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Noise-induced fronts
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A simple model is introduced that exhibits a noise-induced front propagation and where the noise enters
multiplicatively. The invasion of the unstable state is studied, both theoretically and numerically. A good
agreement is obtained for the mean value of the order parameter and the mean front velocity using the
analytical predictions of the linear marginal stability analysis.@S1063-651X~98!14912-7#
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I. INTRODUCTION

As is well known, nontrivial noise sources in stochas
equations may give rise to a strikingly rich phenomenolo
representing a drastic contrast with respect to the determ
istic ~noiseless! behavior@1,2#. The study of the influence o
noise in several systems continues being an active field
research, but only very recently has attention been paid to
kind of model that possesses a deterministic global sta
ground state that becomes unstable due to the presence
nontrivial noise source, thus exhibiting a genuine noise
duced transition@3–8#. These include those models exhib
ing noise induced ordering transitions@6–8#, or noise in-
duced patterns@3#. Front dynamics have already been stud
under fluctuations but always starting from a determinis
model that itself possesses frontlike solutions@9–13#.

In this work we will address the issue of the generation
fronts in such a noisy framework as well as their descripti
both analytically and numerically. The model is formulat
in terms of a stochastic partial differential equation~SPDE!
of Langevin type, which contains a multiplicative nois
source term. This kind of noise is in general associated w
external fluctuations@1#, although internal noise sources ma
as well give rise to such a coupling with the field under qu
general conditions@14#. A standard way for the introduction
of an external noise is to let a control parameter of the
terministic model to fluctuate@1#.

We will start with a model where in the absence of no
the homogeneous statef(x,t)50 is globally stable and thu
neither fronts nor any other kind of spatial structures
allowed. Any initial condition will relax to this steady stat
We can conjecture whether it would be possible to gene
fronts by a kind of coupling with an external noise. We w
see that this is the case. So we will have genuine noise
duced fronts. This is not a surprise. We have commen
before that external multiplicative noise can induce patte
@3# or phases@4,6–8#. We will show here that fronts can als
be generated in the same way, explicitly, by the presenc
external fluctuations.

In the next section we present the model and the theo
ical framework and results. Section III is devoted to the n
merical technique and results. Finally, we end with a conc
sion and some perspectives of this work.
PRE 591063-651X/99/59~1!/98~5!/$15.00
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II. MODEL AND ANALYTICAL RESULTS

We start with a generic model of reaction diffusion,

]f

]t
5

]2f

]x2
2f~a1f2!, ~1!

wherea is the control parameter@17#. As far asa>0, the
only steady solution of this equation is the homogeneous
with f(x)50. Let us allow this parameter to fluctuate as

a→a~x,t !5ā2e1/2h~x,t !, ~2!

whereh(x,t) is a Gaussian noise of zero mean and corre
tion given by

^h~x,t !h~x8,t8!&52C~x2x8!d~ t2t8!. ~3!

As the noise is white in time the processf(x,t) is Markov-
ian. This is not a strong assumption if we consider that
time scale of the noise is much shorter than any other of
field. This spatial part of the correlation functionC(x2x8)
will be approximated also by ad function because we will
assume that its correlation length is much more smaller t
any other spatial scale of the system. Once we introduc
mesh grid for the spatial domain, this will correspond
taking the correlation length of the noise of the order of t
mesh size,Dx. Thus Eq.~1! becomes a SPDE of the form

]f

]t
5

]2f

]x2
2f~a1f2!1e1/2fh~x,t !. ~4!

We will strictly follow the theoretical approach formu
lated in Ref.@13#, based in a former technique@15,16#, for
describing the effects of the noise by the way of explici
separating the systematic contribution of the noise in Eq.~4!.
The main steps are summarized in what follows.

An important point here is the fact that the noise term
Eq. ~4! has a nonzero mean value. Using Novikov’s theor
@18#, and the Stratonovich interpretation, we get

^fh~x,t !&5e1/2C~0!^f&, ~5!

where,C(0) is explicitly given by
98 ©1999 The American Physical Society
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PRE 59 99NOISE-INDUCED FRONTS
C~0!5
1

Dx
~6!

in the white noise approximation in a lattice.
According to this result we can rewrite Eq.~4! as

]f

]t
5

]2f

]x2
1h~f!1e1/2R~f,x,t !, ~7!

where

h~f!52f~a1f2!1eC~0!f ~8!

and

R~f,x,t !5fh~x,t !2e1/2C~0!f. ~9!

Taking into account these definitions, the noisy termR has
zero mean value and a correlation

^R~f,x,t !R~f,x8,t8!&5^f~x,t !h~x,t !f~x8,t8!h~x8,t8!&

1O~e1/2!. ~10!

Assuming now that the field is expanded as

f~x,t !5f0~x,t !1(
1

`

en/2fn~x,t !, ~11!

and, substituting this expression into Eq.~7! we get to the
lowest order

]f0

]t
5

]2f0

]x2
2f0~a81f0

2!. ~12!

Details of this theoretical approach are given in Ref.@13#,
including next order corrections. So we have now that
linear control parameter is renormalized,

a85a2eC~0!. ~13!

Hence, for those cases in whicha/@eC(0)#,1, or, a8,0,
then the homogeneous solution of Eq.~12! f050 is not
longer stable and any spatial perturbation will grow un
nonlinear terms saturate it. Thus this type of instability w
produce a front propagating in both directions if a pertur
tion of any size is present.

This new state is a spatiotemporal fluctuating fie
f(x,t), and not a smooth front such as it is either in t
deterministic case or in the case of Ref.@9#. Nevertheless one
can define a kind of mean stationary valuef̄st as the nonzero
steady state that can be calculated from Eq.~12!,

f̄st5f0~st!5@eC~0!2a#1/2. ~14!

The linear marginal stability analysis@19# applied to Eq.
~12! gives that the front velocity is

v̄52@eC~0!2a#1/2; ~15!

and from Eqs.~14! and ~15! we have also that
e

l
l
-

v̄

f̄st

52, ~16!

a curious result that indicates that this quantity is indep
dent of any parameter of the model. These are very sim
and precise predictions that we want to check by numer
simulations of Eq.~4!.

III. NUMERICAL PROCEDURE AND RESULTS

We have numerically integrated our model using a f
ward propagation scheme in the way of a basic fini
difference Euler algorithm. Periodic boundary conditio
have been imposed in a linear system of lengthL, divided in
N cells of mesh sizeDx. Simulations were performed fo
Dx50.5 andDt50.01, except were otherwise indicated. F
the implementation of the noise source a standard rand
number generator has been used@20#, while the needed
Gaussian numbers have been obtained using the algor
implemented in Ref.@21#.

An initial Gaussian-like pulse localized in the center
the system, of heighth50.01 and width~mean standard de
viation! w58/3 has been chosen as a perturbation to fa
the development of a front. This perturbation is necess
because the homogeneous initial statef50, although un-
stable, will remain there for ever. Multiplicative noise alon
cannot trigger the evolution of a front or any other structu
precisely because it is coupled multiplicatively with the fie
that is now zero.

When considering the finite difference version of Eq.~4!,
the noise acquires an effective intensity that is given by

e~0![e/Dx5eC~0!. ~17!

Several front trajectories appear in Fig. 1. Frontlike stru
ture and propagation characteristics are clear. We see
the initial spatial perturbation grows up to some satura
value and after that, the structure formed invades the
stable statef50. Moreover, the noise influence is muc
more apparent here than in those models where their de

FIG. 1. Initial stages and propagation of a noisy front. The i
tial Gaussian pulse increases to some saturated value and then
rise to a front invading thef50 state. Snapshots were taken at
550, 100, 240, and 450. The continuous line shows the expe

theoretical value forf̄st . Simulations were performed fora50.1
ande(0)50.15.
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100 PRE 59MIGUEL A. SANTOS AND J. M. SANCHO
ministic part already allows for fronts to rise up@9#. Hence
one cannot expect,a priori, better agreements with the the
oretical predictions than in those cases. Indeed, as the fro
completely induced by the external fluctuations, the ste
state is spatiotemporal stochastic, and hence the characte
tion of the front will deserve a more detailed numeric
analysis than in those cases with a deterministic domin
component superimposed on spatiotemporal small fluc
tions.

For those systems a common procedure for defining
location of a front propagating into thef50 state is via the
integral

z~ t !5
1

f̄st
E

xo

`

dxf~x,t !5xo1 v̄t2D~ t !, ~18!

wherexo is an arbitrary constant that can be considered
the location of the initial pulse,f̄st is the steady state lef
behind the front, andv̄ will correspond to the mean propa
gation velocity of the deterministic effective front@13#,
which indeed corresponds to the front-end speed of the
tual front, whileD(t) gives account for the stochastic wa
dering of the front. As long as we are interested in the e
lution of an initial perturbation located somewhere inside
spatial domain, a slightly different numerical approach m
be prescribed to evaluate the mean velocity and the m
steady field. In this work, we will concentrate in the case
an initial symmetric perturbation.

The position of the front is defined as

z~ t !5 1
2 Ld~ t !5E

L
dxu@f~x,t !2d#, ~19!

whereu(y) is the Heaviside step function, andLd(t) is the
length of the front evaluated as the distance from its t
extremes points propagating in opposite directions. He
z(t) gives the position of the leading part of the half rig
hand side of the front. We will also consider the area co
prised by the front

A~ t !5E
L
dxf~x,t !, ~20!

where both integrals extend over the whole spatial dom
under consideration.Ld(t) andA(t) are necessary quantitie
to evaluate the mean velocityv̄ and the mean steady statef̄st
of the front. It should be borne in mind that some kind
quotient of both magnitudes at late enough times should
low us the evaluation of thef̄st . At the same time, the
evolution ofLd(t) will be used to obtainv̄.

For the numerical evaluation off̄st we have considered
two possibilities, namely,

f~ t !5
A~ t !

Ld~ t !
, ~21!

as well as

f~ t !5
A~ t !2A~ to!

Ld~ t !2Ld~ to!
, t.to . ~22!
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In the first case we have to wait for the front to occupy all t
domainL, provided we have periodic boundary condition
whereas the second one will allow the determination off̄st
for earlier, although late enough times. However, the fi
gives better results and was the one used in our simulati

When the front reaches the boundaries at the ti
tL@Ld(tL)[L#, the sampling off(t) starts. Its stationary
value will be calculated as

f̄st5
1

~T2tL!
E

tL

T

dt f~ t !5
1

n (
i 51

n

f~ t i ! ~23!

wheren[(T2tL)/Dt, and T is the time during which the
front is let to evolve, always greater thantL . This corre-
sponds to an ergodic average off(t).

The mean velocity has been estimated averaging

v~ t !5
Ld~ t !2Ld~ to!

2 ~ t2to!
, t.to ~24!

betweent5to120 andt5tL .
These two definitions give reliable values forf(t)

;f̄st , andv(t); v̄ if transitory contributions have died ou
by a proper election ofto . The value ofd in the definition of
Ld(t) has been chosen small enough (d50.001) for it not to
become a sensible source of errors.

In Fig. 2 we see the mean front velocity versus the eff
tive intensity of the multiplicative noise. It is clearly see
that for intensities lower than a critical value,

eC~0!5a, ~25!

the velocity is zero, which means that there is no front at
The agreement with the theoretical prediction~15! is remark-
able. Also,v̄ turns out to be less sensitive to the discretiz
tion scheme ofDx and Dt, than f̄st , as we will see later.
Some values have been obtained for the deterministic ef
tive front ~12!, which are shown as four circles for the ca
a50.1 and two fora50.3 one. For the rest of the symbo

FIG. 2. Front mean velocity vs noise intensity for two values
the order parameter,a50.1 ~triangles! anda50.3 ~squares!. Closed
symbols correspond to numerical simulations of the stocha
model ~4! for Dx50.5 andDt50.01; open triangles and square
stand for Dx50.1 and Dt50.001. Circles show results for th
simulation of the deterministic model~12!. Lines show the expected
theoretical prediction~15!.
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PRE 59 101NOISE-INDUCED FRONTS
their sizes give an upper bound to the error of each po
From now on, each of the symbols will refer to the sam
values of the parameters as stated for this figure.

Figure 3 presents the mean fieldf̄st versus the effective
noise intensity. We see also that for noise intensities lo
than the critical value no front does exist. The theoreti
values are sensible greater than the numerical ones, but
gressive improvement is achieved by smaller gridsDx. This
effect is clearly seen in this figure. Reducing the mesh s
Dx for a fixed value of the effective noise intensitye(0)
corresponds to makinge smaller, and the solution of th
SPDE@Eq. ~4!# will tend to that of the effective deterministi
front ~12!.

In Fig. 4, the ratio of the mean velocity and steady fie
are plotted versus the effective control parametera8. We see
that the theoretical prediction~16! is well followed by nu-
merical data. Indeed, thea50.3 values forf(t) systemati-
cally come up lower than the ones for the casea50.1. This
is not so forv(t) where both sets give the same mean val
Hence this shows up in Fig. 4 as a systematically gre
value for the casea50.3, and consequently a greater dev
tion from the expected theoretical value~16!. In calculating
the error bars, just the fluctuations of the sampled value
f(t) and v(t) have been considered. Thus, this does
include possible systematic error that arises from the num
cal integration of Eq.~4!.

IV. CONCLUSIONS AND PERSPECTIVES

We conjectured whether it would be possible to gener
fronts by a kind of coupling with an external noise. We ha

FIG. 3. Mean steady statef̄st vs noise intensity for different
values of the control parameter. Diamonds show results
Dx50.25 andDt50.01 for each value ofa. The same notation a
in Fig. 2 has been chosen for the rest of the symbols.
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seen that this is the case. Thus we have shown that fronts
be generated in the same way as other kind of instabili
like patterns or phases, for example. We have studied
characterized the front dynamics of a system that exhi
only one unique stable ground state in its deterministic v
sion, but which undergoes a nonequilibrium transition via
symmetry breaking~stochastic! perturbation in the contro
parameter.

For the velocity of the front we have obtained perfe
agreement with the well known results of linear margin
stability in the presence of noise. The values off̄st show up
to be more sensitive to the mesh steps of the numerica
gorithm, but great improvement is achieved by reducing
mesh gridDx, in consistency with the results for the velo
ity.

Due to the symmetry of the model and the fact that
coupling with the noise is linear, only fronts propagating in
linearly unstable states are expected. We have also stud
higher-order coupling. If a quadratic contribution is cons
ered in the reaction term then fronts invading a metasta
state are possible. Preliminary results confirming the
pected possibility of that kind of noise generated front w
be presented elsewhere.
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FIG. 4. Ratio of the front mean velocity and steady field
effective control parameter. See previous figures for symbol n
tion. The error bars were calculated as the mean standard erro
each ergodic average, once the front occupied the whole sp
lengthL.
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