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Growth of unstable interfaces in disordered media
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The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local
models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the
multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion
relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets
pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These
results show good agreement with numerical simulations. For the additive noise we find numerically that a
depinning transition occur§S1063-651X98)04105-]

PACS numbsgfs): 68.10.Gw, 05.40tj, 68.35.Ct

I. INTRODUCTION gimes[13,14). On the other hand, belo®w, the whole inter-
face becomes pinned. Recently the analysis of roughness
The growth of interfaces in disordered media is an interclose to the depinning transition has attracted the attention of
esting nonequilibrium phenomenon. An example that hasesearchers, both from experimen&l10] and theoretical
been studied extensively is the growth of a rough, macrof15-19 points of view, since new universality classes of
scopically stable interfackl—4]. The aim of this paper is to growth appear. The depinning transition is a phase transition
study the growth of a morphologically unstable interfacecharacterized by a critical force and a diverging length of the
propagating through a disordered medium. pinning clusters. Just above the critical force the whole in-
From the experimental point of view, the study of roughterface is moving but there are clusters with a characteristic
(stable interfaces has been done, for example, in fluid f|0W|ength remaining pinned during a finite time.
in Hele-Shaw cell§5-7], paper wettind 8], propagation of Local models, such as the geometrical md@#l,21] and

burning front9], and growth of bacterial coloni¢s0]. Our  {he poundary layer modgR2], have also been proposed to
interest here would be in the morphologically unstable situ<y,qy morphological instabilities like the ones observed in
ation where fingers are developed at the macroscopic scal

Specificall ¢ how th " t the disord Eolidification pattern$23]. These local models are tractable
pecitically, we Tocus on how the properties ot the disor ersimplifications of the complex nonlocal dynamics and pro-
at much smaller length scales affect the formation and dy-. L o .
) ) vide a qualitative description of some aspects of the dynamic
namics of these fingered structures. Some controlled pertur—vOlution In the same soirit. and in order to study the effect
bations on the growth of unstable interfaces have been stud-, ' pinit, y

ied mostly experimentally. For a recent review of theseofaquenched disorder in the growth of an unstable interface

studies on Hele-Shaw flow, see RéL1], and references in the_simplegt pos_sible situatiqr_w,we propose two local mod-

therein. Similarly, a random perturbation introduced to the®!S, With multiplicative and additive quenched disorder. They

cell gap could be a simple model of unstable growth in thecontain both su_rface tension and a constant_ external _drlft and

presence of a disordered medium. This possibility has aishould be considered as an attempt to elucidate the interplay

ready been explored experimentally2]. In this case the between the deterministic instability, the quenched disorder,

disorder of the medium under consideration is frozen in timeand the propagation of the interface.

(quenched disordgr The first model is defined by the following equation for
From a theoretical point of view, the study of the growth the interface positiom(x,t):

of rough, macroscopically stable, interfaces has received

much attention in recent yeaf$3—19. The theoretical ap-

proach to the case of disordered media has been mostlgh(x,t)=—aV2h(x,t)—bV*h(x,t)+F+ 7(x,h)V2h(x,t).

based on the quenched Edward-Wilkind@EW) [16] and (1.

guenched Kardar-Parisi-ZhangQKPZ) equations [15].

These are local models with a diffusive term which accounts

for surface tension effects and a constant force field whici'he quenched disorder is introduced as spatial fluctuations of

accounts for an external drift. In all cases the interface ighe external parameter, and therefore has a multiplicative

rough and a depinning transition from pinned to moving re-character. These fluctuations are defined on a square lattice

gimes is found at a critical forcé.. In the moving regime, of mesh sizeAx by a static noise that takes a different value

far above the critical force, the quenched noise behaves likim each cell. The noise valuegx; ,y;)= n;; are assumed to

a thermal noise recovering the classical EW and KPZ rebe Gaussian with zero mean and a correlation given by
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<7lij 7]k|>:2€Dijk| , (1.2 II. LINEAR INSTABILITY AND MULTIPLICATIVE
QUENCHED DISORDER

The aim of this section is to show that, for large pushing,

wheree is the noise intensity anD;;y, is a short-range cor- S ;
relation function. A quenched multiplicative noise has beerP!' model of multiplicative quenched disordeEgs. (1.1)

introduced in a model of kinetic roughenihg4] to consider gnd (162)] tls equallzentt;t](_) a model with gt qynt?]m'%’. tlme-_
an experimental situation in which the interfacial growth is ependent, noise. For this reason, we obtain the dispersion
dominated by pinning forces. Here, we propose Edl) as relation associated to the multiplicative noise as the one of

the simplest model one can devise which is local, exhibits glhe dynamic noise, and we check this result by numerical

deterministic instability, and modifies the linear dispersion'c?et?grat'on of the model with multiplicative quenched disor-

relation with respect to the deterministic one. W ider the destabilizati f initiallv ol .
The first term in the right hand side of E@L.1) corre- € consider Ihe destabilizalion of an initiaily pianar in-

sponds to the destabilizing effect of the external drivingt€'f@ce when pushed by the foréethrough the disordered

force which keeps the system out of equilibrium. The seconcﬁned'qm represented b_y the quenched n_oy$E,h)._ n t.h's

term accounts for the surface tension stabilizing effect. The'tuation and at early times, far ffo'.“ a pinned situation, the

interplay between both effects generates the scale at whic‘f’{hOIe interface moves at a velocity roughly equal to the

unstable fingers emerge. In the absence of noise, the constaff!u€ OfF . encountering different values of the noiggx, h)

pushing forceF fixes an average interface velocity which atarate given by the velocify and the correla_Ltlon Iengt_h of

corresponds to that of the planar, unperturbed interface. Noff'® NOiseA. In fact one could say that the interface is af-

that such velocity is taken as independent of the actual drivi€cted by the values of the noise with an effective correlation

ing force of the instability(undercooling in solidification, iMme 7=\/F. Therefore, in this initial regime, the effects of

injection rate in Hele-Shaw flows, etcwhich should appear the quen_ched_ noise are S|m|Ia_r to what would be ob.talned if

in the coefficient. a dynamic noisé(x,t) were acting on the system. This con-
From this model we obtain two basic results. On the oné!usion has also been obtained for models of rough interfaces

hand we show how the quenched disorder behaves Iil<eé['}7:| and seems to be general. We shall make explicit this

dynamic noise provided the interface is fast enough. It i€&nalogy by using an equivalent model given by the discrete

known that a dynamic noise may change the dispersion rel2duation

tion in the case of multiplicative noisg25]. Here we can

obtain analytically the change in the averaged linear disper-  g;h;(t)= —aVizjhj(t)—bVﬁ hj(t)+§i(t)Vi2jhj(t),

sion relation in good agreement with numerical simulations. (2.9

On the other hand we analyze the pinning phenomena in the

presence of an instability. We find that the noise is surpriswhere the dynamic noisg(t), in the limit of small 7

ingly capable of stopping the otherwise exponential growth_ ME. is a white noise Witﬁ cc;rrelation given by

producing the pinning of the interface. This occurs in all our '

simulations in a time which diverges when the noise inten- L

sity goes to zero. We show that this surprising effect of the (&i(D)E(t'))=2€D;;6(t—t"). (2.2

guenched noise is equivalent to the effect produced by a

nonlinear term which conserves the symmetries of the origi- . ) —
nal system. The explicit relation betweer and e depends on the

As a second model, we introduce an additive quenchef@rticular properties of the noiséq. (1.2]. We start by
noise associated to fluctuations in the paramBter decoupling vertical and horizontal directions in Ef.2) as

Dij=DiDji, in order to write the vertical direction as a
temporal dependence.
gh(x,t)=—aV?h(x,t) =bV*h(x,t) + F+ 5(x,h), We have considered two distinct particular cases. In the
(1.3 first one we take the correlation function of the noise as a

smooth symmetric functiorD; =D(r;) Wwith ry=Ax(k

wherez(x,h) has the same properties aéx,h) of Eq.(1.1) ~ —i) and [Z.drD(r)=1. In the second case we have con-
but with noise intensitye’. In Ref.[26] the model given by sidered a completely uncorrelated discrete disorder. This
Eq. (1.3 with a=0 and a dynamic noisey(x,t) has been situation, chosen here because it is the simplest way in which
discussed in connection with desorption in vapor depositiorflisorder can be implemented in a simulation, is defined by
of solid films in the presence of gravity. Here, we considerthe discrete correlation functioB;jy =[1/(Ax)?] &), or

the unstable situatioa#0 with quenched disorder. In this equivalently

case we have found a behavior similar to that in the general

case of stable growthiiL—4], namely, that a depinning tran- _ 1
sition is always present. Close to the depinning transition K= Ax
there appear simultaneously regions with a pinned interface

and regions with unstable growf]. When approaching the

critical force from above the size of the pinning regions in-In this case the interface is affected by constant independent
creases, but contrarily to what happens in the stable case novalues of the noise in boxes of lengNx, that is, the corre-

the pinning regions remain fixed and one finds quenchedhtion function as a function of the time difference has a
fingers coexisting with exponentially growing ones. triangular shape

w)

Sik- 2.3
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0.5

F
o —(1—‘t—t’ —) if  |[t—t'|F<Ax
D((t—t")F)=1{ AX Ax
0 otherwise.
(2.9

In both cases, in the limit of small/F (small Ax/F for
uncorrelated cellsthis correlation function can be written as

a function of the time difference as g
D((t—t")F)=F 1s5(t—t"). (2.5 ]
In view of this equation, and comparing E@$.2) and(2.2),
we have
e=Fe. (2.6) 10 .

0.0 0.5 1.0 1.5

The next step is to write the equation obeyed by the mean K

(over realizations of the noigseof the interface position FIG. 1. Dispersion relation from the simulation results of Egs.
(hi(t)). To do that one has to evaluate the mean value of thél.1), (1.2, and(2.3) (O) with F=1000 ande=1.5, compared to
noise term in Eq(2.1). We employ Novikov's theoref28],  the analytical expression of Eq2.13 (solid line) with e=1.5
which gives the mean of the product of the noise and anyx10-3. The dashed line corresponds to the results for the determin-

functional ¢ of the noise: istic casee=0.
oP(t) lated disorder. By using Eq&.8) and(2.3), the equation for
(&OY)= f dt’ Z (&0gt )>< Sg(t! )> the first moment in this situation is
We obtain Ihi(t))=—|a+2 Ax) )(Vzh (1)) —b(V*hi(1)).
_ 2.1
(VIR (D)= D (T2VEN(D). (28 (212

__In this expression we have taken for the Laplacian operator
In the smooth correlation function case, we can exgand VZJ Ax*2(5IJ 1—28;+6;j+1), where Ax is the mesh
by Taylor as DIl =D(0)+1 D”(O)r +o(r ). Then the size. Finally, the dispersion relation reads
mean of Eq.(2.8) can be written as a contlnuous equation
(the discrete Laplacian operat8i; is of order Ax~? and (
nonzero only for;; up to the order ofAx) and reduces to k=

2_
+ F(Ax)3> k?—bk?. (2.13

2 — " 2
(£, )V*h(x,1))=eD"(0)(V*h(x,1)) Therefore we see that also in this particular discretization

scheme with uncorrelated fluctuations the noise acts to make
the interface more unstable.
To corroborate the equivalence between quenched and
dynamic noise, we have performed the numerical integration
— la_2D 5 of Egs. (1.1, (1.2, and (2.3) and compared the resulting
a{h(x,0)) [a=eD(O)XVh(x.1) dispersion relation with the prediction from Ed2.13 and
—[b—ﬁ’(O)](V“h(x,t)). (2.10 (2.6). We have used a square lattice with independent noise
values in each cell, and the parameter valaesh=1 and

Now, the linear dispersion relation can be easily derived®X=0.25. In Fig. 1 we have plotted the dispersion relation
by defining the growth rate for a mode w,, as(h(k,t)) from the simulation results compared to the prediction of

N . . , Egs.(2.13 and(2.6). The agreement is quite good. We also
— wt
=(h(k,0))e”". We obtain in terms of the intensity of the g,y the deterministic case with a dashed line.
original quenched noise

+eD(0)(V*h(x,t)) (2.9

and the equation for the first moment lofx,t) is

Ill. LARGE AMPLITUDES AND INTERFACE PINNING

€ — € —
w=|a— ED(O)) k?— ( b— ED"(O)) k4. (2.1) FOR MULTIPLICATIVE QUENCHED DISORDER

In this section we study the long time behavior of the

The first term is stab|I|zmg and the second one is destabilizinterface for the multiplicative quenched noise. The basic
ing. Provided thaD”(O)<O the presence of the noise makespoint is that when unstable modes have grown to large am-

the interface more unstable. plitudes, some regions of the interface will inevitably attain
A similar conclusion will be obtained in the second casesmall local velocities. The quenched disorder case becomes

addressed here, namely, the case of a completely uncorreadically different from both the deterministic and the dy-
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FIG. 2. Time sequence of the interfacial evolution ( FIG. 3. Same as Fig. 2 wite=0.25 andt=4,8, . . .,60.
=2,4,...,20) for the same model of Fig. 1 with=1.25 andF

=10. so that two local maxima and two local minima of the two

. . . . urves, respectively, coincide. We see that the two curves in
namic noise cases. As a consequence, in those regions t

disorder cannot be modeled by a dynamic noise. The funda: maxima region match quite remarkably. This is not a
. o y a dynal ’ N9 sincidence but a quite systematic observation. A similar
mental difference lies in the fact that with a quenched disor-

der, and at least for the range of noise intensities studie}cjlaCt occurs for the minima, although t_he curvatures do not
eem to match as well as for the maxima.

here, the interface always gets pinned for large eno h times! .
! ways gets pi g Hgn t In Fig. 5(a) we plot the dependence of the curvature at the

The pinning of the interface does not occur simultaneously ™' o
intejnaxima versus the parameter The dependence is linear

face velocity is close to vanishing. In such regions it will be Within @ very good approximation. In Fig(t5 we also plot
likely to find local values of the noise which will pin the the slope of the fitted lines of Fig.(& versus 1¢. In this

interface. Then, the pinned domains will propagate to covef@S€ the dependence seems to be less clear.
the whole interface. The particular location where the inter-
face gets pinned depends on the noise realization but the B. Effective model
final Shape of the interface has some interesting SyStematiCS. Now, we propose an effective deterministic equation to
model the shape of the pinned interfaces resulting from Eqs.
A. Numerical results (1.2), (1.2), and(2.3). From our numerical results and sym-

metry arguments, we conclude that, in the range of moder-

In Fig. 2 we show a generic time sequence of the interfacg |y |argee and for the values of studied, the effect of the
evolution for a large noise intensity. The horizontal size of

the system id. = 142Ax, with Ax=0.25. When the interface

is almost flat, it advances with a constant velocity. When the
most unstable modes grow to appreciable amplitudes, the
local minima ofh eventually attain small velocities and get
pinned. After a short time the pinned region reaches the fast-
est tips, which also stop completely. For large noise intensi-
ties the pinning process seems to start systematically at the

250.0 T T T T

200.0

local minima. The final configuration of the interfafleca- 150.0
tion of extremesis rather sensitive to the details of the noise <
realization. The curvature of the maxima and the minima, 100.0
however, seems to be always very similar. We will come '
back to this point later on. In Fig. 3 we show a similar run

but now for a smaller noise intensity. Here we see that the 500

amplitudes at which pinning occurs are much larger. Also,

one sees that the pinning of the interface does not start at the

minima of the interface. 0.0 e
In Fig. 4 we have plotted a superposition of different runs 00 40 80 120 160 200 240 280 320 360

with the same values for both parameterand F but with X

different initial conditions and noise realization. The two  F|G. 4. Comparison of the maxima and minima of the final

runs, one with random initial condition and the other with interfacial profile obtained from the simulation of Eq$.1), (1.2),

sinusoidal initial profile, gave apparently different outcomesand (2.3 for two different initial conditions: randongsolid line)

for the final pinned shape. We have relocated the interfacesnd sinusoidal with two maximéashed ling
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0.0 0.5 1.0 1.5 2.0

1/e FIG. 6. (a) Final interfacial profiles from the simulation of Egs.
(1.1, (1.2, and (2.3 (solid line) compared to the results of the
effective modelEq. (3.1)] for «=0, 8=0.03 (dotted line and for
a=—3, 3=0.22(dashed ling (b) Second derivative of the profiles
for the cases ofa).

FIG. 5. (a) Curvature at the maxima of the final interfacial pro-
file versus the parametér, obtained from the simulation of Egs.
(1.1, (1.2, and(2.3 for different values of the noise intensity
(b) Slopep of the fitted lines of(a) versus 1¢.

an approximately constant value for the second derivative
around the minimum in accordance with the simulation re-
sults with the stochastic term.

noise term can be described by an expansion in odd powe
of the second derivatives df. Keeping up to the lowest
nonlinear term we get

ah(x,t)=—=V*h(x,t) = (1— @) V2h(x,t) IV. THE CASE OF ADDITIVE QUENCHED NOISE:
+BIV2h(x,) T3, (3.2) A DEPINNING TRANSITION

In this section we consider the case of quenched noise in
where the parameters and g are to be determined from the the force field[Eq. (1.3)]. In the classical QEW and QKPZ
simulations. models the force field provides both the pushing and pinning

In Fig. 6(a), by fitting the parametep, with =0, we  mechanisms for the growth of the interface. The surface ten-
find that the effective model is qualitatively correct, com- sion effect Coming from the other terms of the model 0n|y
pared with the results of the numerical integration of Eds.acts to smooth the roughness generated by the force field. In
(1.1), (1.2, and(2.3). However, to obtain a better quantita- our case a new mechanism, the unstable growth of some
tive result for the curvaturg¢Fig. 6(b)] it is convenient to  selected modes, is present. The interplay between pinning
include the parametet. In this case, the stationary solution and unstable growth is not well known and questions such as
for the second derivative of E3.1) in an infinite system is  the existence of a depinning transition and the behavior near
the critical point are very interesting.

V2h— \/1_ a*anh\/l_ @ (32 In this approach we have treated these points numerically.
B 2 ' We have simulated Eq.1.3 keeping fixed the dispersion
relation by varying only the parameters of the force field, the

Then, for a periodic system, the stationary solution for themean valueg= and the intensity of the nois€ . A transition
second derivative consists of regions with valuesfrom pinned to depinned regimes is always found. In Fig. 7
+(1—-a)/B joined by hyperbolic tangents with a width pinned and moving regimes are shown in the space param-
that depends on the parameter We note that only for a eterF versuse’. The depinning transition occurs férvary-
negative and large enough value @fcan we have a para- ing linearly withe’ asF=0.88&"—-0.73.
bolic structure for the interface near the minimum, with a Near the depinning point there are regions of pinned and
curvature given by the limiting value of E@3.2). In Figs.  moving interfaces as shown in Fig. 8. Here it can be seen
6(a) and &b) we present the final interfacial profile and its that the quenched disorder is capable of suppressing the
second derivative obtained from the simulation of E4sl), = growth of some fingers. Note that this mechanism of sup-
(1.2, and (2.3). We compare these results to the ones obpression is exclusively originated by the force fidfdin
tained from the effective model far=0 anda+#0. contrast to other phenomena of suppression which require

For =0 it is necessary to fit the paramef@rto obtain  nonlinear effects giving rise to competitive processes of
the correct value for the maximum, whereas fo+0 the growth. We have observed that the length of the region in
result is calculated from E@3.2). In this last case, we obtain which fingers are suppressed is largerFasipproaches its




57 GROWTH OF UNSTABLE INTERFACES IN DISORDERED MEDIA 5759

20.0 . - 1035 ; ; ; ; .
E 1030
15.0 | . 1025
¥ 1020
w 100 | | < 1015 -

% 1010 |
4

50 L . 1005 |

pxa

0-0 ﬁ 1 1 I L 995 I I L I L 1
0.0 5.0 10.0 15.0 20.0 25.0 0.0 5.0 100 150 200 250 300 350

€ X

1000

FIG. 7. Location of the depinning transition in the parameters FIG. 8. Time sequence of the interfacial evolution for the addi-
spaceF — ¢’ for the additive noise moddEq. (1.3)]. The dashed tive noise case witle’ =3 andF=1.7.

line corresponds to the equatiér=0.88'—0.73. L . .
crete static disorder. We have also studied the long time

critical value. These regions are the equivalent to the clusteﬁeh"’“’ior of interfaces for a multiplicative quenched disorder.
of pinning observed in the QEW and QKPZ models but with remarkable result is that the interfaces always get pinned

: ; : : or large enough time in the absence of nonlinear effects
the |mportant_d|fferen_ce that in our case the suppression rJother than those introduced by the disorder. The final profile
gions are static while in the case of stable growth the pinnin

clusters change with time %ear.t'he maxima and. mi.nima is independent of the initial

: condition and the realization of the noise, and the curvature
at these points has a linear dependence versus the parameter
V. CONCLUSIONS F. We have proposed an effective nonlinear deterministic

In this paper we have studied the effects of a disorderegauation to model the shape of the pinned interfaces. Finally,

medium in the growth of unstable interfaces pushed by a'iveer hezvzc(;)gs.':ﬁrfd ttrg?];.f.l(s)ﬁ Of.t?]dg't;.\;]igro'gg‘ e/x?iehni\ee t;)é)—-
external driving forceF. We have used two local models v pinning ttion wi ! P

with multiplicative and additive quenched noise, respec-tween': and the noise intensity”.

tively. W_e nave found that, for s_hort. time end large pusnmg, ACKNOWLEDGMENTS
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