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Recent experiments on imbibition in columnar geometries show interfacial fluctuations whose dynamic
scaling is not compatible with the usual nonlocal model governed by surface tension that results from a
macroscopic description. To explore this discrepancy, we exhaustively analyze numerical integrations of a
phase-field model with dichotomic columnar disorder. We find that two distinct behaviors are possible depend-
ing on the capillary contrast between the two values of disorder. In a high-contrast case, where interface
evolution is mainly dominated by the disorder, an inherent anomalous scaling is always observed. Moreover, in
agreement with experimental work, the interface motion has to be described through a local model. On the
other hand, in a lower-contrast case, the interface is dominated by interfacial tension and can be well modeled
by a nonlocal model. We have studied both spontaneous and forced-flow imbibition situations, giving a
complete set of scaling exponents in each case, as well as a comparison to the experimental results.
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I. INTRODUCTION

Fluid-fluid displacement in porous media is a subject of
much interest in industrial processes and material character-
ization and also in environmental problems ranging from pe-
troleum recovery and irrigation to retention of waste waters
�1,2�. We restrict our analysis to the case in which the invad-
ing fluid, which wets the medium preferentially, is more vis-
cous than the displaced resident fluid, giving rise to compact
rough interfaces. This process can take place either sponta-
neously at constant pressure, spontaneous imbibition, or by
the application of an external pressure at constant injection
rate, forced-flow imbibition �2�. The surface can be repre-
sented by a single-valued function of position x and time t,
h=h�x , t� �3�. In many cases, when fluctuations have a ther-
mal origin or can be reduced to that, the interfacial fluctua-
tions are self-affine and follow the dynamic scaling of Fam-
ily and Vicsek �4�. Then, a complete description of the
dynamical growth is possible with only two independent ex-
ponents. However, when disorder is relevant enough to inter-
fere with the geometry of the interface, a more generic scal-
ing can apply, and one more independent exponent is
necessary to reach the dynamical description. This is the so-
called anomalous scaling �5�, and it has been observed in
many different experimental and numerical situations during
the last decade �6–11�.

Several experiments of imbibition in distinct geometries
have been proposed in recent years. There are experiments
that use paper as the disordered medium �12–16�, and others
performed in Hele-Shaw cells �two parallel glass plates sepa-
rated by a narrow distance� with a random distribution of
glass beads as the disordered medium �17–19�. Using the
same geometry, other methods of generating a disordered
medium have been explored, including random variations in

gap spacing produced by a predesigned surface relief of the
bottom plate �9–11,20� or by roughened plates �21�. Focus-
ing our attention on columnar geometries, we have presented
in previous works �9,10� experimental studies of forced-flow
imbibition in a Hele-Shaw cell with a columnar quenched
disorder, produced by dichotomic variations in the thickness
of the bottom plate. We found that the interfacial dynamics
followed an intrinsic anomalous scaling with varying expo-
nents that were incompatible with the expected results from
the usual macroscopic model, which gives the characteristic
exponents of a nonlocal model. Instead, we obtained good
agreement with a heuristic model of diffusively coupled col-
umns presenting local interactions. The essential change of
behavior, from being dominated by nonlocal to local interac-
tions, is obviously due to the persistence of the columnar
disorder. However, the detailed physical mechanism is not
clear.

In the present paper, we use numerical integrations of a
phase-field model with columnar disorder to explore this be-
havior. By imposing the columnar geometry of the interface
motion on the macroscopic model, we analytically derive the
heuristic local equation presented in Ref. �9�. In addition, we
show how both local and nonlocal behaviors are observed in
the numerical model through the variation of a parameter
modeling the contrast between the different capillary values
present in the system. The outline of the paper is as follows.
In Sec. II we introduce the phase-field model and the inter-
facial equations obtained in the sharp interface limit. In Sec.
III we show the notions of generic scaling used to character-
ize the interfacial dynamics. Section IV is devoted to analy-
sis of the numerical results in the low-capillary-contrast case
for both spontaneous and forced-flow imbibition situations.
Section V deals with the case of high capillary contrast and
its connection with local growth models. Finally, in Sec. VI
we discuss the physical contents of phase-field and macro-
scopic models as well as their relevance to explain the ex-
perimental results.*pradas@ecm.ub.es
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II. THE PHASE-FIELD AND MACROSCOPIC MODELS

Our numerical results will be performed using the so-
called phase-field model �22–24�. This model is based on the
introduction of an order parameter � which can take two
limiting values, �= ��e representing the two phases, liquid
and air, of the system. The phase-field dynamics is controlled
by a conserved equation based on the Ginzburg-Landau for-
mulation, �� /�t=�M ��, where �=�F /�� is the chemical
potential and the free energy is given by the functional
F���=�dr�V���+ 1

2 �����2�. The phase-field equation then
reads

��

�t
= �M � �V���� − �2�2�� , �1�

where M is a parameter that is taken constant in the liquid
phase and zero in the air phase. V��� is a potential taken as
V���=− 1

2�2+ 1
4�4−��r�� and defines two stable phases

through the double-well potential; the destabilizing linear
term accounts for the effect of a capillary force that makes
the interface advance. The effect of an inhomogeneous cap-
illarity is added by using a dichotomic capillary noise with
the values

� = ��0,
�0

1−�A
.� �2�

We consider a columnar disorder ��x� defined by single
tracks of lateral size Ld distributed along the x direction in
such a way that tracks with the high disorder value �
=�0 / �1−�A� occupy 35% of the system length L. This is the
same kind of disorder reported in the experimental work of
Ref. �9�. Note that, for a given disorder realization, tracks
wider than Ld are obtained when two or more unit tracks are
placed adjacently.

A. The macroscopic description of imbibition

The use of phase-field models to reproduce imbibition
experiments is based on the ability to get the same results as
those obtained from a macroscopic model. Indeed, in the
so-called sharp interface limit �→0, a matched asymptotic
expansion of the field � around a kink solution of Eq. �1�,
�0=−�eq tanh�w /��2��, can be performed, recovering then
the basic macroscopic equations for the usual pressure p,
velocity v, interfacial curvature 	, and the columnar capillary
disorder which we call ��x�:

v = − K � p , �3�

�2p = 0, �4�


pint = �	 + ��x� . �5�

The macroscopic variables and parameters are defined from
the phase-field formulation as �25�

p = �eq�1, K =
M

2�eq
2 , � =

1

2
	 dw
 ��0

�w
�2

,

�1 being the first-order term of the expansion on � of the
chemical potential and � playing the role of an interfacial

tension. The three equations of the macroscopic model are
well known from phenomenological arguments involving
conservation laws. Darcy’s law, Eq. �3�, arises from the av-
eraging procedure of Navier-Stokes equations at low Rey-
nolds number, when the geometry of the Hele-Shaw cell is
imposed. The Laplace equation �4� comes from imposing
incompressibility of the liquid, and the Gibbs-Thomson rela-
tion, Eq. �5�, comes from the principle of minimum interfa-
cial energy. The capillary pressure at the interface can be
expressed as ��x��2� cos � /b, where � corresponds to the
contact angle, and b is the distance between the plates of the
Hele-Shaw cell.

In the experimental work reported in Ref. �9�, the random
gap distribution is constructed by using a fiberglass substrate
with a pattern of copper tracks attached to the bottom plate
of a Hele-Shaw cell. The tracks have a thickness d with a
lateral size of Ld and are distributed along the lateral direc-
tion x without overlap. Therefore, the gap of the Hele-Shaw
cell has a dichotomic variation with two possible values b
and b−d. Although in that case the capillarity is a three-
dimensional �3D� effect of the cell, we can relate b to our
numerical parameters of Eq. �2� as �0=1 /b and �A=d /b.
Note that the parameter �A is related to the capillary contrast
between both values of disorder.

B. Spontaneous and forced-flow imbibition

In our study, we will consider both situations of sponta-
neous and forced-flow imbibition by choosing appropriate
boundary conditions in the phase-field model �26�. For spon-
taneous imbibition, an applied constant pressure is imposed
at the origin of the cell ��x ,y=0�=�a. In contrast, a pressure
gradient has to be imposed at the origin, 
K�y�
y=0=−Vm, to
reproduce forced-flow imbibition. Therefore, the main differ-
ence between the two cases is found in the mean velocity of
the interface. While in the forced-flow case the interface
evolves with the imposed constant velocity Vm, in the spon-
taneous imbibition case, the averaged interfacial height H�t�
follows the so-called Washburn law H�t�� t1/2. An exact ex-
pression for this evolution can be obtained by solving the
following equation:

dH

dt
=

K��a + ����
H�t�

, �6�

which comes from �3�–�5� with 	=0 and ���= ���x��x. The
expression for H reads H�t�=�H�0�2+2at where a=K����
+�a�. Therefore, spontaneous imbibition has a slowing-
down dynamics with a mean velocity Vm�t�� t−1/2.

C. Equations for the interface

From the macroscopic equations �3�–�5�, it is possible to
obtain an equation for the moving interface by means of a
Green analysis. The Green function G�r ,r�� in our case fol-
lows a Poisson equation with a unit source at r�,
�2G�r /r��=��r−r�� evaluated at the 2D plane. The expres-
sion for the interface is obtained using the Green identity
�27�
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L

dr��p�r����2G�r/r�� − G�r/r����2p�r���

= 	
SL

ds� · p�s����G�s,s�� − 	
SL

ds� · G�s,s����p�s�� ,

�7�

integrated over the volume of the liquid, 
L= �x ,0�y
�h�x , t��, h�x , t� being the interfacial position. Depending on
the intensity of the quenched noise, two cases are relevant in
our study.

1. Low capillary contrast: Linearized equations

We assume that the quenched noise does not impose any
special geometry and the interface can be linearized around
its averaged value h�x , t�=H�t�+�h�x , t�, with H�t�
= �h�x , t��x. Keeping the fluctuations first order in �h in Eq.
�7�, and imposing Darcy’s law, Eq. �3�, at the interface
boundary condition, one can obtain the linearized interface
equation �2,22,26�, which in Fourier space reads

�ḣ̃k = − �K
k
k2�h̃k − Vm
k
�h̃k + K
k
�k, �8�

where we have supposed that correlations do not grow up
faster in time than the mean height of the interface, 
k
H�t�
�1. Under this limit, interface fluctuations follow the same
equation �8� for both spontaneous and forced-flow imbibition
�24,26,28�. However, it is worth mentioning here that the
presence of Washburn’s law �Vm�t�� t−1/2� in spontaneous
imbibition gives rise to dynamic crossover lengths and there-
fore, as pointed out in Ref. �29�, a rich variety of different
scaling regimes can be observed. The crossover length scale
can be explicitly seen as a balance between the surface ten-
sion term �K
k
3 and the drift term 
k
Vm �22�,

�� = 2�
�K

Vm
�1/2

. �9�

In the forced-flow case, Vm is constant and thus the crossover
length is just a static length scale separating two different
regimes. However, as has been observed in several numerical
results �22,26,30�, this crossover length acts as a cutoff for
the interface fluctuation growth due to the interface being
asymptotically flat on length scales larger than ��.

2. High capillary contrast: Coupled channel equations

The situation becomes quite different when the capillary
contrast is increased. In the experimental work of Ref. �9�,
where forced-flow imbibition is studied for high capillary
contrast, it is observed that the interface motion can be mod-
eled through a phenomenological local equation. Our pur-
pose now is to derive such an equation directly from the
macroscopic model. To do this, we shall assume that the
noise is so strong that the interface adopts the columnar ge-
ometry of the disorder. The procedure consists then in inte-
grating Eq. �7� in a closed surface along the profile of the ith
effective channel. Here, an effective channel, or simply chan-
nel i, is defined as a group of single adjacent tracks of which
the majority has the same disorder value, in such a way that

the interface advances as a compact surface through each
channel. An example is depicted in Fig. 1, where the channel
is composed of several tracks of which the majority has a
high disorder value �gray tracks� and therefore the averaged
disorder of the channel �i is larger than the mean disorder of
the whole system ���. Note that the surrounding channels i
−1 and i+1 must have a mean disorder value �i� ���. The
width of the channel is defined as Li. A numerical example of
these channels can be seen in Fig. 2.

We are considering the forced-flow imbibition case with
the following boundary conditions at the top and the bottom
of the channel:


�yp�x,y�
y=hi
= −

1

K
ḣi�t� , �10�


�yp�x,y�
y=0 = −
Vm

K
, �11�

p�x,0� �
VmH�t�

K
− ��� , �12�

where the pressure at the origin has been estimated by using
the relation

Pint−p�x,0�
H�t� =−

Vm

K , which comes essentially from Eq.
�11�, taking Pint=−��� as the mean capillary pressure of the
whole system. This means that the pressure at the origin is
changing in time in order to get a mean constant velocity for
the whole interface. Using these boundary conditions, and
taking the general expression for the two-dimensional Green
function

G�x − x�,y − y�� = −
1

�2��2	 	 dk
ei�x−x��kxei�y−y��ky

kx
2 + ky

2 ,

we can evaluate the different boundary integrals of the top
and bottom segments of Eq. �7� as

x i−1 xi

L i

O

y
i

Ld

FIG. 1. Scheme of the interface hi�t� advancing through an ef-
fective channel Li composed of several unit tracks Ld. The gray
stripes correspond to tracks with a high capillary noise, �=�0 /
�1−�A�, and the white ones to tracks with a low capillary noise,
�=�0.
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xi−1

xi

dx n · �p�x,y� � Ĝ�x,y��y=hi
= 0,

	
xi−1

xi

dx n · �Ĝ�x,y� � p�x,y��y=hi
=

LiC

�K
ḣi�t� ,

	
xi

xi−1

dx n · �p�x,y� � Ĝ�x,y��y=0 =
VmH�t�

2K
−

���
2

,

	
xi

xi−1

dx n · �Ĝ�x,y� � p�x,y��y=0 =
Vmhi�t�

2K
−

LiC

�K
Vm,

where C=��
�du sin�u/2�

u2 , with �=Li /L being a cutoff due to the
finite size L of the system. We have also supposed enough
wide channels to ensure that Li�hi�t�, which means that we
are taking the initial times, before the interface gets satu-
rated. The nomenclature used for the Green function means
that it is evaluated at the interface, Ĝ�x ,y��G�0,hi /x ,y�.
Therefore, Eq. �7� can be written as

1

2
p�0,hi� = 	

hi

0

dy��p�x,y���xĜ�x,y�� − Ĝ�x,y���xp�x,y��xi

− 	
0

hi

dy��p�x,y���xĜ�x,y�� − Ĝ�x,y���xp�x,y��xi−1

− aiḣi�t� + aiVm −
���
2

. �13�

The two first terms of the right-hand side are due to the flow
between neighbor channels. We have defined the parameter
ai�

LiC

�K . In order to get an equation for the time evolution of
the interface, hi�t�, we define the following coupling coeffi-
cients between channels as the ratio between channel flow
and height differences:

Di �
	

hi

0

dy��p�x,y���xĜ�x,y�� − Ĝ�x,y���xp�x,y���xi

ai�hi+1 − hi�
,

Di−1 �
	

0

hi

dy��p�x,y���xĜ�x,y�� − Ĝ�x,y���xp�x,y���xi−1

ai�hi − hi−1�
.

The coupling variable Di has to be understood as a diffusion
coefficient that depends on each channel i. As a general case,
it may be taken as a random variable. Moreover, we shall
assume that Di does not vary in time during the initial times,
before the interface gets saturated.

Then we can write Eq. �13� as an inhomogeneous diffu-
sion equation between channels:

hi�t� = �Di � hi + Vm +
1

2ai
�− pi�t� − ���� . �14�

where pi�t�� p�0,hi� corresponds to the pressure at the inter-
face. We are assuming that the pressure at the interface is
time dependent, based on the experimental results reported in
Ref. �9�. In this experimental work, the local velocity of the
interface at each channel follows an expression similar to
Washburn’s law until it reaches the saturation value Vm. In
order to take into account such behavior in the equation, we
consider that the pressure at the interface can be expressed as
pi�t��−
pint−cui�t�, where the pressure difference 
pint is
given by the usual Gibbs-Thomson relation, Eq. �5�, taking a
negligible atmospheric pressure. The term cui�t� is an effec-
tive kinetic term due to the local capillary forces in each
channel, c being an arbitrary constant, and can be explained
in terms of mass conservation. When the interface goes
through a channel i of high capillary disorder ��i� ����, its
local velocity tends to initially increase up to a nominal
value. In contrast, since we are imposing a constant velocity
for the whole interface, the local velocity at the neighbor
channel i+1 with a lower capillary disorder tends to decrease
down to a nominal value. After reaching the nominal value in
both cases, the local velocity decreases or increases asymp-
totically to the saturation value following the Washburn be-
havior, due to the capillary forces of each channel. Therefore,
we are taking ui�t���it

−1/2 for t�0, where �i is a random
variable defined as �i= ��i− ���� / 
�i− ���
, which takes the
values �i= +1 at the channel with the highest capillary value
��i� ����, and �i=−1 at the channel with the lowest capillary
value ��i� ����. In addition, we also suppose that the curva-
ture of the interface can be approximated as a constant value
	0, and only its sign depends on each channel as 	i��i	0.

Then, rewriting the last term on the right-hand side of Eq.
�14�, we get the final expression

FIG. 2. Interface profiles at equal times but different values of
capillary contrast �A in forced-flow imbibition �top� and spontane-
ous imbibition �bottom�. The columnar disorder is also plotted: gray
tracks are points where the dichotomic disorder takes its highest
value of Eq. �2�.
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hi�t� = �Di � hi + Vm + �i�v̄i + āit
−1/2� , �15�

where we have defined the new constants as v̄i= �
�i− ���

+�	0� /2ai and āi=�c /2ai.

We thus conclude that when the capillary disorder is large
enough, the columnar geometry of the system leads to a local
description for the interface motion.

III. GENERIC SCALING LAWS AND THE
CHARACTERIZATION OF THE INTERFACIAL

DYNAMICS

Rough interfaces grow exhibiting power laws in both the
horizontal correlation length �c� t1/z, which accounts for the
range of correlation, and a vertical growth length, such as the
interface width W�t ,L�� t�. W is defined as the deviation of
the height h�x , t� as W�L , t�= ��h�x , t�−h�x , t��2�1/2 �where the
angular brackets and overbar mean sample and spatial aver-
ages, respectively�; z and � are the so-called dynamic and
growth exponents, which completely characterize the growth
of self-affine processes. The saturation of the surface occurs
in a saturation time ts, when the correlation length reaches
the system length �c�ts�=L. Above this time, the interfacial
width scales as W�t� ts ,L��L�, � being the roughness ex-
ponent, which is related to the other exponents through the
scaling relation �=� /z. To study local growth, we shall de-
fine local widths averaged on windows of size ��L,
w�� , t�= ��h�x , t�−h�x , t����

2�1/2. Local growth is also given as
a power law w�� , t���c�t�� for ���c and w�� , t�
��c�t��−�loc for ���c, where �loc is the local roughness ex-
ponent. In the case of self-affine growth, global scaling co-
incides with local scaling, �loc=�, and the fluctuating inter-
face is well characterized by only two independent
exponents. However, following the method shown in Ref.
�5�, we must use at least three independent exponents in a
more general case. In our study we use time variation of the
local width for several window lengths: w�� , t�� t�g��t−1/z�,
with

g�u� = � u�loc, u � 1,

const, u � 1,
� �16�

obtaining direct measures of the exponents �, and ��=�

−
�loc

z . Indirect measures of z and � can be obtained through a
collapse of the individual figures as w�� , t��−��g���t−1/z�,
where now the scaling function varies as u�loc−� for u�1 and
u−� for u�1. Finally, although the collapse gives an indirect
measure of exponents in a very robust way, it is worthwhile
to have a direct measure of at least three exponents. Thus we
also use the evolution of the power spectral density S�k , t�
= �
h�k , t�
2� which scales as S�k , t�= 1

k2�+1 s�kt1/z�, with

s�u� = � u2�+1, u � 1,

u2��−�s�, u � 1.
� �17�

Depicting S�k , t� at different times t, we have a direct mea-
sure of the spectral exponent �s, which coincides either with
the global roughness exponent �, when the power spectrum
do not shift in time �self-affine or superrough scalings� or
with the local one �loc, when a temporal shift is observed
�intrinsic anomalous scaling�.

IV. LOW CAPILLARY CONTRAST

In this section we deal with the case of low capillary
contrast in both the forced-flow and spontaneous imbibition
cases. It is worth mentioning here that the numerical param-
eters used in all numerical results have been �=1, M =1 �di-
mensionless units�, and �0=0.3. Equation �1� has been inte-
grated over a system of lateral size L=256 using a spatial
grid of 
x=1.0 and a time step of 
t=0.01. The minimum
length of the track disorder has been taken as Ld=2.

A. Forced-flow imbibition

We start to study a regime of low capillary pressures. The
value used for the capillary contrast was �A=0.66 and the
mean velocity was fixed to Vm=0.0025. The shape of the
interface for a given realization is shown in Fig. 2�a� for
�A=0.66. We can see a smooth interface that is slightly cor-
related with the disorder. The results of the roughness analy-
sis are shown in Fig. 3. From the local width w�� , t� com-
puted at different window sizes, we can obtain the global and
local growth exponents �=0.49�0.05 and ��=0.13�0.05.
The best collapse of these curves �shown in the inset of Fig.
3�a�� is obtained by tuning the values of z=3.0 and �=1.5.
The slopes of the scaling functions agree with the previously
calculated exponents, suggesting also a value for the local
roughness exponent of �loc=1 which is corroborated by the
power spectrum calculated at different times. Since there is
not any temporal shift between the lines of the power spec-
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= -(α-αloc)

= -α

β∗ = 0.13

FIG. 3. Statistical analysis of the interface fluctuations in the
forced-flow case with a low capillary contrast �A=0.66. �a� Local
width w�� , t� evaluated at different window sizes. The global and
local growth exponents can be measured directly from the data. The
inset shows the best data collapse for the scaling function using the
values of z=3.0 and �=1.5. It also suggests a local roughness ex-
ponent of �loc=1.0. �b� Interface power spectrum calculated at dif-
ferent times. It shows a roughness exponent of �s=1.3�0.2.
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trum, we can assume that the interface fluctuations are de-
scribed within the superrough anomalous scaling, and there-
fore �loc=1. In addition, the spectral roughness exponent
obtained from the power spectrum �s=1.3�0.2 corresponds
to the global roughness exponent, which is in agreement with
the value obtained previously. These measured exponents are
compatible with those obtained by the linear equation �8�
with a constant velocity Vm. Rescaling such a linear equation
by the transformation x→bx , t→bzt , h→b�h, we have
trivially that z=3 and �=1.5, and assuming superroughness
��loc=1�, we get the remaining exponents as �=� /z=0.5
and ��=�−

�loc

z =0.17, in agreement with the measured expo-
nents. Therefore, we can conclude that this regime is well
modeled by the nonlocal and linear equation �8�, taking into
account only the surface tension regime.

If we increase the mean velocity of the interface, then the
static crossover length, Eq. �9�, decreases, meaning that in-
terface fluctuations saturate earlier, at the time when the cor-
relation length �c reaches the crossover length, ts���

z

�2,26,30�.

B. Spontaneous imbibition

In spontaneous imbibition, the crossover length scale, Eq.
�9�, becomes a dynamical scale, and different regimes can be
observed depending on the velocity of the interface �30�. For
low velocities, the initial correlation length �c� t1/z is below
the crossover length, meaning that the relevant mechanism
for damping the interface fluctuations is the surface tension
with the characteristic dynamical exponent of z=3. On the
other hand, for higher velocities, the crossover length acts as
an effective correlation length of the interface fluctuations,
giving rise to the genuine exponent of z=4. In order to study
both regimes, we have controlled the initial velocity of the
interface by choosing the initial height of the interface ap-
propriately. We impose an initial height of H�0�=199 to
study the low-velocity regime, whereas a higher-velocity re-
gime will be achieved by simply putting H�0�=1.

1. Low-velocity regime

Typical shapes of interfaces in spontaneous imbibition are
depicted in Fig. 2�b�. In the low-capillary regime, the case of
�A=0.64, the interface is weakly correlated with disorder.
The roughness analysis shown in Fig. 4 gives the exponents
�=0.5�0.04 and ��=0.18�0.04 from a direct measure-
ment of the growing local width. The best data collapse on
these figures provides the exponents z=3.0 and �=1.5. Like-
wise, the slope of the scaling function gives �loc=1, which is
corroborated by the power spectrum shown in Fig. 4�b�,
where we get a spectral roughness exponent of �
=1.35�0.2, without temporal shift between the curves, indi-
cating we are dealing with a superrough scaling. Hence, the
measured exponents are the same as those obtained in the
forced-flow case. This was actually expected, since the rel-
evant terms of Eq. �8� at low velocities are the same in both
cases.

2. High-velocity regime

When the initial interface velocity is increased, the
velocity-dependent term of Eq. �8� starts to be relevant and

the new regime adopts the dynamics of the crossover length
��� t1/4, getting then the expected dynamical exponent z
=4 �22�, assuming a spatial structure with the same rough-
ness exponent as before, �=1.5. The numerical results are
presented in Fig. 5, obtaining �=0.37�0.03, ��

=0.12�0.03, and �s=1.35�0.2 from direct measurements,
and �=1.5, z=4.0, and �loc=1 from the data collapse of the
local widths, which are also in agreement with the linear
description of Eq. �8�.

V. HIGH CAPILLARY CONTRAST

When the capillary contrast is increased, the shapes of the
interfaces become sharper in both cases of imbibition, as can
be seen in Fig. 2. The effect of disorder is so strong that a
kind of columnar geometry is also imposed on the interface.
As we will see, two important points of the dynamics of
interface fluctuations arise as effects of increasing the capil-
lary contrast. First, interface motion seems to be described
by local effects instead of the nonlocal effects observed in
the case of low capillary contrast. Second, the scaling type
changes from superrough to anomalous intrinsic. As in the
case of low contrast, the forced-flow and spontaneous imbi-
bition cases present distinct patterns of fluctuations and they
need to be studied separately.

A. Forced-flow imbibition

We start by studying the case of capillary contrast �A
=0.72 �see Fig. 2�a��. In Fig. 6�a� there are plotted the local
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FIG. 4. Statistical analysis of the interface fluctuations in the
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capillary contrast �A=0.64. �a� Local width w�� , t� evaluated at
different window sizes. The global and local growth exponents can
be measured directly from the data. The inset shows the best data
collapse for the scaling function using the values of z=3.0 and �
=1.5. It also suggests a local roughness exponent of �loc=1.0. �b�
Interface power spectrum calculated at different times. It shows a
roughness exponent of �s=1.35�0.2.
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interface velocity at two different points x of the system
�solid lines� and the mean velocity Vm �dashed line�. The
curve above the mean velocity corresponds to a channel i
with a high disorder value, that is, �i� ���, �i being the
disorder of the channel i and ��� the mean disorder of the
whole system. The curve below the mean velocity corre-
sponds to the next channel i+1 with a lower disorder value,
that is, �i+1� ���. We can see that both profiles can be lo-
cally described by Eq. �15�, v��Vm� �v̄+ āt−1/2�, where +
and − mean the channels with �i− ����0 and �i− ����0,
respectively. Since the averaged velocity of the interface is
low enough, the velocity v− can be initially negative �9�.

As in the previous section we are interested in calculating
the different scaling exponents. The scaling analysis is
shown in Fig. 7. From direct measurement of the interfacial
local width slopes we get �=0.52�0.05 and ��

=0.26�0.06. The best data collapse is obtained using �
=1.1 and z=2.2. The power spectrum evolution changes with
respect to the low-contrast case since now there is a temporal
shift between the curves, indicating the presence of inherent
anomalous scaling. Hence, the spectral roughness exponent
�s=0.65�0.2 must be interpreted as the local roughness ex-
ponent, which is in agreement with the slopes of the col-
lapsed scaling function. Note that these exponents are very
close to the experimental exponents reported in Ref. �9�, �
=0.5�0.04, ��=0.25�0.03, and �=1.0�0.1. As shown in
this reference, the shape of the interfaces and the analysis of
fluctuations are well reproduced by Eq. �15�, which takes

into account strongly diffusively coupled channels. There-
fore, we can conclude that simple numerical integrations of
the phase-field model reproduce both the shape and the scal-
ing analysis of interfaces.

1. From low to high capillary contrast

When we increase the value of the capillary contrast even
more, interfaces become more correlated with the columnar
disorder presenting quantitative changes on the scaling be-
havior. For instance, in Fig. 8�a� there is plotted the local
width computed in a small window of length �=L /128. It
allows us to calculate the local growth exponent �� for dif-
ferent capillary contrasts. The complete set of scaling expo-
nents is presented in Table I. We can see that, for high cap-
illary contrasts ��A�0.7�, interface fluctuations are always
described by intrinsic anomalous scaling. In addition, the
dynamics of the correlation is subdiffusive, ranging from z
=2 to z→� in the highest-contrast case. We must interpret
this extreme case as having completely decoupled fluctua-
tions. It is characterized by the same local and global growth
exponent �=��=0.5, which implies a dynamic exponent of
z=�, and it can be understood as a regime where the corre-
lation length �c� t1/z no longer grows in time. Experimen-
tally, it has also been observed in the work carried out in Ref.
�10�. It is worth noting that there are two exponents, �=0.5,
and �loc=0.5 that remain constant.
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Alternatively to the phase-field model results, this phe-
nomenon can be reproduced by Eq. �15�, taking a random
diffusion coefficient D�x� �31�. By choosing a probability
density P�D�=NaD−afc�D /Dmax�, fc being a cutoff function,
Eq. �15� predicts a growth exponent �=�loc=0.5 indepen-
dently of the a value, a roughness exponent 1����, and a
dynamic exponent 2�z��, which is in accordance with the
numerical values obtained using the phase-field model �see
Table I�. In this sense, we can say that the diffusion coeffi-
cient Di of Eq. �15� depends on the capillary contrast of the
system. For very high capillary contrasts ��A�0.8�, the cou-
pling coefficient can be taken as Di�0, obtaining then the
decoupled state observed numerically. On the other hand, for
lower capillary contrasts ��A�0.72�, the variations of Di oc-
cur at scales larger than the correlation length and Di�D can
be taken as constant, obtaining then the regime described by
z�2.

B. Spontaneous imbibition

In Fig. 2�b� there are plotted four interface profiles evalu-
ated at the same time but with different capillary contrasts.
The velocity profiles of the interface are shown in Fig. 6�b�.
Since now there is no imposed velocity, the velocity of the
interface follows Washburn’s law in each channel of different
noise value.

When we increase the parameter �A, a transition to a de-
coupled state ��=��=0.5, z=�� also appears in the case of
spontaneous imbibition. However, there is an important dif-

ference from the forced-flow case. As before, we calculate
the local width in a small window size �=L /128 for different
capillary contrasts �Fig. 8�b��. We observe that now the local
growth exponent �� changes suddenly to ��=0.5, indicating
that the interface advances completely decoupled. The tran-
sition to the decoupled state can now be discontinuous in
time for each value of the capillary contrast. It seems that
there exists a length �d��A� above which the fluctuations be-
come decoupled. Therefore, for a given value of the capillary
contrast, the clusters of interface with a size �d will become
decoupled from each other at the time td��d

z , when the cor-
relation length �c� t1/z reaches the length �d. Above td, the
local description is no longer valid.

VI. CONCLUSIONS

By means of numerical integrations of the phase-field
model, we find that there are strong differences between the
dynamics of fluctuations in the cases of low and high capil-
lary contrast with columnar disorder. Although these differ-
ences also exist in the case of quenched noise composed of
squares �30�, they are more dramatic when the quenched
noise is of columnar type. It turns out that the persistence of
the noise forces the interface to adopt the same geometry,
changing the nature of the interface motion.

In the low-capillary-contrast case, interfaces are super-
rough with a dynamics dominated by surface tension with
exponents z=3 when the velocity is nearly constant or z=4
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when the velocity varies following Washburn’s law. Further-
more, as interfaces are smooth and can be linearized around
their mean value, a simple nonlocal model for the interfacial
evolution can be used to explain the observed dynamical
scaling of fluctuations. On the other hand, when the capillary
contrast is increased, the interfaces are sharper and the cor-
relation with disorder is more evident. The observed dynami-
cal scaling corresponds then to an anomalous scaling de-
scription with a clear temporal shift at the power spectrum,
and a subdiffusive behavior with dynamical exponents rang-
ing from z=2 to z→�, depending on the strength of the
capillary forces. A prominent point to remark is that this
behavior can be explained by a local model made of coupled
channels with a fluctuating force following Darcy’s law. One
can interpret that, in the high-contrast case, the columnar

disorder induces the existence of channels with more or less
coupling, eliminating completely the nonlocal character of
imbibition in homogeneous geometries. Finally, the differ-
ence between forced-flow and spontaneous imbibition has
also been elucidated in the high-capillary-contrast regime.
While in the forced-flow case the interface gets completely
decoupled above a critical capillary contrast, in spontaneous
imbibition the same decoupled state can be suddenly
achieved for a given value of capillary contrast.
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