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Artificial-intelligence-driven discovery of catalyst
genes with application to CO2 activation on
semiconductor oxides
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Catalytic-materials design requires predictive modeling of the interaction between catalyst

and reactants. This is challenging due to the complexity and diversity of structure-property

relationships across the chemical space. Here, we report a strategy for a rational design of

catalytic materials using the artificial intelligence approach (AI) subgroup discovery. We

identify catalyst genes (features) that correlate with mechanisms that trigger, facilitate, or

hinder the activation of carbon dioxide (CO2) towards a chemical conversion. The AI model is

trained on first-principles data for a broad family of oxides. We demonstrate that surfaces of

experimentally identified good catalysts consistently exhibit combinations of genes resulting

in a strong elongation of a C-O bond. The same combinations of genes also minimize the

OCO-angle, the previously proposed indicator of activation, albeit under the constraint that

the Sabatier principle is satisfied. Based on these findings, we propose a set of new promising

catalyst materials for CO2 conversion.
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The need for converting stable molecules such as carbon
dioxide (CO2), methane, or water into useful chemicals
and fuels is growing quickly along with the depletion of

fossil-fuel reserves and the pollution of the environment1–3. Such
a conversion does not have a satisfactory solution, so far. In
particular, CO2 conversion remains one of the most important
societal and technological challenges1,2,4–8.

The general understanding in heterogeneous catalysis is that a
stable molecule such as CO2 needs to be “prepared” before its
catalytic conversion occurs. This leads to the notion of molecular
activation9. However, on one hand, this notion encompasses a
very wide variety of processes (adsorption, photo-excitation,
application of electric field, etc.) and materials (including com-
positional and structural variability), and it remains unclear
which properties of the catalytic material and the adsorbed
molecule determine the final chemistry, what is the relationship
between the two sets of properties, and how general this rela-
tionship may be. On the other hand, finding the set of descriptive
parameters of a catalytic material that characterize the catalytic
performance in a particular process, or even in general for a given
reactant, would be very valuable, because it would allow us to
quickly search for promising candidate catalysts using rational
design10–17. We call these properties materials genes. The genes
do not necessarily correlate with catalytic activity by themselves.
Similar to biological genes, their role depends on the combination
in which they occur, and can be either beneficial or detrimental to
the catalytic activity.

Several strategies exist to find such properties for a given
reaction. One way is to explore the free-energy surface for each
catalyst candidate, which is a slow and resource-consuming
process, and currently computationally unfeasible for many
materials on a high-throughput basis. An alternative approach
consists in searching for a correlation between experimentally
determined material’s properties and its catalytic performance.
Such a strategy requires consistent experimental measurements at
well-defined conditions for a set of materials. To the best of our
knowledge, such consistent data have not been reported so far for
CO2 conversion on semiconductor oxides. Moreover, available
publications usually do not report unsuccessful experimental
results. These issues and a strategy to address them have been
recently discussed in our publication18.

Yet another strategy is to find an indicator of activation,
namely, a property of the system that directly indicates the certain
catalytic performance of the material10. Indicators are dis-
tinguished from materials genes based on a qualitatively different
level of computational complexity. The indicator can still be
unfeasible or hard for a high-throughput study of hundreds of
thousands or millions of materials. However, when it can be
calculated for a few tens or hundreds of materials in a reasonable
time, these data can then be used to find materials genes that
control the value of the indicator. Since a direct search for a
relationship between the indicator and catalytic performance of
material would also require a consistent set of data of turnover
frequency (TOF), selectivity, and yield values, one could instead
consider several most promising indicators, find out which
materials are good catalysts, and then check which indicators
correlate with this observation. This approach also addresses the
problem of defining activation in terms of the adsorbed-molecule
properties as potential indicators of catalytic activity.

Catalytic conversion of CO2 requires activation of other reac-
tants as well, e.g., molecular hydrogen, water, or methane. In
particular, hydrogen can serve as an environmentally friendly
reagent that can be produced by water electrolysis or photo-
splitting avoiding extra CO2 emissions19–21. Also, oxygen
vacancies have been proposed as active sites for CO2 conversion
on some materials22. Therefore, predictions of catalytic activity of

materials for CO2 conversion can be refined based on analysis of
activation of other reactants and defects. An additional challenge
is to ensure that the useful products, as well as the surface cata-
lytic activity, are preserved under the conditions of activation and
subsequent conversion. While the strong C–O double bonds in
CO2 can be weakened or even broken by adsorption at a solid
surface at an elevated temperature, this may also lead to too
strong adsorption or further dissociation of the molecule, so that
the catalytic surface is poisoned by carbonate or carbon deposits.
Weak adsorption, on the other hand, means no activation.

In this work, we combine first-principles calculations with an
artificial-intelligence (AI) method, subgroup discovery (SGD), to
identify pristine materials properties that optimize indicators of
catalytic CO2 activation. Moreover, SGD allows identifying one or
more distinct combinations of materials features (genes) that
promote activation. We focus on oxide materials as candidate
catalysts. Oxides are structurally and compositionally stable
under realistic temperatures and can be less expensive than the
traditional precious metal-containing catalysts23–25. Activation of
other reactants and defects are not considered. As shown below,
meaningful predictions can be made based solely on the analysis
of the adsorption properties of CO2 on pristine surfaces. This
confirms that these properties are good indicators of activation
with a viable optimization pathway at least for the chosen class of
materials. The Sabatier principle is taken into account by
ensuring that the adsorption energy is not too large or too small.
In order to ensure reproducibility of our AI data analysis, we
provide all necessary metadata (input parameters) and workflow
in the easily accessible form of a Jupyter notebook26. We argue
that, with the ever-growing importance and complexity of AI,
such detailed and tutorial documentation is a necessity of good
scientific practice. Our approach is applicable to a wider class of
materials and molecules, not limited to oxides or CO2. Our study
by no means encompasses all possible mechanisms of CO2 con-
version on oxide surfaces, but it offers a clear design path among
many possible ones.

Results
CO2 activation. We find that on semiconductor oxide surfaces
CO2 is chemisorbed exclusively when the carbon atom binds to
surface O-atoms. All other minima of the potential-energy sur-
face are found to be either metastable or correspond to physi-
sorption. Therefore, there are as many different potential
chemisorption sites as there are unique O-atoms at the surface.
The dataset includes all non-equivalent surface O-atoms on the
141 considered surfaces of 71 materials, which sum up to 255
unique adsorption sites. Among these sites on about 4% (10 out
of 255) CO2 prefers to physisorb, i.e., any chemisorbed state is
metastable with respect to the physisorbed one. The physisorp-
tion can be easily identified by an almost linear geometry of the
adsorbed molecule, and a C–O bond distance very close to the
C–O bond length in a gas-phase CO2 molecule, 1.17 Å.

We considered six different candidate indicators of CO2

activation, including OCO-angle and C–O bond distance. The
bending of the OCO-angle in the adsorbed CO2 molecule relative
to the gas-phase value of 180° (linear configuration) has been
previously proposed27 and is widely accepted as a good indicator
of activation. For gas-phase CO2, it is understood that the C–O
double bond is weakened when an electron is added to the lowest
unoccupied orbital, because it is of antibonding (π*) character
with a concomitant bending of the molecule. There is a one-to-
one mapping between the C–O bond length l(C–O) and the
OCO-angle in gas-phase CO2

δ− for a range of δ > 0 (red curve in
Fig. 1). However, this is not the case for the adsorbed CO2 (dots
in Fig. 1). There is a subset of adsorbed CO2 that is close to the
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red line, but there are many cases where l(C–O) is substantially
larger for a given OCO-angle. This is in contrast to metal alloy
nanoparticle catalysts, where there is a better correlation between
OCO-angle and l(C–O)28. Also, a longer C–O bond reflects a
weakening and readiness for further chemical transformations.
Thus, the bond elongation itself may be an alternative indicator of
activation. A look at the adsorbed CO2 structures reveals that, on
sites following the gas-phase correlation, the molecule adsorbs in
nearly symmetric adsorption structures with nearly equal length
of the two C–O bonds. In the other cases one O-atom of CO2 is
close to surface cation(s), leading to a pronounced asymmetry of
the adsorbed molecule.

Other considered potential indicators of activation include
Hirshfeld charge29 of adsorbed CO2 (a direct indicator of the
charge transferred to CO2), the dipole moment of the surface
along the surface normal per adsorbed CO2 molecule (includes
charge transfer to the molecule, as well as adsorption induced
surface relaxation), the difference in Hirshfeld charges of C and
O-atoms in an adsorbed CO2 molecule (indicates the ionicity of
C–O bonds), and the difference in Hirshfeld charges of the
O-atoms in the adsorbed molecule (indicates asymmetry of the
adsorbed molecule)9,29.

Subgroup discovery. To find out which properties (features) of
the clean surfaces determine when a given activation indicator is
maximized or minimized, we employ the subgroup-discovery
(SGD) approach30–34. Given a dataset and a target property
known for all data points, the SGD algorithm identifies subgroups
with “outstanding characteristics” (see further for the criteria for
being outstanding) and describes them by means of conjunction
of basic propositions (selectors) of the kind “(f1 < a) AND (f2 ≥ b)
AND ...”, where fi is a feature and a, b are threshold values also
found by SGD. In the framework of SGD, we call the selected
primary features {f1, f2, ...} materials genes. Thus, SGD identifies
both the outstanding subgroups and the relevant materials genes
for a given target property.

Obviously, the selectors should only contain features that are
much easier to evaluate than the target property. In the presented
work, the considered features include properties of gas-phase atoms
that build the material, and properties of the pristine material
(properties of the bulk phase and of the pristine relaxed surface).
Overall 46 primary features have been considered. The full list is
presented Supplementary Table 3. Our strategy is to provide an
almost exhaustive list of features, and use data analytics to select
materials genes from this list. Some of these features have been
explored previously as descriptors of catalytic activity for semi-
conducting and metallic oxides35–38. O 2p-band center features have
been shown to correlate with catalytic properties of both
semiconducting and metallic oxides35,37. In particular, most of the
features (or closely related ones) mentioned in ref. 36, inspired by the
work of Grasselli39, are included in our set, except oxygen vacancy
formation energy, which is relevant for the oxidation catalysis, while
here we are interested in partial or complete reduction. Additional
important features in our work (see below) include features related
to the polarizability of surface cations, which describe the long-range
surface response to charged adsorbates. A subset of features from
our list has been recently used successfully for predicting catalytic
properties of metallic oxides38, along with additional features
relevant specifically for metallic oxides (such as partial electronic
state fillings).

The features selected by the SGD are summarized in Table 1.
The outstanding subgroup should satisfy several criteria. It

should be statistically relevant; therefore the subgroups of too
small size should be penalized. Target-property values (OCO-
angle, C–O bond length, etc.) for subgroup samples should be as
different as possible from corresponding gas-phase values since
their change upon adsorption indicates CO2 activation33. To
achieve this, two requirements are imposed simultaneously: (i)
The target-property values for subgroup members should be
smaller or larger (depending on the target) than a certain value (a
cutoff), and (ii) the target-property values are minimized or
maximized within the cutoff. The latter condition gives

Fig. 1 Correlation between the larger of the two C–O bond lengths and the OCO-angle for charged gas-phase and adsorbed CO2. The OCO-angle in
charged gas-phase CO2 is shown with the red line, and adsorbed CO2 structures are shown with the dots. Colored dots: blue—adsorption sites from the
unconstrained subgroup with OCO < 132°, green—subgroup of sites with l(C–O) > 1.30 Å, black—the remaining samples (see the text). The subgroups
obtained with Sabatier principle constraint are marked with “c”.
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preference to subgroups with smaller or larger target-property
values among similarly sized subgroups within the cutoff. The
value of the cutoff is a parameter. As it approaches the optimal
value of an activation indicator among all data points, additional
or alternative materials genes and their combinations leading to
stronger activation are identified. We explore the whole range of
the parameter for each target property (for OCO-angle—123°,
124°, 126°, 128°, 130°, and 132°; for l(C–O)—1.26 Å, 1.28 Å, and
1.30 Å).

In addition to these criteria, we consider the requirement that
adsorption energies are not too strong and not too weak for most of
the samples in a subgroup. Strong activation (i.e., strong weakening
of the C–O bonds) can be achieved by strong binding to the surface.
It is well known that good catalytic performance requires a balanced
adsorption strength. This is known as Sabatier principle. In addition
to the practical value of identifying subgroups that satisfy this
principle, comparison of subgroup selectors obtained with and
without this requirement helps to identify combinations of materials
features that promote desired changes in target properties and at the
same time yield intermediate adsorption energies.

Sabatier principle is reflected by a characteristic volcano-type
behavior of catalytic activity as a function of adsorption energy of
reactants and intermediates. The position of the top of the
volcano depends on particular reactions and conditions. It can be
estimated from condition |ΔG| ~ 0, where ΔG is the Gibbs free
energy of adsorption. For CO2 adsorption at room temperature
and partial CO2 pressure of 1 atm this condition corresponds to
about −0.5 eV adsorption energy40. At temperatures around
450 °C (typical conditions for CO2 methanation41) ΔG= 0

corresponds to adsorption energy −1.7 eV41. Therefore, for
catalytic conversion at low or moderate temperatures this implies
that CO2 adsorption energies should be in the range from
between −2.0 and −0.5 eV.

These requirements are implemented in the following quality
functions that are maximized during the search for subgroups. In
particular, for OCO-angle minimization we use:

FðZÞ ¼ θcut
sðZÞ
sðYÞ �

maxðZÞ � αg
minðYÞ � αg

 !
� uðpÞ

" #
ð1Þ

and for C–O bond maximization the following quality function
was applied:

FðZÞ ¼ θcut
sðZÞ
sðYÞ �

minðZÞ � lg
maxðYÞ � lg

 !
� uðpÞ

" #
ð2Þ

where Y is the whole dataset, Z—a subgroup, s—size (number of
data points), min and max – minimal or maximal value of the
target property, αg and lg are the gas-phase values of OCO-angle
and C–O bond distance, 180° and 1.17 Å, respectively, and θcut is
the Heaviside step function which is equal 1 if all data points in
the subgroup satisfy the cutoff condition and 0 otherwise. Thus,
larger values of the quality function F(Z) are obtained for those
subgroups in which minimal (maximal) value of a target property
is close to the maximal (minimal) value of the whole sampling
with respect to the gas-phase value of CO2 molecule. The use of
maximum/minimum instead of a median is done to ensure that a
target property is optimal for as many members of a subgroup as
possible. The gas-phase reference values are usually significantly

Table 1 Features that appear in the top SGD selectors (see text).

symbol Meaning

IPmin/max Ionization potential, minimal and maximal in the pair of atoms A and B; calculated as Eatom− Ecation
EAmin/max Electron affinity, minimal and maximal in the pair of atoms A and B; calculated as Eanion− Eatom
ENmin/max Mulliken electronegativity, minimal and maximal in the pair of gas-phase atoms A and B
r−1

min, r−1
max Radii of the maximum value of the Kohn-Sham radial wave functions of the spin-unpolarized spherically symmetric atom for

HOMO-1, maximum (max) and minimum (min) in the pair of atoms A and B
r+1

min, r+1
max Radii of the maximum value of the Kohn-Sham radial wave functions of the spin-unpolarized spherically symmetric atom for

LUMO, maximum (max) and minimum (min) in the pair of atoms A and B
M Energy at which the surface O 2p-band projected density of states (PDOS) is maximal
d1, d2, d3 Distances from surface O-atom to the first-, second-, and third-nearest cations
W Work function W, as the negative of the valence-band maximum (W=−VBM) with respect to vacuum level
qmin, qmax Minimal and maximal Hirshfeld charges of cations in the pair A and B, calculated as an average for all surface cations of a

given type
Δ Bandgap
CBM Conduction band minimum
Q5, Q6 Local-order parameter with l= 5 or 6
PC Weighted surface O 2p-band center
αO, C6O Polarizability and C6-coefficient for surface O-atom obtained from many-body dispersion scheme
αmin, αmax, C6min, C6max Polarizability and C6-coefficient for cations, minimal and maximal in the pair A and B, calculated as an average for all surface

cations of a given type
qO Hirshfeld charge of O-atom at the surface
wid Square root of the second moment of surface O 2p-band
widmin, widmaxS Square root of the second moment of PDOS of cations within valence-band, minimal and maximal in the pair A and B,

calculated as an average for all surface cations of a given type
cmin, cmax First moment for PDOS of cation within valence-band, minimal and maximal in the pair A and B, calculated as an average for

all surface cations of a given type
φ1.4, φ2.6, φ1.4 - φ2.6 Electrostatic potentials above surface O-atom at 1.4 and 2.6 Å and their difference. 1.4 Å corresponds to the average length of

the bond between C and surface O, 2.6 Å is the minimal distance from surface O to C-atom of physisorbed carbon-dioxide
molecule as observed from our calculations

Lmin, Lmax Energy of lowest unoccupied projected eigenstate of surface cations, minimal and maximal in the pair A and B, calculated as
an average for all surface cations of a given type

kurt Kurtosis of surface O 2p-band PDOS
U Eigenstate with least negative value in surface O 2p-band
BV Bond-valence value of surface O-atom
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different from the “chemisorption” subset. Therefore, the term in
squared brackets in Eqs. (1) and (2) can noticeably contribute
only when the sizes of candidate subgroups are similar.

The term u(p) in Eqs. (1) and (2) is added in order to account
for Sabatier principle in SGD framework. We have implemented a
multitask quality function, where a factor u(p) increases the
quality of subgroups with adsorption energies falling within this
range. This is formulated in terms of the information gain34, i.e.,
reduction of the normalized Shannon entropy. We perform the
SGD for each target property both explicitly accounting for the
Sabatier principle and without it. The latter case is equal to
u(p)= 1 in Eqs. (1) and (2)34.

We note that SGD is qualitatively different from machine-
learning classification/regression techniques such as neural networks,
kernel regression methods, or decision-tree regression (DTR42) (e.g.,
random forest). SGD is typically referred to as a supervised
descriptive rule-induction technique43, i.e., it uses the labels assigned
to the data points (the values of the target property) in order to
identify patterns in the data distribution (the statistically exceptional
data groups) and the rules defining them (the selectors), by
optimizing a quality function which is a function of the distribution
of values of the target property43. While there are apparent
similarities between SGD and DTR as both methods yield models in
terms of physically interpretable selectors (usually, inequalities) on a
selected subset of the input features, the analogy stops at this level, as
SGD focuses at (and only at) subgroups from the very beginning and
says nothing about the data that are not in the subgroup. In contrast,
DTR determines a global partitioning of the input space by
minimizing a global quality function, i.e., the quality of a single
subset is secondary with respect to the resulting quality of all subsets
partitioning the whole dataset. In other words, for finding distinct
combinations of materials genes driving desirable changes in a
particular target property (possibly different combinations leading to
the same result), the SGD approach has significantly higher
flexibility and reliability. This is demonstrated below for a DTR
analysis for our target properties.

The metadata and workflow for the AI analysis are
documented in the Jupyter notebook26.

Results of the subgroup discovery. The SGD for OCO-angles
was done with Eq. (1) for the quality function, and OCO as a
target property, since smaller angles indicate larger charge
transferred to the molecular π* orbital. The subgroup selectors
obtained with different OCO-angle cutoffs (126°, 128°, 130°, and
132°) with or without the adsorption energy constraint are listed
in Table 2 (for more details see the Supplementary Table 4).
Analysis of these subgroups reveals that the angle reduction is
determined by an interplay of several factors: an electron transfer
from the cations to surface O-atoms, delocalization of electron
density between cations and O-atoms, and coordination of the
surface O-atoms. Without the Sabatier principle constraint, the
OCO-angle reduction below 132° is mainly due to the electron
accumulation at the O-atom of the clean surface. This is
expressed by the conditions of more negative Hirshfeld charge on
O-atoms (qO <…), not very low IP of at least one cation
(IPmax >…), and increased polarizability of the surface O-atom
on which CO2 is adsorbed (C6

O > ...). Upon adsorption of CO2,
this charge on the surface O-atom is readily available for transfer
to CO2. When the Sabatier principle constraint is introduced, the
OCO < 132° subgroup also includes sites with a pronounced
electron transfer to CO2, but with a lower-energy O 2p-band
maximum (M < ...) with respect to vacuum level, and a larger
kurtosis (kurt > ...). These conditions imply reduced inter-
electronic repulsion around the surface O-atom achieved by
partial delocalization of the charge density.

At lower OCO cutoffs, the subgroup selectors include
coordination descriptors Qi, i= 5, 6. Without Sabatier principle,
sites with larger Qi are selected, and vice versa. Larger Qi indicates
lower coordination of the O-atom. This reduces electron
repulsion and therefore facilitates electron transfer to the
O-atom of the clean surface. However, this also increases the
bonding strength of CO2 to the surface. This explains why
selectors of subgroups obtained with Sabatier principle include
the opposite conditions (Q5 < ...).

Other surface features describing electron distribution are
related to Madelung potential: electrostatic potential and field
(φ1.4, φ2.6, and Δφ= φ1.4− φ2.6) and distances between the
O-atom and surface cations. More open surface structure with
larger distances between cations at the O site facilitates charge
transfer to adsorbed CO2 molecule, since the Madelung potential
from the nearby cations is reduced. This is reflected in the
appearance of propositions involving features d1, d2, and d3. For
example, for the OCO ≤ 130° subgroups, imposing energy
constraint changes proposition (d1 > ...) to (d1 < ...), which implies
an increased energy cost for transferring electrons to CO2. Larger
electric fields Δφ around the adsorption site imply stronger
localization of electron density on O-atoms, and thus also
improve the efficiency of charge transfer to the adsorbed
molecule.

The smaller OCO subgroups with Sabatier principle also
include propositions implying increased polarizability of both
cations (C6

min > ...). Another support-defining condition is that
the radius of the lowest unoccupied orbital for the metal atoms
should not be small (r+1 ≥ ...). This requirement is true for most
cations with negative electron affinities (Supplementary Fig. 4).
Analysis of adsorbed CO2 structures and Hirshfeld charges
reveals that this condition together with the higher polarizability
of cations at the pristine surface encompasses two scenarios: (i)
additional electron transfer to CO2 upon adsorption and (ii)
stronger binding between O-atoms in CO2 and surface cations.
When scenario (ii) dominates, CO3

δ− anion lies nearly
horizontally at the surface, and is bound with nearby cations by
chemical bonds via its oxygen atoms. Such a structure leads to
small OCO-angles in CO3

δ− (around 120°), even if charge
transfer is limited. Thus, increased bending of adsorbed CO2

occurs due to charge transfer over larger distances and/or
distortion of the adsorbed molecule and the surface, both leading
to weaker adsorption. The cases where both scenarios are active
include the same sites as in the subgroups with elongated l(C–O),
as described below.

In order to obtain the subgroups of adsorption sites with larger
l(C–O), we performed the SGD with the quality function Eq. (2)
and l(C–O) as target property. The results for l(C–O) cutoffs 1.26,
1.28, and 1.30 Å are summarized in Table 2 and Supplementary
Table 5. In contrast to OCO, the analysis of the obtained top
subgroups shows a much less pronounced or no effect of
imposing Sabatier principle on the distribution of adsorption
energies within the subgroups. This is because sites with too
strong adsorption are excluded based on l(C–O) threshold alone,
without the need to introduce the energy constraint. For example,
the range of l(C–O) for the top l(C–O) > 1.26 Å subgroup without
constraining adsorption energies is the same as for the top
OCO < 130° subgroup, but it contains significantly more sites
with intermediate adsorption energies.

Electron transfer to an adsorbed CO2 molecule increases both
the OCO bending and C–O bond elongation. The main difference
between OCO and l(C–O) subgroups is that in the latter an
additional mechanism of increasing l(C–O) is in effect, namely a
covalent bonding between one O-atom of the CO2 molecule and
the nearest surface cation. This can be concluded from the
analysis of adsorption geometries, and correlates with the
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presence of proposition (EAmax ≤ 0.005 eV), selecting cation
species that can accept electron density, e.g., from an O-atom
in adsorbed CO2 molecule. Other proposition that appears in
most selectors of top subgroups is (d2 > 2.14 Å) or (d2 > 2.22 Å)—
larger distances to the second nearest cation from an O-atom.
Larger elongation of the C–O bond is achieved by the asymmetry
of the cation types at the surface, where one can bind an O-atom
of the adsorbed CO2, while the other (located further away)
cannot. An example asymmetric CO2 adsorption structure is
shown in Supplementary Fig. 5.

Other propositions indicate a moderate charge transfer to
adsorbed CO2 molecule as in the case of OCO subgroups with
adsorption energy constraint. Propositions (M ≥−8.05 eV), (PC ≥
−9.32 eV) in l(C–O) < 1.26Å subgroups imply enhanced charge
density on the surface O-atoms, since electron–electron repulsion
raises energies of O 2p-band states. However, at larger l(C–O)
cutoffs the electron transfer is balanced by such propositions as

(M ≤−5.19 eV), (U ≤−4.92 eV), and (W ≥ 5.10 eV) indicating
limited electron transfer. These propositions point to more covalent
bonding between cations and surface O-atom. Rather persistent
proposition observed in many selectors of l(C–O) subgroups is the
limit of minimal charge on surface cations (qmin < 0.48e). It also
shows the limitation of the charge transfer from one type of cations
to surface oxygen atoms.

In general, we find that subgroups obtained with smaller
cutoffs do not have a strong overlap with subgroups with larger
cutoffs for OCO. In particular, for subgroups with close cutoffs
the overlap can be smaller than 50% of the smaller subgroup (but
is never below 30%). Interestingly, for l(C–O) the situation is
opposite: subgroups with tighter cutoffs are mostly contained in
the subgroups for more relaxed constraints. This means that,
while larger values of l(C–O) are mainly controlled by the same or
additional genes, smaller values of OCO are due to alternative
genes. The overlap of OCO subgroups becomes even smaller

Table 2 Top subgroups and their selectors obtained by minimization of OCO-angle and maximization of l(C–O) with/out Sabatier
principle (energies are in eV, distances are in Å, charges are in units of absolute electron charge, polarizabilities are in Bohr3).

cutoff size selector cutoff size selector

OCO minimization without Sabatier principle constraint OCO minimization with Sabatier principle constraint
126 19 Lmax >−2.70 (Lmin >−2.19, CBM >−3.40,

r+1
max≤ 2.83, W < 5.80, U >−5.61)

IPmax≥−6.05
αmax≤ 184.5
Δφ > 1.33
qmax≤ 0.59
wid≤ 1.59
wid≥ 0.58

126 15 Lmin≥−5.1085
φ2.6≤ 0.3033
Δφ≤ 1.0622 (cmax≤−8.5915)
d1≥ 1.82
d2≥ 2.005
r+1

max > 2.83

128 44 EAmax≥−0.43
Q6≥ 0.51
αmax≥ 50.4 (C6max ≥ 389.5, αO≤ 2.70)
Δφ≥ 1.00
qmin≤ 0.49

128 30 C6min≥ 369.5
Lmax≥−4.73 (r+1

min≤ 2.82, IPmin≤−5.83, rHOMO
min≤ 1.41)

Q5≤ 0.83
Δφ≥ 0.60
r+1

max≥ 2.80
C6O≤ 12.10

130 77 Lmax≥−5.23
EAmax≤ 0.16 (C6max≥ 389.5, IPmax≥−7.00)
d1≥ 1.82
d2 > 2.10

130 40 φ2.6≥−0.15
Δφ≥ 0.73
d1≤ 2.01
d2≥ 1.96
d3≥ 2.025 (cmin≤−9.07, W≥ 5.10)
qmin≤ 0.49
r+1

min≥ 1.94
132 139 IPmax≥−6.99

qO≤ -0.32
C6O≥ 10.36

132 58 qO≤−0.3386
M≤−6.292
kurt≥ 2.1035
IPmax≥−6.2085
rHOMO

min≤ 1.407 (IPmin≤−5.91, r+1
min≤ 2.82)

l(C–O) maximization without Sabatier principle constraint l(C–O) maximization with Sabatier principle constraint
1.26 121 C6min≥ 343.5

φ2.6≤ 0.66
Q5≤ 0.83
M≥−8.05 (PC≥−9.32)

1.26 56 CBM≥−5.17 (Lmin≥−5.11)
Δφ≤ 1.13
PC≥−8.62
d3≤ 2.48
M≤−6.06

1.28 38 EAmax≤ 0.005
d2 > 2.22
M≤−4.12

1.28 30 W≥ 5.10 (M≤−5.19, U≤ -4.92, PC≤−7.21)
d2 > 2.14
qmin < 0.48

1.30 27 U≤−5.34
d2 > 2.14
qmin < 0.48
kurt≥ 2.10 (qmax≥ 0.47)

1.30 27 EAmax≤ 0.005 (W≥ 5.10, M≤−5.19, U≤−4.92, PC≤−7.21)
ENmin≤−3.19 (W≥ 5.10, qO≥−0.45, cmax≤−7.18, rHOMO

min≤ 1.41,
φ1.4≤ 2.40, cmin≤−8.135, qmax≥ 0.47, M≤−5.19, IPmin≤−5.91,
wid≥ 0.58, U≤−4.92, r−1

max≥ 0.97, PC≤−7.21, Δφ≤ 1.81)
d2 > 2.14
qmin < 0.48
kurt≥ 2.51

Proposition replacements that do not change the support are shown in parentheses.
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when Sabatier principle is included, confirming the absence of a
universal mechanism for OCO-angle reduction that is compatible
with moderate adsorption energy.

In summary, we find that, while an increased electron density
at the O adsorption site is necessary for chemisorption and leads
to both OCO bending and C–O bond elongation in an adsorbed
CO2 molecule, there are additional actuators for these effects that
are different for different target properties. The OCO-angle is in
general minimized by increasing electron transfer to the O site.
However, this also leads to strong adsorption for many materials
(Fig. 2). To satisfy Sabatier principle, the electron transfer to CO2

must be moderate. This is achieved by delocalization of charge
density around O sites and/or by distortion of the adsorbed
molecule due to the formation of covalent bonds between
O-atoms in CO2 and surface cations. The largest C–O bond
elongations are achieved when both charge transfer to adsorbed
CO2 and the covalent interaction are present, and local geometry
around surface O-atom provides the asymmetry in adsorption
structure. This mechanism automatically fulfills the Sabatier
principle.

The subgroups found by SGD for the dipole moment induced
by CO2 adsorption, its total Hirshfeld charge, and the difference
of charges on C and O-atoms significantly overlap with the
subgroup of smaller OCO-angles. The subgroup found by
maximizing the difference of Hirshfeld charges on O-atoms of
an adsorbed CO2 largely overlaps with the subgroup of sites
delivering larger l(C–O). In general, these indicators are not
better than OCO or l(C–O). Therefore, below we focus on OCO-
angle and l(C–O) as indicators of CO2 activation. More details
about the other indicators can be found in Supplementary
Discussion.

Comparison with experimental results. To address the question
which of the discussed properties can serve as an indicator of the
catalytic activity, we compare our predictions to reported
experimental results (Table 3). It should be stressed that the
available experimental data are scarce, and results are difficult to
compare quantitatively. We consider thermally and, for com-
pleteness, some photo-driven catalysis and thus also include
supported metal catalysts with the considered oxides as support.
Despite possibly different mechanisms for CO2 conversion in the
different types of catalysis, we believe that the properties of
adsorbed CO2 molecule can still serve as indicators of catalytic
activity. Thus, it is possible that under such a daunting situation a
reliable indicator of CO2 activation can still be identified. As
described below, our analysis confirms this hope.

First, we consider materials with the sites from subgroups
obtained by minimization of OCO-angle without Sabatier
principle constraint27. For quite many materials from these
subgroups, independent of the cutoff value, there are no reports
of successful CO2 conversion, even when they are used as
supports for metal nanoparticles (Table 3). This is explained by
the fact that absolute adsorption energies for these materials are
above 2 eV (Fig. 2 left, Supplementary Table 4), indicating that
their surfaces will be permanently poisoned by carbonate species
at low or intermediate temperatures. This means that on
materials with these sites hardly any reaction of CO2 conversion
can proceed at low, especially room temperature. Moreover, as
shown in Table 3, even at increased temperatures, 700–750 °C,
the activity of these materials is low. Some of them have been
considered as candidates for carbon capture and storage (CaO,
SrO, BaO, and Na2O)44, which implies the formation of stable
carbonates rather than CO2 transformation. Thus, we conclude
that OCO-angle alone is not a good indicator of enhanced
catalytic activity in CO2 conversion.

On the other hand, several of the materials with sites from
l(C–O) > 1.30 Å subgroups (independent on either with or
without Sabatier principle constraint) are known as good
materials for CO2 conversion (Table 3) in different reactions
proceeding at room or higher temperatures. For these sites, the
absolute adsorption energies already satisfy the Sabatier principle
(Fig. 2, left), as discussed above. We note that, contrary to what
one may expect, there is no correlation between the adsorption
energy and the value of l(C–O) (see Supplementary Fig. 5).
Although there is a general trend, there are also significant
variations in l(C–O) for given adsorption energy.

Interestingly, some of the materials with sites in the
l(C–O) > 1.30 Å subgroups were studied as supports for metallic
nanoparticles. For instance, Ni/LaAlO3 is a catalyst for dry
reforming of methane45 at 700 °C. It was shown that its catalytic
performance is higher in terms of CO2 and CH4 conversion rates
compared to Ni/La2O3 and Ni/Al2O3

45. All sites on considered
lanthanum (III) oxide surfaces belong to the subgroup of
OCO < 132° without Sabatier constraint, whereas the sites on
Al2O3 do not enter any of the two subgroups. KNbO3 has been
studied only with Pt nanoparticles and as a composite with
g-C3N4 in photocatalytic reduction of CO2 into CH4

46,47. Pt-
KNbO3 is ~2.5 times more photoactive than Pt-NaNbO3

46,
whereas the NaNbO3 is known to be photoactive even without
nanoparticles48. This seems to suggest that l(C–O) is a good
indicator of CO2 activation for both unsupported and supported
catalysts even at increased temperatures. Hence, the other
materials with the sites from this subgroup are promising new

Fig. 2 Distribution of adsorption energies (left) and OCO-angles (right). The distribution is shown for the whole dataset (black), for the top subgroups of
sites with OCO < 132° angles (blue) and l(C–O) > 1.30 Å (green). The subgroups obtained with adsorption energy constraint are marked with “c.” and
shown with dashed lines. The adsorption energy Eads is defined as the difference between the total energy of the slab with adsorbed CO2 and the sum of
total energies of the clean slab and an isolated CO2 molecule.
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candidates for this task. The most promising materials identified
in this work are CsNbO3, CsVO3, RbVO3, LaScO3, RbNbO3, and
NaSbO3 as they have the sites from the larger l(C–O) subgroups
satisfying the above-mentioned criteria.

There is also a set of materials [ternaries A2+B4+O3 (A=Ca,
Sr, Ba, B= Zr, Ti, Ge, Sn, Si) with a perovskite structure]
containing both the surfaces with sites from the smaller OCO
subgroups without Sabatier constraint and the surfaces with sites
from the larger l(C–O) subgroups (Table 3). These two types of
sites are located on different surfaces. Thus, based on the above
results, a material for which a surface with sites from the
l(C–O) > 1.30 Å subgroups has lower formation energy and is
more abundant than the surface with sites from smaller OCO
subgroups without Sabatier constraint is expected to be a good
catalyst. To explore this possibility, we analyze the surfaces of
these materials in more detail. Their most stable surfaces are
AO-terminated (001) facets containing sites from the smaller
OCO subgroup. The formation energies of ABO3-terminated
(110) surfaces with larger l(C–O) sites are higher: for BaZrO3,
SrZrO3, CaZrO3, and SrTiO3 the differences in formation
energies are 0.049, 0.027, 0.013, and 0.037 eV/Å2, respectively.
The zirconates and SrTiO3 were found to catalyze the water gas-
shift reaction under increased temperatures, 700–1100 °C49. At
room temperature the photocatalytic activity of SrTiO3 was found
to be significantly decreased50. We attribute the latter finding to
the strong carbonation of its most stable surface, which is
consistent with the calculated high absolute value of CO2

adsorption energy (−2.4 eV) for this surface. Thus, the activity

of SrTiO3 at 700 °C and higher temperatures is consistent with
the estimates of the CO2 chemical potential given above. The
difference in formation energies of the most stable CaO-
terminated (001) surface and the stoichiometric (110) surface
for CaTiO3 is less pronounced compared to zirconates and other
titanates (CaO-terminated (001) is more stable than the (110)
surface by only 0.009 eV/Å2). Thus, the (110) facets, which
contain sites from the long l(C–O) subgroup, may be present on
catalyst particles at the reaction conditions. This can explain the
observed activity of CaTiO3 in CO2 conversion not only at high
but also at room temperature. We note that the activity of this
material was also attributed to the presence of TiO2 nanoparticles
on the surface51 at reaction conditions.

The OCO subgroup that includes most of the known good
catalysts and a minimal number of inactive materials is OCO <
132° with Sabatier principle. It contains the sites on discussed
above LaAlO3, KNbO3, and NaNbO3 catalysts, but also on non-
active YInO3 according to ref. 52 (Table 3). This subgroup
contains in addition the sites on a well-known CO2 conversion
catalyst Ga2O3. We should mention that the catalytic activity of
Ga2O3 has been attributed to its reducibility. According to Pan
and coworkers53 CO2 molecules are activated via dissociation on
surface O-vacancies. However, in ref. 54 only one Ga2O3 (100)
surface was considered for which no energetically stable CO2

chemisorption structures were obtained with the PBE functional.
We show in Supplementary Table 1 and Supplementary Fig. 1
that this functional underestimates CO2 adsorption energies.
Moreover, in our study we considered also other surfaces and

Table 3 The catalytic performance of materials which contain the sites from larger l(C–O)) or/and smaller OCO subgroups.

Material Catalytic reaction CO2 adsorption
energies, eV

Belong to subgroups

NaNbO3 Photocatalytic CO2 reduction with ~70% of CO
selectivity46, 48

−0.77 to −0.81 Materials with sites from l(C–O) > 1.30 Å
subgroup and OCO < 132° subgroup with
Sabatier principle constraint

LaAlO3 Dry reforming of methane with Ni-nanoparticles;
performance is higher than for Ni-La2O3 and Ni-Al2O3

45
−1.17

KNbO3 Photocatalytic reduction of CO2 into CH4 as a composite
with Pt/g-C3N4; significant improvement of activity when
compared to Pt/g-C3N4; Pt-KNbO3 is ~2.5 times more
photoactive than Pt-NaNbO3

46, 47

−0.56 to −0.68

CaTiO3 CO2 hydrogenation under UV-irradiation, although
activity is not very high51, 57; twice higher activity with
Ni-nanoparticles57

up to −2.70 Materials with sites from l(C–O) > 1.30 Å
subgroups and from OCO< 132° subgroup
without Sabatier principle constraint

CaZrO3, SrZrO3,
BaZrO3, SrTiO3

Reverse water gas-shift reaction (RWGS) under
700–1100 °C49

up to −2.75

SrTiO3 Photocatalytic CO2 methanation with Pt, Au-
nanoparticles, significant decrease of activity during
reaction50

up to −2.40

YInO3
a No activity observed in photocatalytic CO2 conversion52 −1.16–−1.47 Materials with sites only from OCO < 132°

subgroup without Sabatier principle constraint
CaO, SrO, BaO,
Na2O

Strong carbonation, candidate materials for carbon
capture and storage (CCS)44

−1.60 to −3.57

La2O3 Dry reforming of methane with supported Ni-
nanoparticles; lower performance than on Ni-LaAlO3

45

and on some other supported catalysts54 at 700 and
250 °C correspondingly

−2.14 to −3.11

CaO Twice smaller reaction rate in CO2 reforming of methane
reaction with supported Ni-nanoparticles than on Ni-
La2O3

58 at 750 °C

−1.60 to −3.42

Ga2O3 Electrochemical reduction of CO2 to formic acid59;
(photo)catalytic hydrogenation of CO2

60
−0.74 to −1.34 Materials with sites from OCO < 132° subgroup

with Sabatier principle constraint
Al2O3 Dry reforming of methane with supported Ni-

nanoparticles61; lower performance than on Ni-LaAlO3
45

−0.87

aMaterials with sites also from OCO < 132° subgroup with Sabatier principle constraint.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28042-z

8 NATURE COMMUNICATIONS |          (2022) 13:419 | https://doi.org/10.1038/s41467-022-28042-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


found stable CO2 chemisorption structures on these surfaces.
Thus, activation of CO2 on Ga2O3 can indeed proceed on
O-atoms as discussed in our study, even without surface
O-vacancies. The subgroups with small OCO cutoffs, 123° and
124°, do not contain any sites on known active or non-active
catalysts.

OCO < 132° subgroup with Sabatier principle contains a large
number of sites with elongated C–O bonds. The overlap of this
subgroup with l(C–O) > 1.30 Å subgroups is 19 samples (70% of
the latter).

To demonstrate the advantages of SGD over DTR in finding
materials genes and their optimal combinations, we have done a
comparison of found SGD subgroups with DTR performance for
l(C–O). DTR terminal nodes (leaves) with the largest average
l(C–O) (Supplementary Figs. 2 and 3) include surface sites on
materials prone to extremely strong carbonation (Table 2), and
also sites at which CO2 prefers to physisorb, with
l(C–O)= 1.17 Å. Also, one cannot check the effect of imposing
the constraint as there is no standard way to mix regression and
classification in DTR. Thus, DTR in contrast to SGD is not able to
separate different activation modes and even fails sometimes in
distinguishing activation from non-activation.

Best materials for CO2 reduction among calculated ones. Now
those good indicators of activation are identified (OCO with
Sabatier principle and l(C–O)), all calculated materials can be
ranked according to the value of these indicators (smaller OCO or
larger l(C–O) indicate C–O bond weakening and therefore higher
catalytic activity, provided adsorption energy is moderate). The
resulting list of the most promising catalysts for CO2 conversion
is presented in Table 4. Each surface is characterized by max-
imum l(C–O) and minimum OCO among all inequivalent sites
on that surface. The materials with l(C–O) > 1.30 Å are listed in
the order of decreasing l(C–O). Materials with OCO < 132° but
l(C–O) < 1.30 Å are appended at the bottom of the list in the
order of increasing OCO.

Materials and surface cuts higher up in the list in Table 4 that
belong to both l(C–O) > 1.30 Å and OCO < 132° subgroups are
the most promising catalysts, followed by materials that belong to
one of the subgroups, with the performance decreasing further
down the list. Taking into account the number of active surface
cuts and Sabatier principle, we conclude that NaSbO3 is the most
promising unexplored catalyst for temperatures up to 340 °C (for
CO2 pressures around 1 atm). Other A+1B+5O3 type promising
materials are KSbO3 (for temperatures up to 110 °C) and RbNbO3

(up to 360 °C) that belong to both subgroups, and LiSbO3

(230 °C), CsNbO3 (260 °C), CsVO3 (110 °C), NaVO3 (130 °C),
belonging to one of the subgroups (listed in the order of
decreasing performance). There are also several promising A+3B
+3O3 oxides with surfaces belonging to one or both subgroups,
listed in the order they appear first time in the table: ScAlO3 (up
to 550 °C), GaAlO3 (230 °C), GaInO3 (340 °C), rhombohedral
InAlO3 (120 °C)—these and other In-containing materials are of
course very expensive, but we list them here for completeness,
LaGaO3 (210 °C), ScGaO3 (240 °C), YAlO3 (330 °C).

From Table 4 it can be seen that not all promising materials
belong to one of the found subgroups. This means that there are
other optimal materials gene combinations that are not identified
by SGD as statistically significant based on the current dataset.
Such combinations may be unique for a given material, or they
may be found when more data for different materials are
considered. Among these materials the most promising are:
InScO3 (up to 430 °C), MgSnO3 (430 °C), CaGeO3 (570 °C),
orthorhombic InAlO3 (230 °C), CaSiO3 (420 °C), SrSiO3 (460 °C),
SrGeO3 (480 °C), and BaSnO3 (up to 550 °C).

Discussion
We have developed the subgroup-discovery strategy for finding
improved oxide-based catalysts for the conversion of chemically
inert molecules such as CO2 into useful chemicals or fuels. For
this purpose we identified a new indicator of CO2 activation,
namely the large C–O bond distance of the adsorbed molecule.
This artificial-intelligence approach identifies the materials genes
that correlate most strongly with the activation of the adsorbed
molecule. Specifically, these are the following clean surface
properties: Hirshfeld charges of O-atom at which CO2 adsorbs
(qO) and of surface cations (qmin, qmax), surface geometric features
[coordination descriptors Qi, i= 5, 6, distances between the
surface O-atom and the nearest surface cations (di, i= 1–3)],
electrostatic potential and electric field above the adsorption site
(Δφ, φ2.6), polarizability and C6 coefficients for surface atoms
(C6

min, C6
O, αmax), radii of HOMO and LUMO of the cation

species (r+1
max, r+1

min, rHOMO
min), ionization potential, electron

affinity, and electronegativity of surface cation species (IPmax,
EAmax, ENmin), features of O 2p DOS (kurt, M, PC, U), conduc-
tion band minimum (CBM), energies of the lowest unoccupied
projected eigenstates of surface cation species (Lmax, Lmin), and
surface work function (W). The found subgroup selectors predict
whether a given candidate material belongs to the class of pro-
mising catalysts. The peculiarity of the large C–O bond indicator
is that it automatically satisfies Sabatier principle for low and
middle-temperature CO2 conversion.

The present study shows also that the previously proposed
indicator for CO2 activation, the decrease of the OCO-angle27, is
not appropriate and even correlates with strong adsorption so
that poisoning by carbonation is likely which may be useful for
carbon capture and storage (CCS) but not for carbon capture and
utilization (CCU). When Sabatier principle is purposely included
in the SGD search for small OCO, found subgroups substantially
overlap with large l(C–O) subgroups (70%), although still contain
a few sites on inactive materials for CO2 conversion.

The subgroup analysis revealed an alternative mechanism of
CO2 activation by adsorption, namely bonding of an O-atom in
CO2 with a surface cation(s), combined with only moderate
electron transfer from the surface to the molecule, which results
not only in reduction of OCO-angles, but also in pronounced
elongation and weakening of the C–O bond. Although the latter
can be achieved also by a larger charge transfer, it results in
stronger binding of CO2 molecule to the surface and poisoning of
the catalyst, contrary to the new mechanism. The same new
mechanism is revealed when Sabatier principle is included when
searching for small OCO subgroups.

We also demonstrated that a standard regression technique
(DTR), which gives prediction models in a physically inter-
pretable form similar to subgroup discovery (selectors based on
identified descriptor), fails to identify the optimal combinations
of materials genes and the activation in general. This failure is
traced back to the fact that DTR is a global approach, which
minimizes error in the prediction of the value of a target property
for the whole dataset. As a result, different combinations of genes
leading to the optimal value of the same target property are
intermixed, and the combination that leads to the most optimal
value is not identified. On the contrary, subgroup discovery finds
unique local subsets in the data independent of the rest of the
data. This makes it more suitable for identifying different com-
binations of materials genes that result in activation.

The other four considered potential indicators (charge at the
adsorbed CO2, adsorption induced dipole moment, the difference
of charges on O-atoms and on C and O-atoms of adsorbed CO2)
were found to reproduce the results of SGD obtained for OCO-
angles or C–O bond distances with significant overlap with cor-
responding subgroups.
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Table 4 Best materials and surface cuts for CO2 activation according to the l(C–O) and OCO indicators.

Material Surface cut l(C–O), Å OCO, degree Eads, eV In l(C–O) > 1.30 Å subgroup In OCO < 132° c. subgroup

According to l(C–O) indicator
NaSbO3 100 1.370 125.21 −1.32 Yes Yes
Ga2O3 212 1.365 124.57 −1.34 Yes
NaSbO3 010 1.365 125.95 −1.09 Yes Yes
LiSbO3 010 1.359 126.66 −1.04 Yes
NaNbO3 100 1.353 125.87 −0.78 Yes Yes
ScAlO3 010 1.351 127.25 −1.18 Yes
KSbO3 110 1.345 128.54 −0.72 Yes Yes
LiNbO3 100 1.344 126.23 −0.87
NaNbO3 010 1.344 126.85 −0.77 Yes Yes
InScO3 121 1.342 126.26 −1.23
CsNbO3 100 1.34 126.6 −0.87 Yes
RbNbO3 111 1.338 126.61 −1.37 Yes Yes
CsNbO3 010 1.336 126.23 −1.11 Yes
MgSnO3 100 1.334 119.84 −1.58
GaAlO3 100 1.332 129.12 −1.02 Yes
CaGeO3 001(GeO2-term.) 1.331 127.65 −0.75
InAlO3-or. 121 1.33 130.09 −1.02
ScAlO3 121 1.328 131.61 −0.86
GaInO3 110 1.327 126.98 −1.34 Yes
LaAlO3 110 1.327 129.38 −1.17 Yes Yes
CsVO3 110 1.327 126.1 −0.72 Yes
KNbO3 110 1.327 128.49 −0.68 Yes Yes
RbVO3 110 1.326 126.04 −1.14
Ga2O3 110 1.325 127.76 −1.09 Yes
NaVO3 110 1.324 127.12 −0.755 Yes
NaNbO3 110 1.322 128.14 −0.805 Yes Yes
InAlO3-rh. 110 1.318 126.83 −0.73 Yes Yes
LaGaO3 100 1.317 125.29 −0.97 Yes
ScGaO3 010 1.314 124.68 −1.06 Yes
GaInO3 120 1.313 118.41 −1.43 Yes Yes
MgGeO3-tetr. 001(GeO2-term.) 1.312 126.18 −1.35
ScAlO3 100 1.312 122.28 −1.89 Yes
YAlO3 011 1.312 127.26 −1.18 Yes Yes
InScO3 110 1.31 122.28 −1.54 Yes
In2O3 111 1.309 128.44 −0.65
InAlO3-or. 110 1.309 127.2 −0.66 Yes
YAlO3 100 1.308 123.82 −1.305 Yes Yes
InScO3 110(In2O3-term.) 1.305 124.92 −1.57 Yes
YGaO3 100 1.305 124.76 −1.23
In2O3 110 1.301 125.86 −1.00
Sc2O3 111 1.301 130.43 −0.885
LaGaO3 110 1.301 128.88 −0.83 Yes Yes
LaScO3 100 1.301 123.6 −1.53 Yes
according to OCO indicator
CaSiO3 001(CaO-term.) 1.290 118.84 −1.54
SrSiO3 001(SrO-term.) 1.295 119.10 −1.66
CaGeO3 001(CaO-term.) 1.288 120.88 −1.94
Ga2O3 212 1.297 121.21 −1.53
InScO3 110 1.292 121.23 −1.88
InScO3 100 1.277 121.40 −1.74
RbVO3 100 1.283 121.64 −0.53
In2O3 110 1.280 122.52 −1.57
InScO3 110(In2O3-term.) 1.284 122.80 −1.78
SrGeO3 100(SrO-term.) 1.277 122.90 −1.70
TiO2-rutile 100 1.276 123.61 −1.05
ZrO2 111 1.280 123.72 −0.92
BaSnO3 001(BaO-term.) 1.267 123.80 −1.89
ScGaO3 110 1.292 123.85 −1.22
ZrO2 011 1.264 124.06 −0.72
LiVO3 110 1.295 124.76 −0.70
NaNbO3 010 1.273 125.00 −1.66
MgTiO3 012 1.295 125.16 −1.47
InAlO3-or. 010 1.284 125.30 −0.82 Yes
YInO3 100 1.293 125.69 −1.47
KNbO3 010 1.277 125.97 −1.52
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Based on our results, we propose several new promising oxide-
based catalysts for CO2 conversion (Table 4). Although the pre-
sent work has focused on oxides only, the overall strategy is
general and can be applied to any other family of materials. This
work also emphasizes the importance of documenting metadata
and workflows for AI data analysis in materials science in order to
ensure the reproducibility of AI models and data analysis results.

Methods
Ab initio calculations. The calculations are performed using density-functional
theory (DFT) with the PBEsol exchange-correlation functional55 as implemented in
FHI-aims code56 using ‘tight’ basis sets. The functional is chosen based on a
comparison of calculated bulk lattice constants55 and CO2 adsorption energy to the
available experimental results and high-level calculations (CCSD(T) and validated
hybrid); see Supporting Information (SI) for more details on the computational
setup. Nevertheless, it is expected that, because of the large set of systems inspected
and the small variations introduced by the functional choice, the main trends will
hold even when using another functional.

Studied materials. The dataset includes 71 semiconductor oxide materials, with
141 surfaces. The materials are ternary (ABO3) and binary oxides with metal
cations A and B from groups 1–5 (including La) and groups 12–15 of the periodic
table. The full list of materials and surface cuts is given in Supplementary Notes,
and the dataset is available in ref. 26. In this study we considered only stoichio-
metric surface reconstructions obtained by atomic relaxation of stoichiometric
bulk-like initial surface geometries. While this seems to be a limitation, our results
show that indicators of activation calculated with this assumption correlate with
experimental activity for known good oxide catalysts. This does not imply that
surfaces of these materials do not reconstruct, but that the properties of unrec-
onstructed surfaces can be used as descriptors for catalysis at reconstructed and
defected surfaces under realistic conditions. The inclusion of surface reconstruc-
tions in the training data will further improve the predictions and will be a subject
of future work.

The details of SGD. The SGD was done with the RealKD code (https://bitbucket.
org/realKD/), modified to include quality functions described by Eqs. (1) and (2) in

which the information gain was defined as:

uðpÞ ¼ 1� �1
ln2

� �
ðp � lnðpÞ þ ð1� pÞ � lnð1� pÞÞ ð3Þ

here p is the number of samples in a subgroup within the required adsorption
energy range divided by the total number of samples in the subgroup. Since
Shannon entropy is a symmetric parabola-like function around 0.5, we set here
F(Z)= 0 for p ≤ 0.5. Also, x·ln(x)= 0 for x= 0. The search of subgroups is per-
formed using a Monte-Carlo scheme adapted for these tasks34.

The cutoff values x, y, ... used for setting propositions (feature-1 < x, feature-
2 ≥ y, etc.) are obtained by k-means clustering, as implemented within RealKD.
That is, for a desired number n= k− 1 of cutoff values a set of k representative
values of a given feature and k groups (clusters) of the data points are determined
that minimize the deviation of all the feature values from the representative values.
Thus, each value of the feature in the dataset is assigned to a particular cluster, and
the cutoffs are determined as the arithmetic mean between the closest feature
values in neighboring clusters. The number k is a parameter, and different k-values
can in principle result in different cutoff values. It is worth noting that, due to the
stochastic Monte-Carlo sampling, the exact definitions of the subgroups may vary
for consecutive runs of the SGD algorithm. We have tested k= 12, 14, and 16 and
rerun the algorithm several times for each k. While the results indeed depend on
the run and on the k value, the subgroups maximizing the quality function have
largely or entirely overlapping populations, and selectors with the same or similar
propositions. Here we report selectors that appear most often and have high
population and quality function values.

Decision-tree regression. The DTR analysis was performed using Python scikit-
learn libraries. DTR is a supervised learning method in which the training set is
repeatedly split into patterns (so-called leaves) by means of propositions built from
primary features. The fitting of a model is done with respect to the cost function,
which encloses the deviation of fitted values of a target property from the actual
values. In this study we considered two cost functions—mean squared error (MSE)
and mean absolute error (MAE). The search for the most optimal partitioning (the
so-called tree) is done with the greedy algorithm. To obtain the most optimal TR
model, we used a standard approach for supervised machine learning—leave-one-
out cross-validation with respect to the hyperparameters—minimal size of a leaf,
maximal depth. The minimal size of a leaf is a bottom threshold of the population
of a pattern, since too small size might result in overfitting. Maximal depth is a
limit for the maximal number of splits in a tree.

Table 4 (continued)

Material Surface cut l(C–O), Å OCO, degree Eads, eV In l(C–O) > 1.30 Å subgroup In OCO < 132° c. subgroup

InAlO3-or. 110 1.278 126.04 −0.90
ScAlO3 110 1.277 126.10 −1.33
Al2O3 012 1.265 126.46 −0.87 Yes
Sc2O3 110 1.265 126.47 −1.14
CaSiO3 110(CaO-term.) 1.278 126.49 −1.44
LaInO3 100 1.287 127.13 −1.27
Sc2O3 111 1.265 127.49 −0.95
YInO3 110 1.298 127.61 −1.22 Yes
ScAlO3 121 1.268 127.73 −0.755
MgTiO3 001 1.265 127.85 −1.37
BaGeO3 001(BaO-term.) 1.270 128.50 −1.80
SrTiO3 001(TiO2-term.) 1.266 128.53 −1.92
ZnO 10–10 1.270 128.60 −1.005
YGaO3 110 1.263 128.68 −1.60
SrSnO3 001(SnO2-term.) 1.273 128.90 −1.64
Sc2O3 001 1.289 128.90 −1.70
MgGeO3 001 1.260 128.93 −1.09
CaO 001 1.262 129.20 −1.60
Al2O3 001 1.283 129.22 −1.315
BaSnO3 001(SnO2-term.) 1.270 129.50 −1.87
CaSnO3 001(SnO2-term.) 1.272 130.09 −1.32
KVO3 010 1.267 130.17 −0.55
CaZrO3 101(ZrO2-term.) 1.265 130.36 −1.86
CaSnO3 110(SnO2-term.) 1.272 130.50 −1.44
SrGeO3 100(GeO2-term.) 1.270 130.90 −1.515
CaTiO3 101(TiO2-term.) 1.266 131.42 −1.505
SnO2 100 1.257 131.50 −0.85
BaSiO3 100 1.243 131.60 −0.75
MgO 111 1.296 131.70 −1.24
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Data availability
The dataset is available in the NOMAD AI Toolkit26.

Code availability
A Jupyter notebook is available in the NOMAD AI Toolkit26.
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