders of magnitude greater than thgincorrelated cell of lateral siz&x simply asl-r, wherel
given by the diluted approximatiof/JC~T/C in orderto  yenotes the amplitude of the noise, anis a uniform ran-
explain the experiments by internal noise. Therefore, MOSYom number in the interval —0.5,0.5. The phase-field

l(ilc()ilr):t z‘girstrigtirt?:;rcg(ijsgi(;Set:f;r?gh?nm SAt;OVT/g aerréorl:gthagv)a?g'model equations have been solved on rectangular lattices us-

o g- . ?ng first-order finite differences on a uniform grid with mesh
quantitative da_ta on thermodynam|_cal properties of SUpe-répacingAx An explicit time-differencing scheme has been
saturated solutions that would permit us to improve the esti= X

mations above, a definitive answer on the amplitude of sideYSed (o solve the equation fgr, whereas for the: equation

branching in these dendrites remains open. In any case the¥ alternating-direction-impliciéADI) method was chosen,
results call for experimental quantitative measurements ifvhich is unconditionally stabl¢29]. The kinetic term has
solutal dendrites grown in diluted conditions, where Eq.been taken as isotropic, which leads#) =mx»(6) with

((ac,

(2.13 properly applies. constantm. A fourfold free energy anisotropy=o(0)[1
+ ycos(4)] has been considered. This gives rise to den-
Ill. MODEL AND NUMERICAL PROCEDURE drites growing with perpendicular side branches. The values

of v taken were always smaller than 0.0625, which ensured
We have performed simulations of dendritic growth by that we obtained rounded shapes such as a parabola because
employing a phase-field model for solidification. In this forbidden directions were avoidg8].
model both phases and their interface are treated indistinctly, The growth morphologies were obtained by setting a
and discriminated by an effective nonconserved order paransmall vertical seed%=0, u=0) in the center of either of
eter or phase fieldp, which takes different values in each the two shortest sides of the system and imposirgl and
phase (0 and 1 in our simulationsThis field changes u=—1 on the rest of the system. We have considered sym-
smoothly across an interface region of finite thickness, angnetric boundary conditions fap andu on the four sides of
its dynamics is coupled to that of the diffusion field in suchthe system, although they do not influence the results pre-
a way that the sharp-interface model is recovered in the limitented in this paper.
of vanishing interface thickness, controlled by a new small We have used a set of phase-field model parameters that
parametefe. The equations of the model read explicitly give rise to a growing needle without sidebranching for ev-
9 1 ery anisotropyy considered when no noise is added to the
E27(0) — = p(1— ¢)( ¢— = +30eBAuP(1— d’)) simulations. This ensures that the sidebranching observed
ot 2 when noise is present is not due to computational rounding.
I The fixed phase-field model parameters for all the simula-
7( 0)71'(9)—} tions are 3=400, m=20, ande=0.003. The values oA
ay and y have been varied in the range 6.6.7 and 0.045
—0.060, respectively. The noise amplitude is varied in the
+e2V[ 740V ¢, range 5-150. The time and spatial discretizations were kept
constant in all the simulations with valuesx=0.01 and
(3.1)  At=10"* Two system sizes were used in the simulations. A

2
— 2
X

J J
+625[n<6)n’<0)a—f
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system with 1008 1500 grid points was used to observe was observed in Ref.18]. Further down the tip one can
fully developed sidebranching including tertiary arms and toclearly observe competition between branches which gives
have enough statistics in order to compare with measureise to a coarsening effect. When branches reach the vertical
ments of the sidebranching correlation at both sides of thé&oundaries of the system, they are stopped by the effect of
dendrite. Additionally a 508500 grid points system was the symmetric boundary conditions. This did not affect the
used when the data sets did not require very extensive statimeasurements presented in this paper, where we have fo-
tics. In Fig 2 a growing dendrite is shown withy cused on the region between the tip and a point approxi-
=0.045, A=0.6, =11 at a timet=1.5. The velocity and mately 150 grid points down from the ti{grid points are

the radius of the tip are very weakly affected when noise isnarked on the axes of Fig).2This region corresponds ap-
introduced. However, side branches appear at both sides pfoximately to that considered in the experimental work in
the main dendrite, yielding approximately a 90° angle, asRef.[18] and, moreover, it is an appropriate region in order
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to compare the behavior of sidebranching with the analyticahave a comparable amount of data as in RE8] (they re-
results obtained from linear perturbation theory. In the longetorded around 240 oscillations of the amplitude for each
runs, and in order to avoid working with unnecessarily largewe needed to simulate a dendrite four times longet &)
systems, we have performed periodic shifts of the completénan the one shown in Fig. 2. The half width of the dendrite
system. We have checked that this did not affect the resultss a function of time at a distanze=40 grid points from the
of the simulation. tip as well as its power spectruRy,(f) are shown in Fig. 3.
The same type of data corresponding to a point further from
the tip (z=100 grid point$ is shown in Fig. 4. The data used
to compute the power spectra were six times the lengths
In order to study the sidebranching induced by noise weshown. Both sets of data have a strong resemblance to those
have measured the half-width(t) of the dendrite at various obtained experimentallj18]. We also computed the cross-
distances behind the tip as a function of time. In order to correlation function

IV. SIDEBRANCHING CHARACTERISTICS
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The dependence of the sidebranching wavelength on the
(4.1  distance to the tip was studied with the data recorded in the
same simulation as for Fig. 5 and after performing the power
spectrum. The wavelength was found to remain constant in

C(t")=([h_(t+1")—h [hgAt) —hg,l)/ o og,

whereh,,(t), hrAt), o, andog are the half-width func- . _ S ) .
tions anLé(tzleir Féi(ar)waré deviations for the two sides of thde interval of considered, which is consistent with the
dendrite at the same distance from the tip. We found thapbservations in Re{26].
C(0) is approximately 0.4 for points very close to the tip and
that its value decreases very quickly to O when increasging
Moreover, in the points closer to the tig(t') drops to zero
after six oscillations, that is, the time to nucleate six side
branches. The same behavior was observed in the experi- We have studied the sidebranching induced by fluctua-
ments in Ref[18]. In simulations where we used a smaller tions in dendritic growth, for which there is good quantita-
data set, the values @(t") were larger than those found in tive agreement between theory and experiment for thermal
the experiments, as was to be expected. dendrites(i.e., controlled by heat diffusion This agreement

In addition to the predictions for the amplitude com- has only been qualitative for solutal dendrites, as there was
mented on above, the behavior of the wavelength is anothg{o prediction available for their sidebranching amplitudes. In

V. CONCLUDING REMARKS

main feature of sidebranching. It depends very weaklyzon
[17,26): A~Z°. Despite the fact that experimenit$8,19
showed the predicted dependence of the amplitude time
same frequency of the spectral peak for differentvas

order to be able to perform a quantitative comparison, we
have obtained an estimation of sidebranching amplitudes
originated by internal fluctuations in solutal diluted den-

drites. The resulting values appear as much smédleleast

found. ; . .
. ._one order of magnitudehan those observed in some experi-
In.order to opserve the dependence of the S.'debranCh'nl%ents(performed in concentrated solution$his can be at-
amplitude onz in the simulations, the phase-field model . . .
tributed to the effect of other noise sources, of an external

simulations were run on a 56(b00 grid points system. In igin. To confirm this conclusion, it would be necessary to
Fig. 5 we show the square root of the area under the spectrgf gm. ' y

peak as a function af. This representation gives the ampli- make use of quantitative experimental results obtained in
more diluted conditions.

tude behavior of the sidebranching as a function of the dis- X . _
We have obtained the effects of noninternal fluctuations

tance to the tip. The data were obtained wjtk 0.045, A o ) . . .
=0.6, 1 =19 until a timet=0.5. The amplitude is found to ©N dendritic sidebranching by introducing nonconserved

increase exponentially wit?’s for distancesz<100. Thus noise in a phase-field model for solidification. Our simula-
the behavior of the data obtained in the simulations is contions qualitatively reproduce well previous experimental and
sistent with the linear analys[47,26 up to a certain value analytical results. In particular, we have reproduced the de-
of z In Ref.[18] similar behavior was found in the linear pendence of the sidebranching amplitude on the distance
regime, although they found a saturation of the amplituddrom the tip, confirming the validity of what was previously
further down from the tip. This could be due to some bound-obtained with a linear theory including internal noise. Thus,
ary effects which stop the growth of the side branches.  the qualitative behavior of the sidebranching amplitude,
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when this is due to the selective amplification of fluctuations sidebranching needs to be distinguished from that generated
is basically independent of the origin of the noise. In conclu-by numerical noise due to the round-off of the computer.
sion, qualitative concordance between experimental results
does not directly imply a common source of fluctuations and

therefore, a careful quantitative study of sidebranching activ- The authors wish to thank Professor W. Van Saarloos and
ity may help to elucidate the origin of the dominant noise inpy T, Toth Katona for many fruitful discussions. R.G.C. is
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