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In this paper we consider diffusion of a passive substanceC in a temporarily and spatially inhomogeneous
two-dimensional medium. As a realization for the latter we choose a phase-separating medium consisting of
two substancesA andB, whose dynamics is determined by the Cahn-Hilliard equation. Assuming different
diffusion coefficients ofC in A and B, we find that the variance of the distribution function of the said
substance grows less than linearly in time. We derive a simple identity for the variance using a probabilistic
ansatz and are then able to identify the interface betweenA and B as the main cause for this nonlinear
dependence. We argue that, finally, for very large times the here temporarily dependent diffusion ‘‘constant’’
goes liket21/3 to a constant asymptotic valueD` . The latter is calculated approximately by employing the
effective-medium approximation and by fitting the simulation data to the said time dependence.
@S1063-651X~96!02111-3#

PACS number~s!: 64.60.My, 47.27.Sd

I. INTRODUCTION

Needless to say, diffusion is a very important physical
process and of major practical interest in many fields of sci-
ence, ranging from statistical optics to diffusion controlled
chemical reactions. Usually, when treating diffusion in liq-
uids, one considers the medium to be homogeneous, al-
though numerous examples exist where this assumption is
not appropriate.

In this contribution we would like to study the case where
the medium is no longer homogeneous, but has dynamically
evolving inhomogeneities. We have opted here to use as a
medium a solution of a dynamical equation corresponding to
a binary alloy phase separation problem, i.e. in this case the
well-known Cahn-Hilliard equation@1,2# ~see, e.g.,@3–5# for
more recent literature on the theoretical aspects and@6–8# on
the applied aspects of this subject!. This equation describes
the phase separation following a quench of a nonmiscible
binary mixture~with phasesA andB) inside its coexistence
curve. It is known~see, e.g.,@9# and references therein! that
the solutions to this equation are very structured, their con-
figuration depending on the relative concentration of the
phases.

Despite the importance of the actual physical situation
that leads to the Cahn-Hilliard equation, it will serve here
more as a model for a dynamically evolving inhomogeneous
medium. Because of the properties mentioned it appears to
be an ideal candidate because we are able to study the diffu-
sion in a rather rigidly structured medium.

The idea for the study is now as follows. We assume that
the scalarC has different nonvanishing diffusion coefficients
in the phasesA and B. If we mix these components the

diffusion coefficient at every space and time point will be
proportional to the amount of phaseA and phaseB present at
this point. Now, we let these concentrations~or rather the
difference in molar fraction! evolve in time according to the
Cahn-Hilliard equation. The question of interest then is the
temporal development of the mean-square displacement of
the dispersed scalar.

Therefore let us callx the variable that according to the
Cahn-Hilliard equation describes the temporal development
of the difference in molar fraction

]x

]t
5¹2~2x1x32¹2x!. ~1!

with initial conditions being

x~r ,0!5x01a.

a is a ~uniform! random variable, whose actual range is not
of critical importance as long as its average vanishes. Here
we have chosenaP@20.1,0.1#. x0 is the average difference
in mole fraction. This average is an important parameter in-
sofar as it determines the configuration of the appearing
structures or inhomogeneities. So it is known, e.g., that for
x050.4(20.4) droplets ofB(A) in A(B) appear, while for
x050 one finds lamellar structures; see Fig. 1. The equilib-
rium stable states of this differential equation lie at
x561.

Figure 1 shows these three cases. Figure 1~a! depicts the
choicex0520.4, Fig. 1~b! x050.0, and Fig. 1~c! x050.4 at
time t5200. The average size of the appearing structures
grows according to the Lifshitz-Slyozov time law@2#, i.e.,
with t1/3. Due to the conservative nature of Eq.~1!, though,
the total area occupied by the structures is constant. This
means that the number of the structures growing witht1/3 has
to decrease witht22/3. Considering now the interface~i.e.,
the borders between zones of positive and negativex), one
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realizes that this quantity for asinglestructure grows with its
corresponding radius liket1/3, but, since the number of the
structures growing with this time law decreases liket22/3,
the total length of the interface decreases liket21/3. In Fig. 2
we show numerical results, giving in Fig. 2~a! the average
size of the structures and in Fig. 2~b! the total amount of
interface in the system. The first quantity is calculated by
evaluating the circularly averaged correlation function
g(r ,t),

g~r ,t !5
1

Nr
( G~rW,t !, ~2!

(Nr represents the number of points of the corona of radii
r and r1Dr over which the averaging is taking place! em-
ploying the pair correlation functionG(rW,t), which is defined
as

G~rW,t !5K 1

N2(
rW8

@x~rW1rW8,t !x~rW8,t !2x0
2#L

~whereN is the size of the system!. The ‘‘characteristic’’
sizeR(t) of the structures is now determined by the first zero
of the functiong(r ,t) with respect tor . The second of the
above mentioned quantities is calculated by evaluating the
integral

L~ t !5 K E E dx dy~12x2!L
x

,

FIG. 1. Three density patterns of solutions of Eq.~1! at time
t5200 ~or after 10 000 time steps; see Appendix A for numerical
details! for ~a! x0520.4, ~b! x050.0, and~c! x050.4; see the text
for details.

FIG. 2. Characteristic size of structures and total amount of
interface as functions of time for three different compositions
@x0520.4 ~diamonds!, 0.0 ~pluses!, and 0.4~squares!#. ~a! log-log
plot of the characteristic size calculated via the circularly averaged
correlation function averaged over five realizations~grid size 256!
together with two lines~dashed and dotted! that are proportional to
t1/3. ~b! log-log plot of the total amount of interface in the system
~grid size 512, one realization! together with two lines~dashed and
dotted! that are proportional tot21/3. Note that forx560.4 the
curves coincide.
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averaged over different realizations ofx, which obviously
has contributions~almost! only from the interface region,
i.e., wherex differs significantly from61. While it is
known that within the structures the actual value~in two
dimensions! of x is not exactly61 because of the curvature,
the deviation is small enough to neglect it. In addition to the
time laws mentioned, one sees, in particular in Fig. 2~b!, that
at small times there is not a well-developed phase separation
and therefore this integral starts at a value of 12x0

2. Note
that the characteristic size of the structures forx050.0 is
somewhat larger at every time point and therefore the total
amount of interface is somewhat less than forx0560.4.
This stems from the fact that we here have lamellar struc-
tures and not droplets.

The next step is to assign at every space-time point a
diffusion coefficient for the scalarC. We chose a very simple
coupling between the structured medium and the distribution
of diffusion coefficients, namely,

D~rW,t !5@12ax~rW,t !#D* . ~3!

This quantity will be referred to as thelocal diffusion coef-
ficient.D* is an input value that together with the parameter
a ~herea50.85) defines the diffusion coefficients in the pure
phases. Since the stable~equilibrium! states of Eq.~1! lie at
xeq561 we haveDA50.15D* andDB51.85D* . @The rea-
son to choosea,1 is to ensure that at every pointD(rW,t) is
positive definite; see the discussion below.# The averaged
diffusion constant is given by

^D~rW,t !& r ,x5@12a^x~rW,t !& r ,x#D*5@12ax0#D*

and is therefore constant in time.@The subscripts to the an-
gular brackets intend to show, as above, whether averaging is
over space (r ), over realizations (x), or both.#

This scalar field of diffusion constants is now imple-
mented in the dynamical equation in the following way. Let
c(r ,t) be a passive, i.e., nonreacting, scalar field that de-
scribes the density of the substanceC. Then we have the
diffusion equation

]c

]t
5¹W •@D~r ,t !¹W c~r ,t !#, ~4!

which is initialized with a singled function usually centered
in space. The second moments(t) and the ‘‘diffusion con-
stant’’ D(t) are calculated by the standard procedure,
namely,

s~ t !5^~Dr !2& r ,x~ t !5^r 2& r ,x2^r & r ,x
2

5E E dx dy~x21y2!^c&x2S E E dx dyx̂ c&x D 2

2S E E dx dyŷ c&x D 2. ~5!

This average mean-square displacement is the key quantity
presented in the work. As is very well known, for homoge-
neous media this quantity is proportional to time, which is
why one most often uses instead the number

D~ t !5
s~ t !

4t
~6!

in two dimensions. For the sake of simplicity we will also
call this quantity the diffusion constant. For every homoge-
neous medium with diffusion coefficientD* ~i.e., for ex-
ample, if we set the above parametera equal to zero, thus
suppressing the coupling between the diffusion and the
evolving pattern! this yields a constant value ofD* .

The temporal development ofs(t) is subject to quite a
number of parameters. From the Cahn-Hilliard equation
stems the first of those parameters: the compositionx0. Sec-
ond, one has the parametersa, D* , and^D&. ~Of these four
parameters, only three are independent, of course.! Finally,
one may consider freezing the temporal development of the
Cahn-Hilliard equation or likewise retard the start of the dif-
fusion equation, thus letting the pattern evolve at first until
structures are visible. Our main point addressed here will be
whether we reach a constantD(t) after a finite time.

To gain some understanding in the process and further-
more to get an idea of the key quantities involved, we de-
rived in Appendix A an expression forD(t) that reads

D~ t !5D*2
aD*

t E
0

t

dt8E E dx dŷ xc&x

2
aD*

2t E
0

t

dt8E E dx dyF ~x2^x& r ,x!K ]x

]x
cL

x

1~y2^y& r ,x!K ]x

]x
cL

x

G , ~7!

which, according to our simulations also mentioned in Ap-
pendix A, can be extremely well approximated by

D~ t !5D* ~12ax0!2
aD*

2t E
0

t

dt8

3E E dx dyK S x ]x

]x
1y

]x

]y Dc L
x

[^D& r ,x2E
0

t

dD~ t8!dt8.

~8!

The first part of this equation is exactly the average diffusion
constant̂ D&, which is therefore constant in time. The time
dependence ofD(t), apart from short-time effects, therefore
has to come from the second part of this equation, which we
will call dD(t).

The time dependence ofD(t) is shown in Fig. 3. All three
simulation results forx0520.4, 0.0, and 0.4 depart from the
statistically averaged value of^D&50.5 and evolve then de-
creasing at a rate depending onx0. This indicates a growth
of s(t) that is less than linear for the time of the simulation.
~This corresponds to at least 53105 time steps; see Appen-
dix B for numerical details. In the case ofx050.4 the simu-
lation has even been carried out up to timet520 000 without
changing the results shown in the Fig. 3.!

Clearly, this ‘‘sublinear’’ growth ofs(t) depends not
only on the dependence onx0 shown, but also on the cou-
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pling parametera. The deviation of the usual linear time law
will be greatest whena approaches 1 and negligible when
a goes to zero. The case ofa51 is not accessible to us since
at the points wherex exceeds its equilibrium value of11
the local diffusion coefficient defined by Eq.~3! would not
be positive~semi!definite. Nevertheless, this case has already
been treated for a temporarily static medium by different
methods in the literature, mostly in the framework of perco-
lation theory @10–13# and using random-walk techniques.
One immediately realizes that the valuea51 ~or DA50) is
a rather special value yielding results not only qualitatively
different from the case treated here. The first important dif-
ference is the existence of a percolation threshold, which
does not exist in the problem posed here. We do observe
around the value ofx0560.18 ~which corresponds to the
percolation threshold of a square lattice! a structural phase
transition from lamellar to droplet configurations, but in our

case these values ofx0 are in no way extraordinary. Quite on
the contrary, in the treatment of diffusion in the presence of
obstacles~i.e., DA50), where around this value an infinite
and fractal cluster is formed, this leads to sublinear diffusion

s~ t !;t2/dw,

with dw.2. Its cause is the fractal nature of the cluster
formed. Above the percolation threshold, long-range diffu-
sion is impossible, whereas in our treatment diffusion always
takes place. Owing to these differences in the ansatz, it re-
sults that quite different concepts are of importance and
therefore quite different results can be obtained when leaving
the rather special value ofDA50. Saxton treated diffusion in
the presence of obstacles in a series of papers~see@13# and
references therein! for a wide range of different parameters,
among those, e.g., the obstacle size. He found in his static
simulations, keeping the relative area of obstacles-medium
constant, which in our language means keepingx0 constant,
that D(t) quite generallyincreaseswith the obstacle size,
indicating that in the limit of an infinite system with infinite
obstacle sizes(t) would simply grow linearly with slope
4^D&. Saxton attributes this to the fact that for growing ob-
stacle size there are fewer obstacles in the system and there-
fore diffusion is less hindered. Looking now at Fig. 3 one
finds quite the contrary. In our dynamical treatment the ‘‘ob-
stacle’’ size grows with time~like t1/3) and their number
decreases witht22/3, keeping their relative area constant just
as in the case of the static treatment by Saxton. Nevertheless,
in our caseD(t) evolvesever decreasing. This small but
illustrative example shows already~besides other consider-
ations, such as, for example, the missing percolation thresh-
old and the even so missing fractal nature of our ‘‘clusters’’!
that one has to consider the casesa51 andaÞ1 as rather
different classes of a seemingly similar problem.

II. ROLE OF THE INTERFACE

Looking closely at the integral representingdD(t) in Eq.
~8!, one sees that the function to be integrated spatially gets
its contributionsalmost exclusivelyfrom the regions of the
interface, where the derivatives (]x/]x and]x/]y) are sig-
nificantly different from zero. This means that the interface
and its temporal development will play a decisive role in
s(t). As the interface in our treatment develops dynamically,
one has to expect a time dependence ofD(t), at least until
the importance of the interface is overrun by the averaging
process taking place due to the growth of the distribution
c. Let us note in passing that the existence of an interface
marks another strong difference from the case considered by
Saxton and others. In his treatment obstacles are regions ex-
cluded from the available positions of the particles and there-
fore there does not exist an interface in the sense of Eq.~8!.

The physical cause behind the importance of the interface
is that the regions of low diffusivity act as reservoirs. Here
the diffusivity is so small that it takes a very long time for
the matter to diffuse through these regions. Therefore, even
at longer times, a good part of the dispersed matter will be
collected in exactly these regions, thus giving rise to an ever
decreasingD(t). Moreover, these regions have their own
dynamics, which gives a process that will onlyasymptoti-

FIG. 3. ‘‘Diffusion constant’’D(t) as a function of time for
three different compositions @x0520.4 (D*50.37), 0.0
(D*50.50), and 0.4 (D*50.76)#. ~a! Data in a conventional linear
plot ~solid line for x0520.4, long-dashed line forx050.0, and
short-dashed line forx050.4). ~b! Data plotted againstt21/3 ~solid
lines!. Shown also are fits toD`

fit1bt21/3 ~short-dashed line! and the
results of corresponding EMA calculations~long-dashed line!. The
compositionx0 is by c. Note that neither the simulation nor the
EMA reaches a constant value, although the simulation time is very
large. Forx0520.4 finite-size effects are visible for large times.
~The grid size is 512.!
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cally reach a finally constant value forD(t). This final value
reached is a subject that deserves a more thorough treatment,
which is why we will postpone this until later. To somewhat
substantiate the above general comment let us show results
of two different kinds of calculations that show the impor-
tance of the ‘‘reservoir effect’’ and its decisive influence on
the overall temporal development ofD(t).

Let us begin by eliminating altogether a possible reservoir
effect. To achieve this we calculate the functiondD(t) ap-
pearing in Eq.~8!, only now witha50, and compare this to
our usual choicea50.85. Clearly, when settinga50 this is
equivalent to the homogeneous case and therefore the distri-
bution of the scalar will have the usual Gaussian form

c5
e2~x21y2!/4D* t

4pD* t
.

~The fact that hereD* appears, and not a different value or
even a fit parameter, is solely ofquantitativeimportance.! In
other words, we are presupposing a solution that is com-
pletely uncoupled from the surface and therefore exhibits
absolutely no reservoir effects. Results for these calculations
in comparison with those fora50.85 are collected in Fig. 4.
As one can easily observe, the behavior is very different.
Most important of all, in the long-time limitdDua50 tends to
zero, which is absolutely not the case for the ‘‘exact’’
dD(t). Additionally, in the short-time limit, we find even
significantly negative values fordDua50, but not for
dD(t). It can be shown by simulations and general consid-
erations that the latter is only a short-time effect and there-
fore of no further importance for the discussion here. The
most important result here is that the Gaussian approxima-

tion is incompatible with the results obtained fora50.85,
since it yields a completely different time development. This
means that disregarding the reservoir effect is not adequate
for treating the problem we pose here. Keeping in mind that
the Gaussian form forc is equivalent to effective diffusion
with some constant value forD(t) one can already see here
that the existence of low diffusivity regions prolongs consid-
erably the usually fast transitory regime to the said effective
diffusional process.

To see in which manner we have to expect to reach the
final diffusional regime, we have also solved the diffusion
equation~4! on ‘‘frozen’’ configurations of the Cahn-Hilliard
equations, i.e., we initialize both the Cahn-Hilliard equation
and the diffusion equation at the same time. Then we solve
both equations up to some timetF ~where F stands for
‘‘freezing’’ !, where we stop the temporal development ofx
and retain that ofc. In this way, the only time dependence in
dD is that ofc. Results of this type of calculation are shown
in Fig. 5 for tF5100, 200, 300. The freezing times were
chosen to be small in order that the structures remain small
themselves, but large enough to ensure thatx has already
reached its equilibrium values. The situation is now as fol-
lows: We have retained the ‘‘reservoir effect,’’ but neglected
that the ‘‘reservoirs’’ themselves have a temporal develop-
ment. Although the data presented in Fig. 5 do not explicitly
show a new stationary value forD(t), quite obviously we
will reach a new purely diffusive regime much faster than
with sustained growth of the structures. Being the slower
process, the overallD(t) has to depend therefore quite di-
rectly on the time development of the total length of the
interface, i.e., we may now assume that for very large times,
where the temporal dependence ofD(t) due to the spreading
of c is negligible,D(t) has to go like the length of the
interface reaching at infinite times a final value still to be
determined. This argumentation is restricted obviously to the
case where the time scales of the spreading ofc and the

FIG. 4. Integral **dx dy(xx81yx8)c for three different
choices ofx0 corresponding to those of Fig. 3. The three curves in
the upper part of the figure correspond to calculations with
a50.85 (x520.4, solid line, x50.0, long-dashed line; and
x050.4, short-dashed line!, while the other three give results for
a50 (x520.4; solid line,x50.0, long-dashed line; andx050.4
short-dashed line!. The latter choice ensures that the distribution
entering the above integral is of Gaussian shape with a fixed half-
width. HereD* was kept constant at a value of 0.5. As one ob-
serves there are only short-time effects, decaying rapidly to zero,
while this is not true for the choicea50.85. See the text for a
discussion.

FIG. 5. D(t) for four situations. The solid line represents simu-
lation results~averaged over five realizations! with sustained Cahn-
Hilliard dynamics. For the other graphs the dynamics of the phase
separation were stopped attF5100, 200, and 300~long-dashed,
short-dashed, and dotted lines, respectively!. Obviously,D(t) for
the frozen dynamics decays much faster to an asymptotic value,
which depends on the total amount of interface present at time
tF . ~The grid size is 256,x050.4, andD*50.757 576.!
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development of the interface lengthL(t) are well separated
and does not apply, e.g., to the case of frozen configurations,
where the temporal development ofD(t) is not at all gov-
erned by the~overmore constant! L(t). But, as we are inter-
ested here in thedynamicaleffects of the phase separating
medium and have considered the ‘‘frozen’’ case only in or-
der to find out the different time scales of the problem, this is
not a restriction for our treatment.

In short terms, we have to introduce two concepts~foreign
to the treatment whereDA50), namely, that of the reservoirs
and that of the interface in order to interpret consistently the
results obtained. The reservoir effect is in our view the
physical cause behind the prolonged sublinear regime of
s(t) and the dynamically evolving interface length an ad-
equate measure for it. These reservoirs or ‘‘sinks’’ prevent
c from reaching a Gaussian shape with some linear variance
^Dr 2& for finite times because of their own dynamics, which
thus dominates the process. We included therefore, in Fig.
3~b!, fits to

D~ t !5D`
fit1bt21/3,

with D`
fit ~see also Table I! andb being free parameters and

t21/3 the time development of the total interface length. Of
the many possible manners of representation we chose a plot
of the data of Fig. 3~a! versust21/3, where the test functions
represent straight lines. Note that in this plot time grows
from right to left. Therefore special attention has to be paid
to the left part of the plot. Finite-size effects, clearly visible
for the case ofx0520.4 in Fig. 3~a!, plotted by the change
of slope at higher times, are somewhat obscured in Fig. 3~b!
due to the small portion of the axis representing those times.
The initial disagreement of the fit in the case ofx050.0 up
to t21/350.07 can be attributed to the somewhat nonsmooth
initial behavior in this case@see Fig. 3~a!# due to the fact that
the data shown are for one realization only; note also that
t21/350.07 corresponds approximately tot53000. ~The
simple reason for using only one realization is the computer
time needed; each graph needs approximately 15 d of pure
computer time on a Silicon Graphics Indigo@2#.! Apart from
these considerations, one can see that the numerical data are
represented reasonably well by the above test function.

III. THE ASYMPTOTIC VALUE D`

Now let us turn to the reached value asymptotically for
infinite times. Except for fitting the data to a presumed test
function, we will try to find an approximation to this value

by using an alternative method based on an effective-
medium ansatz.

Based on a very simple argument using a kind of
effective-medium approximation~EMA! one can derive a
condition ~see, e.g.,@14#!

K 2D`
EMA

D`
EMA1D~rW !

L
r ,x

5
!
1, ~9!

which after solving gives an approximation to the asymptoti-
cally reached diffusion constantfor a given distribution of
local diffusion coefficients. Let us note in passing that this
average has three contributions: one from theA zone, one
from theB zone, and, finally, one from the interface region.
Here again the crucial role of the interface is stressed since
the first two contributions have extremely little time depen-
dence.

We have employed this approximation in two different
manners. First, instead of treating our problem within a time-
dependent EMA framework, we evaluated the above expres-
sion at different timest1,t2,••• during the simulation,
thereby obtaining the asymptoticDt1

EMA , Dt2
EMA , . . . for the

spatially inhomogeneous but stationary case. Then we define
a curve joining this set of values, thus yielding an approxi-
mation toD(t). We have calculated this kind of ‘‘adiabatic’’
effective-medium approximation; the results are presented
together with the simulation results in Fig. 3~b!. For the mo-
ment this serves one sole purpose: to show that this kind of
approximation gives very reasonable results. In fact, we
found the error~assuming the simulation results to be exact!
to be generally less than 10%. Note, though, that the tempo-
ral development is slightly different.

Second, and of more importance here, we used this ap-
proximation in its original sense, namely, to find an approxi-
mation toD` . This is done using the following argumenta-
tions, i.e., one considering a finite system and one
considering an infinite system.

As mentioned, in our phase-separating problem, the num-
ber of structured domains decreases with time. That means
that at an infinite time we are left with one single droplet of
A immersed inB ~or vice versa!, with relative area given by
(16x0)/2. Using now the equilibrium solution of the Cahn-
Hilliard equation~the interface goes like a hyperbolic tan-
gent! we are able to numerically solve the above condition
~9!, i.e., we solve this equation on a surface with a single
circular structure with the radial dependence being
tanh@(r2R)/A2#, whereR is the x0-dependent size of the

TABLE I. Estimation ofD` for a constant value of̂D&5(12ax0)D*50.5. (a50.85.! DA andDB signify the values of the diffusion
coefficient for the pure phaseA (x511) or B (x521), respectively.D`

EMA,L is the approximation toD` within the effective-medium
ansatz for afinite system. It is numerically calculated using condition~9! under the assumption that the finally reached distribution ofx is
a single circular structure~with interface!. D`

EMA is calculated using~10! and therefore is a result for an infinite system with a completely
sharp interface.D`

fit is obtained by fitting the simulation data toD`
fit1bt21/3 and the errors estimated by varyingD`

fit ~adjusting after that the
parameterb) until the sum of squares of residuals is double its optimal value. See the text for further details.

x0 D* DA DB D`
EMA,L D`

EMA D`
fit

0.4 0.7576 0.1136 1.4015 0.2281 0.2174 0.1936 0.005
0.0 0.5000 0.0750 0.9250 0.2776 0.2634 0.2566 0.005
-0.4 0.3731 0.0560 0.6903 0.3699 0.3608 0.406 0.01
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droplet. This should give us an approximation to the asymp-
totic value ofD(t) for a finite system.

In the limit of an infinite system we can even go one step
further. If the system is infinite the relative width of interface
present goes to zero. Assuming therefore that there is a com-
pletely sharp interface and that the local diffusion coefficient
is simply that of the corresponding pure phase, we can say
that

15
! 11x0

2

2D`
EMA

D`
EMA1~12a!D*

1
12x0

2

2D`
EMA

D`
EMA1~11a!D*

,

where (11x0)/2 @(12x0)/2# is again the fraction of the area
occupied by phaseA @B# where the diffusion coefficient is
(12a)D* @(11a)D* #. This is a simple quadratic equation
and has the physical solution

D`
EMA5D* @2ax01A12a2~12x0

2!#, ~10!

which can now be used to calculate the wantedD`
EMA . ~Note

that for the case ofx050.0 this yields the classical result
D`
EMA5ADADB.!
The value of calculatingD`

EMA in these two different man-
ners lies in that we are now able to countercheck the results
thus obtained. Clearly, both have to yield values similar to
those of the finite system being slightly larger than the oth-
ers.

In Table I we present the data concerning this section. As
can be seen from the table, for very large times and a single
droplet the influence of the interface is rather small, so that
the rather simplistic ansatz that led to Eq.~10! gives very
reasonable results.

These values can be compared to the ones obtained before
by fitting the simulation data toD`

fit1bt21/3. The values
D`
fit are listed in the last column of Table I. The errors given

there for these quantities have been evaluated by varying
D`
fit ~adjusting the parameterb every time! until the sum of

squares of residuals was double its optimal value using the
‘‘best’’ parameter set. The values obtained from these differ-
ent procedures agree reasonably and best forx050.0, which
agrees with the fact that the EMA is a good approximation
either for small differences of concentrations ofA andB or
for small concentrations ofA in B ~or vice versa!. The over-
all error, assuming again the simulation results to be exact,
is, like in the case of the ‘‘adiabatically’’ used EMA, about
10%.

IV. SUMMARY AND DISCUSSION

In this paper we treated diffusion in a special inhomoge-
neous medium, namely, in a phase separating binary alloy,
whose temporal development is determined by the Cahn-
Hilliard equation. With the exception of few calculations we
considered the following situation. At timet50 we insert a
‘‘droplet’’ of a passive substanceC in a medium that has not
yet started its phase separation. The medium consists of two
substancesA andB, in whichC diffuses at a different rate,
neither of which vanishes. The respective diffusion coeffi-
cients for the pure phases are calledDA andDB . After hav-
ing thus prepared the system, we start the time evolution and
measure the spatially averaged diffusion ‘‘constant’’D(t) of

the substanceC in the medium by determining the variance
of its distribution function.

We found thatD(t), independent of the initial composi-
tion of A andB, decreaseswith time. What is more, for very
long times it decreases liket21/3, which is an extremely slow
process. A nonzero constant value forD(t) is expected to be
reached at infinite times, but this is~a! an asymptotic process
that takes~b! a very long time even to reach only an approxi-
mately constant value. As can be seen from the simulation
results presented in Fig. 3, after 53105 time steps or at time
t510 000 we are still far away from the said constant value
D` ; compare also Table I. With respect to the time law
found, therefore, one might say that diffusion, at least in this
special medium, issublinear, had the latter term not been
reserved forD`50.

The reason for the deviation from the typical linear de-
pendence ofs(t) has been localized in relation to Eq.~8!.
Here one easily recognizes that the interface and its temporal
development introduce a new time dependence. Besides
short-time effects, which more specifically are here~a! the
initial deviation of the length of the interface fromt21/3 and
~b! effects due to the initially comparable size of the struc-
tures~which grow like t1/3) and of the distributionc of the
scalarC ~which grows a little less than linear!, there is a
long-time tail proportional to the total length of the interface.
This means that finallyD(t) goes like t21/3 to a constant
value. We have fitted the simulation data therefore to a test
function

D~ t !'D`
fit1bt21/3,

with very reasonable success~see also Fig. 3!. The value
D`
fit gives an estimation to the asymptotic value reached for

infinite times.~Let us insist once more that the above fit is
justified only in the case of a fully dynamical system. For
‘‘frozen’’ configurations, where one stops the temporal de-
velopment of the Cahn-Hilliard equation, this ansatz is not
justified. But since it is quite clear that without the slow
dynamics of the phase separation we would find after a short
transient an effective diffusion, this case seems not to be
sufficiently interesting.!

In order to estimate the latter we also used an approxima-
tive treatment based on an effective-medium ansatz, which in
this case led to Eq.~9!. Using now the simple argument that
at infinite time we remain with only one single droplet and
using the equilibrium solution of the Cahn-Hilliard equation,
we could numerically solve the above condition for this finite
system. If, on the other hand, we consider the system to be
infinitely large, then att5` the relative amount of the inter-
face is negligible and Eq.~9! can be solved analytically. The
values obtained in both ways are very well comparable with
those of the finite system being slightly larger, as one has to
expect, and in turn compare well with those obtained by the
above-mentioned fit with a deviation of about 10%.

Keeping in mind that the cause of the nonlinear time de-
pendence ofs(t) is the sole existence of reservoirs with an
interface, which develop in time on a slower time scale than
the spreading ofc, we expect that the behavior found in this
special treatment is very well generalizable to other dynam-
ics of inhomogeneous media.
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APPENDIX A: DERIVATION OF EQ. „7…

We follow here the approach used earlier in Ref.@15#.
The most important step is to calculate the mean-square dis-
placement via its time derivative

]^~Dr !2& r ,x
]t

5E drW~DrW !2
]^c&x

]t
.

Since nowD(rW,t)5D* @12ax(rW,t)# one finds for the latter
derivative

]

]t
^c&x5^¹W •@D~rW,t !¹W c#&x

5^¹W D~rW,t !•¹W c1D~rW,t !¹2c&x

5D* $^¹2c&x2a^~x¹W 1¹W x!•¹W c&x%. ~A1!

Keeping in mind that

]

]t
^~Dr !2& r ,x5

]

]t
~^r 2& r ,x2^r & r ,x

2 !

and that furthermore

]

]t
^r & r ,x

2 52E drWrW
]

]t
^c&x•E drWrW^c&x

52
]^rW& r ,x

]t
^rW& r ,x , ~A2!

one deduces for the average of the mean displacement~or
rather its temporal derivative! using partial integration

]

]t
^r & r ,x5aD* S E drW^x¹W c&x D . ~A3!

Let us turn now to the square part. Obviously the first
term on the right-hand side of Eq.~A1! is the original term
for diffusion in homogeneous media. Therefore we can im-
mediately give the solution to this part as 4D* . We get now

]

]t
^r 2& r ,x54D*2aD* E E dx dy@x2^x¹2c&x

1x2^¹W x¹W c&x1~ terms iny!#. ~A4!

Contributions of mixed terms~e.g.,x2]2/]y2), as usual,
do not give any contribution and therefore¹W in the above
equation can be substituted by]/]x ~or ]/]y in the y terms,
naturally!. Using now again partial integration of the first
term of the above equation~the remainder@x2^x]c/]x&#
vanishes because of periodic boundary conditions! one finds

]

]t
^r 2& r ,x54D*12aD* E E dx dyxK x

]

]x
cL

x

12aDP* E E dx dyyK x
]

]y
cL

x

54D*22aD* E E dx dyF2^xc&x

1xK ]x

]x
cL

x

1yK ]x

]y
cL

x

G . ~A5!

Now putting everything together, we find

]

]t
^~Dr !2& r ,x54D*22aD* E E dx dyF2^xc&x

1~x2^x& r ,x!K ]x

]x
cL

x

1~y2^y& r ,x!K ]x

]y
cL

x

G , ~A6!

or, integrating over time,

s~ t !54D* t22aD* E
0

t

dt8E E dx dyF2^xc&x

1~x2^x& r ,x!K ]x

]x
cL

x

~y2^y& r ,x!K ]x

]y
cL

x

G .
~A7!

Let us now discuss this equation. The very first term rep-
resents naturally the ‘‘normal’’ or homogeneous diffusion.
The second term~the first below the integral! represents an
average of correlations between the inhomogeneous phase
and the density of the diffusing scalar. Clearly, starting, e.g.,
from a well-developed pattern with already large structures,
this term might display a complicated time dependence.
Starting instead, which is the case we are most interested in,
from a random distribution where therefore the initial droplet
of c is already of the same order of size as the ‘‘structures,’’
this term will give a linear contribution from the very begin-
ning with a slope of exactlyx0. We checked this numerically
and found it to be true to very good precision.The third term
at last contains the average position, which as usual is not
significantly time dependent. Therefore we reach the final
result

s~ t !54D* F ~12ax0!t2
a

2E0
t

dt8

3E E dx dyxK ]x

]x
cL

x

1yK ]x

]y
cL

x

G , ~A8!

which can also be rewritten as
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s~ t !54^D& r ,xt22aD* E
0

t

dt8

3E E dx dyFxK ]x

]x
cL

x

1yK ]x

]y
cL

x

G . ~A9!

APPENDIX B: NUMERICAL DETAILS

For all our calculations we have used a square grid. Dis-
cretization was made uniformly using a space grid of usually
D51 ~for checking purposes we also usedD50.5, but with
this choice the appropriate time stepDt to ensure numerical
stability is so small that it forbids using this as a standard!.
Time has also been discretized uniformly withDt being
0.020 or 0.025. The grid sizeN was 128, 256, or 512 points,
depending on the simulation time.

The norm ofc @5( i jc(xi ,yj ,t)# has been monitored and
found to be constant to machine precision. The same was
true for the norm ofx. Isotropy was also checked and found
to be preserved statistically.

In order to ensure norm conservation it is of major impor-
tance to use the correct discretization scheme. In particular
the derivative of the productD¹c deserves some attention.
We found that the following discretizations of Eqs.~1! and

~4!, respectively, have the desired properties:

x i , j~ t1Dt !5x i , j2
Dt

D2 @Ji11,j1Ji21,j1Ji , j11

1Ji , j2124Ji , j #,

where

Ji , j5S 4N2 211x i , j
2 D2

1

D2 ~x i11,j1x i21,j1x i , j111x i , j21!

and

c i , j~ t1Dt !5c i , j1
Dt

D2Di j ~c i11,j1c i21,j1c i , j111c i , j21

24c i , j !1
Dt

D2 ~@Di11,j2Di , j #@c i11,j2c i , j #

1@Di , j112Di , j #@c i , j112c i , j # !

~the time dependencet on the right-hand side of the above
has been suppressed in order not to overcrowd the equa-
tions!, which were then consequently used for all the results
shown.

@1# J. Aronowitz and D. Nelson, Phys. Rev. A29, 2012~1984!.
@2# J. D. Gunton, M. San Miguel, and P. S. Sahni, Phase Trans.8,

267 ~1983!.
@3# C. Taylor and J. Cahn, J. Stat. Phys.77, 183 ~1994!.
@4# J. Cahn and A. Novickcohen, J. Stat. Phys.76, 877 ~1994!.
@5# S. C. Glotzer, D. Stauffer, and N. Jahn, Phys. Rev. Lett.72,

4109 ~1994!.
@6# C. C. Ko, T. Kyu, and S. Smith, J. Poly. Sci. B33, 517~1995!.
@7# A. Vasishta, Chem. Eng. Commun.129, 29 ~1994!.
@8# J. M. Liu, Z. G. Liu, and Z. Wu, Chin. Phys. Lett.11, 634

~1994!.
@9# A. M. Lacasta, J. M. Sancho, and F. Sague´s, Phys. Rev. Lett.

75, 1791~1995!.

@10# S. Havlin and D. Ben-Avraham, Adv. Phys.36, 695 ~1987!.
@11# A. Bunde and S. Havlin, inFractals and Disordered Systems,

edited by S. Havlin and A. Bunde~Springer-Verlag, Berlin,
1991!, p. 50.

@12# S. Havlin and A. Bunde, inFractals and Disordered Systems,
~Ref. @11#!, p. 96.

@13# M. Saxton, Biophys. J.66, 394 ~1994!.
@14# L. O. Landau and E. M. Lifshitz,VIII: Electrodynamics, A

Course in Theoretical Physics~Pergamon, Oxford, 1980!.
@15# A. Careta, F. Sague´s, and J. Sancho, Phys. Fluids6, 349

~1994!.

5036 54H. LEHR, F. SAGUÉS, AND J. M. SANCHO


