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Diffusion in spatially and temporarily inhomogeneous media
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In this paper we consider diffusion of a passive substahde a temporarily and spatially inhomogeneous
two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of
two substance# and B, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different
diffusion coefficients ofC in A and B, we find that the variance of the distribution function of the said
substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic
ansatz and are then able to identify the interface betweeand B as the main cause for this nonlinear
dependence. We argue that, finally, for very large times the here temporarily dependent diffusion “constant”
goes liket ' to a constant asymptotic vali,,. The latter is calculated approximately by employing the
effective-medium approximation and by fitting the simulation data to the said time dependence.
[S1063-651%96)02111-3

PACS numbdrs): 64.60.My, 47.27.Sd

I. INTRODUCTION diffusion coefficient at every space and time point will be

Needless to sav. diffusion is a verv important oh S.Calproportional to the amount of phaseand phas® present at
d of Y, dinusi II' Very imp e Idp yfl .this point. Now, we let these concentratiofts rather the
process and of major practical interest in many fields of SClyitarance in molar fractionevolve in time according to the

ence, ranging from statistical optics to diffusion controlled ~4hn-Hilliard equation. The question of interest then is the

chemical reactions. Usually, when treating diffusion in "q'temporal development of the mean-square displacement of
uids, one considers the medium to be homogeneous, &jne dispersed scalar.
though numerous examples exist where this assumption is Therefore let us cali the variable that according to the

not appropriate. Cahn-Hilliard equation describes the temporal development
In this contribution we would like to study the case wheregf the difference in molar fraction
the medium is no longer homogeneous, but has dynamically
evolving inhomogeneities. We have opted here to use as a dx
medium a solution of a dynamical equation corresponding to —=VA—x+x*=Vx). @
ot
a binary alloy phase separation problem, i.e. in this case the
well-known Cahn-Hilliard equatiofil,2] (see, e.g[3-5] for  with initial conditions being
more recent literature on the theoretical aspects 6r@] on
the applied aspects of this subjecthis equation describes x(r,0)=xo+ .
the phase separation following a quench of a nonmiscible
binary mixture(with phasesA andB) inside its coexistence « is a(uniform) random variable, whose actual range is not
curve. It is known(see, e.9.[9] and references thergithat  of critical importance as long as its average vanishes. Here
the solutions to this equation are very structured, their conwe have choser e[ —0.1,0.1. x, is the average difference
figuration depending on the relative concentration of then mole fraction. This average is an important parameter in-
phases. sofar as it determines the configuration of the appearing
Despite the importance of the actual physical situatiorstructures or inhomogeneities. So it is known, e.g., that for
that leads to the Cahn-Hilliard equation, it will serve hereyo=0.4(—0.4) droplets ofB(A) in A(B) appear, while for
more as a model for a dynamically evolving inhomogeneous,=0 one finds lamellar structures; see Fig. 1. The equilib-
medium. Because of the properties mentioned it appears tdum stable states of this differential equation lie at
be an ideal candidate because we are able to study the diffy—= £ 1.
sion in a rather rigidly structured medium. Figure 1 shows these three cases. Figus depicts the
The idea for the study is now as follows. We assume thathoicey,= —0.4, Fig. 1b) xo=0.0, and Fig. {c) yq=0.4 at
the scalalC has different nonvanishing diffusion coefficients time t=200. The average size of the appearing structures
in the phasesA and B. If we mix these components the grows according to the Lifshitz-Slyozov time lajg], i.e.,
with t¥3, Due to the conservative nature of H@), though,
the total area occupied by the structures is constant. This
"Permanent address: I.N. Stranski Insitut, Sekretariat ER 1, Techmeans that the number of the structures growing wlitthas
nische UniversitaBerlin, StraRe d. 17, Juni 112, D-10 623 Berlin, to decrease with~%3. Considering now the interfacg.e.,
Germany. the borders between zones of positive and negagtiveone
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FIG. 2. Characteristic size of structures and total amount of
interface as functions of time for three different compositions
[ xo=—0.4 (diamonds, 0.0 (pluse$, and 0.4(square}]. (a) log-log
plot of the characteristic size calculated via the circularly averaged
correlation function averaged over five realizatiggad size 256
together with two linegdashed and dott¢dhat are proportional to
t3 (b) log-log plot of the total amount of interface in the system
(grid size 512, one realizatipnogether with two linegdashed and
dotted that are proportional ta~ Y2 Note that fory=*+0.4 the
curves coincide.

1 -
o(r =2 G(r.b), @

(N, represents the number of points of the corona of radii
FIG. 1. Three density patterns of solutions of Ef) at time r andr+ Ar over which the averaging is taking placem-

t:2(_)0 (or after 10 000 time steps; see Appendix A for numerical ploying the pair correlation functio@(F,t), which is defined
detail9 for (a) xo=—0.4,(b) xo=0.0, and(c) xo=0.4; see the text as

for detalils.

- 1 - -

e<r,t>=<mz [x<r+r',t>x<r',t>—xé]>
realizes that this quantity forsinglestructure grows with its r’
corresponding r.adius-likel’?, b-ut, since the numberiothhe (where N is the size of the systemThe “characteristic”
structures growing with this time law decriaag,es Itlfé ' sizeR(t) of the structures is now determined by the first zero
thetotal length of the interface decreases ltké. I Fig. 2 of the functiong(r,t) with respect tor. The second of the
we show numerical results, giving in Fig(&2 the average above mentioned quantities is calculated by evaluating the
size of the structures and in Fig(l®? the total amount of integral
interface in the system. The first quantity is calculated by
evaluating the circularly averaged correlation function L(t):<f f dx dy(l—X2)> ,

g(r,t), X
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averaged over different realizations gf which obviously a(t)
has contributiongalmos) only from the interface region, D)=~ (6)
i.e., where y differs significantly from =1. While it is
known that within the structures the actual val(ile two  jn two dimensions. For the sake of simplicity we will also
dimensiongof x is not exactly+ 1 because of the curvature, call this quantity the diffusion constant. For every homoge-
the deviation is small enough to neglect it. In addition to theneous medium with diffusion coefficier@* (i.e., for ex-
time laws mentioned, one sees, in particular in Fi@p)2hat  ample, if we set the above parameteequal to zero, thus
at small times there is not a well-developed phase separatiafyppressing the coupling between the diffusion and the
and therefore this integral starts at a value e#;g{f). Note  evolving patteri this yields a constant value &*.
that the characteristic size of the structures fge=0.0 is The temporal development ef(t) is subject to quite a
somewhat larger at every time point and therefore the totahumber of parameters. From the Cahn-Hilliard equation
amount of interface is somewhat less than fgr==0.4.  stems the first of those parameters: the composjtigrec-
This stems from the fact that we here have lamellar strucond, one has the parametersD*, and(D). (Of these four
tures and not droplets. parameters, only three are independent, of couiSeally,

The next step is to assign at every space-time point @ne may consider freezing the temporal development of the
diffusion coefficient for the scala®. We chose a very simple Cahn-Hilliard equation or likewise retard the start of the dif-
coupling between the structured medium and the distributiofiusion equation, thus letting the pattern evolve at first until

of diffusion coefficients, namely, structures are visible. Our main point addressed here will be
. R whether we reach a constab(t) after a finite time.
D(r,t)=[1—ax(r,t)]D*. €)) To gain some understanding in the process and further-

more to get an idea of the key quantities involved, we de-
This quantity will be referred to as tHecal diffusion coef-  rived in Appendix A an expression fd@(t) that reads
ficient. D* is an input value that together with the parameter
a (herea=0.85) defines the diffusion coefficients in the pure ., oabrt .
phases. Since the stakllequilibrium) states of Eq(1) lie at D(H)=D*- t odt dx dYx¥)y
Xeq=+1 we haveD,=0.1D* andDg=1.89*. [The rea-

i B 1) i aD* [t ax
son to choos@<1 is to ensure that at every poib{(r,t) is J'Odt,f f dx d>'{(X—<X>r,X)<5¢>
X

positive definite; see the discussion belpWhe averaged T
diffusion constant is given by

, @)

Ix
(D(F.0))r =[1=a(x(F\1); ,ID* =[1-axoID* +(y—(y>r,X)<&¢//>
X
and is therefore constant in timelhe subscripts to the an-
gular brackets intend to show, as above, whether averaging
over spacer(), over realizations ), or both]

which, according to our simulations also mentioned in Ap-
5endix A, can be extremely well approximated by

This scalar field of diffusion constants is now imple- aD* [t
mented in the dynamical equation in the following way. Let D(t)=D*(1—ayxg)— ot f dt’
Y(r,t) be a passive, i.e., nonreacting, scalar field that de-
scribes the density of the substanCe Then we have the ax  dx
diffusion equation Xf fdx dy<(xa—x+yw) ¢> (8)
2 %D OV, @) ‘
pm , 1, =(D);,— fO5D(tr)dtf.

which is initialized with a single’ function usually centered
in space. The second momantt) and the “diffusion con-
stant” D(t) are calculated by the standard procedure

The first part of this equation is exactly the average diffusion
constant(D), which is therefore constant in time. The time
‘dependence db(t), apart from short-time effects, therefore

namely, has to come from the second part of this equation, which we
- 2 (2 _p\2 will call 6D(t).
a(t)=((Ar)); (= =i The time dependence B(t) is shown in Fig. 3. All three

2 simulation results fo,=—0.4, 0.0, and 0.4 depart from the
=f f dx dy(x2+y2)<¢>X—U J dx dy>(w>x) statistically averaged value ¢D)=0.5 and evolve then de-
creasing at a rate depending gp. This indicates a growth
2 of o(t) that is less than linear for the time of the simulation.
f f dx dyy l/f>x) : (3 (This corresponds to at leasta.0° time steps: see Appen-
dix B for numerical details. In the case gf=0.4 the simu-
This average mean-square displacement is the key quantitgtion has even been carried out up to titwe20 000 without
presented in the work. As is very well known, for homoge-changing the results shown in the Fig) 3.
neous media this quantity is proportional to time, which is  Clearly, this “sublinear” growth ofo(t) depends not
why one most often uses instead the number only on the dependence gy shown, but also on the cou-
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055 - - - - case these values gf are in no way extraordinary. Quite on
® the contrary, in the treatment of diffusion in the presence of
obstaclegi.e., D,=0), where around this value an infinite
and fractal cluster is formed, this leads to sublinear diffusion

O'(t) "’t2/dw,

Dft)

with d,,>2. Its cause is the fractal nature of the cluster
formed. Above the percolation threshold, long-range diffu-
sion is impossible, whereas in our treatment diffusion always
takes place. Owing to these differences in the ansatz, it re-
sults that quite different concepts are of importance and
therefore quite different results can be obtained when leaving
the rather special value &f,=0. Saxton treated diffusion in
the presence of obstacles in a series of pafss[13] and
references therejrfor a wide range of different parameters,

08— - - - ' - among those, e.g., the obstacle size. He found in his static
® simulations, keeping the relative area of obstacles-medium
0as | 1 constant, which in our language means keepipgonstant,

that D(t) quite generallyincreaseswith the obstacle size,
indicating that in the limit of an infinite system with infinite
obstacle sizes(t) would simply grow linearly with slope
4(D). Saxton attributes this to the fact that for growing ob-
stacle size there are fewer obstacles in the system and there-
fore diffusion is less hindered. Looking now at Fig. 3 one
finds quite the contrary. In our dynamical treatment the “ob-
stacle” size grows with timelike t¥®) and their number
decreases with %3 keeping their relative area constant just
as in the case of the static treatment by Saxton. Nevertheless,
: - s : s - in our caseD(t) evolvesever decreasingThis small but
0.04 0.05 0.06 0.07 0.08 0.09 0.1 . . . .
{3 illustrative example shows alreadpesides other consider-
ations, such as, for example, the missing percolation thresh-
FIG. 3. “Diffusion constant” D(t) as a function of time for old and the even so missing fractal nature of our “clusters”
three different compositions [y,=—0.4 (D*=0.37), 0.0 that one has to consider the cases1 anda+1 as rather
(D*=0.50), and 0.4D* =0.76)]. (a) Data in a conventional linear different classes of a seemingly similar problem.
plot (solid line for yo=—0.4, long-dashed line fox,=0.0, and
short-dashed line fox,=0.4). (b) Data plotted againgt™*® (solid
lines). Shown also are fits tB '+ bt~ 3 (short-dashed lineand the
results of COI’reSponding EMA Ca|Cu|atiOﬂsng-daShed ||nh The Looklng Closely at the |ntegra| represen“ﬁ@ (t) |n Eq
compositiony, is by c. Note that neither the simulation nor the (8), one sees that the function to be integrated spatially gets
EMA reaches aconst_ant va_lue, although the_ s_imulation time_ is Vems contributionsalmost exclusivelyrom the regions of the
large. F_orX_O: _—0.4 finite-size effects are visible for large times. interface, where the derivatives/dx anddy/dy) are sig-
(The grid size is 512. nificantly different from zero. This means that the interface
and its temporal development will play a decisive role in
pling parametea. The deviation of the usual linear time law ¢(t). As the interface in our treatment develops dynamically,
will be greatest whera approaches 1 and negligible when one has to expect a time dependence¢f), at least until
a goes to zero. The case @f 1 is not accessible to us since the importance of the interface is overrun by the averaging
at the points whergr exceeds its equilibrium value of 1 process taking place due to the growth of the distribution
the local diffusion coefficient defined by E3) would not . Let us note in passing that the existence of an interface
be positive(semjdefinite. Nevertheless, this case has alreadynarks another strong difference from the case considered by
been treated for a temporarily static medium by differentSaxton and others. In his treatment obstacles are regions ex-
methods in the literature, mostly in the framework of perco-cluded from the available positions of the particles and there-
lation theory[10-13 and using random-walk techniques. fore there does not exist an interface in the sense of &q.
One immediately realizes that the valae 1 (or Do=0) is The physical cause behind the importance of the interface
a rather special value yielding results not only qualitativelyis that the regions of low diffusivity act as reservoirs. Here
different from the case treated here. The first important difthe diffusivity is so small that it takes a very long time for
ference is the existence of a percolation threshold, whichhe matter to diffuse through these regions. Therefore, even
does not exist in the problem posed here. We do observat longer times, a good part of the dispersed matter will be
around the value ojo= *=0.18 (which corresponds to the collected in exactly these regions, thus giving rise to an ever
percolation threshold of a square latdice structural phase decreasingD(t). Moreover, these regions have their own
transition from lamellar to droplet configurations, but in our dynamics, which gives a process that will ordgymptoti-
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FIG. 4. Integral [fdx dy(xx'+yx')¢ for three different FIG. 5. D(t) for four situations. The solid line represents simu-
choices ofy, corresponding to those of Fig. 3. The three curves injation resultsaveraged over five realizationwith sustained Cahn-
the upper part of the figure correspond to calculations withHilliard dynamics. For the other graphs the dynamics of the phase
a=0.85 (y=—0.4, sold line, x=0.0, long-dashed line; and separation were stopped =100, 200, and 30@long-dashed,
Xo=0.4, short-dashed lingwhile the other three give results for short-dashed, and dotted lines, respective@bviously, D(t) for
a=0 (xy=—0.4; solid line,xy=0.0, long-dashed line; angy=0.4  the frozen dynamics decays much faster to an asymptotic value,
short-dashed line The latter choice ensures that the distribution which depends on the total amount of interface present at time
entering the above integral is of Gaussian shape with a fixed halft. . (The grid size is 256y,=0.4, andD* =0.757 576,
width. HereD* was kept constant at a value of 0.5. As one ob-

serves there are only short-time effects, decaying rapidly to zero, . . . . .
while this is not true for the choica=0.85. See the text for a 10N IS incompatible with the results obtained far-0.85,

discussion. since it yields a completely different time development. This
means that disregarding the reservoir effect is not adequate
cally reach a finally constant value fér(t). This final value for treating the problem.we pose here. Keeping |n_m|nq that
reached is a subject that deserves a more thorough treatmeme Gaussian form fog is equivalent to effective diffusion
which is why we will postpone this until later. To somewhat With Some constant value fd@(t) one can already see here
substantiate the above general comment let us show resuffaat the existence of low diffusivity regions prolongs consid-
of two different kinds of calculations that show the impor- erably the usually fast transitory regime to the said effective

tance of the “reservoir effect” and its decisive influence on diffusional Process.
the overall temporal development Bf(t). To see in which manner we have to expect to reach the

Let us begin by eliminating altogether a possible reservoitfinal qliffusionall‘ regim?, we_have_ also solved the d_iffusion
effect. To achieve this we calculate the functioB (t) ap- equation(4) on “frozen” configurations of the Cahn-Hilliard
pearing in Eq(8), only now witha=0, and compare this to equations, i.e., we initialize both the Cahn-Hilliard equation
our usual choice;\:O.85. Clearly whén setting=0 this is and the diffusion equation at the same time. Then we solve

equivalent to the homogeneous case and therefore the distﬁpth equations up to some fimg (where F stands for

bution of the scalar will have the usual Gaussian form freezmg”), where we ;top the tempora}l developmenb(of
and retain that ofy. In this way, the only time dependence in
— (x2+y2)/4D*t oD is that of . Results of this type of calculation are shown
= e ' in Fig. 5 for t=100, 200, 300. The freezing times were
47D*t chosen to be small in order that the structures remain small

themselves, but large enough to ensure thdtas already
(The fact that her®* appears, and not a different value or reached its equilibrium values. The situation is now as fol-
even a fit parameter, is solely qfiantitativeimportance). In lows: We have retained the “reservoir effect,” but neglected
other words, we are presupposing a solution that is comthat the “reservoirs” themselves have a temporal develop-
pletely uncoupled from the surface and therefore exhibitsnent. Although the data presented in Fig. 5 do not explicitly
absolutely no reservoir effects. Results for these calculationshow a new stationary value f@(t), quite obviously we
in comparison with those fai=0.85 are collected in Fig. 4. will reach a new purely diffusive regime much faster than
As one can easily observe, the behavior is very differentwith sustained growth of the structures. Being the slower
Most important of all, in the long-time limiéD|,_, tends to  process, the overalD(t) has to depend therefore quite di-
zero, which is absolutely not the case for the “exact” rectly on the time development of the total length of the
SD(t). Additionally, in the short-time limit, we find even interface, i.e., we may now assume that for very large times,
significantly negative values forsD|,—o, but not for where the temporal dependencelift) due to the spreading
SD(t). It can be shown by simulations and general consid-of ¢ is negligible, D(t) has to go like the length of the
erations that the latter is only a short-time effect and thereinterface reaching at infinite times a final value still to be
fore of no further importance for the discussion here. Thedetermined. This argumentation is restricted obviously to the
most important result here is that the Gaussian approximasase where the time scales of the spreading/aind the
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TABLE I. Estimation ofD.. for a constant value ofD)=(1—ay,)D* =0.5. (@=0.85) D, andDg signify the values of the diffusion
coefficient for the pure phask (y=+1) or B (y=—1), respectivelyDEM*! is the approximation t®., within the effective-medium
ansatz for dinite system. It is numerically calculated using conditi@® under the assumption that the finally reached distributioy &f
a single circular structuréwith interface. DEA is calculated using10) and therefore is a result for an infinite system with a completely
sharp interfaceD™ is obtained by fitting the simulation data B+ bt~ and the errors estimated by varyiBg! (adjusting after that the
parameteb) until the sum of squares of residuals is double its optimal value. See the text for further details.

Xo D* Da Dg DEMAL DEMA Dt

0.4 0.7576 0.1136 1.4015 0.2281 0.2174 0.393.005
0.0 0.5000 0.0750 0.9250 0.2776 0.2634 0.25®.005
-0.4 0.3731 0.0560 0.6903 0.3699 0.3608 04®.01

development of the interface length{t) are well separated by using an alternative method based on an effective-

and does not apply, e.g., to the case of frozen configurationspedium ansatz.

where the temporal development Df(t) is not at all gov- Based on a very simple argument using a kind of

erned by theovermore constail (t). But, as we are inter- effective-medium approximatiofEMA) one can derive a

ested here in theynamicaleffects of the phase separating condition(see, e.g.[14])

medium and have considered the “frozen” case only in or-

der to find out the different time scales of the problem, this is 2DEMA !

not a restriction for our treatment. PRGN 1, 9
In short terms, we have to introduce two concefiseign * r.x

to the treatment wher@ ,=0), namely, that of the reservoirs , _ _ L .
and that of the interface in order to interpret consistently the/Nich after solving gives an approximation to the asymptoti-

results obtained. The reservoir effect is in our view theCally reached diffusion constafior a given distribution of
physical cause behind the prolonged sublinear regime dpcal diffusion coeff|C|ent_sLe_t us note in passing that this
o(t) and the dynamically evolving interface length an ad-2verage has three contributions: one from #eone, one

equate measure for it. These reservoirs or “sinks” preven{rom theB zone, and, finally, one from the interface region.

4 from reaching a Gaussian shape with some linear varianc'%ere again the crucial role of the interface is stressed since
e first two contributions have extremely little time depen-

(Ar?) for finite times because of their own dynamics, which?
thus dominates the process. We included therefore, in Figi€"Ce-

3(b), fits to We have employed this approximation in two different
' manners. First, instead of treating our problem within a time-
D(t)=Dft+ bt~ 13 dependent EMA framework, we evaluated the above expres-
* ' sion at different times,<t,<--- during the simulation,
. i EMA EMA
with D (see also Table)landb being free parameters and thereby obtaining the asymptotia, ™, D™, ... for the

t~ 12 the time development of the total interface length. Ofspatially inhomogeneous but stationary case. Then we define
the many possible manners of representation we chose a platcurve joining this set of values, thus yielding an approxi-
of the data of Fig. &) versust %3, where the test functions mation toD(t). We have calculated this kind of “adiabatic”
represent straight lines. Note that in this plot time growseffective-medium approximation; the results are presented
from right to left. Therefore special attention has to be paidtogether with the simulation results in Figlb3 For the mo-

to the left part of the plot. Finite-size effects, clearly visible ment this serves one sole purpose: to show that this kind of
for the case ofyo=—0.4 in Fig. 3a), plotted by the change approximation gives very reasonable results. In fact, we
of slope at higher times, are somewhat obscured in Fig. 3 found the errofassuming the simulation results to be exact
due to the small portion of the axis representing those timed0 be generally less than 10%. Note, though, that the tempo-
The initial disagreement of the fit in the case)gf=0.0 up ~ ral development is slightly different.

to t~¥=0.07 can be attributed to the somewhat nonsmooth Second, and of more importance here, we used this ap-
initial behavior in this casfsee Fig. 8a)] due to the fact that Proximation in its original sense, namely, to find an approxi-
the data shown are for one realization only; note also thafnation toD... This is done using the following argumenta-
t71/3: 0.07 Corresponds approximate|y to=3000. (The tionS, i.e., one ConSidering a finite SyStem and one
simple reason for using only one realization is the computefonsidering an infinite system.

time needed; each graph needs approximately 15 d of pure As mentioned, in our phase-separating problem, the num-
computer time on a Silicon Graphics Indif@).) Apart from  ber of structured domains decreases with time. That means
these considerations, one can see that the numerical data 4fRét at an infinite time we are left with one single droplet of

represented reasonably well by the above test function. A immersed inB (or vice versg with relative area given by
(1% xo)/2. Using now the equilibrium solution of the Cahn-

Hilliard equation(the interface goes like a hyperbolic tan-
gend we are able to numerically solve the above condition
Now let us turn to the reached value asymptotically for(9), i.e., we solve this equation on a surface with a single
infinite times. Except for fitting the data to a presumed tescircular structure with the radial dependence being
function, we will try to find an approximation to this value tani(r—R)/\2], whereR is the xo-dependent size of the

lll. THE ASYMPTOTIC VALUE D,
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droplet. This should give us an approximation to the asympthe substanc€ in the medium by determining the variance
totic value ofD(t) for a finite system. of its distribution function.

In the limit of an infinite system we can even go one step We found thatD(t), independent of the initial composi-
further. If the system is infinite the relative width of interface tion of A andB, decreasesvith time. What is more, for very
present goes to zero. Assuming therefore that there is a confeng times it decreases like 3, which is an extremely slow
pletely sharp interface and that the local diffusion coefficientprocess. A nonzero constant value ft) is expected to be
is simply that of the corresponding pure phase, we can sageached at infinite times, but this(a) an asymptotic process

that that takegb) averylong time even to reach only an approxi-
mately constant value. As can be seen from the simulation
L1+ 2DEMA 1- 2DEMA -~ - -
LT Xo o N Xo o results presented in Fig. 3, aftek&.0° time steps or at time
) DEMA+(1_a)D* 2 DEMA+(1+a)D* ' t=10 000 we are still far away from the said constant value

D..; compare also Table |. With respect to the time law
where (1+ x0)/2 [(1— x0)/2] is again the fraction of the area found, therefore, one might say that diffusion, at least in this
occupied by phasé [B] where the diffusion coefficient is special medium, isublinear had the latter term not been
(1—a)D* [(1+a)D*]. This is a simple quadratic equation reserved foD..=0.

and has the physical solution The reason for the deviation from the typical linear de-
pendence ofr(t) has been localized in relation to E@®).
DEMA=D*[—ay,+ V1—a%(1—x2)], (100  Here one easily recognizes that the interface and its temporal

development introduce a new time dependence. Besides

which can now be used to calculate the waréd™® . (Note  short-time effects, which more specifically are héag the
that for the case of,=0.0 this yields the classical result initial deviation of the length of the interface from*® and
DEMA= /DADg.) (b) effects due to the initially comparable size of the struc-

The value of calculatin@ =™ in these two different man-  tures(which grow liket'®) and of the distributiony of the
ners lies in that we are now able to countercheck the resuliscalarC (which grows a little less than linearthere is a
thus obtained. Clearly, both have to yield values similar tolong-time tail proportional to the total length of the interface.
those of the finite system being slightly larger than the oth-This means that finalyD(t) goes liket™*® to a constant
ers. value. We have fitted the simulation data therefore to a test

In Table | we present the data concerning this section. Agunction
can be seen from the table, for very large times and a single
droplet the influence of the interface is rather small, so that
the rather simplistic ansatz that led to EGO) gives very
reasonable results.

These values can be compared to the ones obtained befongth very reasonable succegsee also Fig. B The value
by fitting the simulation data tdf+bt~ 3 The values D™ gives an estimation to the asymptotic value reached for
D™ are listed in the last column of Table I. The errors giveninfinite times.(Let us insist once more that the above fit is
there for these quantities have been evaluated by varyingstified only in the case of a fully dynamical system. For
Dt (adjusting the parametér every timé until the sum of  “frozen” configurations, where one stops the temporal de-
squares of residuals was double its optimal value using théelopment of the Cahn-Hilliard equation, this ansatz is not
“best” parameter set. The values obtained from these differjustified. But since it is quite clear that without the slow
ent procedures agree reasonably and bestder0.0, which ~ dynamics of the phase separation we would find after a short
agrees with the fact that the EMA is a good approximationfransient an effective diffusion, this case seems not to be
either for small differences of concentrations/AfndB or  Sufficiently interesting.
for small concentrations ok in B (or vice versa The over- ~ In order to estimate the latter we also used an approxima-
all error, assuming again the simulation results to be exactive treatment based on an effective-medium ansatz, which in
is, like in the case of the “adiabatically” used EMA, about this case led to E¢(9). Using now the simple argument that
10%. at infinite time we remain with only one single droplet and
using the equilibrium solution of the Cahn-Hilliard equation,
we could numerically solve the above condition for this finite
system. If, on the other hand, we consider the system to be

In this paper we treated diffusion in a special inhomoge-nfinitely large, then at=o the relative amount of the inter-
neous medium, namely, in a phase separating binary alloyace is negligible and Eq9) can be solved analytically. The
whose temporal development is determined by the Cahrvalues obtained in both ways are very well comparable with
Hilliard equation. With the exception of few calculations we those of the finite system being slightly larger, as one has to
considered the following situation. At tinte=0 we insert a expect, and in turn compare well with those obtained by the
“droplet” of a passive substandg in a medium that has not above-mentioned fit with a deviation of about 10%.
yet started its phase separation. The medium consists of two Keeping in mind that the cause of the nonlinear time de-
substance# andB, in which C diffuses at a different rate, pendence ofr(t) is the sole existence of reservoirs with an
neither of which vanishes. The respective diffusion coeffi-interface, which develop in time on a slower time scale than
cients for the pure phases are calleg andDg. After hav-  the spreading ofy, we expect that the behavior found in this
ing thus prepared the system, we start the time evolution angpecial treatment is very well generalizable to other dynam-
measure the spatially averaged diffusion “constabt{t) of  ics of inhomogeneous media.

D(t)~DM4 pt=153,

IV. SUMMARY AND DISCUSSION
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APPENDIX A: DERIVATION OF EQ. (7)

We follow here the approach used earlier in Réf5]. Ty ‘9_X¢ +y ‘9_X¢ (A5)
The most important step is to calculate the mean-square dis- X ay '
placement via its time derivative X X

‘7<(Ar)2>r,x :J, dF(AF)2a< . Now putting everything together, we find
ot at

J
. R —<(Ar)2>r,X=4D*—2aD*f fdx d\{2<x¢>x
Since nowD(r,t)=D*[1—ax(r,t)] one finds for the latter at

derivative

a
(0, =(V-[D(r,HVyl), X

. e - ax
=(VD(r,t)-Vy+D(r,) V2, +(y—<y>r,x)<5¢> } (A6)
> > > X
=D*{(VZy),—a((xV+Vx)-Vi),}. (A1)
or, integrating over time,
Keeping in mind that
t
J J t)=4D*t—2 D*Jdt'JJd dy 2
(AP = (1) —(D7 ) o ab* X dy 20xiy
d that furth 2 ax
and that furthermore +(X_<X>r,x)<5¢> (y—(y},,X)<Ww> }
d 9 ) N X X
202 =2 [ dits o, | i), &)
a(F)r’X . Let us now discuss this equation. The very first term rep-
=2— (D (A2)  resents naturally the “normal” or homogeneous diffusion.

The second terntthe first below the integralrepresents an

one deduces for the average of the mean displacefoent average of correlations between the inhomogeneous phase

rather its temporal derivatiyaising partial integration and the density of the diffusing scalar. Clearly, starting, e.g.,
from a well-developed pattern with already large structures,

- = this term might display a complicated time dependence.
f dr(xV ‘/f>x>- (A3) Starting instead, which is the case we are most interested in,
from a random distribution where therefore the initial droplet
Let us turn now to the square part. Obviously the firstof ¢ is already of the same order of size as the "structures,”
term on the right-hand side of E¢AL) is the original term  this term will give a linear contribution from the very begin-
for diffusion in homogeneous media. Therefore we can im-ing with a slope of exactly,. We checked this numerically
mediately give the solution to this part aB#. We get now and found it to be true to very good precision.The third term
at last contains the average position, which as usual is not

d significantly time dependent. Therefore we reach the final
ﬁ<r2>r,x=4D*—aD*f de dy[x*(xV2y), result

J *
E<r>r,X:aD

+x3(VxV ), + (terms iny)]. (A4) a [t
o(t)=4D* (1_aX0)t_§J dt’
Contributions of mixed termse.qg.,x25%/ dy?), as usual, 0

do not give any contribution and therefo¥ein the above ax ax
equation can be substituted B¥ox (or d/dy in they terms, Xj f dx dY>‘<51//> +Y<—l//>
X X

naturally). Using now again partial integration of the first %
term of the above equatiofthe remaindef x*( xduy/ dx)]
vanishes because of periodic boundary condifiame finds  which can also be rewritten as

. (A8)
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t (4), respectively, have the desired properties:
a(t):4<D>r,Xt—2aD*f dt’
0

At
» ax Xi,j(H‘At):Xi,j_Kz[Ji+1,j+Ji—1,j+Ji,j+1
XJ’ded X(—¢) +yl—u) |. (A9)

where
APPENDIX B: NUMERICAL DETAILS

, . . 4
For all our calculations we have used a square grid. Dis-j. ':(_2_1+Xi2‘
cretization was made uniformly using a space grid of usually N !
A =1 (for checking purposes we also ust&d-0.5, but with

this choice the appropriate time stAp to ensure numerical and
stability is so small that it forbids using this as a stanglard At
Time has also been discretized uniformly witft being ¢i,j(t+At):¢i,j+PDij(¢i+l,j+¢i_1‘j+¢i,j+1+ bij-1
0.020 or 0.025. The grid siZd was 128, 256, or 512 points,

1
_P(XH—LJ+Xi—l,j+Xi,j+1+Xi,j—l)

depending on the simulation time. At

The norm ofys [=Zj; (X ,y; ,t) ] has been monitored and — 44 i)+ P([D”“_ Dijllhivaj— il
found to be constant to machine precision. The same was
true for the norm ofy. Isotropy was also checked and found +[Dij+1—Di [ ¥ij+1— i 1)

to be preserved statistically.

In order to ensure norm conservation it is of major impor-(the time dependendeon the right-hand side of the above
tance to use the correct discretization scheme. In particuldras been suppressed in order not to overcrowd the equa-
the derivative of the produdV ¢ deserves some attention. tions), which were then consequently used for all the results
We found that the following discretizations of Eq4) and  shown.
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