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We present a model that allows for the derivation of the experimentally accesible observables: spatial steps,
mean velocity, stall force, useful power, efficiency and randomness, etc. as a function of the �adenosine
triphosphate� concentration and an external load F. The model presents a minimum of adjustable parameters
and the theoretical predictions compare well with the available experimental results.
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I. INTRODUCTION

The highly specialized and localized activity inside an
eukaryotic cell needs directional �not random as diffusion�
transport of intracellular structures such as vesicles or mito-
chondria. This job is done by some wide families of motor
proteins acting as nanometrical devices which convert
chemical energy into mechanical work. They operate in a
relative strong thermally fluctuating medium but with the
supporting help of a rigid and periodic structure that makes
possible and defines the direction of the active transport. The
source of chemical energy is provided by the hydrolysis of
the adenosine triphosphate �ATP�.

Molecular motors are receiving a lot of interest not only
from a biomolecular point of view but from a physical one.
We will focus our attention on a particular motor, the con-
ventional kinesin. The reason is that recent single molecule
experiments with this protein have provided very useful data
introducing unexpected features that our model tries to ex-
plain �1�. We expect that a similar approach can be derived
for other molecular motors, incorporating their more specific
ingredients �2�.

A single or isolated molecular motor operates cyclically
by presenting conformational changes �mechanical motion�
fueled by chemical reactions, and afterwards reseting spon-
taneously to the initial configuration in order to restart an-
other cycle �3�. We expect that mechanical motion steps have
to be coupled to the chemical reaction steps that generate the
energy for this mechanical motion �4�.

It is commonly accepted that Brownian motion or thermal
fluctuations are essential ingredients in this cycle �5�. Actu-
ally what we do know is that thermal fluctuations are neces-
sary for crossing potential barriers and for diffusion. More-
over they are also responsible for the dissipation and loss of
energy through fluctuation-dissipation relations. From the
physical point of view all of these engines have to share
basic and common observables such as spatial steps, mean
velocity, useful power, efficiency, and randomness �3,4�. The
role of these minimum sets of ingredients has to be clear in
any proposed model independently of its complication. Such

simplified theories or minimum models also have to cover in
a clear way the coupling between chemical energy consump-
tion and external useful power. This is so because all these
aspects are experimentally accessible to some extent.

In our model, we pay special attention to the energetics of
the processes involved in the kinesin cycle and the way they
couple to mechanical movement, instead of taking much care
of intermediate steps. Using a reduced number of parameters,
but all of them with physical or chemical meaning, we are
able to reproduce the observed quantities like the mean ve-
locity, the randomness, or the stall force, in good agreement
with the data obtained in experiments. The control variables
are the external load, F, controlled in experiments by using
force clamps and the ATP concentration �ATP�.

In Sec. II we present the analytical study of an ideal motor
that admits analytical treatment giving rise to the qualitative
behavior and a discussion of some important points. In Sec.
III we proceed with a more realistic kinesin model, taking
into account biochemical and physical inputs. Different hy-
pothesis are discussed in detail. In Sec. IV theoretical results
are presented and compared with experimental data. Finally,
in Sec. V we end with a set of comments and discussions.

II. THE IDEAL MOTOR

Here we will present a discussion on the most relevant
aspects of a molecular motor using a very simple or ideal
model. Molecular motors operate over a track or other type
of repetitive structure made of proteins. The motor-track in-
teraction is probably the most important interaction in the
system, the others being less relevant and which can be in-
corporated into the thermal bath or other degrees of freedom.
So we will assume that the most relevant variable is the
position of the motor along the symmetry axis of the fila-
ment. The chemical variables and the track are incorporated
through an effective free energy using �Gu in a step lo.

We will propose the following Langevin equation that al-
lows a simple analytical approach and can be useful to dis-
cuss some relevant aspects of the problem and to obtain pre-
liminary estimated values for some parameters. The equation
of motion is*Corresponding author. Email-address: aciudad@ecm.ub.es
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�ẋ =
�Gu

l0
− F + ��t� , �1�

where ��t� is the thermal force, responsible for the strong
fluctuations, which is a Gaussian white noise with a correla-
tion given by

���t���t��� = 2�kBT��t − t�� , �2�

according a fluctuation-dissipation relation. F is the external
load and � is the friction parameter. Here the motor moves
under a chemical constant force �Gu / l0 which mimics ex-
actly one ATP consumed for l0. This simple modelization
does not incorporate the activation energy of the ATP hy-
drolysis. This important ingredient is addressed in the next
section.

Our interest is to find a prediction for the mean velocity
�v� and for the randomness parameter defined as

r = lim
t→�

��x�t�2�
l0�v�t��t

=
2D

�v�l0
, �3�

where D is the diffusion coefficient. These two observables
have to be obtained as a function of the experimental exter-
nal control parameters: the ATP concentration and the exter-
nal load F.

As this model allows a quick solution we get

�v� =
1

�
��Gu

l0
− F� , �4�

��x�t�2� 	
2kBT

�
t = 2Dt . �5�

These predictions disagree with experimental data but their
careful analysis will allow us to introduce the observables we
want to study, to discuss important aspects, and to get rel-
evant information to make more accurate improvements in
the model.

From Eq. �4�, one can obtain that the stall force ��v�=0� is
FS=�Gu / l0. As from the experimental data of Ref. �1� we
observe that Fs increases very slowly with the ATP concen-
tration, we expect the same dependence for �Gu. Neverthe-
less the experimental velocities do depend very much on
ATP concentration so we need a new term in the model but
maintain the prediction for FS.

Equations �3�–�5� give a randomness,

r =
2kBT

�Gu − Fl0
. �6�

This prediction is qualitatively similar to experimental data
of Ref. �1� with a divergence of r at the stall force. Never-
theless the predicted values are very small. This is due be-
cause all the free energy �Gu is taken directly without any
activation energy barrier. An important point to stress is
that Eq. �6� predicts that r does not depend on the friction
parameter.

Let us analyze a set of quantities we are interested in. The
mean useful power produced by the motor against the exter-
nal load F is

WF = F�v� . �7�

Using Eq. �4� we get

WF =
F

�
��Gu

l0
− F� , �8�

which presents the standard parabolic form of any kind of
motor.

The mean power of the chemical energy consumption is,

WG =
�Gu�v�

l0
, �9�

which directly follows from the assumption that one ATP
molecule, �Gu, is consumed per track step l0. One can use
the benchmark experiments using optical tweezers to esti-
mate the efficiency against a conservative external force,
which is

� =
Fl0

�Gu
. �10�

Although the maximum of efficiency is given for F=FS or
�v�	0, we get that the maximum power, using Eq. �8�, ap-
pears for F=FS /2, with a very optimistic efficiency of 50%.
However, working in vivo conditions the chemical input of
energy is dissipated by drag forces or other degrees of free-
dom.

An estimation of the value taken by the friction parameter
� needs a careful analysis of the experimental data and the
model predictions. Let us take now F=0 �free motion� and
using that the experimental mean velocity under saturated
concentration of ATP is 	800 nm/s �1�, we can get an upper
value prediction for the friction parameter �=�G / �v�maxl0

	10−2 pN s/nm. This is a quite surprising result. In the lit-
erature we found �	10−7 pN s/nm in Refs. �6–8�, or a simi-
lar value as here in �9�, for a similar modelization. A physical
discussion is worth including here. From an estimation of the
Stokes friction �=6�	R, using the viscosity of the water
	=10−1 Pas and the radius of the silica bead R=0.5 
m �1�,
one can obtain a estimated value of �	10−5 pN s/nm,
which is also very far from the value we have obtained. Our
interpretation of this fact is that, as it occurs in other stepping
engines, the mean velocity is essentially given by the dwell
time between steps. Then, because these times are controlled
by the ATP concentration, the value of the drag force in this
case is not physical but chemical. As we will see below a
better estimation of this parameter will reduce this value but
not too much. As a conclusion we expect a larger effective
friction parameter that the one obtained from the viscosity of
the water. All this information will be used to propose a more
realistic model with a minimum of fitting parameters which
will give predictions with a better experimental agreement.

III. THE MODEL

Before we present the model let us analyze the main bio-
chemical facts that have, in our opinion, to be incorporated
in any molecular model.
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A. Biochemical inputs

From experiments �1,10� it can be seen that kinesin
moves with discrete steps of order 8.2 nm ��20��. We will
call this distance l0 and it will be the first fixed constant of
our model.

The introduction of the chemical energy input needs
a more careful analysis than in the ideal model. It is a com-
monly accepted biochemical hypothesis, sustained by an in-
terpretation of well-prepared experiments �11�, that the
kinesin hydrolyzes one ATP to perform one step. Other mo-
tors, like Myosin V, operate in the same way but with a
different l0	37 nm �12�. This tight coupling between one
unit of free energy consumed and one elementary step
implies that a precise value of the free energy available in the
ATP hydrolysis, �Gu, is a crucial quantity. In textbooks �2�
one can read that the free energy �G assigned to ATP
hydrolysis reaction,

ATP � ADP + Pi �11�

is given by

�G = �G0 + kBT ln� �ATP�
�ADP��Pi�

� , �12�

where �G0=55 pN nm is the equilibrium value and Pi stands
for inorganic phosphate. Although the standard free energy
�G0 depends on pH, ionic strength, and other factors,
the standard conditions of the experiments should not move
this value. However, in order to calculate the total free en-
ergy, ADP and Pi concentrations are relevant. Commonly ac-
cepted values for these concentrations are of order 10 nM
�13�, and they do not change significatively for different so-
lutions of �ATP�. Then we will have finally the following
expression:

�G = „55 + 4.1 ln�104�ATP��… pN nm, �13�

where we have taken kBT	4.1 pN nm, corresponding to a
temperature of 25 °C.

Another important question is the percentage of this
free energy that the motor is able to use. Although the
mechanism of using this free energy remains under scrutiny,
there are experimental evidences, see below, that indicate
that the hydrolysis of one ATP is not used exclusively to
advance a forward step. In Ref. �2� it is remarked that, ac-
cording to the observed stall forces, only half of the thermo-
dynamic free energy is avaliable to this movement. Accord-
ing to this conjecture we will assume that the used chemical
energy is

�Gu =
�G

2
. �14�

B. Physical inputs

We are going to consider only axial movements along the
track and we only interested in following the center of the
mass of the motor. An overdamped Langevin dynamics is the
most simple way to express an equation for its position. The
equation reads

�ẋ = − V��x� − F + ��t� , �15�

where ��t� is the same thermal force than in the ideal model.
V�x� is the potential that the motor is subjected in, and it

incorporates all the necessary biochemical ingredients of this
problem. In Ref. �4� a piecewise effective potential is pro-
posed. Now we will develop this hypothesis. The kinesin
advances in a periodic track of length l0 in a periodic effec-
tive potential given by

V�x�

= 

E

l0�1 − ��
x , 0 � x  l0�1 − ��

−
��Gu + E�

�l0
x +

E + �1 − ���Gu

�
, l0�1 − �� � x  l0, �

�16�

which is plotted in Fig. 1.
Here we can see that the free energy �Gu consumption is

tightly coupled with the step l0. The only adjustable param-
eters of the model are the activation barrier E which deserves
a detailed study �next section� and the parameter � which
measures the relative spatial length occupied by the chemical
processes. �This parameter appears also in Ref. �9�.� Con-
cretely, the asymmetric parts of the resulting ratchet potential
correspond to the capture and hydrolysis of an ATP �small
part� and to the advancing step of one of the heads �large
part�. We will see later how only a very small fraction of the
step corresponds to the capture and hydrolysis, leading to a
nonspatiality of the chemical reaction coordinate. The pa-
rameters � and � are estimated from a best fitting of the
experimental data of Ref. �1�.

C. The activation energy E

As we have already mentioned, there is an energy barrier
that makes necessary the presence of thermal fluctuations.
This barrier is also responsible for the values of the random-
ness. For a molecule of ATP, the process of hydrolysis is just
to break the covalent pyrophosphate bond, and it means that
an amount of energy E, given by thermal fluctuations, is
needed. However, while in the cytoplasm E is so high that

FIG. 1. Scheme of the effective potential with all the parameters
and in an arbitrary scale.
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the reaction hardly happens spontaneously, in the kinesin’s
catalytic domain E will be reduced considerably because of
the enzymatic properties of the protein. On the other hand, at
high �ATP� the kinetics will saturate as expected in any
Mchaelian enzymatic process. Even in these conditions a
little barrier E0 will remain. We will estimate the �ATP� in-
fluence from experimental data. The kinetics of a barrier
crossing is described by Arrhenius’ �experimental� or Kram-
ers �theoretical� law, and it predicts an exponential decay for
the reaction rate. We will assume here that for this enzymatic
reaction we have the form

k = k0e−E/kBT, �17�

where the limiting constant k0 depends on the shape of the
potential and on the friction. Moreover, the effect of ATP
concentration is taken into account by assuming a Michaelis-
Menten saturating expression,

k = kmax
�ATP�

KM + �ATP�
, �18�

where kmax is the saturating reaction rate at very high �ATP�
which introduces the parameter E0 as

kmax = k0e−E0/kBT. �19�

Our hypothesis is to consider that the whole process has a
single effective barrier that, in consequence, has to depend
on �ATP�. Then, joining Eqs. �17�–�19� we get an expression
for E that depends on �ATP� in the following way:

E = E0 + kBT ln�1 +
KM

�ATP�� , �20�

which has only two free parameters, E0 and KM. It is worth
commenting that this approach is the result of a two step
process, each one having a characteristic time scale. The first
step represents the capture of an ATP molecule, and the as-
sociate time scale will be proportional to 1/�ATP�. The sec-
ond step is the hydrolysis of the nucleotide, and its time scale
will be Kramers-like, that is, proportional to eE0/kBT.

Using now experimental data of Ref. �1� we have found
that the best values are E0=1 pN nm	0.25kBT �the remain-
ing barrier in saturating conditions� and KM =1020 
M �the
concentration when the kinesin is 50% saturated�. It is im-
portant to notice that at high ATP concentrations, the height
of the effective barrier is not important, according to the
ideal situation of the previous section. The rest of param-
eters, � and �, are also estimated. We have found the values
�=0.97 and �=0.008 pN s/nm, which can be compared with
the values used in Ref. �9�: �=0.73 and �=0.01 pN s/nm.
The values of the drag force are similar and correspond to a
high and nonhydrodynamical friction. However, � is bigger
in our case, although there is no surprise in this result: in the
model of Ref. �9� there are no changes of the potential in the
short segments, while in our case, this short segment has a
pronunciated upward slope. This fact could explain the
discrepancy.

IV. THEORETICAL PREDICTIONS VERSUS
EXPERIMENTAL DATA

Our model �15� allows some analytical calculations be-
cause the variable position is a Markovian process which
follows a standard Fokker-Planck equation. The mean veloc-
ity �v� and the diffusion coefficient can be expressed in
quadratures �14�,

�v� =
l0kBT

�

�1 − e�Fl0−�Gu�/kBT�

�
0

l0

dx I+�x�
, �21�

D =
kBTl0

2

�

�
0

l0

dx I+
2�x�I−�x�

�
0

l0

dx I+�x��3 , �22�

where

I±�x� = ±
�e�U�x�/kBT

kBT
�

x

x±l0

dy e±U�y�/kBT �23�

and

U�x� = V�x� + Fx . �24�

FIG. 2. Kinesin trajectories for �ATP�=5 and �ATP�
=2000 
M from numerical simulation of model �15�.

FIG. 3. Stall Force �pN� �using a position clamp� versus �ATP�
concentration. The straight line is the analytical prediction �25� and
dots are the experimental data of Ref. �1�.
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With these expressions the relevant quantities can be
evaluated numerically and compared now with the experi-
mental data. First we will present, in Fig. 2, two representa-
tive trajectories of the kinesin motion as they come from
numerical simulations of Eq. �15�. These trajectories present
the typical stepping movement of the kinesin which are more
clear for low �ATP�. In this figure, we see how the motor
advances faster for the higher ATP concentration case.

The first analytical prediction or our model is that the stall
force FS has the same expression as in the ideal motor,

FS =
�Gu

l0
, �25�

but now in terms of �Gu given by Eq. �13�, which is plotted
in Fig. 3.

The velocity versus load is plotted in Fig. 4. The
agreement is quite good although we will comment on this
point in our conclusions. In Fig. 5 we can see the mean
velocity versus ATP concentrations for different values of the
load.

Finally, the randomness is plotted in Figs. 6 and 7 in
front of the load and �ATP�, respectively. It is clear that,
though the qualitative behavior is well-described, we under-
estimate the value of the randomness, especially at low
�ATP�.

At this point it is worth discussing the efficiency of the
kinesin from experimental observations. One can take that

the �ATP� concentration inside a cell is of the order of mM
�15–17�. If we plot the mean power versus load for the ex-
perimental points of Ref. �1� for �ATP�=2 mM, we can see
that the maximum power takes place at a value of F
	5 pN. Using Eq. �12� we get �G	124 pN nm so the effi-
ciency �10� is just �=Fl0 /�G	0.33. We conjecture that this
is the order of efficiency that one has to expect in any of the
molecular motors as myosins �18�, and never quite unrealis-
tic values of the order of 100% �19�.

V. COMMENTS AND CONCLUSIONS

We have presented a simple model of a molecular motor
which is able to predict experimental observations for the
conventional kinesin. The agreement, although qualitatively
good, is not optimal. The experimental velocity-load curves
have some discrepancies especially at high �ATP�. This is
due to the simplicity of the model which skips second-order
factors that probably are responsible of this disagreement.

The results for the randomness, although qualitatively
correct, give systematically underestimated values with re-
spect to the experiments. This discrepancy is also seen in
other models like �15�. We believe that in order to improve
this prediction, a more detailed description of the role of the
external force in each of the chemical states is needed �20�.
Concretely, the Michaelis constant should be considered
load-dependent due to the coordinated cycles of the two

FIG. 4. Mean velocity �nm/s� vs F �pN� for two �ATP� concen-
trations. Points are from experimental data of Ref. �1�. Lines are
theoretical predictions.

FIG. 5. Mean velocity vs �ATP� for different values of the
load.

FIG. 6. Randomness vs F for �ATP�=2 mM.

FIG. 7. Randomness vs �ATP�. The values of F are the same as
in Fig. 5.
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catalytic domains of the dimer. This is a key point for further
improvements, although more refined experimental data
would be more clarifying.

The model proposed here is a clear improvement of the
more simple model presented in Ref. �9�. Our model incor-
porates the ATP concentration and the external load as inde-
pendent variables. Moreover, the quality of our predictions
compares favorably with respect to the modelizations of Ref.
�15� which, for only some observables, obtain a better agree-
ment with the experiments but pay the price of using more
adjustable parameters. Furthermore, this model does not take
a kinetic approach. Instead, it takes into account how the

motor diffuses along a coordinate reaction. Then, we do not
consider the velocity of the step to be infinite.

Thus our model provides a very good balance between
mathematical simplicity, physico-biochemical hypothesis,
and experimental results.
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