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 2 

1. Introduction  53 

Agriculture is the human activity that has changed the surface of the Earth the most (Tilman et al. 54 

2002, Phalan et al. 2013). The world crop area reached 15 million km² in 2000 (12% of terrestrial ice-55 

free surface), and pastureland reached 28 million km² (20%; Ramankutty et al. 2008). In the same 56 

year agriculture was responsible for 78% of human appropriation of photosynthetic net primary 57 

production (HANPP), and the other 22% resulted from forestry, infrastructure or human-made fires 58 

(Haberl et al. 2007a). Although FAO projections suggest that cropland expansion will represent only 59 

20% of production increases in developing countries, in the coming decades crops will keep growing 60 

at the expense of tropical forests (Gibbs et al. 2010). Despite its land-sparing effect compared to more 61 

extensive uses, industrial farming also entails deep ecological impacts which include landscape 62 

fragmentation, biodiversity loss and ecosystem services disruption (Matson et al. 1997). From 1999 63 

to 2008, cropland took 48,000 km² from tropical forestland annually, while crop yield increases 64 

involve the application of fossil-fueled and polluting industrial inputs (Phalan et al. 2013). Together 65 

with soybean, corn, sugarcane and oil palm, coffee area also increased, although most Latin American 66 

countries  mainly focused on improving yields implementing industrial farming through the Green 67 

Revolution varieties with high doses of agrochemicals (Patel 2013, Swaminathan and Kesavan 2017, 68 

Infante-Amate and Picado 2018). 69 

In a world that faces the dilemma of satisfying the growing demand for food, energy and raw 70 

materials, without this causing biodiversity loss (Godfray et al. 2010, Cardinale et al. 2012) the 71 

contribution of agricultural landscapes to species diversity is an important topic. Depending on the 72 

type of management, farm systems may either decrease or increase biodiversity (Tress et al. 2001, 73 

Benton et al. 2003, Swift and van Noordwijk 2004). To reconcile the goals of raising crop production 74 

and preserving biodiversity, some experts suggest continuing with the traditional land-sparing 75 

approach of increasing agricultural intensification in some areas to devote the land spared to nature 76 

conservation and forest transition (Green et al. 2005, Matson and Vitousek 2006). Other scholars 77 

propose a land-sharing approach through a wildlife-friendly farming capable of providing complex 78 
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agroecological landscapes connected with natural sites to jointly maintain high species richness. In 79 

this scenario, the agricultural component of landscapes acquires great relevance (Perfecto and 80 

Vandermeer 2010, Tscharntke et al. 2012, Marull et al. 2018). 81 

Twenty years ago, Hall et al. (2000) published a sustainability evaluation of Costa Rican 82 

economic development during the last decades of the 20th century by combining energy and material 83 

flow accounting with GIS assessment of land use and land cover changes, and socioeconomic 84 

appraisal. It reported the huge deforestation suffered from 1940 to 1983 that ranked the country fifth 85 

in the world in terms of total forest lost, mainly due to the expansion of pastures and extensive cattle 86 

ranching driven by the so-called ‘hamburger connection’ through meat exports to the United States. 87 

Deforestation slowed down in the 1980s, and was nearly ceasing in the late 1990s due to the 88 

combination of downturn in meat prices, changes in North American and Costa Rican cattle policies, 89 

and nature conservation that put up to 29% of Costa Rican territory in 1998 under some degree of 90 

protection (Hall et al. 2000). 91 

The actual amount of forest cover lost was in dispute, and the high deforestation figures 92 

published by Sader and Joyce (1988) were reexamined by subsequent studies. The comparison 93 

between the GIS accounting of aerial photographs and satellite images published by Hall et al. (2000) 94 

and later by Algeet-Abarquero et al. (2015) found many scattered fragmented woodlands as well as 95 

an increase of secondary forest that began to grow with the retreat of pastures, thus confirming that 96 

previous official agricultural censuses had underestimated the non-cultivated land covers (Montero, 97 

2018, Montero, Badia-Miró and Tello 2021). New digital maps reported that in the turn from 20th to 98 

the 21st century forestland covered nearly 40% of Costa Rica, although Sanchez-Azofeifa et al. (2001) 99 

estimated that mature forest occupied only 29% with a large share of it within National Parks and the 100 

central mountains. The difference can be mainly accounted for reforestation processes underway in 101 

many, but not all, abandoned pastures. Yet better satellite images also discovered many small 102 

remnants of more mature forests that might have been unnoticed in previous studies, an aspect that 103 

requires more detailed local and regional studies. In any case, Jadin et al. (2016) clearly confirmed 104 
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that Costa Rica had stopped past deforestation and a forest transition began during the two first 105 

decades of the 21st century. The decline in meat exports caused a contraction of pastures that led to 106 

reforestation, later reinforced by other land use reconfigurations driven by agricultural intensification 107 

and other changes in foreign trade such as the growing timber imports. According to the last FAO 108 

(2020) data, 30% of Costa Rican territory is currently covered by mature forest, 18% by secondary 109 

forest, and up to 58% by forestland of all kinds. However, the expansion of agri-food exports 110 

continued to cause deforestation in some of the most valuable regions for nature conservation, either 111 

directly, occupying former pastures, or to produce pallets for fruit global trade (Jadin et al. 2016). 112 

Hall et al. (2000) also warned about the opposite trends toward nature protection combined with 113 

the expansion of new agri-food exports that replaced the retreat of pastures with large monocultures 114 

of cash crops in order to cope with the external debt crisis of the 1980s. The agrochemical imports 115 

consumed in these plantations of tropical fruits, palm oil and flowers took away a large share of the 116 

income gained through exports in the foreign trade balance, and the country’s external indebtedness 117 

has been perpetuated to date despite several defaults. The advance of the cropping frontier of these 118 

agro-industrial commodities counteracted the great efforts Costa Rica made in nature conservation, 119 

raising new concerns on how land was unsustainable managed outside national parks isolating them 120 

within the land matrix. Reorienting these unsustainable trends requires reforestation programs, soil 121 

and water conservation through agroforestry, shade-grown coffee plantations, and other agricultural 122 

practices that decrease reliance on industrial fertilizers and pesticides, such as crop diversification 123 

and rotations with legumes, intercropping, and biological filters through green fences and other buffer 124 

zones (Hall et al. 2000).  125 

In other words, an agroecological change was needed to open a way out of the unsustainable 126 

path initiated by trade liberalization after the external debt crisis. Twenty years later, it is time to 127 

examine the landscape changes that have taken place in Costa Rica and their impact on how 128 

biodiversity is distributed along the gradient of the country’s land matrix. Our study provides new 129 

empirical results on the land use changes most related to the food-biodiversity dilemma (Chappell 130 
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and LaValle 2011) and urban growth (Bren d’Amour et al. 2017). We use landscape ecology 131 

indicators to study the impact of agricultural systems and metropolitan urban expansion on the 132 

location of plant and bird species richness in Costa Rica, in relation to the role of tropical forests and 133 

natural parks in this world-class biodiversity hotspot. 134 

2. Sources and Methods  135 

2.1. Digital land cover maps 136 

To account for land cover changes through GIS, our landscape ecology study is based on the digital 137 

maps of Costa Rica from 1986 to 2014 produced by Fernández-Landa et al. (2016) through an open 138 

source software based workflow, as part of the national program on ‘Reducing Emissions from 139 

Deforestation and Forest Degradation and the Role of Conservation, Sustainable Management of 140 

Forests and Enhancement of Forest Carbon Stocks in Developing Countries’ (REDD+). They used 141 

imagery from Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper 142 

(ETM+) and Landsat 8 Operational Land Imager and Thermal InfraRed Sensor (OLI/TIRS) with 30 143 

m resolution. By applying a single trained machine learning algorithm to radiometrically normalized 144 

imagery and using iteratively reweighted multivariate alteration detection (IR-MAD) across all maps, 145 

they guaranteed the consistency of the land covers identified. We choose three relevant time points 146 

(1986, 2001, 2014) of these REDD+ land cover maps, including forests, coffee plantations, permanent 147 

crops, annual crops, pastureland, wetlands, urban areas and road networks to assess the landscape 148 

ecology impacts on biodiversity of recent agricultural and urban land cover changes.  149 

2.2. INBio biodiversity dataset 150 

The georeferenced landscape ecology indicators obtained from the REDD+ digital maps have been 151 

statistically correlated with the locations of biodiversity data currently available in Costa Rica. To 152 

achieve that, we used data on the species richness of birds and plants, which are the taxa better 153 

represented in the dataset provided by the National Institute of Biodiversity of Costa Rica (INBio) 154 

for each cell of a grid of 2.5 x 2.5 km in a set of digital maps based on the current records of the 155 

Global Biodiversity Information Infrastructure (GBIF). This dataset has not been compiled using an 156 
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experimental design of random transects regularly surveyed across the territory. Instead, it is still 157 

being compiled by geo-referencing all observations taken from published research and expert 158 

communications (https://www.gbif.org/es/). As a result, data coverage is still rather coarse and 159 

spatially uneven. To correct for the observation biases contained in the INBio dataset, all 5 x 5 km 160 

cells with less than three 2.5 x 2.5 km cells with observations of birds (as they are less represented 161 

than plants), and less than four 2.5 x 2.5 km cells with observations of plants (better represented) were 162 

discarded, assuming that no comprehensive surveys have been conducted there so far. Accordingly, 163 

we reassembled the dataset in a grid of cells of 5 x 5 km that recorded enough 2.5 x 2.5 km sub-cells 164 

sampled with this minimum information (Fig.1).  165 

[INSERT HERE FIGURE 1] 166 

Unfortunately, this coarse dataset on plant and bird species richness prevented us from 167 

performing statistical analyses at any scale lower than the country-wide level. However, the land 168 

cover metrics used in our GIS assessment are more appropriate to be correlated with biodiversity data 169 

at the landscape level. This means that the results obtained by correlating them with the bird and plant 170 

observations of INBio at the country level should be taken with caution. We started from a statistical 171 

analysis of linear regression controlling autocorrelation and multicollinearity of the data. Then we 172 

divided the cells by surface and sampling intensity and worked with logarithmic scales to avoid 173 

heteroscedasticity.  174 

2.3. Statistical analysis of farming and urban land use changes on biodiversity conservation 175 

Given the capacities and limitations of the two main sources previously explained, the REDD+ land 176 

cover digitals maps and the InBIO dataset, we performed GIS accounts and statistical analyses to 177 

address the research question about the impacts on biodiversity conservation of the land use changes 178 

driven by the prevailing agricultural and urban trends during the last twenty years in Costa Rica. First 179 

of all, we carried a GIS accounting of the main land covers in 1986, 2001 and 2014 from the REDD+ 180 

maps. The REDD+ maps can provide data for limited broad categories of land uses: forest, coffee 181 

and other perennial crops, annual herbaceous crops, grasslands, wetlands, tropical páramo, bare land 182 
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and urban land. This provides a first snapshot of the main land covers of Costa Rica in 1986, 2001 183 

and 2014. In order to know whether the changes observed have been statistically significant we add 184 

the results of the two-tailed statistical test assuming equal variances with a significance level of 0.05 185 

and adjusted for all pairwise comparison using Bonferroni tests. However, at this broad scale this 186 

snapshot cannot capture finer grain changes such as how these different land covers intermingled with 187 

each other and how these landscape configurations changed over time.  188 

To overcome this limitation, we used GIS methods to derive a set of landscape ecology 189 

indicators from the REDD+ digital maps as explained in the following subsections. According to the 190 

focus of our research, these indicators are aimed at capturing the impacts of human disturbances in 191 

landscape gradients affected by farming and urban land use changes either directly (e.g. through 192 

tillage, harvesting, etc.) or indirectly (e.g. by the barrier effect that reduces ecological connectivity 193 

among forests and nature protected areas). To the values obtained we apply again two-tailed tests, 194 

and the marks (ABC) appearing under them indicate for each year which ones are statistically 195 

significantly different to the other two.  From this statistical results we obtain a diagnosis of the main 196 

land cover changes experienced throughout this period, focusing on how the heterogeneity, 197 

fragmentation and ecological connectivity of the landscapes, combined with the human appropriation 198 

of photosynthetic net primary production and the corresponding biomass left available for wildlife, 199 

may have impacted the landscape capacity to house biodiversity in Costa Rica. 200 

Based on this evaluation of the change in landscape configurations, we perform an OLS 201 

multi-regression analysis that correlates the observations of plant and bird species richness of each 5 202 

x 5 km cell in the InBIO dataset, with the landscape ecology indicators obtained through SIG in the 203 

same cells from the REDD+ land cover map of 2014. This second statistical analysis tests to what 204 

extent these different landscape attributes can explain the current locations of plant and bird 205 

biodiversity in Costa Rica.  206 

Finally, we present the biophysical food trade balance of Costa Rica and the doses of 207 

industrial fertilizers applied per hectare from 1961 to 2016, calculated from FAOSTAT data, in order 208 
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to confirm that the expansion of new export-led tropical monocultures after the Costa Rican external 209 

debt crisis of the 1980s, and the urban development of San José metropolis at the expense of 210 

traditional shade-grown coffee plantations in the Central Valley, have been two important drivers of 211 

the landscape impacts on biodiversity previously evaluated.            212 

2.4. IDC modelling approach to evaluate the change in landscape configuration  213 

Our landscape analysis of Costa Rican land cover changes is focused on how agricultural land use 214 

changes are either supplementing (e.g. by providing buffer zones and ecological connectivity) or 215 

becoming a barrier for the biodiversity conservation role of forest protected areas together with urban 216 

expansion. To that aim, the main set of indicators of landscape configuration used are based on the 217 

Marull et al. (2006) Intermediate Disturbance-Complexity model (IDC) to account how the spatial 218 

gradients of land cover patterns are affected by different levels of ecology disturbances when farmers 219 

alter the photosynthetic Net Primary Production (NPP) and carry out land use changes (Marull et al. 220 

2016). The IDC modelling is based on the theoretical assumption that agricultural landscapes can 221 

retain more farm-associated biodiversity when the disturbance exerted by harvesting a share of the 222 

photosynthetic Net Primary Production (NPP) is done at intermediate levels through spatiotemporal 223 

uneven patterns that allow disturbed species to activate their dispersal abilities and find nearby refuge 224 

areas (Loreau et al. 2003, Tscharntke et al. 2005, Marull et al. 2017, 2018). It adopts the landscape 225 

continuum model to account for the ecological processes that take place across the land-matrix 226 

(Fischer and Lindenmayer 2006), and is based on the interaction of the ecological disturbance exerted 227 

by farming (accounted through the Human Appropriation of Net Primary Production, or HANPP) 228 

together with the landscape patterns (accounted through the Shannon-Wiener Index of land cover 229 

diversity and evenness, and other landscape ecology metrics) and ecological processes (accounted 230 

through Ecological Connectivity Indices) (Marull et al. 2018, 2019).  231 

Therefore, the IDC model assumes that in farming-disturbed landscapes biodiversity is a 232 

complex dynamic outcome of the interaction between the matter-energy left available for other 233 

species (calculated with the inverse of HANPP) and the landscape patterns and processes that give 234 
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rise to habitat differentiation. The latter is evaluated, as a first step, by the landscape heterogeneity 235 

(calculated with the Shannon Index of land covers) as a pattern that tends to differentiate habitats, 236 

provided that the populations of diverse species occupying these habitats are capable to withstand 237 

recurrent farming disturbances (such as harvest, tillage, etc.) activating their dispersal abilities to find 238 

accessible refuge spaces nearby. This ecological dynamic process requires, in turn, a good ecological 239 

connectivity combined with the landscape heterogeneity that keeps habitat differentiation. These 240 

combination of landscape patterns (land cover differentiation) and processes (ecological connectivity) 241 

is calculated with Le, the average between the land cover Shannon Index and the Ecological 242 

Connectivity Index (ECI) calculated through GIS in the REDD+ digital land cover maps of 1986, 243 

2001 and 2014. Finally, these georeferenced indicators are statically correlated with the INBio dataset 244 

of birds and plants recorded in a grid of 5 x 5 km cells across the territory in 2014 in order to test the 245 

capacity of those different land cover gradients to house these species richness. 246 

2.5. Metrics used to account for landscape patterns and ecological connectivity 247 

We used GIS methods to calculate from the REDD+ maps the Largest Patch Index (LPI) that 248 

measures the surface of the largest patch in each sample cell. Similarly, we used these data to apply 249 

the Shannon Index (L) that accounts for the land-cover equi-diversity (i.e. combining richness and 250 

evenness) relying on two components, the number and the proportion of land cover types: 251 

𝐿 = − ∑ 𝑝𝑖 log𝑘+1 𝑝𝑖

𝑘

𝑖=1

 252 

where k is the number of different land covers (potential habitats) in each case, and there are k+1 253 

possible land covers in each unit of analysis (5 x 5 km sample cells; Fig. 3). Thus, 𝑝𝑖 is the proportion 254 

of land covers i into every unit of analysis.  255 

We also account for the Ecological Connectivity Index (ECI) based on Marull and Mallarach 256 

(2005) to account for the capacity of any living being to move in all direction through different land 257 

covers which are similar enough to allow such displacement without encountering insurmountable 258 

barriers in the landscape. ECI relies on defining a set of Ecological Functional Areas (EFA) and a 259 
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computational model of cost distance of displacement that includes the effect of anthropogenic 260 

barriers considering the type of barrier, the range of distances and the kind of land cover involved  261 

These EFA determine the surfaces to be preserved to allow hosting diverse species, and to interrelate 262 

them through a network of connectors that ensure matter, energy, and information flows. The basic 263 

Ecological Connectivity Index (ECIb) moves in a normalized range between 0 and 10. 264 

ECIb = 10 – 9 [ln (1 + xi) / ln (1 + xt )
3] 265 

where xi is the value of the sum of the cost distance by pixel and xt the maximum theoretical cost 266 

distance. Then, 𝐸𝐶𝐼𝑎  is the absolute Ecological Connectivity Index. 267 

𝐸𝐶𝐼𝑎 = ∑ 𝐸𝐶𝐼𝑏

𝑚=𝑛

𝑚=1

/𝑚 268 

where 𝑚 is the number of EFA considered. ECIa emphasizes the role all sorts of EFA play in keeping 269 

up ecological connectivity. We also calculated the forest basic Ecological Connectivity Index (ECIf) 270 

to highlight the role of forestland of all kinds as providers of ecological connectivity. 271 

2.6. Using IDC metrics to account for agricultural landscape impact 272 

In order to assess the capacity of different land covers and levels of farming disturbance to house the 273 

biodiversity of plants and birds recorded by the INBio dataset, we combined in the Intermediate 274 

Disturbance-Complexity Index different metrics commonly used in Landscape Ecology aimed to 275 

account for the positive impacts of land cover diversity  (Shannon Index) on habitat differentiation, 276 

and the negative impacts of fragmentation (Larger Patch Index). The IDC indicator combines the 277 

inverse of the Human Appropriation of Net Primary Production (i.e. the photosynthetic NPP left free 278 

for non-domesticated species) with landscape heterogeneity and ecological connectivity indicators 279 

assuming that the interplay between farmers’ patch disturbance and landscape complexity (land cover 280 

heterogeneity–connectivity) is a key mechanism for biodiversity maintenance in human-transformed 281 

landscapes.  282 

Following Marull et al. (2015), we obtain Le as an indicator of Landscape Complexity, aimed at 283 

jointly capturing landscape patterns (L, heterogeneity) and processes (ECI, connectivity). 284 
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𝐿𝑒 =
(𝐿 +

𝐸𝐶𝐼𝑎
10

)

2
 285 

Then, we use HANPP as an indicator of anthropogenic disturbance (Marull et al. 2016). To 286 

assess farming-induced pressures on biodiversity, HANPP measures the combined effect of harvest 287 

and land conversion on the biomass flows that remain available for wildlife in terrestrial ecosystems  288 

(Haberl et al. 2007b, Krausmann et al. 2009). It is calculated according to (Haberl et al. 2014): 289 

𝐻𝐴𝑁𝑃𝑃 =  𝑁𝑃𝑃𝑙𝑢𝑐 + 𝑁𝑃𝑃ℎ𝑎𝑟𝑣 ;  𝑁𝑃𝑃𝑙𝑢𝑐 = 𝑁𝑃𝑃0 − 𝑁𝑃𝑃𝑎𝑐𝑡 290 

where 𝑁𝑃𝑃ℎ𝑎𝑟𝑣 is the NPP appropriation through harvest, and 𝑁𝑃𝑃𝑙𝑢𝑐 is the change of NPP through 291 

land conversions. 𝑁𝑃𝑃𝑙𝑢𝑐 is the difference between the NPP of the potential (𝑁𝑃𝑃0 ) and actual 292 

(𝑁𝑃𝑃𝑎𝑐𝑡) vegetation. 𝐻𝐴𝑁𝑃𝑃 values are assessed in each land cover of the study area, and the fixed 293 

coefficient (𝑤𝑖) associated to each land cover i is multiplied by the surface it occupies in each cell 294 

accounted.   295 

𝐻𝐴𝑁𝑃𝑃 = ∑ 𝑤𝑖𝑝𝑖

𝑘

𝑖=1

 296 

where 𝑤𝑖 denotes the farming-induced impact of land-cover 𝑖, and 𝑝𝑖 the proportion of land cover 𝑖 297 

in the cell. Variations in HANPP depend on not only the variations of 𝑝, but on the variations of 𝑤 298 

as well. 299 

HANPP values have been estimated after assessing different photosynthetic NPP and harvested 300 

amounts per land cover. 𝑁𝑃𝑃0  has been derived for Costa Rica in 1986, 2001 and 2014 from the 301 

series of georeferenced annual global data provided by the GIS dataset of the Institute of Social 302 

Ecology at the Vienna University of Natural Resources and Life Sciences (Krausmann et al. 2013, 303 

available at http://www.uni-klu.ac.at/socec/inhalt/5605.htm). NPPact values have been estimated as 304 

the sum of harvested and unharvested values, after performing a literature review on NPP by tropical 305 

crops (Marull et al. 2017). Harvest ratios from each land-cover across the time points have been 306 

transformed into energy values using the conversion factors and the unharvested biomass ratios given 307 

in Guzmán et al. (2014).  308 

http://www.uni-klu.ac.at/socec/inhalt/5605.htm
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Finally, the IDC indicator combines the landscape complexity indicator (Le) with the biomass 309 

that remains available for non-domesticated species after the HANPP: 310 

𝐼𝐷𝐶 = 𝐿𝑒 ∗ 𝐸 = 𝐿𝑒 (1 −
𝐻𝐴𝑁𝑃𝑃

100
) 311 

where 𝐸 is the energy flow available for wildlife food chains, and 𝐿𝑒 evaluates the landscape 312 

heterogeneity and ecological connectivity, which together give rise to complex and well-connected 313 

landscapes. 314 

This set of land cover composition and configuration metrics and the IDC modelling is used to 315 

estimate the impact of land cover changes (1986-2001-2014) on the capacity of the different 316 

landscape gradients to maintain ecological processes and biodiversity in Costa Rica. 317 

3. Results and discussion 318 

3.1. Landscape ecological assessment of land cover changes 319 

According to the land cover changes and landscape ecology indicators we have obtained through 320 

GIS from the new digital maps provided by the REDD + (Fernández-Landa et al. 2016), in Costa 321 

Rica the land-matrix remained dominated by tropical forestlands, which during the years 1986-2014 322 

covered 58-60% of the territory. Together with grasslands and páramo, uncultivated and non-323 

urbanized land covers occupied up 83-84% (Fig. 2 and Table 1). These results confirm the forest 324 

transition path toward reforestation followed by Costa Rica since the beginning of the 21st century 325 

(Fernández-Landa et al. 2016, Jadin et al. 2016, FAO 2020). 326 

[INSERT HERE FIGURE 2 AND TABLE 1] 327 

To this general snapshot shown in Table 1, the only statistically significant changes added by 328 

the two-tailed tests performed (see the ABC marks under each value) is the highest proportion of 329 

urban land in 2014 compared to 2001 and 1986, and the smallest area of coffee plantations in 2014 330 

compared to 1986 and 2001. This clearly highlights the urban sprawl of the metropolis of San José at 331 

the expense of the old coffee plantations in the Central Valley (Montero, 2018; Montero, Badia-Miró 332 

and Tello, 2021). Urban land experienced a twofold increase from 0.45% in 1986 to 0.9% of the 333 
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territory in 2014, while the area under coffee plantations contracted 29%, covering from 2% in 1986 334 

to 1.4% in 2014. Despite the expansion of coffee plantations to other regions, a relevant share of them 335 

remained concentrated around the crop belt of the metropolitan area in the Central Valley together 336 

with basic grains and vegetables (Fig. 3).  337 

[INSERT HERE FIGURE 3] 338 

Urban-industrial expansion went hand in hand with the spread of linear transport infrastructures, 339 

mainly based on road traffic, which exert a strong barrier effect fragmenting and tending to isolate 340 

nature protected areas one another and with the rest of land covers. The intense impact of urban sprawl 341 

in the metropolitan fringes of San José can be shown in the greater decreases of the Ecological 342 

Connectivity Index (1986-2014) in forestland (𝐸𝐶𝐼𝑓) compared to the connectivity indices in the 343 

whole land-matrix (𝐸𝐶𝐼𝑎) of the Central Valley (Fig. 4).  344 

[INSERT HERE FIGURE 4] 345 

The general trend observed in land cover configuration at country level does not exclude the 346 

possibility that deforestation would prevail locally in some valuable ecological areas where new 347 

export crops have been expanded, as Jadin et al. (2016) point out, and the existence of other 348 

environmentally detrimental land use changes between and outside forest areas such as greater 349 

landscape fragmentation and lower ecological connectivity. Deepening the analysis requires taking 350 

into account how these broad categories of land cover considered so far became intermingled or rather 351 

isolated from each other, giving rise to different landscape gradients throughout the territory. The 352 

results of our evaluation of this landscape configuration through landscape ecology indicators show 353 

statistically significant increases in the HANPP values in farmland, and also statistically significant 354 

decreases in both the IDC and the Ecological Connectivity Indices either in forestland or across the 355 

whole land-matrix (Table 2) which point out to the impact of industrial monocultures.  356 

[INSERT HERE TABLE 2] 357 

While Shannon Land Cover Diversity Index (L) does not show statistically significant changes 358 

over the period considered, confirming the IDC modelling assumption on the need to combine this 359 
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with other indicators, both Absolute Ecological Connectivity Index (𝐸𝐶𝐼𝑎) and Ecological 360 

Connectivity Index in forestland (𝐸𝐶𝐼𝑓) were higher and significatively different in 1986 than in 2001 361 

and 2014 (see the ABC marks under each category). Landscape Ecology metric (Le) and Intermediate 362 

Disturbance-Complexity (IDC) were higher and also significatively different in 1986 and 2001 than 363 

in 2014. And Human appropriation of NPP (HANPP) was higher and significatively different as well 364 

in 2014 than in 2001 and 1986. 365 

All these statistically significant results related to changes of landscape configurations confirm 366 

that the reduction of pastures and the beginning of a forest transition, thanks to natural parks and the 367 

net gains from reforestation, were accompanied by a decrease in ecological connectivity through the 368 

land matrix, and even within forests due to their increasing fragmentation and interposition of barriers 369 

that isolate them experienced from 1986 to 2001. HANPP data also confirm the statistically 370 

significant negative ecological impact of highly intensive farming of industrial export crops, that 371 

became one of these ecologically disturbing barriers. At the country level, ecological connectivity in 372 

forestland (𝐸𝐶𝐼𝑓) diminished 2% from 1986 to 2001, and then maintained the same level up to 2014. 373 

The absolute ecological connectivity (𝐸𝐶𝐼𝑎) experienced instead a significant 13% reduction 374 

throughout the period, in this case mainly due to the impact of export monocultures that expanded at 375 

the expense of pastures preventing further increases in forestland (Figs. 5 and 6). 376 

[INSERT HERE FIGURES 5 AND 6] 377 

In order to assess the impacts of these land cover changes on the capacity of landscape gradients 378 

to house biodiversity, we carried out Ordinary Least Squares (OLS) regressions of the capacity of our 379 

indicators of land cover composition and landscape configuration to explain the location of plants 380 

and bird species richness in the INBio data available in the same cells of 5 x 5 km.  381 

[INSERT HERE TABLE 3] 382 

Table 3 shows all the OLS results statistically significant at 0.1 and 0.05 levels. Forestland covers 383 

appear positively correlated with the richness of birds and plant species, and also wetlands for plants 384 

but not for birds (a surprising result due to the coarse grid of cells we have had to use with the INBio 385 
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dataset). The significant negative sign of the harvested amounts removed from the NPP per hectare 386 

(NPPh/ha) clearly denotes the disruptive effect of industrial monocultures on bird species richness. 387 

Taken separately, both landscape complexity (ln_Le) and Largest Patch Index (ln_LPI) appear 388 

negatively correlated with plant and bird species richness, again due to the weight of industrial 389 

monocultures as well as urban land that make them to capture their detrimental impacts on landscape 390 

fragmentation and ecological connectivity. However, when both indicators are combined in the same 391 

land covers within each cell (ln_LPI_Le), their interaction becomes positively correlated with the 392 

species richness of plants and birds. That captures the positive effect on biodiversity when land cover 393 

diversity avoids landscape fragmentation giving rise to large patches with a well-connected land cover 394 

heterogeneity capable to house more differentiated habitats. 395 

3.2. Physical trade balances as drivers of land cover change 396 

Finally, we calculated the evolution of the physical trade balance of Costa Rica from 1961 to 397 

2016 in order to relate our evaluation of these landscape changes assessed by means of landscape 398 

ecology indicators with the main driver of the unsustainable development path of Costa Rica put on 399 

the forefront by Hall et al. (2000) twenty years ago, namely the structural adjustment imposed by the 400 

International Monetary Fund and the World Bank to secure the loans needed to cope with the 401 

country’s external debt (Fig. 7).  402 

[INSERT HERE FIGURE 7] 403 

It is apparent that in order to obtain sufficient foreign exchange after the debt crisis of the 1980s, 404 

Costa Rica has rapidly expanded old and new export crops, such as bananas, pineapples and other 405 

fruits, oil palm, sugar and vegetables, while maintaining the traditional coffee exportation. This has 406 

been done jeopardizing the country’s food security, which has become dependent on increasing 407 

imports of cereals, legumes, meat and even wood products. Measuring this trade deficit in biophysical 408 

terms helps to highlight that the growing millions of tons exported involved greater biomass exits 409 

whose energy and nutrient content was lost as a necessary organic matter resource for the terrestrial 410 

ecosystems of Costa Rica, either aboveground or belowground. Conversely, most of the soil nutrients 411 
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contained in the tons of imported food were also lost through the wastewater after having fed an 412 

increasing part of the country’s human population concentrated in the metropolis of San José. The 413 

resulting wider gap in organic matter that is not replenished into the soil has been filled by increased 414 

imports of industrial fertilizers (Fig. 8). 415 

[INSERT HERE FIGURE 8] 416 

Synthetic or mineral fertilizers supply nutrients only to the crops grown to be exported, not to 417 

the whole soil biota such as organic matter does. Along with fewer hours of sunlight per day, soil 418 

nutrient storage is one of the most limiting resource in tropical lands subject to strong water erosion 419 

and leaching, meaning that the greatest return on investment in agriculture would be from those 420 

practices which enhance soil and water conservation (Hall et al. 2000). Agroforestry is the best way 421 

to do it, by restoring and retaining soil organic matter in the tropics (Palm et al. 2001, Montagnini 422 

2018). Our results show that almost no agroecology change has been implemented, contrary to what 423 

was recommended twenty years ago (Hall et al. 2000).  424 

The only partial exception has been those coffee plantations that retained or increased different 425 

shade-grown patterns (Fig. 9) with leguminous trees so as to provide organic N to the soil and lower 426 

the respiration rates of coffee plants to allow them to use less energy for their maintenance and 427 

increase the net primary productivity of the whole agroforestry system (Beer et al 1997, Hall et al. 428 

2000: 602-605, Charbonnier et al. 2017). From the 1960s to the 1980s there had been a replacement 429 

of traditional shade trees by more commercial species, or none, under the strong political and market 430 

pressures to embrace the Green Revolution types of farm management (Perfecto et al., 2005). That 431 

led Costa Rican farmers to attain the worldwide record yields of nearly 1,700 kg/ha in 1984-85 432 

(Montero 2018: 127, Sfez 1995, 2000, Samper 2001, Lopez and Picado 2012). However, from the 433 

1986 onwards average yields went down again to some 900 kg/ha in 2008, comparable to the ones in 434 

1967 (Montero, Badia-Miró and Tello 2020). The high cost of the agrochemicals imported under the 435 

trade openness led many small family growers to try to reduce their dependence on external industrial 436 

inputs (Infante-Amate and Picado, 2018) by partially recovering the former biocultural heritage of 437 
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shading coffee plantations with leguminous tress (Hall 1976, Samper 2001, 2010). 74% of coffee area 438 

was under shade in 1992, and the most common tree was Erythrina poeppigiana (Obando 1995: 5, 439 

De Melo 2005, De Melo and Monge 2008, Campbell 2012, Rojas et al. 2012, Rapidel et al. 2015). In 440 

2008 there were more than 262 different tree and shrub species in coffee plantations in the Central 441 

Valley (Virgilio Filho 2008). The return to shaded coffee-growing practices preceded the Payment 442 

for Ecosystem Services implemented in 1996, and was reinforced by them (Sequeira 1991, MAG 443 

1992, 1994) as well as by the growing number of hectares under the Rain Forest Alliance (26% in 444 

2015) or fair trade (31%) seals (Montero 2018: 198-200). 445 

3.3. Impact of land cover change on biodiversity 446 

Our maps, landscape ecology indicators and statistical results clearly confirm two main facts. 447 

On the one hand, the forest transition started in the turn to the 21st century as well as the role these 448 

growing tropical forests play to maintain species richness –here evaluated using plants and birds in 449 

the INBio dataset as proxy— in a Central American nation that is a biodiversity hotspot of utmost 450 

global importance. The digital map of ecological connectivity in forestland (𝐸𝐶𝐼𝑓, Fig. 5) emphasizes 451 

that those tropical forests constitute the actual land matrix of Costa Rica where all the other land uses 452 

are interspersed. Although the average ecological connectivity values within forestland (𝐸𝐶𝐼𝑓) 453 

slightly diminished 2% from 1986 to 2001, it remained at a stable high level up to 2014. This side of 454 

the issue supports the successful outcome of the Natural Parks mainly created in different types of 455 

tropical forest, and some wetlands, by the Costa Rican conservation policy following a land-sparing 456 

approach to date. 457 

On the other hand, our results point to the ecological detrimental impact of the two most relevant 458 

land use changes carried out outside forests from 1986 to 2014 in Costa Rica, as evaluated with the 459 

significant negative sign of the correlation with bird observations of the biomass NPP harvested 460 

through farming, and also with the negative signs of the largest patch (LPI) and landscape diversity 461 

(Le) indices when taken separately to be correlated with plant and bird data. These land cover changes 462 

have been: 1) the expansion of industrial crop monocultures –such as palm oil along the Pacific 463 
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Regions, pineapple and banana in the Caribbean Regions, rice in the plain of the Tempisque River in 464 

Northwestern Guanacaste Region, among others—, mainly at the expense of former pastureland; and 465 

2) the metropolitan urban sprawl carried out at the expense of former coffee plantations in the Central 466 

Valley, which led to a particularly sharp decrease in the ecological connectivity of forestland in this 467 

area (𝐸𝐶𝐼𝑓, Figs. 3 and 4). 468 

The combined effect of industrial farming and urban sprawl resulted in a 13% reduction in the 469 

average values of absolute ecological connectivity (𝐸𝐶𝐼𝑎, Fig. 6) across the Costa Rican territory. 470 

The main drivers were the landscape fragmentation and the barrier effect following the expansion of 471 

both export monocrops and urban-industrial infrastructures, which tended to isolate the Costa Rican 472 

nature protected sites and other forestland areas each other. This confirms the concerns on what was 473 

happening outside forests and natural protected sites and point out to the need to lessen the negative 474 

environmental impacts of agro-industrial farming. But under the pressure to cope with the external 475 

debt crisis the country went in the opposite direction, as shown by the evolution of the biophysical 476 

trade balance and consumption of industrial fertilizers. While the granting of an innovative scheme 477 

of public Payment for Ecosystem Services (PES) in 1996 seems to have helped private reforestation 478 

initiatives, and also a greater agroforestry management of shaded coffee plantations, it failed to date 479 

as a means to foster an agroecology change toward true wildlife-friendly ways of farming following 480 

a land-sharing approach to nature conservation (FAO 2018; Altieri and Nicholls 2012). 481 

Costa Rican population growth was 2.59% per year in 1995 and diminished to 0.96% in 2019. 482 

However, the economic structural change from the primary to secondary and tertiary sectors induced 483 

a fast rural-urban migration. Urban population grew from 44.5% in 1984 to 77.6% in 2014, and urban 484 

area doubled in the last three decades. These trends were not steered by an adequate land use planning 485 

aimed at keeping the green belt of coffee plantations and other crops surrounding the metropolitan 486 

area of San José. Instead of enhancing its buffer role as a green infrastructure in the Central Valley, 487 

the increasing abandonment turned many coffee plantations located in the urban-rural fringe into the 488 

typical urban fallow waiting for new land urban developments. Many researches confirm that 489 
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heterogeneous shade-grown coffee agroforestry contributes to biodiversity maintenance for birds 490 

(Hernández et al. 2013), beetles, bees, butterflies and other insects (Rojas et al. 1999, Sánchez et al. 491 

2014), mammals (Granados et al 2008, Caudill et al. 2015) and plants (Perfecto et al. 1996, 2003, 492 

Moguel and Toledo 1999, Somarriba et al. 2004, Komar 2006, Vandermeer and Perfecto 2007, 493 

Perfecto and Vandermeer 2008, Méndez et al. 2010, Philpott and Bichier 2012, Perfecto et al. 2014, 494 

Coral-Acosta and Pérez-Torres 2017, Smith et al. 2018). Yet these researches have so far been 495 

conducted on a plot or farm scale. Unfortunately, our statistical results obtained with the INBio 496 

dataset using landscape ecology indicators at the country level have failed to ascertain any positive 497 

impact of coffee plantations on bird and plant locations at country-wide level. This unexpected result 498 

seems to involve a recognition of the limits of the landscape indicators used, of the biodiversity data 499 

currently recorded in the INBio dataset, of the coarse grid of cells applied on a national scale, or of 500 

all these methodological factors taken altogether. More research is needed on this important issue. 501 

Even though, this study has been able to test a significant correlation with plant and bird 502 

biodiversity of those cells that combine heterogeneous land covers with high ecological connectivity 503 

and avoid fragmentation by keeping a large patch index (ln_LPI_Le in Table 3) across the Costa 504 

Rican territory. This can be interpreted as an opportunity to counter the isolation of forest National 505 

Parks with agroecology corridors connecting them in line with the FAO’s Scaling Up Agroecology 506 

strategy (FAO 2018; Altieri and Nicholls 2012), and deserves a further study focused on a lower scale 507 

to discover where those landscape patches outside of National Parks are currently located and what 508 

they look like. Since the early 1990s, Costa Rica implemented the establishment of biological 509 

corridors as a strategy for seeking connectivity among protected areas. During the past years, forty 510 

new biological corridors have been established to connect National Parks, but there is no research 511 

evaluating their functionality as connectivity spaces (Morera-Beita et al. 2021). 512 

4. Conclusion 513 

Costa Rica, a small country that hosts almost 4% of the Earth’s biodiversity, is recognized 514 

worldwide for its nature conservation policy, reforestation campaigns, ecotourism and pioneering 515 
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implementation of payment for ecosystems services (Sánchez-Azofeifa et al. 2001, Kohlmann 2011, 516 

Obando 2013). Until recently, this nature conservation policies have focused on the establishment of 517 

protected areas following the traditional land-sparing approach. According to our results, these 518 

conservation policies have been very successful in stopping and reversing previous worrying 519 

deforestation and in preserving a large forest land matrix where most of the species richness of birds 520 

and plants currently recorded in the INBio dataset is located.  521 

However, our results also confirm concerns raised previously by Hall et al. (2000) and Jadin et 522 

al. (2016) on the detrimental environmental trends driven by the expansion of export monocultures 523 

in agricultural land, and the unplanned urban sprawl in San José metropolitan area, which are jointly 524 

fragmenting and isolating the tropical forests preserved in Natural Parks. In 2009 the payment for 525 

ecosystems services were extended to coffee agroforestry (Berbés et al. 2017, Sánchez and Navarrete 526 

2017, Barrios et al. 2018), meaning a new societal recognition that agroforestry can improve 527 

landscape ecological connectivity and reinforce the role of tropical forests in biodiversity 528 

conservation (Montagnini et al. 2015, Montagnini 2018). Yet at the same time, Costa Rica went 529 

through a reduction in the area of coffee planted mostly in the same Central Valley where urban 530 

sprawl creates a growing barrier effect among forest protected areas. 531 

We suggest that overcoming these negative trends would require more sustainable farming and 532 

agricultural landscapes. Costa Rican scientists and authorities are aware of that, as shown by the 533 

approval in 2009 of the new executive decree 33101-MINAE encouraging the National Program of 534 

Biological Corridors to improve ecological connectivity (Boraschi 2009, Barquero and Hernández 535 

2015, González 2017, Moran et al. 2019, Morera-Beita et al. 2021). Unfortunately, our results also 536 

show that until 2014 these attempts have not yet succeeded to halt the loss of landscape ecological 537 

connectivity. They point to the need for two main efforts following a land-sharing approach to nature 538 

conservation: 1) a new land use planning for the central metropolis that preserves the remaining green 539 

belt of the shade coffee plantations as a green infrastructure; and 2) a change toward organic 540 
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agriculture and agroecological landscapes, not only in agroforestry coffee plantations but in all of 541 

Costa Rican agriculture. 542 

  543 
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Table 1 Changes in land cover composition (percentage, 1986-2014) in the Costa Rica’s 5 x 5 km sample cells 544 
and their statistical significance according to two-tailed tests (ABC) 545 

Land cover composition 1986 (A) 2001 (B) 2014 (C) 

Forestland 61.18 59.01 60.21 

– – – 

Coffee 2.15 2.56 1.52 

C C – 

Perennial crops 5.01 5.16 5.43 

– – – 

Annual crops 3.34 3.60 3.50 

– – – 

Grasslands  24.36 25.41 24.45 

– – – 

Wetlands 2.51 2.28 2.31 

– – – 

Páramo 0.23 0.23 0.23 

– – – 

Bare land 0.56 0.70 1.08 

– – A B 

Urban 0.46 0.78 0.94 

– – A 

The results are based on two-tailed test assuming equal variances with a significance level of 0.05. For each 

significant pair, the key under the category (ABC) shows up beneath the category with a major average value. 

They have been adjusted for all pairwise comparison using Bonferroni tests.  
 

 547 
 548 
 549 
Table 2 Changes in landscape configuration (1986-2014) and their statistical significance according to two-550 
tailed tests (ABC) 551 

Landscape configuration 1986 (A) 2001 (B) 2014 (C) 

Shannon Land Cover Diversity Index (L) 0.26 0.27 0.27 

 – – – 

Absolute Ecological Connectivity Index 𝐸𝐶𝐼𝑎 3.46  3.31 3.01 

 B C C – 

Ecological Connectivity Index in forestland 𝐸𝐶𝐼𝑓 8.36 8.16 8.16 

 B C – – 

Landscape Ecology metric (Le) 0.30 0.30 0.28 

 C C – 

Human appropriation of NPP (HANPP)  0.49 0.48 0.50 

 – – A B 

Intermediate Disturbance-Complexity (IDC) 0.15 0.15 0.14 

 C C – 

The ABC results are based on two-tailed test assuming equal variances with a significance level of 0.05. For 

each significant pair, the key under the category (ABC) shows up beneath the category with a major average 

value. They have been adjusted for all pairwise comparison using Bonferroni tests.  

  553 



 23 

Table 3 OLS regression of Intermediate Complexity Disturbance (IDC) and landscape ecology variables on the 554 
INBio data of birds and plants in the Costa Rica’s 5 x 5 km sample cells in 2014 555 

 Model for birds Model for plants 

Constant 

 

2.188 

(0.161) 

-1.992 

(0.670) 

Forest 0.155 

(0.018) 

0.433 

NPPharv/ha -0.001 

(0.000) 

- 

ln_LPI -0.388 

(0.000) 

-0.115 

(0.682) 

ln_Le -6.576 

(0.000) 

-7.300 

(0.023) 

ln_LPI_·_Le 0.370 

(0.000) 

0.418 

(0.029) 

Wetlands - 0.450 

(0.083) 

N 551 319 

adj. R2 0.631 0.132 

F 188.898 10.681 

p-value (F) 0.000 0.000 

OLS (ordinary least squares) regressions. The values presented are estimated coefficients; significance p-values 556 
are in parenthesis below the coefficients. Significances levels of 0.05 and 0.1. The dependents variables are, 557 
respectively, naperian logarithm of number of birds/ha and naperian logarithm of number of plants/ha. In both 558 
variables, previously, a Kolmogorov-Smirnov normality test was performed. There is no multicollinearity 559 
between the regression variables as all VIF values are between 1.32 and 2.39 (except the interactions variables 560 
ln_LPI, ln_Le, ln_LPI_Le) in both regression models.  Le: Landscape Complexity; LPI: Largest Path Index; 561 
NPPharv: Net Primary Production harvested. 562 
 563 
  564 
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Fig. 1 Maps of the INBio registers of birds and plant species in Costa Rica (5 x 5 km sample cells)  565 
 566 

 567 
 568 
Source: Own elaboration from the INBio dataset 569 
  570 
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Fig. 2 Land Cover Changes in Costa Rica (1986, 2001 and 2014) 571 
 572 

 573 
 574 
Source: Own elaboration from the REDD+ national program (Fernández-Landa et al. 2016) 575 
  576 
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Fig. 3 Land cover changes in the Central Valley of Costa Rica (1986-2014) 577 
 578 

 579 
Source: Our own 580 
  581 
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Fig. 4 Differences in the Ecological Connectivity Index (1986-2014) in forestland (𝐸𝐶𝐼𝑓) and in the whole 582 
land-matrix (𝐸𝐶𝐼𝑎) of the Central Valley 583 
 584 

 585 
Source: Our own 586 
  587 
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Fig. 5 Map of the forestland basic Ecological Connectivity Index 𝐸𝐶𝐼𝑓 (1986-2011-2014) 588 
 589 

 590 
 591 
Source: Our own 592 
  593 
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Fig. 6 Map of the absolute Ecological Connectivity Index (𝐸𝐶𝐼𝑎) in the whole land-matrix (1986-2011-2014) 594 
 595 

 596 
 597 
Source: Our own  598 
  599 
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Fig. 7 Physical Food Trade Balance of Costa Rica (1961-2016) 600 
 601 

 602 
 603 
Source: Our own elaboration from Faostat. Negative values are exports, and positive imports. 604 
  605 
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Fig. 8 Agricultural area (a) and average doses of industrial fertilizers per hectare (b) in Costa Rica (1961-2016)  606 
 607 

 608 

 609 
Source: Our own elaboration from Faostat. 610 
  611 
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Fig. 9 Scheme of different coffee-farming systems in Costa Rica (from rustic agroforestry and coffee 612 
polyculture to shade grown and coffee monoculture) 613 
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Source: Own elaboration from Fournier (1980) 644 
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