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We study a low-amplitude, long-wavelength lateral instability of the Saffman-Taylor finger by means of a
phase-field model. We observe such an instability in two situations in which small dynamic perturbations are
overimposed to a constant pressure drop. We first study the case in which the perturbation consists of a single
oscillatory mode and then a case in which the perturbation consists of temporal noise. In both cases the
instability undergoes a process of selection.
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I. INTRODUCTION

Branching is an ubiquitous process in naturef1–4g. From
plants, rivers, blood vessels, and bacterial colonies to den-
dritic growth, the universality of branching has been put for-
ward. In crystal growth, when an undercooled melt solidifies,
the solid front has a parabolic shape; lateral protrusions,
called sidebranches, form on the main structure and grow in
amplitude as they are advected away from the parabolic tip.
This phenomenon has been widely investigated in solidifica-
tion. It has been proposed, both experimentallyf5,6g and
theoreticallyf7–9g that sidebranching results from selective
amplification of natural noise.

Natural noise, that is, noise unintentionally present in the
system, is not enough to create sidebranching in normal
Saffman-Taylor fingers. Normal Saffman-Taylor fingers ap-
pear when an inviscid fluid displaces a viscous fluid in a
Hele-Shaw cell, a pair of glass plates parallel to each other
that form an almost two-dimensional channel in which the
flow takes place. In the absence of perturbations, Saffman-
Taylor fingers are always greater than half of the channel
width. We refer to these steady-state fingers as normal
Saffman-Taylor fingers, to be able to differentiate them from
anomalous fingers, whose width is less than half of the chan-
nel width and that are observed when anisotropy is imposed
on the system. In anomalous Saffman-Taylor fingers, den-
drites have been observed using localized disturbances, such
as a bubble placed at the finger tip or a thread placed along
the channelf10,11g. In both dendritic crystals and anomalous
fingers, it has been shown that periodic forcing induces pe-
riodic sidebranchesf12–14g. Experimentally, sidebranches
have been observed in viscous fingers for miscible fluids in a
radial cell when anisotropy is imposed on the system by
engraving a grid on one of the platesf15,16g. For immiscible
fluids, sidebranches are strongly suppressed by surface ten-
sion, and a low-amplitude lateral instability can be observed
f17g. Theoretically, viscous fingers in the radial cell with
fourfold anisotropy have been studied in Ref.f18g. In agree-
ment with experiments, regimes for which fingers have lat-
eral instabilities, whose amplitude is strongly suppressed by
surface tension, are found. Localized nonlinear instabilities
of the normal Saffman-Taylor finger have also been reported

f19g. Recently, fluctuations along the finger sides have been
reported in normal fingers for low capillary numbers and
very wide and long channelsf20g.

A wide variety of problems, which include biorheology
and oil recovery, involve the dynamics of confined fluids in
frequency-dependent flow regimes. Due to its relative sim-
plicity, the Saffman-Taylor finger is an archetype of both
pattern-forming systems and two-phase flow in confined sys-
temsf21g. We are, therefore, interested on the response of the
Saffman-Taylor finger to a controlled frequency-dependent
flow.

Here we report a lateral instability of the normal Saffman-
Taylor finger induced dynamically in a controlled manner.
We also propose for which frequencies and cell dimensions
this instability can be more easily experimentally observed.
By means of a phase-field model, we study two cases. The
first one, in which an oscillatory signal is overimposed to a
constant pressure gradient, leads to a strictly periodic lateral
instability that undergoes a process of selection. We then
study the effect that dynamic noise has on the finger shape
and observe a similar lateral instability. This one, despite its
nonperiodicity, undergoes a process of selection as in the first
case.

II. PHASE-FIELD MODEL AND MACROSCOPIC MODEL

Recent studies indicate that the Saffman-Taylor problem
for Newtonian fluids can be successfully studied by means of
phase-field modelsf22–24g. The main advantage of such me-
soscopic approaches is that they avoid complicated methods
for tracking the interface. In particular, it has been found that
a single-order-parameter equation suffices to reproduce the
macroscopic equations of the Saffman-Taylor problem in the
infinite-viscosity-contrast limitf24g. Moreover, numerical
simulations of this model have reproduced the behavior of
the fluid-fluid interface, from destabilization and mode com-
petition to the formation of the steady state. We therefore
decide to use the phase-field model of Ref.f24g with a
boundary condition modified to allow for dynamic pressure
drops.
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The mesoscopic equation to be solved for the infinite-
viscosity-contrast Saffman-Taylor problem is the equation of
Model B

]f

]t
= = · fM = msfdg, s1d

wheref is an order parameter andmsfd is a chemical po-
tential that has the explicit form

msfd = − f + f3 − e2¹2f, s2d

wheree is a parameter proportional to the interface width.
The parameterM has a constant value in the viscous fluid
and is zero in air. The following boundary condition is im-
posed at the bulk of the displaced fluid,

fsx,y ø ytip − l,td = fBstd. s3d

Equations3d fixes the bulk valuefBstd at an arbitrary dis-
tance l from the fingertip.ytip corresponds to the most ad-
vanced point of the interface. This creates a ramp that repre-
sents the driving force of the system. The initial boundary
condition to generate a steady-state finger is shown in Fig. 1.
Despite their simplicity, these equations describe the hydro-
dynamic equations of the macroscopic problem in the sharp
interface limit.

The macroscopic equations of the problem are Laplace’s
equation for the pressurep, i.e.,

¹2p = 0, s4d

which is written from Darcy’s Law plus the incompressibil-
ity of fluids, and the boundary conditions at the fluid-fluid
interface; that is, the continuity boundary condition and the
local thermodynamic equilibrium condition, i.e.,

vn = −
b2

12h
= p · n̂, s5d

Dp = − gk, s6d

where vn is the normal velocity of the interface,h is the
viscosity of the viscous fluid,b is the gap between the cell
plates,n̂ is a vector normal to the interface,Dp is the pres-

sure drop at the interface,g is the surface tension, andk is
the local curvature of the interface.K;b2/12h is commonly
known as the permeability of the system.

In order to recover the macroscopic equations from the
mesoscopic equations, a matched asymptotic expansion is
necessary and the following identification of parameters has
to be made:p=feqm1, K=M /2feq

2 , and g=feqsg8 /Dfd,
wherem1 is the first order ine term of the chemical potential,
f0 is the zero order ine term of the order parameter,Df
=2feq, feq is the bulk value for the order parameter in equi-
librium, andg8=e−`

` s]f0/]wddw. The variablew is an inner
coordinate of the interface, which is introduced in the expan-
sion, and that is, at any point, perpendicular to it.

It is worth to note that in order to study the effect of a
dynamic pressure drop on the Saffman finger shape, the pres-
sure gradient should contain a constant term responsible for
the finger formation. That is, the pressure gradient should be,
at any time, negative so the fluid-fluid interface remains un-
stable. Moreover, the time-dependent term of the pressure
gradient should be small compared to the constant term of
the pressure gradient because we are interested in studying
situations in which the single-finger solution exists. In our
model, the above considerations are implemented by taking
the boundary conditions3d for the order parameter in front of
the finger as a constant plus a dynamic term of the form

fBstd = fB0 + dgstd, s7d

wheregstd is a time-dependent dimensionless function that
varies between −1 and 1 and will be considered in two dif-
ferent ways as explained below, andd is an amplitude that is
small compared tofB0. In the two cases described below, we
have carried on the numerical integration of Eq.s1d subject
to the proper dynamic boundary conditions7d. We have used
an Euler method for a discrete square lattice of sizenx3ny
with mesh sizeDx=1 and time stepDt=0.01. nx has been
chosen to benx=32 in all cases, andny, which is the dimen-
sion along which the finger propagates, has been chosen in
such a way that the lateral instability is well developed. It
will be specified in each case.

III. NATURAL FREQUENCIES

Before describing the dynamic signals considered in the
present paper, it is convenient to remember that there are two
natural frequencies of the steady-state problem. The first
characteristic frequency of the steady-state problem is the
finger velocity divided by the finger width, which gives an
angular frequency equal to

v finger = 2p
U

lW
. s8d

The other frequency characteristic of the steady-state prob-
lem is the one determined by the flow very far from the
finger tip, that is, the flow velocity at infinity divided by the
channel width, which gives an angular frequency equal to

FIG. 1. Profile for the order parameter along the flow direction
for the initial boundary condition. The flow takes place from the
right to the left.
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v` = 2p
V`

W
. s9d

These two frequencies are related to each other because con-
servation of matter implies that the finger velocity times the
finger width is equal to the velocity at infinity; that, isUl
=V`.

IV. NUMERICAL RESULTS

A. Oscillatory pressure drop

The dynamic part of the incident signal consists of a
single-mode oscillatory term. That isgstd of the boundary
condition s7d is

gstd = cossvtd. s10d

The initial condition consists of afsx,yd profile that corre-
sponds to a steady-state finger. The parametersfB0 andd in
Eq. s7d have been set equal tofB0=−0.6 andd=0.09.

As the bulk value offBstd oscillates, the finger responds
by generating a wave on its tip. This wave is advected far
from the fingertip in such a way that the sides of the finger

are no longer flat, as in the steady-state case, but develop an
instability. In order to quantify the process of growth, the
finger width is measured simultaneously at two different dis-
tances from the fingertipL1 andL2. Due to the growth pro-
cess, variations on the finger width measured at distanceL1,
close to the finger tip, have a much smaller amplitude than
the ones measured at distanceL2, far from the finger tip.
Figure 2 illustrates the behavior of the finger width at dis-
tancesL1 andL2 as a function of time. The incident signal on
the boundary condition of the bulk order parameter has also
been plotted in order to show that the incident frequency and
the response frequency close to the fingertip are the same;
thus the wave generated at the finger tip responds linearly to
the incident signal. It can also be observed that at a distance
far from the tip, the frequency of the lateral instability no
longer follows the incident signal; in fact, it undergoes a
dynamic process as will be discussed below. Just as with the
frequency close to the fingertip, the wavelength of the lateral
instability has a linear behavior; that is, it corresponds to the
average finger velocity divided by the incident frequency.
However, as the wave travels away from the tip toward the
sides of the finger, the wavelength of the instability coarsens
and reaches a value that is independent of the incident fre-
quency. This happens for a very wide range of incident fre-
quencies, that is, the lateral instability undergoes a mode
selection process.

FIG. 2. Bulk valuefB and finger widths measured at distances
L1 and L2 from the fingertip plotted vs time. The mode selection
process has taken place in between the second and third plots. The
output signal frequenciesvL1

andvL2
are determined from the pe-

riods TL1
andTL2

. The incident frequency isv=0.007.

FIG. 3. Finger profiles with lateral instabilities.sad The profile at the top is obtained when introducing an oscillatory perturbation in the
pressure drop. In this case, the instability remains strictly periodic. For this simulation,ny=3200.sbd The profile at the bottom corresponds
to a pressure drop with superimposed noise in time. As a result a nonperiodic instability develops. For this simulation,ny=7000.

FIG. 4. Response frequency measured close to the fingertip plot-
ted against incident frequency. For reference, the selected frequency
is indicated in the coordinate axis as a circle. The natural frequen-
cies of the flowv` striangled and v finger ssquared are indicated in
the abscissa axis.
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In our problem, the frequency selected for the lateral in-
stability is roughly the characteristic frequency of the flow
far from the finger tipv` given by Eq.s9d. The amplitude of
the selected mode saturates and is small compared to the
finger width. Also it is a longwavelength instability as will be
discussed. Therefore, the lateral instability does not have a
dramatic visual effect on the finger as does the instability
which causes sidebranching in solidification. However, it
causes the finger to have small perturbations on its width.
The instability is shown in Fig. 3sad on a 1:1 scale in order to
realize the actual size of the width variations that would be
observable in an experiment.

Figure 4 shows how the frequency of the lateral instability
close to the fingertipvL1

is the same as the incident fre-
quencyv; that is,vL1

=v. This frequency is measured from
the signal periodTL1

with the relationvL1
=2p /TL1

. This
linear response close to the finger tip, has been observed for
all of the incident frequencies studied.L1 has been set equal
to L1=40Dx.

The process of frequency selection far from the finger tip
is shown in Fig. 5. The frequency of the lateral instability
vL2

has the same value for a wide range of incident frequen-
cies. This frequency is slightly larger than the characteristic
frequency of the flow at infinity given in Eq.s9d. The fre-
quency is measured from the signal periodTL2

using vL2
=2p /TL2

. The continuous line is shown for reference and is
the line that would correspond to linear response. We can
clearly see that there are three regimes for the response fre-
quency. First, at very low incident frequencies, the response
frequency is always equal to the incident frequency. In this
region, surface tension is not enough to suppress the modes
that cause a perturbation to the sides of the finger. Second,

there is a range of frequencies for which there is a behavior
between linear response and selection. In this range of tran-
sition, the response frequency corresponds in all cases to half
the incident frequency. This is shown in Fig. 6. We can un-
derstand this behavior if we think that in this region, surface
tension is large enough to suppress the incident frequency,
but not large enough to suppress its first harmonic. Finally,
we see that for incident frequencies larger that the character-
istic frequency of the fingerv finger given by Eq. s8d, the
response frequency is independent of the incident frequency;
there is a mode that is selected because it grows faster than
the others. The selected frequency determines the wave-
length of the lateral instability.

It is important to note that the lateral instability appears,
in many cases, far from the finger tip. For instance, in the
region of incident frequencies where selection is observed,
the amplitude of the lateral instability saturates at a distance
of the order of ten times the cell width and is very small
close to the finger tip. See Fig. 3sad. For the linear and the
transition zonessFig. 7d, the distance from the tip at which
the lateral instability is observed is much smaller as will be
discussed later. The distanceL2 has been chosen in each case
as to measure the instability once the amplitude has satu-
rated.

One might wonder how does the amplitude of this insta-
bility depend on the amplitude of the incident signal. Our
results indicate that close to the finger tip, the larger the
amplitude of the incident signal, the larger the amplitude of
the instability. This can be seen in Fig. 8. However, far from
the finger tip, we find that the saturation value for the ampli-

FIG. 5. Response frequency measured far from the fingertip
plotted against incident frequency. For a wide range of frequencies
mode selection occurs. The symbols on the axis are as in Fig. 4.

FIG. 6. Linear and transition zones of thevL2
vs v curve.

Circles correspond to simulation results and crosses represent the
double of the observed frequency 2vL2

, which fall on the diagonal
and make evident that the first harmonic of the incident signal has
grown. The symbols on the axes correspond to the same frequencies
as in Fig. 4.

FIG. 7. The profile at the top corresponds to an incident frequency that falls in the linear region of thevL2
vs v curve, whereas the profile

at the bottom corresponds to a frequency that falls in the transition region of the same curve. The distance,ds at which the amplitude
saturates is of the order ofds<L andds<2L, respectively. These are regimes that would be easier to observe experimentally.
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tude of the instability is independent of the amplitude of the
incident signal. Moreover, the smaller the amplitude of the
incident signal, the larger the distance from the tip at which
the amplitude saturates, and, therefore, the harder it becomes
to observe it experimentally.

B. Temporal noise

Results of the previous section indicate that the system
selects a frequency for a wide range of incident frequencies.
For linear equations, this would indicate that the system acts
as a selective noise amplifier. Nevertheless, our phase-field
equations contain the full nonlinear behavior of the hydrody-
namic equations. We therefore decided to study the effect of
a dynamic signal consisting of white noise, which contains a
combination of several modes.

We perturb the system by adding a random signal to a
constant pressure gradient at each time step. In our model,
this is implemented by choosinggstd in Eq. s7d to be a ran-
dom number between −1 and 1 at each time step. The value
of d in Eq. s7d is chosen to bed=0.05.

Just as in the oscillatory case, the finger develops a lateral
instability, which is born close to the finger tip, and propa-
gates toward the sides of the finger. The amplitude of the
lateral instability grows as the perturbation propagates away

from the tip, and it reaches an almost constant value. From
the initial random perturbation, some modes grow and some
modes decay as the perturbation propagates far from the tip.
In Fig. 9, we show the driving signal consisting of white
noise overimposed to a constant value of the bulk order pa-
rameter. We then show the oscillations of the finger width
close to the tip in which some of the modes have already
decayed. Finally, we see the oscillations of the finger width
far from the tip in which some of the modes have grown and
the amplitude of the oscillations has reached an almost con-
stant value. The final state has a distribution of frequencies
with a peak at a value close to the characteristic frequency of
the flow at infinity, that is, close to the value of the frequency
selected in the oscillatory case. This can be seen in Fig. 10.
This indicates that, despite the nonperiodicity of the lateral
instability, it undergoes a process of mode selection. Figure
3sbd shows the nonperiodic lateral instability for a finger
with temporal noise.

V. DISCUSSION

In the laboratory frame of reference, once the amplitude
of the instability saturates, the shape remains stationary.
From the tip frame of reference, the instability propagates far
from the tip with a velocity equal to the average finger ve-
locity U. Therefore, the expected wavelength of the instabil-
ity is given by

L =
U

nselected
. s11d

The frequency selected for this long-wavelength lateral in-
stability is roughly the characteristic frequency of the system
at infinity; that is,n`=V` /W, therefore,

L <
U

n`

=
W

l
. s12d

For fast normal fingers the finger width is close to half of the
channel width, sol<0.5. This means that the expected
wavelength for the lateral instability is close to twice the cell
width, L<2W. The instability that we are reporting is a

FIG. 8. Amplitude of the lateral instability measured at a fixed
distanceL1=40Dx as a function of the amplitude of the incident
signal.

FIG. 9. Time dependence for the bulk value of the order param-
eter and of the finger width at distancesL1 andL2 for the temporal
noise case. For the simulation,d=0.05.

FIG. 10. Normalized distribution of response frequencies for an
incident signal consisting of temporal noise. For the simulation,d
=0.05. For reference, the characteristic frequency of the flowv` is
indicated in the coordinate axis with a triangle.
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long-wavelength instability. This fact by itself implies the
need for long channels, but there is another element to be
considered. From simulations, we observe that for fingers
driven by an oscillatory signal in the selection zone, with an
incident amplitude ofd=0.09, the distanceds at which the
amplitude saturates isds<10W. This means that, not only
will the wavelength of the instability be large, but it will take
long for the instability to appear. For example, in an experi-
ment with a cell 10 cm wide, the distance from the finger tip
in which the lateral instability would be observable would be
of the order of 1 m and the wavelength of the lateral insta-
bility of the order of 20 cm. This fact becomes worse for the
studied case of temporal noise because, in this case, the am-
plitude of the incident signal used wasd=0.05 fsee Fig.
3sbdg. In this case the distanceds at which the amplitude
saturates isds<20W, which in our previous example of cell
dimensions, would imply that the distance from the finger tip
in which the lateral instability would be observable would be
of the order of 2 m. This is why this lateral instability has not
been observed for most of experimental situations reported
in literature, even when natural noise is always present on
the system.

There is one experiment reference that does report lateral
fluctuations in normal Saffman fingersf20g. The cells in this
case were very wide and very long. We believe that such
lateral fluctuations are related to the instability reported here,
thus, we make a comparison to the extent possible. For large
aspect ratiosW/b fluctutations are more easily visible for all
flow rates, so we compare our computed expected wave-
length for the instability to the experiment results of this
case. Take for example the finger in Fig. 1scd of Ref. f20g.
For this finger, a channel of widthW<20 cm was used and
the fraction of the channel occupied by the finger was
roughly l<0.5. According to our calculations, this should
give an expected wavelength of the order ofL<40 cm,
which is roughly what can be visually measured from the
experimental figure. The finger, however, is not long enough
to allow for comparison to our frequency distribution be-
cause, despite having the longest channels reported in litera-
ture, the wavelength of the instability is also very long,
therefore, there are only 5 or 6 appreciable maxima.

Another result of our numerical integration that agrees
with the experiment results of Ref.f20g is that the larger the
velocity of finger propagation, the more stable the tip is.
What happens, according to our studies, is that the distance
at which the instability saturates is larger for larger veloci-
ties. Therefore, close to the finger tip, the finger looks more
similar to the steady-state finger. Just as mentioned in Ref.
f20g, our numerical integration indicates that even when the
finger tip appears exactly like the classical Saffman-Taylor
finger, with sufficient resolution fluctuations can still be mea-
sured close to the finger tip for all velocities. In order to
illustrate this point we plot the amplitude of the oscillations
close to the finger tip versus tip velocity in Fig. 11. We can
see that the larger the velocity, the smaller the amplitude of
the oscillations. On the other hand, far from the finger tip,
our results indicate that the amplitude of the instability is
independent of finger velocity. These results imply that for
the experimental cases in which the finger tip appears like
the classical Saffman-Taylor finger, longer channels would

be needed in order to observe fluctuations. One thing that
differs between the experiments reported in Ref.f20g and our
numerical integration is the distance from the tip at which
fluctuations are observable, this one being larger for the nu-
merical integration. We are currently studying the possibility
of such a discrepancy being related to the presence of small
spatial variations present in the cell, but this is out of the
scope of the present paper.

If experiments were to be conducted for an oscillatory
pressure drop, the following considerations should be taken
into account. For oscillatory fingers, selection is observed for
incident frequencies larger than the characteristic frequency
of the fingern finger=U /lW. Therefore, in order to observe
selection, it would be necessary to apply frequencies larger
than n finger. On the other hand, the linear and transition re-
gimes of the oscillatory fingers are not as hard to observe.
For instance, for the oscillatory case withd=0.09, the dis-
tanceds at which the amplitude saturates, in terms of the
wavelength for the instability, is of the order ofds<L for the
linear regime and of the order ofds<2L for the transition
zone. This can be seen in Fig. 7. Therefore, in order to ob-
serve the linear regime of the lateral instability, it would be
enough to apply an incident frequency close to the frequency
characteristic of infinity. The transition zone should be ob-
served for incident frequencies between the two characteris-
tic frequencies of the system, that is, betweenn` andn finger.

VI. CONCLUSIONS

An oscillatory signal overimposed on a constant pressure
gradient produces a low-amplitude, long-wavelength lateral
instability on normal Saffman-Taylor fingers. The instability
undergoes a mode selection process and reaches a final state
with a shape of a single finger whose sides have low-
amplitude strictly periodic undulations. The selected fre-
quency corresponds roughly to the characteristic frequency
of the system at infinity. This implies that the selected wave-
length of the lateral instability for fast fingers will be close to
twice the channel width. Also, the distance from the tip for
the lateral instability to appear is several times the expected
wavelength. So in order to observe this, very long channels
are necessary. For low frequencies, there is a linear regime in
which the response frequency is the same as the incident
frequency and a transition zone for which the response fre-
quency is half of the incident frequency. For these cases, it
should be easier to observe the instability because the dis-
tance from the tip for the instability to be observable is of the

FIG. 11. Amplitude of the instability close to the finger tip as a
function of the average finger-tip velocity.
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order of once or twice the expected wavelength. When tem-
poral noise is added to the system, the same lateral instability
is observed. The distribution of frequencies has a peak at a
frequency close to the frequency selected in the oscillatory
case. We believe that our work could help us to understand
the lateral fluctuations along the finger sides reported in Ref.
f20g and we have made some qualitative comparisons be-
tween our numerical integration in the presence of temporal
noise and experimental results. However, we are currently
exploring the relation of such lateral fluctuations with small
spatial variations present in the cell. We believe that in order

to understand results from Ref.f20g, further studies are
needed.
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