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Growth of unstable interfaces in disordered media
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The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local
models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the
multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion
relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets
pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These
results show good agreement with numerical simulations. For the additive noise we find numerically that a
depinning transition occurs.@S1063-651X~98!04105-1#

PACS number~s!: 68.10.Gw, 05.40.1j, 68.35.Ct
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I. INTRODUCTION

The growth of interfaces in disordered media is an int
esting nonequilibrium phenomenon. An example that
been studied extensively is the growth of a rough, mac
scopically stable interface@1–4#. The aim of this paper is to
study the growth of a morphologically unstable interfa
propagating through a disordered medium.

From the experimental point of view, the study of rou
~stable! interfaces has been done, for example, in fluid fl
in Hele-Shaw cells@5–7#, paper wetting@8#, propagation of
burning fronts@9#, and growth of bacterial colonies@10#. Our
interest here would be in the morphologically unstable s
ation where fingers are developed at the macroscopic s
Specifically, we focus on how the properties of the disor
at much smaller length scales affect the formation and
namics of these fingered structures. Some controlled pe
bations on the growth of unstable interfaces have been s
ied mostly experimentally. For a recent review of the
studies on Hele-Shaw flow, see Ref.@11#, and references
therein. Similarly, a random perturbation introduced to
cell gap could be a simple model of unstable growth in
presence of a disordered medium. This possibility has
ready been explored experimentally@12#. In this case the
disorder of the medium under consideration is frozen in ti
~quenched disorder!.

From a theoretical point of view, the study of the grow
of rough, macroscopically stable, interfaces has recei
much attention in recent years@13–19#. The theoretical ap-
proach to the case of disordered media has been mo
based on the quenched Edward-Wilkinson~QEW! @16# and
quenched Kardar-Parisi-Zhang~QKPZ! equations @15#.
These are local models with a diffusive term which accou
for surface tension effects and a constant force field wh
accounts for an external drift. In all cases the interface
rough and a depinning transition from pinned to moving
gimes is found at a critical forceFc . In the moving regime,
far above the critical force, the quenched noise behaves
a thermal noise recovering the classical EW and KPZ
571063-651X/98/57~5!/5754~7!/$15.00
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gimes@13,14#. On the other hand, belowFc the whole inter-
face becomes pinned. Recently the analysis of roughn
close to the depinning transition has attracted the attentio
researchers, both from experimental@5–10# and theoretical
@15–19# points of view, since new universality classes
growth appear. The depinning transition is a phase transi
characterized by a critical force and a diverging length of
pinning clusters. Just above the critical force the whole
terface is moving but there are clusters with a characteri
length remaining pinned during a finite time.

Local models, such as the geometrical model@20,21# and
the boundary layer model@22#, have also been proposed
study morphological instabilities like the ones observed
solidification patterns@23#. These local models are tractab
simplifications of the complex nonlocal dynamics and p
vide a qualitative description of some aspects of the dyna
evolution. In the same spirit, and in order to study the eff
of a quenched disorder in the growth of an unstable interf
in the simplest possible situation, we propose two local m
els, with multiplicative and additive quenched disorder. Th
contain both surface tension and a constant external drift
should be considered as an attempt to elucidate the inter
between the deterministic instability, the quenched disord
and the propagation of the interface.

The first model is defined by the following equation f
the interface positionh(x,t):

] th~x,t !52a¹2h~x,t !2b¹4h~x,t !1F1h~x,h!¹2h~x,t !.
~1.1!

The quenched disorder is introduced as spatial fluctuation
the external parametera, and therefore has a multiplicativ
character. These fluctuations are defined on a square la
of mesh sizeDx by a static noise that takes a different val
in each cell. The noise valuesh(xi ,yj )[h i j are assumed to
be Gaussian with zero mean and a correlation given by
5754 © 1998 The American Physical Society
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57 5755GROWTH OF UNSTABLE INTERFACES IN DISORDERED MEDIA
^h i j hkl&52eDi jkl , ~1.2!

wheree is the noise intensity andDi jkl is a short-range cor
relation function. A quenched multiplicative noise has be
introduced in a model of kinetic roughening@24# to consider
an experimental situation in which the interfacial growth
dominated by pinning forces. Here, we propose Eq.~1.1! as
the simplest model one can devise which is local, exhibit
deterministic instability, and modifies the linear dispersi
relation with respect to the deterministic one.

The first term in the right hand side of Eq.~1.1! corre-
sponds to the destabilizing effect of the external drivi
force which keeps the system out of equilibrium. The seco
term accounts for the surface tension stabilizing effect. T
interplay between both effects generates the scale at w
unstable fingers emerge. In the absence of noise, the con
pushing forceF fixes an average interface velocity whic
corresponds to that of the planar, unperturbed interface. N
that such velocity is taken as independent of the actual d
ing force of the instability~undercooling in solidification,
injection rate in Hele-Shaw flows, etc.!, which should appea
in the coefficienta.

From this model we obtain two basic results. On the o
hand we show how the quenched disorder behaves lik
dynamic noise provided the interface is fast enough. I
known that a dynamic noise may change the dispersion r
tion in the case of multiplicative noise@25#. Here we can
obtain analytically the change in the averaged linear disp
sion relation in good agreement with numerical simulatio
On the other hand we analyze the pinning phenomena in
presence of an instability. We find that the noise is surp
ingly capable of stopping the otherwise exponential grow
producing the pinning of the interface. This occurs in all o
simulations in a time which diverges when the noise int
sity goes to zero. We show that this surprising effect of
quenched noise is equivalent to the effect produced b
nonlinear term which conserves the symmetries of the or
nal system.

As a second model, we introduce an additive quenc
noise associated to fluctuations in the parameterF,

] th~x,t !52a¹2h~x,t !2b¹4h~x,t !1F1h~x,h!,
~1.3!

whereh(x,h) has the same properties ash(x,h) of Eq. ~1.1!
but with noise intensitye8. In Ref. @26# the model given by
Eq. ~1.3! with a50 and a dynamic noiseh(x,t) has been
discussed in connection with desorption in vapor deposi
of solid films in the presence of gravity. Here, we consid
the unstable situationaÞ0 with quenched disorder. In thi
case we have found a behavior similar to that in the gen
case of stable growth@1–4#, namely, that a depinning tran
sition is always present. Close to the depinning transit
there appear simultaneously regions with a pinned interf
and regions with unstable growth@2#. When approaching the
critical force from above the size of the pinning regions
creases, but contrarily to what happens in the stable case
the pinning regions remain fixed and one finds quenc
fingers coexisting with exponentially growing ones.
n

a

d
e
ch
ant

te
v-

e
a

s
a-

r-
.

he
-

h
r
-
e
a
i-

d

n
r

al

n
ce

-
ow
d

II. LINEAR INSTABILITY AND MULTIPLICATIVE
QUENCHED DISORDER

The aim of this section is to show that, for large pushin
our model of multiplicative quenched disorder@Eqs. ~1.1!
and ~1.2!# is equivalent to a model with a dynamic, time
dependent, noise. For this reason, we obtain the disper
relation associated to the multiplicative noise as the one
the dynamic noise, and we check this result by numer
integration of the model with multiplicative quenched diso
der.

We consider the destabilization of an initially planar i
terface when pushed by the forceF through the disordered
medium represented by the quenched noiseh(x,h). In this
situation and at early times, far from a pinned situation,
whole interface moves at a velocity roughly equal to t
value ofF, encountering different values of the noiseh(x,h)
at a rate given by the velocityF and the correlation length o
the noisel. In fact one could say that the interface is a
fected by the values of the noise with an effective correlat
time t5l/F. Therefore, in this initial regime, the effects o
the quenched noise are similar to what would be obtaine
a dynamic noisej(x,t) were acting on the system. This con
clusion has also been obtained for models of rough interfa
@27# and seems to be general. We shall make explicit t
analogy by using an equivalent model given by the discr
equation

] thi~ t !52a¹ i j
2 hj~ t !2b¹ i j

4 hj~ t !1j i~ t !¹ i j
2 hj~ t !,

~2.1!

where the dynamic noisej i(t), in the limit of small t
5l/F, is a white noise with correlation given by

^j i~ t !j j~ t8!&52ēD̄ i j d~ t2t8!. ~2.2!

The explicit relation betweene and ē depends on the
particular properties of the noise@Eq. ~1.2!#. We start by
decoupling vertical and horizontal directions in Eq.~1.2! as
Di jkl 5D̄ ikD̄ j l , in order to write the vertical direction as
temporal dependence.

We have considered two distinct particular cases. In
first one we take the correlation function of the noise a
smooth symmetric functionD̄ ik5D̄(r ik) with r ik5Dx(k
2 i ) and *2`

` drD̄(r )51. In the second case we have co
sidered a completely uncorrelated discrete disorder. T
situation, chosen here because it is the simplest way in wh
disorder can be implemented in a simulation, is defined
the discrete correlation functionDi jkl 5@1/(Dx)2#d ikd j l , or
equivalently

D̄ ik5
1

Dx
d ik . ~2.3!

In this case the interface is affected by constant indepen
values of the noise in boxes of lengthDx, that is, the corre-
lation function as a function of the time difference has
triangular shape
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5756 57A. M. LACASTA et al.
D̄„~ t2t8!F…5H 1

DxS 12Ut2t8U F

DxD if ut2t8uF,Dx

0 otherwise.
~2.4!

In both cases, in the limit of smalll/F ~small Dx/F for
uncorrelated cells! this correlation function can be written a
a function of the time difference as

D̄„~ t2t8!F…5F21d~ t2t8!. ~2.5!

In view of this equation, and comparing Eqs.~1.2! and~2.2!,
we have

e5F ē . ~2.6!

The next step is to write the equation obeyed by the m
~over realizations of the noise! of the interface position
^hi(t)&. To do that one has to evaluate the mean value of
noise term in Eq.~2.1!. We employ Novikov’s theorem@28#,
which gives the mean of the product of the noise and
functionalc of the noise:

^j i~ t !c~ t !&5E
0

t

dt8(
j

^j i~ t !j j~ t8!&K dc~ t !

dj j~ t8!
L .

~2.7!

We obtain

^j i~ t !¹ i j
2 hj~ t !&5 ēD̄ i j ^~¹ i j

2 ¹ jk
2 hk~ t !&. ~2.8!

In the smooth correlation function case, we can expanD̄

by Taylor as D̄ i j 5D̄(0)1 1
2 D̄9(0)r i j

2 1o(r i j
4 ). Then the

mean of Eq.~2.8! can be written as a continuous equati
~the discrete Laplacian operator¹i j is of order Dx22 and
nonzero only forr i j up to the order ofDx) and reduces to

^j~x,t !¹2h~x,t !&5 ēD̄9~0!^¹2h~x,t !&

1 ēD̄~0!^¹4h~x,t !& ~2.9!

and the equation for the first moment ofh(x,t) is

] t^h~x,t !&52@a2 ēD̄~0!#^¹2h~x,t !&

2@b2 ēD̄9~0!#^¹4h~x,t !&. ~2.10!

Now, the linear dispersion relation can be easily deriv
by defining the growth rate for a modek, vk , as ^ĥ(k,t)&
5^ĥ(k,0)&evkt. We obtain in terms of the intensity of th
original quenched noise

vk5S a2
e

F
D̄~0! D k22S b2

e

F
D̄9~0! D k4. ~2.11!

The first term is stabilizing and the second one is destab
ing. Provided thatD̄9(0),0 the presence of the noise mak
the interface more unstable.

A similar conclusion will be obtained in the second ca
addressed here, namely, the case of a completely unc
n

e

y

d

-

re-

lated disorder. By using Eqs.~2.8! and~2.3!, the equation for
the first moment in this situation is

] t^hi~ t !&52S a12
ē

~Dx!3D ^¹2hi~ t !&2b^¹4hi~ t !&.

~2.12!

In this expression we have taken for the Laplacian opera
¹ i j

2 5Dx22(d i j 2122d i j 1d i j 11), where Dx is the mesh
size. Finally, the dispersion relation reads

vk5S a1
2e

F~Dx!3D k22bk4. ~2.13!

Therefore we see that also in this particular discretizat
scheme with uncorrelated fluctuations the noise acts to m
the interface more unstable.

To corroborate the equivalence between quenched
dynamic noise, we have performed the numerical integra
of Eqs. ~1.1!, ~1.2!, and ~2.3! and compared the resultin
dispersion relation with the prediction from Eqs.~2.13! and
~2.6!. We have used a square lattice with independent no
values in each cell, and the parameter valuesa5b51 and
Dx50.25. In Fig. 1 we have plotted the dispersion relati
from the simulation results compared to the prediction
Eqs.~2.13! and~2.6!. The agreement is quite good. We al
show the deterministic case with a dashed line.

III. LARGE AMPLITUDES AND INTERFACE PINNING
FOR MULTIPLICATIVE QUENCHED DISORDER

In this section we study the long time behavior of t
interface for the multiplicative quenched noise. The ba
point is that when unstable modes have grown to large
plitudes, some regions of the interface will inevitably atta
small local velocities. The quenched disorder case beco
radically different from both the deterministic and the d

FIG. 1. Dispersion relation from the simulation results of Eq
~1.1!, ~1.2!, and~2.3! (s) with F51000 ande51.5, compared to

the analytical expression of Eq.~2.13! ~solid line! with ē51.5
31023. The dashed line corresponds to the results for the determ

istic caseē50.
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57 5757GROWTH OF UNSTABLE INTERFACES IN DISORDERED MEDIA
namic noise cases. As a consequence, in those region
disorder cannot be modeled by a dynamic noise. The fun
mental difference lies in the fact that with a quenched dis
der, and at least for the range of noise intensities stud
here, the interface always gets pinned for large enough tim
The pinning of the interface does not occur simultaneou
everywhere but rather starts in the regions where the in
face velocity is close to vanishing. In such regions it will
likely to find local values of the noise which will pin th
interface. Then, the pinned domains will propagate to co
the whole interface. The particular location where the int
face gets pinned depends on the noise realization but
final shape of the interface has some interesting systema

A. Numerical results

In Fig. 2 we show a generic time sequence of the interf
evolution for a large noise intensity. The horizontal size
the system isL5142Dx, with Dx50.25. When the interface
is almost flat, it advances with a constant velocity. When
most unstable modes grow to appreciable amplitudes,
local minima ofh eventually attain small velocities and g
pinned. After a short time the pinned region reaches the f
est tips, which also stop completely. For large noise inte
ties the pinning process seems to start systematically a
local minima. The final configuration of the interface~loca-
tion of extremes! is rather sensitive to the details of the noi
realization. The curvature of the maxima and the minim
however, seems to be always very similar. We will com
back to this point later on. In Fig. 3 we show a similar r
but now for a smaller noise intensity. Here we see that
amplitudes at which pinning occurs are much larger. Al
one sees that the pinning of the interface does not start a
minima of the interface.

In Fig. 4 we have plotted a superposition of different ru
with the same values for both parameterse andF but with
different initial conditions and noise realization. The tw
runs, one with random initial condition and the other w
sinusoidal initial profile, gave apparently different outcom
for the final pinned shape. We have relocated the interfa

FIG. 2. Time sequence of the interfacial evolutiont
52,4, . . .,20) for the same model of Fig. 1 withe51.25 andF
510.
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so that two local maxima and two local minima of the tw
curves, respectively, coincide. We see that the two curve
the maxima region match quite remarkably. This is no
coincidence but a quite systematic observation. A sim
fact occurs for the minima, although the curvatures do
seem to match as well as for the maxima.

In Fig. 5~a! we plot the dependence of the curvature at
maxima versus the parameterF. The dependence is linea
within a very good approximation. In Fig. 5~b! we also plot
the slope of the fitted lines of Fig. 5~a! versus 1/e. In this
case the dependence seems to be less clear.

B. Effective model

Now, we propose an effective deterministic equation
model the shape of the pinned interfaces resulting from E
~1.1!, ~1.2!, and~2.3!. From our numerical results and sym
metry arguments, we conclude that, in the range of mod
ately largee and for the values ofF studied, the effect of the

FIG. 3. Same as Fig. 2 withe50.25 andt54,8, . . .,60.

FIG. 4. Comparison of the maxima and minima of the fin
interfacial profile obtained from the simulation of Eqs.~1.1!, ~1.2!,
and ~2.3! for two different initial conditions: random~solid line!
and sinusoidal with two maxima~dashed line!.
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5758 57A. M. LACASTA et al.
noise term can be described by an expansion in odd pow
of the second derivatives ofh. Keeping up to the lowes
nonlinear term we get

] th~x,t !52¹4h~x,t !2~12a!¹2h~x,t !

1b@¹2h~x,t !#3, ~3.1!

where the parametersa andb are to be determined from th
simulations.

In Fig. 6~a!, by fitting the parameterb, with a50, we
find that the effective model is qualitatively correct, com
pared with the results of the numerical integration of E
~1.1!, ~1.2!, and ~2.3!. However, to obtain a better quantita
tive result for the curvature@Fig. 6~b!# it is convenient to
include the parametera. In this case, the stationary solutio
for the second derivative of Eq.~3.1! in an infinite system is

¹2h5A12a

b
tanhA12a

2
x. ~3.2!

Then, for a periodic system, the stationary solution for
second derivative consists of regions with valu
6A(12a)/b joined by hyperbolic tangents with a widt
that depends on the parametera. We note that only for a
negative and large enough value ofa can we have a para
bolic structure for the interface near the minimum, with
curvature given by the limiting value of Eq.~3.2!. In Figs.
6~a! and 6~b! we present the final interfacial profile and i
second derivative obtained from the simulation of Eqs.~1.1!,
~1.2!, and ~2.3!. We compare these results to the ones
tained from the effective model fora50 andaÞ0.

For a50 it is necessary to fit the parameterb to obtain
the correct value for the maximum, whereas foraÞ0 the
result is calculated from Eq.~3.2!. In this last case, we obtai

FIG. 5. ~a! Curvature at the maxima of the final interfacial pr
file versus the parameterF, obtained from the simulation of Eqs
~1.1!, ~1.2!, and ~2.3! for different values of the noise intensitye.
~b! Slopep of the fitted lines of~a! versus 1/e.
rs

.

e
s

-

an approximately constant value for the second deriva
around the minimum in accordance with the simulation
sults with the stochastic term.

IV. THE CASE OF ADDITIVE QUENCHED NOISE:
A DEPINNING TRANSITION

In this section we consider the case of quenched nois
the force field@Eq. ~1.3!#. In the classical QEW and QKPZ
models the force field provides both the pushing and pinn
mechanisms for the growth of the interface. The surface t
sion effect coming from the other terms of the model on
acts to smooth the roughness generated by the force fiel
our case a new mechanism, the unstable growth of so
selected modes, is present. The interplay between pin
and unstable growth is not well known and questions such
the existence of a depinning transition and the behavior n
the critical point are very interesting.

In this approach we have treated these points numerica
We have simulated Eq.~1.3! keeping fixed the dispersion
relation by varying only the parameters of the force field, t
mean valueF and the intensity of the noisee8. A transition
from pinned to depinned regimes is always found. In Fig
pinned and moving regimes are shown in the space par
eterF versuse8. The depinning transition occurs forF vary-
ing linearly with e8 asF50.88e820.73.

Near the depinning point there are regions of pinned a
moving interfaces as shown in Fig. 8. Here it can be s
that the quenched disorder is capable of suppressing
growth of some fingers. Note that this mechanism of s
pression is exclusively originated by the force fieldF in
contrast to other phenomena of suppression which req
nonlinear effects giving rise to competitive processes
growth. We have observed that the length of the region
which fingers are suppressed is larger asF approaches its

FIG. 6. ~a! Final interfacial profiles from the simulation of Eqs
~1.1!, ~1.2!, and ~2.3! ~solid line! compared to the results of th
effective model@Eq. ~3.1!# for a50, b50.03 ~dotted line! and for
a523, b50.22~dashed line!. ~b! Second derivative of the profile
for the cases of~a!.
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critical value. These regions are the equivalent to the clus
of pinning observed in the QEW and QKPZ models but w
the important difference that in our case the suppression
gions are static while in the case of stable growth the pinn
clusters change with time.

V. CONCLUSIONS

In this paper we have studied the effects of a disorde
medium in the growth of unstable interfaces pushed by
external driving forceF. We have used two local mode
with multiplicative and additive quenched noise, resp
tively. We have found that, for short time and large pushi
the multiplicative quenched noise is equivalent to a tim
dependent multiplicative noise. We have worked out exp
itly the relation between the static and dynamic noise int
sities. We have calculated the linear dispersion relation
two different types of spatial correlation of the disorder. W
have found a destabilizing contribution of the quenched d
order. Furthermore, we have checked this result by num
cal simulation in the case of a completely uncorrelated d

FIG. 7. Location of the depinning transition in the paramet
spaceF2e8 for the additive noise model@Eq. ~1.3!#. The dashed
line corresponds to the equationF50.88e820.73.
d

b,

ev
rs

e-
g

d
n

-
,
-
-
-
r

-
ri-
-

crete static disorder. We have also studied the long t
behavior of interfaces for a multiplicative quenched disord
A remarkable result is that the interfaces always get pin
for large enough time in the absence of nonlinear effe
other than those introduced by the disorder. The final pro
near the maxima and minima is independent of the ini
condition and the realization of the noise, and the curvat
at these points has a linear dependence versus the para
F. We have proposed an effective nonlinear determinis
equation to model the shape of the pinned interfaces. Fina
we have considered the case of additive noise. We have
served a depinning transition with a linear dependence
tweenF and the noise intensitye8.
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