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Phase-field model of Hele-Shaw flows in the high-viscosity contrast regime
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México, Distrito Federal 04510, Mexico

~Received 4 February 2003; published 29 October 2003!

A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows
in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an
asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rect-
angular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger.
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INTRODUCTION

The characterization of the dynamics of morphologica
unstable interfaces is one of major problems of nonequi
rium phenomenology@1#. Some relevant examples of inte
faces that grow out of equilibrium are dendritic growth, d
rectional solidification, flow in porous media
electrodeposition, bacterial colony growth, and two-flu
flow in a Hele-Shaw cell. The latter example is also cal
the Saffman-Taylor problem and has played a central rol
this field, both because of its relative simplicity and beca
of its potential importance in oil recovery. It has been wide
studied both experimentally and theoretically.

Even if the Saffman-Taylor problem is mathematica
simple in relation to other problems, it has a moving boun
ary condition which makes it a free-boundary problem. T
corresponding equations have been solved analytically
very short times by means of a linear stability analysis a
for the steady-state finger shape by means of conformal m
ping techniques@2,3#. Some analytical results have also be
obtained for the dynamics of intermediate time@4#. Numeri-
cally there are several techniques, most of them involv
integral boundary methods@5–7#

The so-called phase-field models have been introdu
within the context of solidification to study the dynami
from the linear regime to the long time behavior@8#. These
models are based on the introduction of a mesoscopic e
tion for an order parameter~the phase-field!. This equation is
coupled to other physical fields~such as a thermal field!. The
advantage of this method is that one does not have to ex
itly trace the interface. It is a field model for all values of th
order parameter that varies continuously from one phas
the other. One has to identify the locus of points with a giv
value of the order parameter, which is arbitrarily chosen
be the interface. The use of a mesoscopic model, for wh
the interface has a small widthe, is justified as long as in the
sharp interface limite→0 the correct macroscopic equatio
are recovered. Recently, the concept of phase-field mo
has been used in a broader sense to include any model w
contains continuous fields that are introduced to desc
phases separated by diffuse interfaces. Phase-field mo
have been used in a wide range of problems such as vis
fingering, roughening, vesicles, pinch-off and reconnect
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in a Hele-Shaw cell and intracellular dynamics@9–14#.
In general, the phase-field models have been consid

for symmetric situations where the characteristic parame
~such as the thermal diffusivity! are identical in both phases
This gives rise to the so-called two-sided symmetric mod
Very recently, Karma@15# has proposed a phase-field mod
of the one-sided type~with zero diffusion in one phase! to
simulate quantitatively microstructural pattern formation
alloy solidification. For the viscous fingering problem wi
arbitrary viscosity contrast, a phase-field model has been
troduced in Ref.@9#. Such a phase-field model, which is
two-sided model, is useful to describe the problem of visco
fingering except in the high-viscosity contrast regime. T
regime is experimentally relevant since typically the push
fluid is either air or other fluid of negligible viscosity. Fo
such a regime, a proper model was lacking and this is w
we are presenting in this paper; a one-sided phase-
model for the high-viscosity contrast regime of the visco
fingering problem.

Our model contains an equation for an order paramete
is model B of Ginzburg-Landau phenomenology@16#. In-
stead of the coupling of the order parameter to a phys
field through a second equation, we include a boundary c
dition such that the interface becomes unstable. This is d
by means of a ramp that creates a flux from the boundary
consider a one-sided model, we only need to neglect chan
in the order parameter in one of the two phases. The mo
could also be relevant for dendritic growth at very sm
undercooling by introducing anisotropy@17,18#.

Our phase-field model has the advantage of being v
simple to implement on a computer and contains a comp
description of all the nonlinear and nonlocal properties of
macroscopic model. We show how the macroscopic eq
tions of the problem are obtained from the phase-field mo
in the sharp interface limit. This is done by means of t
matched asymptotic expansion method. We then present
merical solutions showing how our phase-field model rep
duces the main features of the viscous fingering prob
such as the dynamic competition of modes and the forma
of a steady-state finger. This makes the model an attrac
tool to use to study problems that would not be easily f
sible with traditional methods such as the propagation
viscous fingering in the presence of quenched disorder.
©2003 The American Physical Society10-1
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THE MODEL

The viscous fingering problem

In the Saffman-Taylor problem both fluids are govern
by Darcy’s law, which relates the fluid velocity to the pre
sure gradient@2#. When the low-viscosity fluid displaces th
high-viscosity fluid, the interface between both fluids is u
stable. When the pushing fluid is considered to have z
viscosity, Darcy’s law states that the pressure on the pus
fluid is constant and all that remains to be solved are
equations for the viscous fluid subject to the proper bound
conditions at the fluid-fluid interface. This is called the hig
viscosity contrast regime and in this regime the equations
the displaced viscous fluid are

¹2p50, ~1!

vn52K“p•n̂, ~2!

Dp5gk. ~3!

Equation~1! is the Laplace equation in the bulk, wherep is
the pressure of the viscous fluid. At the interface, there
two boundary conditions: the continuity equation, Eq.~2!
and the Gibbs-Thomson condition, Eq.~3!. vn is the velocity
normal to the interface.K is the permeability of the viscou
fluid, K5b2/12m where b is the separation between th
plates, andm is the viscosity of the fluid that is being pushe
Dp is the pressure of the viscous fluid minus the const
pressure at the zero viscosity fluid, which without loss
generality can be taken equal to zero.k is the local curvature
at the interface andg is the surface tension. These thr
equations also describe solidification in the quasistatic li
of small undercooling by introducing anisotropy. In what fo
lows, we present the equations for our phase-field model
show how it reproduces the above equations in the sh
interface limit.

Phase-field model

Our phase-field model contains a time-depend
Ginzburg-Landau equation for a conserved order param
and includes a boundary condition that makes the interf
unstable. The equation reads

]f

]t
5“•@M0“~2f1f32e2¹2f!#. ~4!

The local order parameterf adopts the equilibrium value
feq51 ~air phase! and feq521 ~viscous fluid phase!. At
the interface,f varies continuously from one phase to t
other. The parameterM0 has a constant value in each pha
and is zero in air,

M05H M if f,0

m50 if f>0.
~5!

The air phase can be pulled toward the viscous fluid.
unstable interface is developed by maintaining a slope in
order parameter close to the interface, as the case show
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Fig. 1. This situation can be created by initially preparing t
system with a profile of the form

f~x,y!5H 1 if y.ym ,

212a~y2ym! if ym2 l ,y<ym ,

211a l if y<ym2 l ,

~6!

and fixing the valuef f5211a l behind the interface up to
a distancel throughout all the temporal evolution. This slop
represents the driving force of the system. The parametea
controls the slope and the finger’s growth velocity. For co
venience we will refer to the air as theplusphase and to the
viscous fluid as theminusphase.

THE SHARP INTERFACE LIMIT

In this section we obtain the macroscopic equations
the viscous fingering problem in the high-viscosity contr
regime by means of an asymptotic expansion of the pha
field model in the sharp interface limite→0 @19,20#.

Our starting point is Eq.~4!, used in the study of a con
served order parameterf. The chemical potential is given b

m~f!5mB2e2¹2f52f1f32e2¹2f. ~7!

We divide the space into an outer and an inner region.
assume thatf56feq1O(e) far from the interface.e is
considered to be a small parameter and we expand all
variablesa(r ,t) around the valuee50 in the outer region.
We obtain

a~r ,t !5a01ea11e2a21••• . ~8!

For the interfacial region or inner region, we adapt o
coordinate system using time-dependent curvilinear coo

ym

y

1

1

φ(
y)

l

air
viscous

fluid

FIG. 1. Scheme of the initial profile prepared with a ramp th
will be maintained during the temporal evolution.
0-2
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PHASE-FIELD MODEL OF HELE-SHAW FLOWS IN THE . . . PHYSICAL REVIEW E 68, 046310 ~2003!
nates. The interfacial points are given by the curvilinear
ordinatesu, which is the normal distance to the interface, a
s, which is the arclength. Because the natural dimension
the inner region must be small, we introduce the variablew
defined asw5u/e. Thus, in the sharp interface limit, whe
e→0, the inner region goes fromw→2` to w→1`. We
use the corresponding inner fieldsA(w,s,t) in the inner re-
gion and the corresponding expansion is

A~w,s,t !5A01eA11e2A21••• . ~9!

When we take the limit of the sharp interface,e→0, the
conditions for the fieldsa andA , from the expansions toi th
order ine are

lim
w→2`

Ai5 lim
u→20

ai , ~10!

lim
w→2`

]wAi 115 lim
u→20

]uai . ~11!

Due to the fact thatm50 in air, the matching condition is
only imposed in the viscous phase.

In the inner region, we introduce the order parametef̃

such thatf̃„u(t),s,t…5f(r ,t), therefore

] tf5] tf̃1] tu]uf̃. ~12!

We rescale time ast5et since we work in the quasistati
approximation, where the characteristic times for interfa
motion are much larger than the characteristic times for
diffusion to take place. The local curvaturek52¹2u is
positive when a bump of thef.0 phase protrudes into th
f,0 phase. Starting from Eq.~12!, using the Laplacian op
erator in curvilinear coordinates¹25]u

22k]u1]s
2 , and

making the corresponding variable changes, we have

e]tf2
v
e

]wf5MF 1

e2
]w

2 m~f!2
k

e
]wm~f!1]s

2m~f!G ,

~13!

where we have dropped the tildes. The normal velocityv5
2] tu is positive if the phase with a negative order parame
goes into the phase with a positive order parameter. T
variable is also expanded in powers ofe.

For the chemical potentialm, the inner expansion in term
of f ~to ordere2) is given by

m~f!5m01em11e2m2 , ~14!

with

m05mB0
2]w

2 f0 ,

m15mB0
8 f12]w

2 f11k]wf0 , ~15!

m25 1
2 mB0

9 ~f1!21mB0
8 f22]w

2 f21k]wf12]s
2f0 ,

wheremB0
5mB(f0). The prime represents the derivative

f evaluated atf0.
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For the region far from the interface~outer region!, the
length scale involved is much greater thane, so we can use
a common time-independent coordinate system. In the
cous fluid region the dynamical equation for the order p
rameter is simply

e]tf5M¹2m~f!, ~16!

wherem(f) is given by Eq.~7!.

Inner region

We now proceed to solve the equations for the inner
gion, Eqs.~13!–~15!. We also use the matching condition
Eqs. ~10! and ~11!. Solutions that obeyf(0)50 and
]wf0(2`)50 are required.

Order e22. For the inner region, the dynamical equatio
to lowest order ine, (e22) is taken from Eq.~13!,

]w
2 m050. ~17!

Here we have taken into account the expansion form. The
previous expression has a solutionm05m01n0w. The re-
quirement thatm0 must be finite forw→2` implies that
n050. Finally, we considerm050 and thenfeq561.
Therefore,m050 in the inner region.

Order e21. Taking the first-order termse21 from the dy-
namical equation in the inner region, Eq.~13!, we have

2v0]wf05M]w
2 m1 , ~18!

sincem050. Integrating Eq.~18! in w we find

2v0f05M]wm11n1 . ~19!

By evaluating between the limitsw52` andw5`, Eq.
~19!, we obtain

22feqv05M]wm1~2`!, ~20!

where 2feq is the order parameter change between the
phases and we have only the contribution of the viscous fl
phase on the right-hand side. Using Eq.~11! we have
]wm1(2`)5]um0(20)50. From Eq. ~20!, v0 also van-
ishes and Eq.~19! givesn150.

By integrating Eq.~19! in w, we find thatm15m1(2`) is
a constant. In order to obtainm1(2`), we use its expression
from Eq. ~15! and we multiply both sides of this expressio
by ]wf0 and integrate inw

m1~2`!E dw]wf05E dw]wf0~mB0
8 2]w

2 !f1

1kE dw~]wf0!2. ~21!

The function]wf0 is known as the Goldstone mode and
related to the translational invariance of the interface. T
equation forf0, written as a function of the rescaled variab
w, is mB0

2]w
2 f050. Differentiating with respect tow we

obtain an equation for]wf0, which is (mB0
8 2]w

2 )]wf050.
0-3
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So the Goldstone mode is a zero eigenvector of the lin
operatormB0

8 2]w
2 . By doing integration by parts, the firs

term on the right-hand side of Eq.~21! vanishes and we
obtain

m1~20!5
g

feq
k, ~22!

whereg5 1
2 *dw(]wf0)2 is the surface tension and we ha

used the matching condition form1(20) from Eq.~10!. Tak-
ing into account the fact that at the interfacep(20)
5feqm1(20) we obtain Eq.~3!.

Order e0. In order to obtain the continuity equation, w
need to go to the next order. The dynamical equation to o
e0 in the inner region is

2v1]wf05M ~]w
2 m22k]wm11]s

2m0!. ~23!

Integrating Eq.~23! in the direction normal tow we find

22feqv15M]wm2~2`!5M]um1~20!, ~24!

where we have used the matching condition, Eq.~10!, and
the fact that]wm1(2`)50 andm050. Equation~24! could
be written as Eq.~2! in terms of the pressure at the interfa
of the viscous fluid, whereK5M /(2feq

2 ).

Outer region

Order e22. The dynamical equation in the outer region
the lowest ordere22 is

¹2m050. ~25!

The boundary condition far from the interface is thenm0
50. We previously found thatm050 for the inner solution
at the interface. The only solution satisfying both conditio
is m050. It follows thatf05feq in the plus phase andf0
52feq in the minus phase. This was to be expected si
the lowest order in the expansion corresponds to the solu
of the flat interface.

Order e21. The dynamical equation for the ordere21 is

¹2m150. ~26!

At ordere the order parameter and the chemical potential
proportional and from Eq.~26! we obtain Eq.~1!.

NUMERICAL RESULTS

We have numerically integrated Eqs.~4! and ~5! with e
51 and M51 on a rectangular lattice of vertical sizeLy
5200 and mesh sizeDx51, with periodic boundary condi
tions in thex direction and reflecting boundary conditions
the y direction. The system has been prepared with a h
zontal interface containing some perturbations in order to
destabilized. The profile in the vertical direction is formed
Eq. ~6! with l 510. As was mentioned before, during th
evolution we maintain a slope by fixing the valuef f521
1a l behind the interface up to a distancel measured from
the tip of the most advanced finger.
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Finger competition

First, we are interested in the generation and subseq
competition of fingers during the early stages of the evo
tion. A wide system of sizeLx5128 has been considered an
we have prepared an initial corrugated interface formed
the superposition of several modes of random amplitude
Fig. 2 we show a typical evolution. It is seen that finge
develop from the random initial configuration. Some mod
grow, some modes decay, and finger competition beg
Both features have been observed in theoretical and exp
mental studies of the viscous fingering problem. The com
tition process continues until only one of the fingers s
vives.

In order to better visualize the competition process
have prepared a second initial condition consisting of t
well-formed fingers, in which one of them is a bit larger th
the other. In Fig. 3 we observe how the largest finger gro
at the expense of the other, which moves backwards, bec
ing smaller, and eventually disappearing.

(a) (c)

(b) (d)

FIG. 2. Finger development and competition fora50.04 corre-
sponding to early times:t5100~a!, 500~b!, 1000~c!, and 2000~d!.

(a) (b) (c) (d)

FIG. 3. Finger competition process for two initially well-forme
fingers with a50.04 and system widthLx564. The patterns are
separated by time intervals of 1000.
0-4
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Steady-state finger

The width of the steady-state finger is expected to go
one-half of the channel width as the velocity of the finger
increases@3,21#. To better explore this situation, we hav
considered a narrow channel of widthLx532, prepared with
an initial condition that gives a single finger. We have an
lyzed the temporal evolution of the finger for different t
velocities corresponding to different values of the parame
a. In agreement with known results, higher velocities led
narrower fingers. An example of the interface evolution
shown in Fig. 4~a!. In Figs. 4~b!,~c! we compare the finge
shapes obtained numerically for two different values ofa
with the theoretical shape for the Saffman-Taylor finger@2#

y5ytip2
Lx~12l!

2p
lnF1

2 S 11cos
p~2x2Lx!

lLx
D G , ~27!

l being the ratio of the width of the finger to the width of th
channel. To determinel from our numerical results, we hav
evaluated the average width of the finger throughout the e
lution, in a strip of thicknesse54 placed at a distance 4
from the tip. For high enough tip velocities, our numeric
results are in agreement with the Saffman-Taylor solut
since they correspond to values ofl close to 1/2@Fig. 4~c!#,
where surface tension effects are negligible. Also, the
pected deviation from the Saffman-Taylor solution is o
served for wider fingers in qualitative agreement with R
@3#.

We have measured the finger-width and the finger-tip
locity v for different values of the parametera. The results,
shown in Fig. 5, are in qualitative agreement with expe
mental results of Pitts@21# and Saffman-Taylor@2# and with
the numerical results of McLean and Saffman@3#. We ob-

050100150200
0

16

32
x

y

y y

x x

(b) (c)

(a)

FIG. 4. ~a! Evolution of a single finger in a channel, plotted
time intervals of 750, fora50.035. ~b! and ~c! Numerical results
~lines! and Saffman-Taylor solution~symbols! are presented for two
values ofa that lead to two different finger widths~b! l50.61 and
~c! l50.53.
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serve thatl tends to one-half of the channel width as t
velocity increases@22#.

CONCLUSIONS

A one-sided phase-field model to describe the dyna
evolution of unstable interfaces for Hele-Shaw flows in t
high-viscosity contrast regime has been proposed. The
soscopic model contains a field equation for a conserved
der parameter~model B of Ginzburg-Landau phenomeno
ogy! and a boundary condition that drives the interface ou
equilibrium. An asymptotic expansion to derive the mac
scopic equations has been performed. The phase-field m
has been numerically integrated and we have analyzed
ferent stages of the dynamics. We observe how from a r
dom perturbation to the interface, fingers develop. Mod
grow and compete dynamically and the competition ends
single steady-state finger. The width of this finger goes
one-half of the channel width as the velocity increases. T
is in agreement with experiments and the existent theory.
have verified that the shape of the finger tip is in good agr
ment with the parametric solution of Saffman and Tay
when the finger width is close to one-half of the chann
width. Also for larger width the shape is in qualitative agre
ment with the fingers found by Mc Lean and Saffman. W
believe that our model could be a useful tool to study sit
tions that cannot be easily tackled with traditional metho
like integro-differential equations, such as the effect int
duced by quenched disorder.
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FIG. 5. Finger-widthl vs velocityv. Solid line is a guide to the
eye. Inset shows the dependence ofv on the parametera.
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