
PHYSICAL REVIEW E, VOLUME 64, 016129
Front dynamics in the presence of spatiotemporal structured noises
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Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal
structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity,
correlation time, and correlation length appear explicitly. The different effects of these parameters are dis-
cussed for the Ginzburg-Landau and Schlo¨gl models. We obtain an analytical expression for the front velocity
as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical
predictions.
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I. INTRODUCTION

The role of external fluctuations in extended systems
subject of very active research because of its relevanc
pattern formation in nonequilibrium systems@1,2#. A simple
example of a dynamical pattern is a front moving at const
velocity. Fronts can be easily modelized by a reactio
diffusion equation with two steady states of different stab
ity @3#. The study of the front dynamics under the influen
of noises is relevant not only from theoretical point of vie
@4–9# but also from practical point as recent works
chemical kinetics have shown@10–13#. In these experiments
a chemical wave moves under the influence of an exte
fluctuating illumination that is projected in the reactive m
dium. This external source of noise has finite intensity, c
relation time, and correlation length. Thus, in this system
deal with spatiotemporal structured noise and not with
white noise. The present work could be useful to clarify t
role of these parameters on propagating structures as stu
experimentally in@10#.

Previous studies dealt with this problem under the sim
fied assumption of white (d-correlated! external fluctuations
@4–9#. Nevertheless one can ask about the correctness of
assumption to modelize real noises. To answer this ques
at least it would be necessary to calculate the first contr
tions of the finite value external noise parameters. If th
corrections are controlled then one can get confidence on
simplified assumption of white noise.

Since the early work of Schlo¨gl et al. @14# on the effects
of fluctuations on a chemical interface, an intensive work
been devoted to describe the related problem of front pro
gation in the presence of an external noise source@4–9#. A
complete study for the case of a white noise was presente
@8,9# in which the front velocity and its diffusive dispersio
behavior was computed in terms of the effective white no
intensity. It was found that the velocity of the front increas
with the noise intensity due to a systematic contribution
the kinetic terms. Actually the dispersion is subdiffusive f
the so calledpulled fronts, as has been shown recently@15#.
A variety of approaches has been adopted, from projec
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techniques@6,7# to scaling arguments@15#, including a sto-
chastic version of the multiple scale analysis as well a
nonsystematic noise expansion@9#. The last one may be the
most simplified one that grasps the systematic contribu
of the noise to the dynamics of the system. This contribut
usually appears as a renormalization of the reaction par
eters and it is the origin of the well known shift of the fro
velocity.

The general aim of this paper is to find what are the m
relevant effects of a real noise on two different models t
exhibit front propagation. We will see that for a fixed noi
intensity, the noise correlation time is a relevant parame
that interpolates the results of the white noise limit w
those of the deterministic case, but the role of the correla
length is different.

Here, we will derive an analytical expression of the effe
of a spatiotemporal structured noise on an extended sys
governed by a Langevin reaction-diffusion equation w
multiplicative noise. We will closely follow the guideline
settled in@16# for a one variable system, and also those
@17# for multivariable system to deal with nonwhite noises
extended systems. Our main difference is that our analys
done in the continuum space, and also that we present a m
simplified way to get the first order contribution of the noi
in the correlation timet, which avoid the integration of a
response function. Here we note that the continuum Lan
vin description may perfectly be adequate for describing
active fronts even though chemical systems are discret
nature, as was shown in@18#.

Our theoretical predictions have been applied to two s
tems: the Ginzburg-Landau and the Schlo¨gl models. In the
first case the noise induces the front by controlling the s
bility of the new state versus the other unstable steady s
In the second case, the noise does not change the steady
but controls its dynamics.

The outline of the paper is as follows. Section II contai
the main theoretical results and a discussion of some limi
cases. There we present the derivation of an effective
namical equation that grasps the systematic contribution
the different noise parameters. In Sec. III, we apply the
results to obtain explicit predictions for the two models
ready mentioned and we discuss the numerical results
tained for them and their comparison with the analytical p
©2001 The American Physical Society29-1
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MIGUEL A. SANTOS AND J. M. SANCHO PHYSICAL REVIEW E64 016129
dictions. In Sec. IV we summarize our conclusion
Appendices are devoted to technical aspects of our analy
methodology and the implementation of a particular alg
rithm to generate a spatiotemporal structured noise.

II. EFFECTIVE DYNAMICAL MODEL

We consider the following stochastic partial different
equation as a representative description of reaction-diffus
systems under multiplicative fluctuations:

]c~x,t !

]t
5L„c~x,t !,]x ,a…1e1/2g~c!h~x,t !, ~1!

whereL is a reaction-diffusion operator that explicitly read

L„c~x,t !,]x ,a…5D
]2c~x,t !

]x2
1 f ~c,a!. ~2!

f (c,a) andg(c) is the reaction term and the coupling ter
with external fluctuations, respectively, andh(x,t) is a
Gaussian spatiotemporal structured noise with the follow
statistical properties,

^h~x,t !&50

^h~x8,t8!h~x,t !&5G~ ux2x8u,ut2t8u!

5C~ ux2x8u!g~ ut2t8u!. ~3!

Also, for simplicity but not strictly necessary, we have ma
the assumption that this correlation function factorizes i
spatial and temporal part. To fix the notation, and followi
the commonly accepted generic prescription@2#, we define
the three parameters of the noise, intensity, correlation ti
and correlation length, as follows:

s2[E
0

`

dsE
R

dr G~r ,s!,

t[
1

s2E0

`

dsE
R

dr G~r ,s!s, ~4!

l2[
1

s2E0

`

dsE
R

dr G~r ,s!r 2.

We pursue here to find the systematic and most relev
effects of this type of noise. In general, the noise has
important effects, systematic and fluctuating ones, wh
cannot be exclusively associated with the deterministic
stochastic terms of Eq.~1!, respectively. In fact noise acts i
two different scales@9#. Fast fluctuations in a short time sca
modify the front shape and thus producing an effective fr
with different deterministic properties. On the other han
the slow fluctuations are responsible for the diffusive disp
sion of the front position.

A naive way to get these systematic effects of the fluct
tions is by analyzing the noise term in Eq.~1!. Due to the
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multiplicative character of the noise, althoughh has zero
mean, this is not the case for this stochastic term,

e1/2^g„c~x,t !…h~x,t !&[^F~$c%!&Þ0, ~5!

which, as a consequence, will give a net contribution to
dynamics. This can be explicitly shown in the followin
way. By adding and substructingF($c%) to our original dy-
namical equation~1!, we can write this equation as

]c~x,t !

]t
5L„c~x,t !,]x ,a…1F~$c%!1e1/2R~c,x,t !,

e1/2R~c,x,t ![e1/2g~c!h~x,t !2F~$c%!. ~6!

This dynamics is statistically equivalent to the original on
Note that for the new noise term it is^R(c,x,t)&[0 and it
has a correlation which can be developed in powers ofe1/2.
We make now the Ansatz that if the noise allows for awell
definite front structure, its systematic behavior will be de
scribed by thedeterministicequation

]c~x,t !

]t
5D

]2c~x,t !

]x2 1F~$c%! ~7!

called theeffective dynamics. In Appendices A and B we
present a detailed calculation ofF for small t, which is
given by

F~$c%!5eDC~0!tg8g9S ]c~x,t !

]x D 2

1h„c~x,t !…, ~8!

where

h„c~x,t !…[ f „c~x,t !,a…1e$C~0!

1DC9~0!t%g„c~x,t !…g8„c~x,t !…

2eC~0!tg8„c~x,t !…$g„c~x,t !…, f „c~x,t !…%

~9!

is the new effective reaction term. The brackets are defi
as

$g, f %[g8 f 2g f8, ~10!

and the primes onf (c) andg(c) indicate the derivative with
respect toc.

Thus, we have ended up with one of the most import
results of this paper Eq.~7!, which contains the systemati
contribution of the noise to our original dynamics~1! up to
first order int. In this paper we will not study the effect o
R. This term is only relevant for those nonsystematic effe
of the noise, such as, the dispersion of the front. The dep
dence on the parameterl is included inC(0);s2l21 and
C9(0);s2l23. As will be seen below,C(0) is the most
relevant quantity. Thus the main effect of the correlati
length throughC(0) is trivial. For this reason we will pay
more attention to the nontrivial influence of the termC9(0)
fixing C(0) independent ofl.
9-2
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FRONT DYNAMICS IN THE PRESENCE OF . . . PHYSICAL REVIEW E 64 016129
A first check of the previous results will be provided b
considering the better known case of temporal white nois
a lattice. Here we will first define the proper limit by whic
Eq. ~3! becomes a temporal white noise, and then see if
~7! correctly reproduces the results found in Ref.@8#.

The temporal white noise in time has a correlation,

^h~x8,t8!h~x,t !&52C~x2x8!d~ t2t8!, ~11!

where the spatial white noise limit is given by

lim
l→0

C~x2x8!5d~x2x8!. ~12!

In a one-dimensional lattice this takes the form of

lim
l→0

Ci j [
d i j

Dx
. ~13!

In this limit one can see that all the integrals in Eq.~A8!
vanish except the first one. The systematic dynamics of
~7! is then that of the effective reaction term given now
(s251)

hh„c~x,t !…[ f „c~x,t !,a…1e~0!g„c~x,t !…g8„c~x,t !…,
~14!

with e(0)[eC(0)5e/Dx.
In this way we have recovered the results found in R

@8#. Note that one cannot consider right from the beginnin
white noise in space because the ill definedd(0).

The value ofC9(0) for a spatial white noise in the lattic
is evaluated as

C9~0!5
C~1!22C~0!1C~21!

~Dx!2
52

2

~Dx!3
, ~15!

whereC(61)50 has been used. For the case of a spa
structured noise withl finite, all the integrals in Eq.~A8!
can be evaluated.

III. APPLICATIONS AND NUMERICAL RESULTS

We will now study the effects of a colored noise for tw
particular types of couplingsg(f): a linear and a nonlinea
one, which correspond to the Ginzburg-Landau and Sch¨gl
models, respectively. The noise will enter in the stand
way @19# as small fluctuations of the control parametera,

a→a1e1/2h~x,t !, ~16!

and thus the Langevin-type coupling function is given by

g„c~x,t !…5
] f ~c,a!

]a
. ~17!

Numerical simulations of Eq.~1! for the different models
have been performed in a one-dimensional lattice of m
size Dx50.5. The length of the systemL5600. We have
used a Heun algorithm@2# with a time stepDt50.01. In all
01612
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cases,D51 and a520.1, except for the Schlo¨gl model,
where different values ofa have been used.

The noise is generated with a spatial and temporal st
ture as a Gaussian random number at each lattice point.
correlation function factorizes as in Eq.~3!. The temporal
part has an exponential decay~Ornstein-Uhlenbeck process!
with a correlation timet, while the spatial correlations hav
a triangular shape with a correlation lengthl. The numerical
implementation of such a noise is described in Appendix

The initial condition for the Ginzburg-Landau model is
small pulse with a height of 0.01 and located at the middle
the spatial domain. In this way the initial perturbation w
spread off as two fronts propagate in opposite directions.
the Schlo¨gl model the initial field is a steplike function o
value c(x,0)51 within the left half, andc(x,0)50 in the
rest of the spatial domain. The numerical calculation of
mean front velocity and the steady state behind the fr
have been done as in Ref.@20#.

A. Linear coupling: The Ginzburg-Landau model

This model has already been considered in the contex
noise-induced fronts@20#. We will now study how that pic-
ture is modified by a spatiotemporal structured noise.
this model the kinetic term is

f ~c,a!52c~a1c2!, ~18!

and as a consequence, the noise coupling term is linear

g~f!5f. ~19!

We will have then that the effective dynamics given
Eq. ~7! is

]c~x,t !

]t
5D

]2c~x,t !

]x2
1h„c~x,t !… ~20!

with a new kinetic term~9! given now as

h„c~x,t !…52c~a81b8c2!, ~21!

where the new kinetic parameters are

a85a2e$C~0!1DC9~0!t%

b85112eC~0!t. ~22!

Following the linear marginal stability criteria@21#, the
velocity of apulled front is controlled by the linear term a

v l* 52AD~2a8!

52ADS 2a1e~0!S 11
DC9~0!

C~0!
t D D . ~23!

Note thata8,0 in order to have a front. This result, how
ever, has been deduced for a small enought. Nevertheless,
we can conjecture a generalization of Eq.~23! for any value
of t considering that the values of the velocity fort50
~temporal white noise limit! and for t5` ~deterministic
9-3
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case! are known. In this way, the simplestregularizationof
Eq. ~23!, which is a monotonous function ont, is

vt* 52ADS 2a1
e~0!

12
DC9~0!

C~0!
tD . ~24!

Moreover, Eq.~24! generalizes the temporal white noise r
sult in terms on a renormalized noise intensity defined a

eR[
e~0!

12
DC9~0!

C~0!
t

, ~25!

which does not present any singularity because alw
C9(0),0.

Takinge(0)5eC(0) as a constant we have the followin
behavior. For increasingt (l fixed!, eR decreases, and w
arrive up to the deterministic value ofv. Nevertheless for
fixed t and increasingl,C9(0)t/C(0);t/l2, and theneR
increases, and as a consequence,v increases up to the tem
poral white noise limit. This is a nontrivial effect ofl that
needs a finite value oft to appear.

As already discussed in@20#, another important quantity
in this model is the field behind the front that is induced
the noise, and thus it is highly fluctuating. From Eq.~21!, the
homogeneous deterministic stationary value behind the f
can be calculated as

cst5A2a8

b8
. ~26!

As we do not know how the higher order corrections
b8 are, we expect a poorer agreement forcst than for the
velocity. However, we can get an idea of the relevance ofb8
by numerically inspecting the quotient ofvt* over cst that
depends onb8. Indeed, from Eqs.~23! and~26!, this depen-
dence is

~b8!1/25
1

2

vt*

cstAD
. ~27!

The analytical predictions~24!, ~26!, and~27! are impor-
tant results of this paper that will be checked numerica
Due to the different role of the noise parameterst andl we
will discuss two cases separately.

1. Spatial white noise in the lattice

For this case all the simulations agree perfectly with
theoretical results of Eq.~24!. In fact, fixing the noise inten-
sity e(0) and increasingt, the mean velocity of the fron
drops monotonously to the deterministic value~see Fig. 1!.
All figures are in dimensionless units.

Our analytical calculation~dashed lines! only describes
the corrections to the white noise case at orderO(t). How-
ever, this can be considered quite relevant as the depend
of v and cst on t drops down very rapidly neart50, and
01612
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our first order approximation succeeds to grasp this p
nounced slope~see inset of Fig. 1!. Moreover, the extended
analytical prediction~24! shows a very good agreement wi
numerical data for all values oft.

With respect to the average mean field, the agreemen
more qualitative~see Fig. 2!. The numerical results for the
effective parameterb8, evaluated from Eq.~27!, are repre-
sented in Fig. 3. They support the initial growth ofb8 pre-
dicted by the theory. For greater values of the correlat
time b8 stays bounded by its deterministic valuebd851. This
fact may explain why numerical values ofcst seem to de-

FIG. 1. Front mean velocity versus noise corelation timet for
the Ginzburg-Landau model in the presence of a Ornste
Uhlenbeck noise in time, white in space. Values of the paramet
Circles correspond to the deterministic case,vsim* 50.62; triangles,
to e(0)50.2, and squares, toe(0)50.05; dashed lines are the an
lytical prediction up toO(t) Eq. ~23!, whereas continuous line
represent the corrected prediction~24!. See text for the values of the
other parameters.

FIG. 2. Mean stationary value of the field versust. The inset is
a amplification of the smallt domain. See previous figure for th
symbol notation.
9-4
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FRONT DYNAMICS IN THE PRESENCE OF . . . PHYSICAL REVIEW E 64 016129
pend only on the linear coefficienta8.
From previous work@20#, we already know thatcst has a

systematic error that slightly increases with noise intens
Hence, the deviation found here~Fig. 3! is not due to the
presence of temporal correlations, but a problem relate
the fact that we are measuring a highly fluctuating quan
as it iscst . In any case, our theoretical prediction is cons
tent qualitatively with numerical simulation results.

2. Spatiotemporal structured noise

To study the nontrivial effects of a finite correlatio
length on the dynamics of the front, we have to pay attent
to the effects coming from the quantityC9(0);s2/l23.

In Fig. 4 we can see the front velocity versust for differ-
ent values of the correlation lengthl of the noise. Continu-
ous lines correspond to the analytical prediction~24!. As can
be seen, for a finite correlation length the agreement is o
qualitative, and improves for noises not too much away fr

FIG. 3. Cubic term coefficient of the Ginzburg-Landau model
the quotient ofv to f versust. Notation is the same as in previou
figures.

FIG. 4. Front mean velocity versust for different correlation
lengths. Here it ise(0)50.2.
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a spatial white noise~triangles!. This behavior can better b
appreciated in Fig. 5 where we have plotted the veloc
versusl for different values of the correlation time.

According to our definition ofl, Eq. ~C8!, we have that
l50 for the spatial white noise in the lattice. Here it can
seen that our analytical scheme may qualitatively desc
the effects of a finitel only for small values oft and l,
which is not the case forl50 where the accordance is ver
good. For a finitel, we have also observed a clear departu
from the analytical results in the case of the dependencet
of the mean stationary value of the field behind the front,
well as for the cubic coefficient. Also, the numerical resu
show a systematic decrease of the velocity when increa
the correlation length fort50, which is not predicted by ou
analytical results~24!.

On the other hand, fort.0, the velocity tends to grow
with l for small correlation lengths as the theory predic
Indeed, this agrees with what we have observed in preli
nary numerical simulations for a quenched white noi
Hence, for increasingl (t fixed! the numerical results sug
gest a nonmonotonous behavior of the velocity, which m
increase at smalll, but would always decrease at long co
relation lengths.

We have not found yet an explanation for this effect. W
believe that there is an interplay between the correlat
length of the noise and the typical length of the front, whi
is given by its width. Indeed, this effect could be related
the observed distortion of the leading edge of the front a
the possible formation of a prefront in the presence of a la
spatial correlation length of the noise. Then our initial a
sumption of a well defined mean front profile is not fulfille
and, as a consequence, the theoretical scheme cannot b
plied.

s

FIG. 5. Front mean velocity versusl for different correlation
times. e(0)50.2 for hollow triangles. Filled up-triangles corre
spond to the white noise case, while circles to the determini
case. Squares correspond to the trivial noise effects with fixed n
intensity fort50.05 and the long-dashed line is its theoretical p
diction ~24! ~see text!. Each set of vertical points along the horizo
tal axes correspond, in increasing order ofl, to m50,1,2,3,4, re-
spectively. See Appendix C.
9-5
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MIGUEL A. SANTOS AND J. M. SANCHO PHYSICAL REVIEW E64 016129
For the sake of completeness, in this figure we also sh
what are the trivial effects of of a finite correlation length.
this case, the noise has been generated such that the
intensity s2, defined in Eq.~4!, remains constant. This ca
be acomplished by changing the previous weighting funct
gi by a factor (A2m11)21 ~see Appendix C!. Squares cor-
respond to the numerical results (L52400). The dashed line
is the theoretical prediction~24! for this case. As can be
seen, there is a monotonous decay of the velocity beca
now the most dominant terme(0);s2/l also decays with
l. Thus, the qualitative behavior is completely differe
This confirms that the previous studied dependence ol
correspond indeed to anontrivial effect of the correlation
length. Note that our theoretical scheme succeeds bette
describing quantitatively the trivial effects of a finitel.

B. Nonlinear coupling: The Schlögl model

A general model was introduced bySchlögl in @14# when
studying the fluctuations of an interface. Here we will co
sider a particular version of it that was studied in the pr
ence of an external white noise in Ref.@8#. It corresponds to
the reaction term

f ~c,a!52c~c1a!~c21!, ~28!

which implies a nonlinear coupling with the noise,

g„c~x,t !…5c~c21!. ~29!

Taking into account these definitions, the effective det
ministic part of Eq.~7! becomes,

]c~x,t !

]t
5D

]2c~x,t !

]x2
1h„c~x,t !…1De~0!t2~2c21!

3S ]c~x,t !

]x D 2

~30!

where the reaction term is

h„c~x,t !…5a8c1b8c21c8c315d8c422d8c5, ~31!

with the effective kinetic parameters,

a85a1eR ,

b8512a1d823eR ,

c852124d812eR ,

d85e~0!t, ~32!

whereeR was defined in Eq.~25!.
Our point of interest in this model is the mean front v

locity because the steady states for the frontc50,1 are not
modified by the noise. Due to the prefactor of the KPZ-li
term, forc.1/2, any deviation from the homogeneous st
c51 tends to grow, while this is opposite at points whe
c,1/2 for any deviation from the statec50. Thus, the
effect of this term is to shorten the width of the front, i.e.,
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select a greater decay mode of the front, thus slowing do
its propagation@21#. Hence, the expected slowing down
the front due to temporal correlations of the noise arises h
in two ways: The first one is by means of the usual ren
malization of the coefficients of the reaction termf (c). The
second type of corrections come from the new Kadar-Pa
Zhang~KPZ!–like term.

We expect that this front will exhibit the general regim
of front propagation@21#, i.e., a linear~pulled front!, a non-
linear and a metastable~both, pushedfront! regimes. In the
linear regime, the velocity depends only on the linear co
ficient of the reaction terma8, and it is then given by Eq
~24!.

While a crossover from a metastable to a nonlinear
gime is trivial to determine, being nothing more than con
tion a850, the transition between the linear and the nonl
ear regimes is far more complicated to locate. T
calculation of this point requires an analysis of~all! higher
power terms of the reaction, determining a complete solut
in the comoving system and requiring then that t
asymptotic behavior is such that the coefficient of the slo
est decay mode vanishes.

For the case of a temporal white noise, as was found
@8,9#, there is only a renormalization of the parameters of
kinetic terms, in such a way that the effective dynamics
equivalent to the deterministic one up to a rescaling of
coefficients. Hence, the location of the different regimes c
be directly determined from those of the deterministic ca
Unfortunately, to our knowledge, the first procedure is ho
less for Eq.~30!. Neither can this dynamic directly be com
pared with the deterministic case. However, the transit
between linear and nonlinear regime is always continu
and, as we can correctly describe the linear regime, this
will help us to numerically locate the transition for th
model.

Nevertheless, there is still some hope for an analyti
prediction. The type of dynamics given by Eqs.~30!–~32!
usually are relevant near the transition pointa850, where
the dynamics given by Eq.~2! can be simplified by means o
an amplitude expansion. In this case, and as long as the n
intensity is low enough, our effective equation would also
near threshold (a8;0). Assuming this situation, the spatia
variations of the field take place on a typical length scale
orderqo

21[AD/a. A crossover between nonlinear and line
regime means that the nonlinear terms start to dominate
growth rate of the initial steady state. Thus, this transit
takes place when botha8c andb8c2 are of the same orde
of magnitude. This will be the case for

c;b8; b82;a8. ~33!

Then the KPZ and thec4 terms both will be of orderqo
4 ,

while the termc„]c(x,t)/]x…2 will be of orderqo
5 . Hence,

near threshold, only the first three terms of the effective
action ~31! will be relevant. But this equation is just th
standard Schlo¨gl model that is exactly solvable. This wil
have a sense only if it isc8,0, which we will assume to be
9-6
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so due to its expression in Eq.~32!. As stated above, we wil
also requireb8.0. The new stationary states of this appro
mation are given by

c6[S 2b8

2c8
D H 16A12

4a8c8

b82 J . ~34!

For a8c8,0 andb8.0, it is c1.c2 . If we write then the
reaction term as

hcr„c~x,t !…5c8c~c2c1!~c2c2!, ~35!

the velocity of a front connectingc5c1 andc50 is given
by @22#

vnl5A22c8DH c1

2
2c2J . ~36!

Given the results found for the previous model, we exp
that our system~31! will present fronts in the linear regim
for a high enough noise intensitye(0) and small enought.

Although we do not know the corrections ofd8 beyond
O(t), we expect the velocity to start diverging from Eq.~24!
for some finite value oft. But, by adequately choosing th
parameters, the transition between the linear and nonlin
regimes can be obtained at small enough values oft for our
approximations to be applicable. Hence, for values of thea8
near threshold, and within a neighborhood of the cross
point, the nonlinear velocityvnl will approximately be given
by Eq. ~36!.

We will show that numerical simulations support th
analysis. In Fig. 6 we have plotted the numerical results

FIG. 6. Front mean velocity versus noise corelation timet for
the Schlo¨gl model. Circles correspond to the deterministic ca
vd,sim* 51.131; dashed lines are the analytical results up toO(t),
whereas continuous lines represent the analytical corrected re
vt* Eq. ~24!. Dot-dashed lines correspond to the prediction~36!.
The inset amplifies the domain of smallt. By tuning t, the front
shifts from apulled regime to apushedone. This crossover corre
sponds to the points first leaving the theoretical curvevt* and are
approximately given by the arrows.
01612
t

ar

g

f

the front mean velocity versust. The inset shows the case
where a linear-nonlinear transition is expected. For all th
plots, the value of the deterministic linear coefficienta is
such that the deterministic front lies right within the nonli
ear regime. While for the white noise case all fronts mo
within the linear regime, the one fore(0)50.1 is only mar-
ginally inside. Increasing thent, the effective linear coeffi-
cient a8 decreases. For small values of the correlation tim
the fronts will still lie within the linear regime, except for th
e(0)50.1 case, for which the front enters the nonlinear
gime immediately for any finite value oft.

Thus for small values oft the front moves with the linea
velocity. We can see that our first order approximati
~dashed lines! also reproduces for this system the initial ste
fall of v. Our analytical continuationvt* shows up a perfec
agreement with the numerical results. By further increas
the correlation time we can shift the front into the nonline
regime.

For this one we only have a rough approximation for t
front mean velocity given by Eq.~36! ~dot-dashed lines!.
This approximation is valid only near the critical pointa8
50 and gets worse as we move away from it. Although o
analysis gives us only the corrections due to a finitet up to
O(t), with the renormalized noise intensity~25!, and staying
close to the critical point, we obtain a surprisingly good an
lytical estimation for the nonlinear velocity up to values oft
of order O(1). One cannotice that our predictions are jus
O(t) seeing that the velocity diverges from the determinis
value att high enough. This is to be expected as in obtain
Eq. ~36! we have used only anO(t) approximation for the
squaredb8c2 and the stabilizing termc8c3, with both b8
and c8 linearly increasing witht for high values oft. But
this dependence is obviously incorrect as an infinite ene
difference between two metastable states would give ris
an unbounded propagation velocity, which is not the cas

The estimation of the crossing point between the lin
and the nonlinear regimes, given by the crossing point
tween the two curvesvnl* and vt* , is consistent with the
numerical results. At that point, these show up a pronoun
and increasing departure of the linear velocityvt* . For the
e(0)50.1 case, the departure from the theoretical resultvt*
starts already fort.0. This can be best seen in the inset
Fig. 6.

IV. CONCLUSIONS

We have studied a general reaction-diffusion system
exhibits fronts in the presence of spatiotemporal structu
external noise. We have derived an effective determini
dynamical equation for the front that contains the main
fects of the noise. These show up as renormalization of
original reaction terms of the deterministic system and a
new terms. The relevance of those effects are discussed
two prototype models: The Ginzburg-Landau model~noise
linear coupling! and the Schlo¨gl model~noise nonlinear cou-
pling!. Although our analysis is valid only for small correla
tion times, we are able to grasp at least the main feature
the effects of a time colored noise on an extended syst
namely, that there is a pronounced slow down of the fr

,

lts
9-7
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velocity already for small but finite correlation timest.
We have obtained an analytical expression for the fr

velocity in the linear regime that we have extended to
valid for any value of the correlation timet of the noise. The
numerical simulations present an excellent agreement
the analytical results in this regime. For the nonlinear
gime, we can only give an approximate expression for
velocity, when the system is near threshold. Although it s
is valid only fort not too large, it goes beyond the first ord
approximation considered in our analysis when the syste
brought close enough to threshold.

Finally, we have obtained the nontrivial influence of t
noise correlation length. Our results here are of a more l
ited validity, and this case needs a further study. Never
less, our numerical results suggest a nontrivial behavio
the velocity when varying the correlation length of the noi
with an increase of the velocity withl for finite t and small
l. Previous reported studies evaluate only the trivial dep
dence onl of the front velocity, slowing down with increas
ing correlation length@23#.

Hence, we have shown that our procedure of separa
the systematic contribution of the noise from the origin
dynamics gives reliable information for front dynamics
the presence of spatiotemporal structured noises. The
tematization of the present procedure, if possible at all,
its application to other situations would be extremely int
esting.
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APPENDIX A: ANALYTICAL DERIVATION OF THE
SYSTEMATIC EFFECTS OF A STRUCTURED NOISE

The systematic contribution̂F(x,t)& of the noise is
given by

^F~x,t !&[e1/2^g„c~x,t !…h~x,t !&. ~A1!

This average can be calculated by using Novikov’s theor
in the following form,

^F~x,t !&5e1/2E
R

dx8E
0

t

dt8G~ ux2x8u,ut82tu!

3K g8„c~x,t !…
dc~x,t !

dh~x8,t8!
L . ~A2!

Hence, the determination of^F(x,t)& reduces to that of the
response function
01612
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Q~x,x8;t,t8![
dc~x,t !

dh~x8,t8!
. ~A3!

Following @16# and@17#, we will consider the contribution of
the noise at first order int in the approximation of smallt.
This means that temporal correlation decays very stron
for t8Þt leaving relevant in Eq.~B3! only the values of the
integrant fort8 close tot. Thus we may expandQ(x,x8;t,t8)
in powers of (t82t) aroundt85t and take all up to the firs
order

Q~x,x8;t,t8!5Q~x,x8;t,t !1
]Q

]t8
U

t85t

~ t82t !1•••.

~A4!

In Appendix B we present a detailed derivation of this se
ond term.

Now we can rearrange Eq.~A2! in two terms, the first one
being the zero order or white noise contribution, i.e, the o
we get in the limitt→0 for fixede andl, while the second
one represents the contribution of the colored noise at
order int,

^F~x,t !&5^F0~x,t !&1^F1~x,t !&. ~A5!

Recollecting relations~A2!, ~A4! and ~B4!, ~B7!, and after
calculating the spatial integral, we obtain

^F0~x,t !&5e^g„c~x,t !…g8„c~x,t !…&E
0

t

dt8G~0,ut2t8u!

^F1~x,t !&5eK g8„c~x,t !…F F $g„c~x,t !…, f „c~x,t !…%

2Dg9„c~x,t !…S ]c~x,t !

]x D 2G E
0

t

dt8G~0,ut2t8u!

3~ t82t !2Dg„c~x,t !…E
0

t

dt8G9~0,ut2t8u!

3~ t82t !G L , ~A6!

where the primes onG„0,(t2t8)… indicate derivatives of
G„(x2x8),(t2t8)… with respect tox8, evaluated atx85x,
and

$g„c~x,t !…, f „c~x,t !…%[g8„c~x,t !…f „c~x,t !,a…

2g„c~x,t !…f 8„c~x,t !,a….

~A7!

As we are interested in the approximation of smallt, which
amounts to consider observation times much greater than
characteristic correlation time of the noise, we can exte
then the limits of these integrals up tò.

At this point, further assumptions on the correlation fun
tion must be done in order to obtain any analytical pred
tion. Assuming thatG(x,s) factorizes as in Eq.~3!, the
above integrals can be written as
9-8
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E
0

t

dt8G~0,ut2t8u!5C~0!;
s2

l

E
0

t

dt8G~0,ut2t8u!~ t82t !52tC~0!;
s2t

l

E
0

t

dt8G9~0,ut2t8u!~ t82t !52tC9~0!;
s2t

l3
, ~A8!

where the temporal partg(s) is considered to be normalize
to 1.

Finally, we can write

^F0~x,t !&5eC~0!^g„c~x,t !…g8„c~x,t !…&, ~A9!

^F1~x,t !&52eC~0!t K g8„c~x,t !…F $g„c~x,t !…, f „c~x,t !…%

2Dg9„c~x,t !…S ]c~x,t !

]x D 2G L
1eDC9~0!t^g8„c~x,t !…g„c~x,t !…&. ~A10!

APPENDIX B: RESPONSE FUNCTION

The determination of̂F(x,t)& reduces to that of the re
sponse function

Q~x,x8;t,t8![
dc~x,t !

dh~x8,t8!
. ~B1!

The meaning of Eq.~1! is given by

c~x,t1Dt !2c~x,t !5E
t

t1Dt

dsL„c~x,s!,]x ,a…

1e1/2E
t

t1Dt

ds g„c~x,s!…h~x,s!,

~B2!

and as long ast.0, the last integral is well defined as
Riemann integral. By taking the functional derivate of E
~B2! with respect to the noiseh(x8,t8) we get

Q~x,x8;t,t8!5Q~x,x8;t8,t8!1E
t8

t

dsH ]L
]c

~x,s!

1e1/2g8„c~x,s!…h~x,s!J Q~x,x8;s,t8!;

t.t8 ~B3!

with

Q~x,x8;t,t !5e1/2g„c~x,t !…d~x82x!. ~B4!

Equation~B3! is an integrodifferential equation for the re
sponse function for which it has not yet been found a form
solution as it was in@16# and@17# for nonspatially dependen
~zero-dimensional! systems. The term~B4! gives the contri-
01612
.

l

bution ~A9! to the systematic effect of the noise. Expandi
Q(x,x8;t,t8) in powers of (t82t) aroundt85t and taking
all up to the first order

Q~x,x8;t,t8!5Q~x,x8;t,t !1
]Q

]t8
U

t85t

~ t82t !1•••.

~B5!

The second term can be obtained by directly deriving E
~B3! with respect tot8. This gives

]Q~x,x8;t,t8!

]t8
5E

t8

t

dsI~x,s!2H ]c~x,t8!

]t8
,Q~x,x8;t,t8!J .

~B6!

As long as we are interested in the limitt8→t, the details of
I(x,s) are not important for the first term in Eq.~B6! van-
ishes in that limit since it is a regular function ins. For t8
5t, and substituting Eq.~1!,

]Q~x,x8;t,t8!

]t8
U

t85t

5
]Q~x,x8;t8,t8!

]c~x,t8!
U

t85t

~L„c~x,t !,]x ,a…

1e1/2g„c~x,t !…h~x,t !!2S ]L
]c

~x,t !

1e1/2g8„c~x,t !…h~x,t ! DQ~x,x8;t,t !.

~B7!

Considering the initial condition~B4! and substituting the
expression of the nonlinear~differential! operatorL given by
Eq. ~1!, the last relation reduces to

]Q~x,x8;t,t8!

]t8
U

t85t

5e1/2@g8„c~x,t !…f „c~x,t !,a…2g„c~x,t !…f 8„c~x,t !,a…#

3d~x82x!1De1/2H g8„c~x,t !…S ]2c~x,t !

]x2 D d~x82x!

2
]2

]x2
@g„c~x,t !…d~x82x!#J . ~B8!

The second order derivative of the last term gives

Fg9„c~x,t !…S ]c~x,t !

]x D 2

1g8„c~x,t !…S ]2c~x,t !

]x2 D Gd~x82x!

12g8„c~x,t !…S ]c~x,t !

]x D ]d~x82x!

]x

1g„c~x,t !…
]2d~x82x!

]x2
. ~B9!

With this result in mind, the Laplacian terms in Eq.~B8!
mutually cancel, while the terms proportional to thed give
9-9
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rise to the first integral in Eq.~A6!. Taken into account the
following relation of the derivative of ad

]

]x
d~x82x!52

]

]x8
d~x82x! ~B10!

the contribution to Eq.~A2! of the first and second orde
derivative of thed in ~B9! will be

2E
0

t

dt8F2G8„0,~ t2t8!…g8„c~x,t !…
]c~x,t !

]x

1G9„0,~ t2t8!…g„c~x,t !…G~ t82t !. ~B11!

This result give rise to the last terms in Eq.~A10!, where
the contribution proportional toG8„0,(t2t8)… has been dis-
carded because of the spatial isotropy of the noise.

APPENDIX C: NUMERICAL ALGORITHM
FOR GENERATING A SPATIOTEMPORAL

COLORED NOISE

Here, we will define a spatiotemporal structured noise t
is very simple to implement numerically, and which is t
one we have used in this work. This type of noise is obtain
by rewriting the spectral method@2# as a linear transforma
tion of a more simple noise field in real space.

We define our spatiotemporal colored noise in each lat
cell i and at timet, as

h i~ t ![Dx(
i

h̄ j~ t !gi 2 j , ~C1!

where the indexj labels a domain of cells around the celli,
andgi is a weighting distribution with the isotropic proper

g2 i5gi . ~C2!

h̄ i(t) is an Ornstein-Uhlenbeck process in the lattice c
i, statistically independent of the other lattice points~white
noise in space!. Its value is generated through the line
Langevin equation,

]h̄ i~ t !

]t
52

1

t
h̄ i~ t !1

1

t
j i~ t !, ~C3!
.

01612
t

d

e
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in terms of a Gaussian white noise with a correlation,

^j i~ t8!j j~ t !&52sw
2 d i , j

Dx
d~ t2t8!. ~C4!

In this case the correlation of the noiseh̄ i(t), is given by

^h̄ l 1 j~s!h̄ j~0!&5Ḡl~s!5C̄lg~ usu!,

g~ usu!5
sw

2

t
e2usu/t, ~C5!

C̄l5
d0,l

Dx
.

Being Ḡ already factorized, the linear transformation~C1!
assures that the correlation function ofh i(t) will be of the
desired form~3!. As g is arbitrary, we are free to impose th
condition that the value ofG0(0) equals that ofḠ0(0), i.e,

G0~0!5Ḡ0~0!. ~C6!

Here we are interested ingl having a finite range, for sim-
plicity, we assume thatgi is a constantg inside the interval
2m, i ,m, but zero otherwise. Then the condition~C6! im-
plies gi5@DxA(2m11)#21. Now it is a simple calculation
to show thath i(t) is a spatiotemporal structured noise with
correlation,

Gl5Clg~ usu!5
C̄0

~2m11!
@2m112u l u#u~2m2u l u!g~ usu!.

~C7!

At equal lattice points this function decays exponentia
in time, and at equal times it has a triangular decay a
function of lattice point difference. From this analytical e
pression it is straightforward to obtain the noise intensity a
correlation length,

s25~2m11!sw
2

l5A2

3
m~m11!Dx, ~C8!

being the correlation timet. One can check now that in th
lattice white noise limitm50 ands25sw

2 , and thenl50.
For m51, we get thatl51.15 . . .Dx.
,

tt.
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