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Background: Time-dependent techniques in nuclear theory often rely on mean-field or Hartree-Fock descrip-
tions. Beyond-mean-field dynamical calculations within the time-dependent density matrix (TDDM) theory
have often invoked symmetry restrictions and ignored the connection between the mean field and the induced
interaction.
Purpose: We study the ground states obtained in a TDDM approach for nuclei from A = 12 to A = 24,
including examples of even-even and odd-even nuclei with and without intrinsic deformation. We overcome
previous limitations using three-dimensional simulations and employ density-independent Skyrme interactions
self-consistently.
Methods: The correlated ground states are found starting from the Hartree-Fock solution, by adiabatically
including the beyond-mean-field terms in real time.
Results: We find that, within this approach, correlations are responsible for ≈4–5% of the total energy. Radii are
generally unaffected by the introduction of beyond-mean-field correlations. Large nuclear correlation entropies
are associated with large correlation energies. By all measures, 12C is the most correlated isotope in the mass
region considered.
Conclusions: Our work is the starting point of a consistent implementation of the TDDM technique for
applications into nuclear reactions. Our results indicate that correlation effects in structure are small, but
beyond-mean-field dynamical simulations could provide insight into several issues of interest.
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I. INTRODUCTION

The study of the time evolution of nuclei provides key in-
sights into their structure, their excitation, and their associated
reactions. Several techniques have been devised to tackle nu-
merically the dynamics of nuclear many-body systems [1–4].
Traditionally, nonstationary simulations in nuclear physics
have been implemented in the time-dependent Hartree-Fock
approximation (TDHF) [5–7] or, in more modern terms,
the time-dependent density functional approach [8–10]. This
approach assumes that nucleons move only under an (instan-
taneous) average potential generated by the other nucleons
and consistently takes the Pauli exclusion principle into ac-
count [11]. Using Skyrme density functionals, simulations
are nowadays routinely implemented in unrestricted three-
dimensional (3D) geometries and have been used to describe
a plethora of different nuclear phenomena [12–21].

In the past, there have been attempts to move beyond this
mean-field approximation. There are a handful of methods
that introduce genuine two-body correlations in the dynam-
ics [22]. These include, among others, the Balian-Vénéroni
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approach to incorporate particle-number fluctuations [23–25]
and the Kadanoff-Baym approach for infinite [26,27] and
finite [28,29] systems. However, the time-dependent density
matrix (TDDM) approach is probably the most widely applied
beyond-mean-field method in nuclear physics and, in this
sense, it is the most successful to date.

TDDM was introduced by Cassing and Wang in 1980
[30] and has been applied extensively in nuclear physics by
Tohyama [31–43] and others [44–46]. In this context, the
TDDM equations are often projected into a moving basis
dictated by a TDHF-like equation, plus a time-dependent term
that depends on correlations [44]. Successful implementations
with different levels of consistency have also been used to
study breakup [47,48] and, recently, fusion reactions in an
energy-conserving approach [49,50].

TDDM allows one to go beyond TDHF by truncating
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy of quantum mechanical many-body density matrices
order by order [22,51]. Here, and in the following, we define
uncorrelated systems as those where the probability distribu-
tions of two particles are independent. Two-body correlations
are therefore a measure of the “lack” of independence of
the two probability distributions. This approach has also seen
widespread use within other areas of physics, such as con-
densed matter and quantum optics, where TDDM often goes
by the name of reduced density matrix theory [52–54].
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In addition to the many-body truncation, other approxi-
mations are typically implemented in nuclear TDDM simula-
tions. Due to computational intensiveness of the calculations,
previous implementations of TDDM have worked in spherical
or, more recently, axial symmetry [37,41]. Moreover, one
often assumes that a decoupling applies to nuclear systems, so
that the interaction acting at the mean-field level is different
to that acting at the beyond-mean-field level [26]. The latter
is often dubbed the “residual interaction” and often takes
the form of a simplified δ function [38,47,49]. On the one
hand, the geometric restrictions preclude the application of
TDDM methods to triaxially deformed nuclei and to general
dynamical settings between multiple nuclei. On the other, the
inconsistent use of mean-field and residual interactions ham-
pers the possibility of discussing systematics in the TDDM
expansion. For instance, if one were to find an improvement in
the dynamical description when going from TDHF to TDDM,
it would be difficult to unambiguously ascribe the improve-
ment to the use of TDDM when the employed Hamiltonian is
not the same at all levels.

In view of these limitations, we have implemented a
fully unrestricted 3D implementation of TDDM that uses the
Skyrme interaction for both the mean field and the resid-
ual channels [55]. Our truncation of the BBGKY hierarchy
includes two-body correlations only [42]. In this paper, we
provide details and results for our implementation of this
method. Additional information can be found in Ref. [55].

Our physics focus is the generation of correlated ground
states within the TDDM approach. We obtain these from the
dynamical equations by means of an adiabatic switching-on
technique, as explained below. Our calculations extend from
light systems, like 12C, up to exotic nuclei, like 24O. We
do not expect the calculations to provide a good match to
experimental data, because the interactions have been fitted at
the mean-field level. However, the simulations provided here
are informative in terms of the structure, size, and mass evo-
lution of two-body correlations within the TDDM formalism
with Skyrme forces. Ultimately, our aim is to use the ground
states described here to study nuclear dynamics within a fully
consistent TDDM approach.

This paper is laid out as follows. Section II gives a brief
outline of the theoretical background and the numerical im-
plementation of our TDDM approach. Some further details
are provided in the Appendix.

In Sec. III, we discuss nuclear ground states obtained
within HF calculations, which are necessary for comparison
to the correlated TDDM results provided in Sec. IV.

Section V concludes this paper with a summary and short
discussion on areas of future research.

II. TIME-DEPENDENT DENSITY MATRIX METHOD

A. Formalism

The BBGKY hierarchy relates the time evolution of an
A- body density matrix, ρA, to the Hamiltonian, Ĥ , and the
(A + 1) density matrix [30]. A truncation of the hierarchy
is necessary to make the dynamical equations of the density
matrix numerically tractable for practical implementations.
Depending on the truncation, one finds different coupled dif-

ferential equations for the evolution of the density matrix that
obey conservation laws [52,53]. By assuming that A = 3 body
correlations can be cast in terms of A = 2 and A = 1 density
matrices only, one recovers the most popular implementation
of TDDM [42,45,56].

If we denote generally the space coordinates of a nucleon
by xi, the two-body density matrix (with no reference to spin
or isospin) is a tensor in four positions, ρ2(x′

1, x′
2; x1, x2). In

a three-dimensional (3D) mesh of Nx points in each direc-
tion, this quantity scales like N12

x , quickly overcoming present
computational capabilities. To avoid this limitation, we solve
the TDDM equations in a moving TDHF-like basis [44]. This
has several advantages. First, because part of the dynamics is
incorporated in the basis, the TDDM equations are simplified
with respect to static basis approaches [45]. More importantly,
the size of the correlation tensor is dictated by the total
number of single-particle orbitals, Nmax, and scales with the
fourth power of this variable, N4

max. In addition, we can use
already existing computational capabilities at the TDHF level
to evolve the basis states in a fully unrestricted 3D geometry
[17]. We note, however, that there are instances, particularly in
fusion reactions in the merging phase, where a finite basis set
may be insufficient to guarantee energy conservation [49,50].

In this approach, the one-body density matrix is expanded
into a finite set of HF-like single-particle orbitals that depend
on time,

ρ1(x1, x′
1; t ) =

Nmax∑
αα′

nαα′ (t )ψ∗
α′ (x′

1, t )ψα (x1, t ). (1)

In this subsection, we denote by Nmax the total number of
such states, including neutrons and protons.1 From now on,
we omit the time variable t as it is clear that all quantities
depend on it and all our summations run from the lowest
single-particle index up to Nmax. The single-particle orbitals
follow the dynamics dictated by a TDHF-like equation,

ih̄
d

dt
ψλ =

∑
α

εαλψα, (2)

where

εαβ = tαβ +
∑
γ δ

ναγβδnδγ (3)

is the so-called energy matrix. This includes a kinetic con-
tribution, tαβ , and an interaction term. We give more details
on the calculation of the matrix elements ναβγ δ below. If the
energy matrix is diagonal, the elements εαα , are the single-
particle energies associated with a given state α.

The matrix nαα′ is known as the occupation matrix. When
the occupation matrix is diagonal, the diagonal elements cor-
respond to the occupations of the associated single-particle
orbitals. The time evolution of nαα′ is dictated by the correla-
tion tensor, C. The latter corresponds to the correlated part

1In the numerical implementations discussed below, we also denote
the total number of neutron and of proton states, independently, by
Nmax. The factor of 2 between the two definitions should not cause
any confusion.
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of the two-body density matrix, C = A(ρ1ρ1) − ρ2, where
the operator A antisymmetrizes with respect to exchanges
between single indices xi and x j . The correlation tensor can
also be decomposed into a time-dependent single-particle
basis,

C(x1, x2; x′
1, x′

2)

=
Nmax∑

αβα′β ′
Cαβα′β ′ψ∗

α′ (x1)ψ∗
β ′ (x2)ψα (x′

1)ψβ (x′
2). (4)

Upon making this decomposition, one finds that the evolution
of nαα′ becomes

ih̄
dnαα′

dt
=

Nmax∑
γ δσ

[νασγ δCγ δα′σ − Cαδγ σ νγσα′δ]. (5)

As opposed to a static basis projection, the right-hand side
of this equations does not have any Hartree-Fock (HF) term
[44,45]. As one can clearly see, when correlations are not
active (C = 0), the occupation probabilities become static.
Further, in a pure mean-field picture without pairing corre-
lations, one can prove that these occupation probabilities are

either 1 or 0 depending on whether the orbital is below or
above the Fermi surface, respectively.

In contrast, when correlations are active, one expects that
the occupation numbers take values between 0 and 1, to abide
with the Pauli principle and their probabilistic nature. The
truncation in the TDDM equations does not always math-
ematically guarantee that this is the case, as numerically
corroborated in early nuclear physics applications [57,58] and
more recent strongly correlated electronic simulations [52].
We have observed this anomalous behavior in a handful of
simulations, but it is difficult to discriminate their origin,
which could partially be due to numerical issues.

When the hierarchy is truncated at some level, the evo-
lution of the correlation tensor C is dictated by an equation
which depends on occupation numbers, interaction matrix
elements, and the correlation tensor itself. We work under the
assumption that genuine three-body correlations are negligi-
ble [43,44,52]. In other words, the three-body density matrix
is a properly antisymmetrized product of one- and two-body
density matrices only, but does not include any genuine C3

terms. Under this approximation, the equation of motion for
the correlation tensor is [55]

ih̄
dCαβα′β ′

dt
= 1

2

∑
λμ

νβαλμ(nλβ ′nμα′ − nλα′nμβ ′ + Cμλα′β ′ ) + 1

2

∑
λμ

νλμα′β ′ (nβλnαμ − nβμnαλ + Cαβμλ)

− 1

2

∑
δλμ

νβδλμ[nλβ ′ (nμα′nαδ − nαα′nμδ + Cμαα′δ ) − nλα′Cμαβ ′δ − nμβ ′Cλαα′δ + nμα′Cλαβ ′δ + nαδCλμβ ′α′]

+ 1

2

∑
δλμ

νδλβ ′μ[nβλ(nμδnαα′ − nαδnμα′ − Cαμδα′ ) + nβδCαμλα′ − nαδCβμλα′ + nαλCβμδα′ + nμα′Cβαδλ]

+ 1

2

∑
δλμ

ναδλμ[nλβ ′ (nμα′nβδ − nβα′nμδ + Cμβα′δ ) − nλα′Cμββ ′δ − nμβ ′Cλβα′δ + nμα′Cλββ ′n + nβnCλμβ ′α′]

− 1

2

∑
δλλ

νδλα′λ[nβλ(nλδnαβ ′ − nαδnλβ ′ − Cαλδβ ′ ) + nβδCαλλβ ′ − nαδCβλλβ ′ + nαλCβλδβ ′ + nλβ ′Cβαδλ]. (6)

We note that this equation uses antisymmetrized matrix el-
ements [see Eq. (10) below], unlike other implementations
[44,45].

A brute force implementation of the previous equations
would scale as N7

max. We exploited the symmetries of the
correlation tensor elements to reduce this computational
cost [55].

Also, certain matrix elements are zero based on isospin
conservation arguments. The two-body density matrix (or,
equivalently, the correlation tensor C) provides direct access
to the total energy of the system, which is customarily split
into two contributions, E = EMF + Ec. The mean-field term is
expressed in terms of occupation matrix elements only and is
already active at the HF level,

EMF =
∑
αβ

tαβnβα + 1

2

∑
αβγ δ

ναβγ δnγαnδβ . (7)

The correlation energy term, in contrast, is directly propor-
tional to C,

Ec = 1

4

∑
αβγ δ

ναβγ δCδγ βα, (8)

and is only active in beyond-mean-field calculations. The cor-
relation energy can therefore be used as a metric to quantify
correlations in the TDDM approach. The TDDM approach
based on Eqs. (2), (5), and (6) conserves the number of parti-
cles, the total momentum, and the total energy [44].

B. Interaction matrix elements

In the past, the implementation of the TDDM approach has
often relied on approximations. An often-used assumption is
that the beyond-mean-field interaction (the “residual interac-
tion”) is a δ function multiplied by a constant. This reduces
substantially the computational cost required to calculate the
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matrix elements, ναβα′β ′ . This approximation, however, ig-
nores the self-consistency between the mean-field interaction
and residual interaction which, from a first-principles perspec-
tive, should be based on the same Hamiltonian. In this work,
we instead use the Skyrme interaction,

V (r) = t0(1 + x0Ps)δ(r) + 1
6 t3(1 + x3Ps)ρα (R)δ(r)

+ 1
2 t1(1 + x1Ps)[k′2δ(r) + δ(r)k2]

+ t2(1 + x2Ps)[k · δ(r)k]

+ iW0(σ1 + σ2) · [k′ × δ(r)k], (9)

to model the nucleon-nucleon interaction, at both the mean-
field and the residual interaction levels. In this equation, r =
r1 − r2 represents the relative distance between two nucleons
at positions r1 and r1; R = (r1 + r2)/2, k = (∇1 − ∇2)/2i
is the relative momentum acting on the right and k′ is its
conjugate acting on the left. Ps = (1 + σ1 · σ2)/2 is the spin
exchange operator. The last term, proportional to W0, corre-
sponds to the zero-range spin-orbit term.

The use of interactions with density-dependent terms
in beyond-mean-field implementations may be problematic.
These do not constitute true forces and hence must be treated
with care in many-body approaches to avoid pathologies
[55]. We therefore are precluded from using standard Skyrme
parametrizations, but employ two parametrizations of this
force, SV [59] and SHZ2 [60], that do not have a density-
dependent term. In other words, t3 = 0 in the notation of the
original Skyrme force [61,62]. We note that SHZ2 is in fact
a slight refit of SV, with very similar ti parameters and a very
small x0 term [60]. These two different fits therefore allow us
to minimally explore the parametrization dependence of our
results.

The matrix elements of the interaction need to be projected
into the single-particle orbitals so they can be used in Eqs. (5)
and (6). This is achieved by means of a double 3D integral

ναβα′β ′ =
∫

dx1 dx2 ψ∗
α (x1)ψ∗

β (x2)V (x2 − x1)

× [ψα′ (x1)ψβ ′ (x2) − ψβ ′ (x1)ψα′ (x2)]. (10)

However, because of the zero-range nature of the Skyrme
force, these integrals simplify substantially [55]. The calcula-
tion of all elements of ναβα′β ′ scales as N3

x N4
max. This quantity

is calculated four times at each time step, which becomes a
numerical bottleneck for very fine grids or large boxes and
for heavy systems. We note that these matrix elements are
antisymmetrized from the outset.

C. Adiabatic switching and asymptotic convergence
of correlation energies

We obtain nuclear ground states employing an adiabatic
real-time switching technique that continuously transitions
from the mean field to the correlated ground state [55]. This is
achieved by multiplying the matrix elements of the interaction
that appear in Eqs. (5) and (6) by a factor, γ (t ), that slowly
goes from 0 to 1. We use a Gaussian factor,

γ (t ) = 1 − e− t2

τ2 , (11)

which has finite derivatives at t = 0 and t � 1. We work
under the assumption that the switch-on procedure allows the
Gell-Mann–Low Theorem [63] to be applied. In other words,
if the residual interaction is switched on slowly enough, the fi-
nal state should become an eigenstate of the TDDM approach.
Numerical tests indicate that the value τ2 = 32000 fm2c−2 is
sufficient to guarantee a converged correlated ground state.
This correspond to physical changes on a timescale of t =√

τ2 ≈ 180 fm c−1.
We indicate that a test run with A = 4 and τ2 =

64 000 fm2c−1 provided no significant differences in terms of
asymptotic energies. The asymptotic energy values provided
below are obtained either from a converged final result, or
from fits of the different energy components assuming a time
dependence proportional to γ 2(t ). More details of this proce-
dure can be found in Ref. [55].

D. Numerical details and bottlenecks

In unrestricted 3D TDHF simulations, one typically works
with as many single-particle orbitals as nucleons in the
system, Nmax = A [17]. As nucleons are allowed to scat-
ter off each other in TDDM, the number of single-particle
orbitals must necessarily be larger than the number of nucle-
ons, Nmax > A. Our TDDM simulations are projected into a
TDHF-like basis with an equal maximum number of neutron
and proton states, Nmax. In the following, we provide results
for Nmax = 14 and 20 to explore what in ab initio terms is
typically called the “model-space” dependence of our results.
In a shell model language, Nmax = 20 corresponds to a model
space spanning the full sd shell.

There are two major numerical bottlenecks in our approach
that affect the ability to propagate over time and restrict
the size of nuclei that can be tackled. First, simulations are
expensive in terms of memory requirements, since the corre-
lation tensor C and the interaction matrix elements both scale
like N4

max in number of elements. Large amounts of memory
are required to store these tensors. Second, the calculations
of both Cα′β ′αβ and να′β ′αβ are time-consuming. As reported
before, these scale as N7

max and N4
maxN3

x , respectively. Gen-
erally speaking, for a small model space (Nmax < Nx), the
calculation of the interaction matrix elements takes most of
the computational time. For larger model spaces, it is the
calculation of Cα′β ′αβ that dominates the computational cost.
We note that parallelization helps in computing some of these
tensors at each time step.

All calculations presented here were performed on a Carte-
sian 3D grid with spacings x = y = z = 1 fm from −9.5
to 9.5 fm, with Nx = 20. For the relatively light nuclei in
consideration here, we operate in a regime where Nx ≈ Nmax.
We note that for 4He, a smaller grid spacing of 0.5 fm was
tested for both HF and TDDM ground states. The increase
in resolution had a negligible impact on any of the computed
ground-state properties.

As for the computational expense of time propagation,
the matrix elements of C and ν are computed at each time
step, which makes dynamical simulations slow. The three
differential equations for the evolution of the single-particle
orbitals [Eq. (2)], occupations [Eq. (5)] and correlation tensor
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elements [Eq. (6)] are solved using a four-point Runge-Kutta
method. We note that the traditional midpoint method com-
monly used in TDHF [17,64] provided unstable results in the
TDDM implementation (unless a very small time step was
used). In all calculations performed in this work, a value of
dt = 0.2 fm c−1 was used.

Further details about the time-stepping procedure are pro-
vided in the Appendix.

III. MEAN-FIELD GROUND STATES

We start the discussion of results by providing some of
the bulk properties of the HF ground states with the SV
[59] and SHZ2 [60] Skyrme interactions. These results act
as a baseline and allow us to quantify the importance of the
correlations induced by the TDDM approach. The ground
states are obtained using Sky3D [17] and their properties are
summarized in Table I. We investigate a wide range of nuclei
from A = 12 to A = 24. The top part of Table I shows results
for the SV force, whereas the bottom part shows SHZ2 results
for 16O, 20Ne, and 24O. We provide experimental data where
known. As Sky3D imposes no spatial symmetry restrictions,
deformed ground states appear where they are energetically
favored. In particular, of the isotopes considered here, only
16O and 24O are spherical in the HF ground states. Further
details of the HF solutions can be found in Ref. [55].

Our final aim is not so much to produce a set of reliable
ground states to compare to experiments but rather to develop
an understanding of the size and structure of the correlations
induced by the TDDM approach.

The charge radii provided in column 2 are generally over-
estimated with respect to the experimental results (column 3)
by about 3% on average. The HF binding energies per nucleon
are provided in column 4 of Table I. The theoretical results

TABLE I. Charge radii (columns 2 and 3) and binding energies
(columns 4 and 5) obtained from HF calculations using the SV (top
values) and SHZ2 (bottom values) Skyrme forces, alongside experi-
mental values. Proton and neutron point radii are reported in columns
6 and 7. Different nuclei are listed in each row. Experimental data
taken from Refs. [65,66].

Charge Point
radius [fm] B.E. [MeV] radius [fm]

Nucleus HF Exp HF Exp Proton Neutron

SV
12C 2.724 2.4702 69.432 92.160 2.604 2.587
16O 2.765 2.6991 113.536 127.616 2.647 2.629
20Ne 3.058 3.0055 138.860 160.64 2.951 2.927
21Ne 3.046 2.9695 146.79 167.391 2.939 2.991
21Na 3.129 3.0136 142.926 163.065 3.025 2.919
22Na 3.109 2.9852 153.626 174.130 3.004 2.978
24O 2.800 N/A 144.552 168.96 2.683 3.433

SHZ2

16O 2.762 2.6991 113.648 127.616 2.644 2.624
20Ne 3.054 3.0055 139.140 160.64 2.947 2.919

underestimate the experimental ones (column 5) by about
12% on average. We can put forward some explanations for
this discrepancy. First, we note that our results do not include
a center-of-mass correction, which will be relevant for the
energetics of the lightest isotopes. In fact, the binding energies
are somewhat closer to experimental results as A increases,
suggesting this is the case. Second, these effective interactions
were fitted to the ground-state properties of spherical system
from A = 16 to 208, with many more heavy systems than
light isotopes in the fitting protocol. This naturally biases
the parametrizations toward heavier nuclei. Finally, the HF
approximation is expected to work better for heavier than for
light systems on general grounds.

Overall, however, the HF simulations produce reasonable
values of the energy. The mass dependence of the simulations
follows reasonably the energy and radius data. We also stress
that there are relatively small differences between the results
obtained with the two Skyrme interactions. The charge radii
(energies) obtained with SHZ2 are negligibly smaller (larger)
than those of SV, in agreement with the fact that this force has
a slightly larger saturation density. The relative differences
are of the order ≈0.1–0.2%. We stress again that SV and
SHZ2 are very similar parametrizations [60], and therefore we
expect that the correlated TDDM calculations will also show
a relatively insignificant parametrization dependence.

IV. CORRELATED GROUND STATES

We now discuss the results obtained for the correlated
TDDM eigenstates. We aim at providing as much of a system-
atic discussion as possible by focusing on binding energies
and radii. We discuss the results isotope by isotope, in or-
der to provide a more detailed explanation and a clearer
characterisation of the role of correlations in each of these
systems.

A. 12C

The ground-state structure of 12C is of considerable interest
for a variety of reasons. In particular, 12C is relevant because
of its possible cluster structure, in which individual nucleons
may be correlated with others in a way that cannot be easily
captured in a mean-field description [67]. It is conceivable that
the correlations induced by TDDM can capture some of the
clusterization mechanisms and provide significantly different
ground states.

We summarize the TDDM results for the structure of 12C in
Table II. These results are obtained with the SV parametriza-
tion. The uncorrelated, HF ground state has a total energy
of E = −69.4 MeV. This is the starting point of the time
evolution displayed in Fig. 1, which shows the time evo-
lution of the total (filled symbols) and mean field (empty
symbols) energies as a function of time as correlations are
switched on. Squares (circles) show the results for Nmax = 14
(20). As correlations are introduced in the system, the energy
changes. The total energy becomes more attractive, whereas
the mean-field contribution yields more repulsive results. The
total energy drops to ≈−71 MeV. In contrast, the mean-field
component increases by about 4 to 5 MeV. Importantly, the
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TABLE II. Energies (rows 3–5) and radii (rows 6–7) of the 12C
ground states for different values of Nmax (columns 2 and 3). Results
are provided for the SV interaction.

12C SV

Nmax 14 20
Ec [MeV] −5.5 −8.1
EMF [MeV] −65.7 −64.0
E [MeV] −71.2 −72.1
Ec/E [%] 7.72 11.23
Proton rms [fm] 2.644 2.72 ± 0.01
Neutron rms [fm] 2.627 2.67 ± 0.01

final energy is not completely stationary after the evolution
finishes at t = 500 fm/c.

In relative terms, the correlation energy shown in Table II
as a percentage of the total energy is between 7 and 11%. We
anticipate that this is over twice that of any of the other nuclei
discussed in the following, which we take as an indication
of the importance of correlations for this specific isotope. It
would be interesting to find quantitative measures of cluster-
ing in these simulations, in line with what has been achieved
at the mean-field level [68].

Columns 2 and 3 of Table II show results for both Nmax =
14 and 20, respectively. In a traditional shell-model picture,
the former would include the ground-state 1s1/2 and 1p3/2

configurations of 12C as well as the 1p1/2 and 1d3/2 levels.
The larger model space Nmax = 20 completely fills in the sd
shell. We note that, in going from the Nmax = 14 to Nmax = 20
configuration, the system gains about 2.5 MeV of correlation
energy, but the nucleus is bound by only 1 additional MeV.

As expected, a larger Nmax corresponds to a larger corre-
lation energy, since the interaction does not have a natural
cutoff, and those levels nearest the Fermi energy can be scat-
tered into most available levels.

FIG. 1. Time evolution of the mean-field (open symbols) and the
total energy (filled symbols) of 12C from a HF to a correlated ground
state. Data are provided for Nmax = 14 (squares) and Nmax = 20
(circles).

FIG. 2. Occupation numbers of (a) neutron and (b) proton hole
states as a function of time for the adiabatic switching of 12C with
Nmax = 20. Panels (c) and (d) give the corresponding occupations of
particle states in a logarithmic scale. States that are degenerate in
spin are not shown for simplicity. The index α denotes energy levels
in increasing order.

The oscillations in energies found at long times in Fig. 1
are evidence of the fact that the system is evolving into the
correlated eigenstate too quickly. Turning on the residual in-
teraction more slowly by increasing τ2 in Eq. (5) may remedy
the oscillations at the end of the calculation, at increased
computational cost. Note, however, that the oscillations in
the mean-field energy are compensated by antiphase oscilla-
tions in the correlation energy (not shown), giving an overall
smooth total energy as a function of time.

These oscillations are also reflected in the rms radii, which
oscillates with a typical size of order 0.01 fm for the Nmax =
20 simulation. This uncertainty for radii is reported in the
bottom rows of Table II. Comparing the rms radii to the HF
values reported in I and the two Nmax values with one another,
we find that the collisions allow nucleons to scatter further
from the nucleus. We note that the proton rms radius increases
by about 0.1 fm, whereas the neutron radius remains relatively
constant when increasing the model space.

We can further characterize the correlations in the system
by looking at the occupation numbers. The time evolution
of the neutron and proton diagonal occupation levels, nαα ,
for 12C is shown in Fig. 2. The results are shown for the
Nmax = 20 simulation. Left (right) panels correspond to neu-
tron (proton) states. Top panels display the six hole states
for both species. Within TDHF, the protons and neutrons
completely fill the 1s 1

2
and 1p 3

2
subshells. Bottom panels

display particle states instead. We find that the mean-field
picture is still mostly relevant for the correlated eigenstate
in 12C. Hole-state occupations reach a value of about 95%.
Here, there are clear differences between the more bound
1s1/2 states, which remain populated to a 99.5% level, and
the 1p3/2 substates, which are substantially more depleted.
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FIG. 3. Evolution of the single-particle energies εαα with time
for (a) 12C and (b) 16O. Particle and hole states are shown in dif-
ferent colors and line styles. These results are obtained with the SV
interaction with Nmax = 14.

The occupations of particle states are of order 10−2 or lower.
Particle states closer to the Fermi surface, with smaller values
of α, are more occupied than states further away.

We note that some states, like the hole α = 0 (1s1/2) and
particle α = 6 (1p1/2), are clearly well converged, in the sense
that they reach a constant occupation number at large times in
the adiabatic switching. Others, in contrast, are still evolving
at the end of the simulation. This is the case of the hole α = 2
state (one of the two 1p3/2 states shown in short-dashed lines),
but also of the α = 18 neutron state [double-dash-dotted line
in Fig. 2(c)] which has a very low occupation that turns neg-
ative just before the end of the evolution. We note that states
with large values of α are unbound (e.g., such that εαα > 0;
see next paragraph) and hence may be substantially affected
by box discretization issues.

As discussed above, 12C has the largest relative correla-
tion energy of the nuclei we discuss in the following. This
may be surprising in the context of Fig. 2, which suggests a
relatively small redistribution of single-particle strength that
could be interpreted as having little impact in the nuclear
structure (although, as we shall see later, the changes are
not insignificant). In addition, the diagonal elements of the
single-particle energies themselves do not change much. For
12C, the time evolution of the εαα elements are shown in
Fig. 3(a) for the Nmax = 14 simulations. The changes in these
single-particle energies are imperceptible in the scale of the
graph, in line with previous TDDM implementations [48]. To
be quantitative, the maximum change across the 500 fm/c of
the simulation, for the most bound α = 0 (1s1/2) state, is less
than 0.3 MeV.

FIG. 4. Same as Fig. 1 for 16O.

B. 16O
16O is a benchmark nucleus, as a light doubly magic sys-

tem which is open to calculation by many beyond-mean-field
methods. As with 12C, it is also an nα system, where clus-
tering correlations may play a substantial role. A graph of
the mean field and total energy of 16O with the SV Skyrme
force parametrization as it evolves from the HF eigenstate to
the correlated eigenstate, for various Nmax, is shown in Fig. 4.
Simulations start in the HF ground state at around ≈−114.5
MeV. At the end of the adiabatic switching, the total energy
is in the range −115.4–115.9 MeV (see results in Table III).
The correlation energy is about 4 (5) MeV for the Nmax =
14 (20) simulation, whereas the mean-field energy becomes
about ≈2.5 MeV more repulsive than in the HF case. Overall,
the correlation energy contributes about 3.5–4.5% to the total
energy—far less than in the case of 12C. We also note that no
oscillations appear in the total energy or its components in the
large-time limit. This may indicate that the transition to the
TDDM is somehow “easier” in this less correlated nucleus.

We simulate the correlated eigenstate of 16O using the
two chosen Skyrme forces, SV and SHZ2. The summary of
results shown in Table III indicates an insignificant difference
between the two interactions, for both values of Nmax. For

TABLE III. The same as Table II for 16O. Results for the SHZ2
parametrization are also provided in columns 4 and 5.

16O SV 16O SHZ2

Nmax 14 20 14 20

Ec [MeV] −4.1 −5.2 −4.1 −5.1
EMF [MeV] −111.3 −110.6 −111.4 −110.8
E [MeV] −115.4 −115.8 −115.5 −115.9
Ec/E [%] 3.55 4.5 3.55 4.4
Proton 2.660 N/A 2.657 N/A
rms [fm]
Neutron 2.640 N/A 2.636 N/A
rms [fm]
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FIG. 5. Same as Fig. 2 for 16O with Nmax = 14.

Nmax = 14, the correlation energy is −4.1 MeV for SV and
SHZ2. As one increases to Nmax = 20, the correlation energy
increases to −5.2 MeV for SV and −5.1 MeV for SHZ2.
Minute differences are also found between the radii predicted
by the two interactions. We ascribe these minutes differences
to the fact that the two Skyrme forces, themselves, are very
similar to each other.

As we have already seen, the occupation probabilities nαα

provide a way of characterizing correlations. Their time evo-
lution within the adiabatic switch-on process for 16O is shown
in Fig. 5. These have been obtained with the SV interaction in
the Nmax = 14 model space. For 16O, HF simulations include
16 single-particle orbitals corresponding to the 1s1/2, 1p3/2,
and 1p1/2 neutron and proton hole subshells. Like the 12C
case, the deeply bound 1s state [solid line in Figs. 5(a) and
5(b)] remains practically fully occupied. In contrast to the
previous case, the occupation of the hole 1p states [dashed
and dotted lines in Figs. 5(a) and 5(b)] is at level of ≈99%.
This indicates a far less correlated eigenstate than 12C, where
the same orbital was depleted by almost 5%.

The particle states of Figs. 5(c) and 5(d) tell a similar story.
Whereas levels close to the Fermi surface for 12C reached rel-
atively large occupations of order 10−2, all (degenerate 1d5/2)
particle states of 16O show a much smaller final occupation,
close to 0.002. We note that the final states are static in terms
of the adiabatic switch-on. Just as in the case of 12C, the
diagonal elements of the single-particle energy matrix shown
in Fig. 3(b) are relatively constant across the adiabatic evo-
lution for the Nmax = 14 model space. Unlike the high-lying
12C particle states, all particle states in 16O are bound so we
do not anticipate any continuum discretization issues in our
simulations.

16O has been used as a benchmark nuclear system in
the past, including different implementations of TDDM
[35,39,40,47,48]. These studies have generally relied on dif-
ferent mean-field and residual interactions, have neglected
spin-orbit couplings in the residual channel, and/or have

FIG. 6. Same as Fig. 1 for 20Ne.

restricted the relevant correlation model space to p and d sub-
shell orbitals. The results typically obtained in these models
are much more correlated than those discussed here. Typical
p- shell (d-shell) orbital occupations are closer to 90% (10%),
and correlation energies are � −10 MeV, a figure consistent
with shell-model calculations [69]. In our case, the smaller
correlation compared to previous TDDM studies may be due
to our choice of particular interactions (SV and SHZ2) without
the three-body term, though without further investigation, it is
not possible to rule out, e.g., our self-consistency naturally
leading to minimized correlations compared to the previous
TDDM study.

C. 20Ne

We discuss the isotope 20Ne as the first of a series of
examples centered around A = 20. This region of the chart
has received significant experimental attention [70,71] due,
among other things, to its relevance for astrophysics [72].
In theoretical studies, this region is typically accessed using
the shell model and is of particular interest in the context of
isospin symmetry breaking [73]. In a standard shell-model
picture, 20Ne is built from an 16O core by adding two neutrons
and two protons. It is, of course, yet another nα system.

We provide a figure for the time evolution of the mean-field
(dashed lines) and total (solid lines) energies of 20Ne in Fig. 6.
As with previous cases, the results are shown for two values
of Nmax for the SV force. The Nmax = 14 results (squares)
converge well with time and show no signs of oscillations
at late times. The Nmax = 20 simulation stopped some time
before 500 fm/c, but the results appear to be relatively well
converged at this level. A key difference between the results
shown in this figure and those of previous isotopes is the rela-
tively large difference in energies between the results obtained
with the two model spaces. When going from Nmax = 14 to
20, the total energy decreases by almost 2 MeV—more than
double the result observed in other isotopes. Another striking
feature is the large increase in the ratio EC/E , which more
than doubles when going from one model space to the other.
The full sd shell of the Nmax = 20 simulation appears to be
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TABLE IV. The same as Table II for 20Ne. Results for SHZ2 are
also provided.

20Ne SV 20Ne SHZ2

Nmax 14 20 14 20

Ec [MeV] −2.1 −7.3 −2.0 −5.9
EMF [MeV] −137.7 −134.4 −138.1 −135.6
E [MeV] −139.8 −141.7 −140.1 −141.5
Ec/E [%] 1.5 5.15 1.43 4.17
Proton 2.955 2.980 2.950 2.969
rms [fm]
Neutron 2.930 2.946 2.922 2.938
rms [fm]

necessary to provides a much more complete picture that
substantially enhances the correlation of the system.

Table IV provides a breakdown of the energy contributions
for the two Skyrme forces, SV and SHZ2. For Nmax = 14, the
results obtained with these two parametrizations are almost
indistinguishable in terms of correlation energy. As one in-
creases the model space to Nmax = 20, both parametrizations
predict the aforementioned substantial increase in correla-
tion energies, from −2.1 to −7.4 (−5.9) MeV for the
SV (SHZ2) force.

D. 21Ne

We turn our attention to an open-shell, odd-even, and de-
formed system, 21Ne, to confirm that such systems can be
tackled with our approach.

For 21Ne, Table V summarizes the energy contributions for
the two values of Nmax. Just like in the previous case, we find
a substantial increase of the correlation energy (more than a
factor of 4) when moving from Nmax = 14 to 20. In turn, the
relative contribution to the energy increases from below 1%
to over 4%. This clearly indicates the importance of sd shell
contributions for this region of the nuclear chart.

We also find interesting systematics when comparing the
21Ne results of Table V to the 20Ne simulations presented in
Table IV. With the addition of one neutron on top of 20Ne,
for instance, we observe that the correlation energy drops by
0.8 (1.2) MeV, in the case of Nmax = 14 (20). This drop in
correlation energy can be understood naively, in terms of a
reduction in the number of neutron levels available to scat-
ter into. As for the total energy, the Hartree-Fock prediction

TABLE V. Energetics of the 21Ne ground states for different
values of Nmax obtained with the SV force.

21Ne SV

Nmax 14 20
Ec [MeV] −1.3 −6.1
EMF [MeV] −146.2 −143.3
E [MeV] −147.5 −149.4
Ec/E [%] 0.88 4.08

TABLE VI. The same as Table V for 21Na.

21Na SV

Nmax 14 20
Ec [MeV] −1.4 −5.9
EMF [MeV] −142.2 −139.5
E [MeV] −143.6 −145.4
Ec/E [%] 0.97 4.05

for 21Ne is ≈8 MeV more bound than 20Ne. The TDDM
ground-state energies of the two isotopes differ by 7.7 MeV,
indicating that isotopic differences in the binding energy are
largely unchanged by correlations. Interestingly, this occurs
because the mean-field contribution to the isotopic difference
largely cancels the correlation one.

Some additional features of this simulation are further re-
ported in Ref. [55]. We note, in particular, that the adiabatic
switching-on process for 21Ne is such that, for both Nmax = 14
and 20, the proton and neutron radii did not converge to a
static result. This indicates that the transition from the mean-
field to the correlated state is more difficult than in some of the
previous examples, possibly because of the odd-even nature
of the isotope. We also performed an analysis of some of the
mean-field energy components, not provided here for brevity.
The data for the t0 component of the mean field (which is
proportional to the overall density of the system) for Nmax =
14 shows an increase of ≈2 MeV. The same component for
20Ne, in contrast, went up by over 3 MeV. We take this as
an indication that the single addition of a neutron can change
significantly how different components of the Skyrme force
change beyond the mean-field limit.

E. 21Na

We continue our analysis by considering 21Na, the mirror
nucleus to 21Ne with an odd proton number. This provides in-
teresting insight into the nature of isospin symmetry not only
at the mean-field level but also at the TDDM level. The differ-
ent energy contributions for 21Na are provided in Table VI for
two values of Nmax. We find results that bode well with those
observed for the isospin partner nucleus. First, as observed for
the two previous isotopes, we find that the correlation energy
increases substantially with the model space size: form −1.4
MeV for Nmax = 14 to −5.9 for Nmax = 20. This corresponds
to almost a factor of 4 in the relative contribution of the
correlation energy, which increases from about 1% to 4%.
Second, comparing the correlation energy obtained for 20Ne
with that of 21Na for Nmax = 14 (20), one sees that the addition
of one proton reduces the magnitude of the correlation energy
by 0.7 (1.4) MeV. This mirrors the reduction we found for
21Ne compared to 20Ne. Again, this is presumably due to the
reduction in the number of levels available for the nucleons to
scatter into.

The results in Tables V and VI allow us to analyze the
level of isospin symmetry in our TDDM simulations. At the
mean-field level, the results of Table I indicate a binding
energy difference between the two isotopes of ≈3.8 MeV,
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TABLE VII. The same as Table V for 22Na, but for a single value
of Nmax.

22Na SV

Nmax 20
Ec [MeV] −7.0
EMF [MeV] −149.1
E [MeV] −156.1
Ec/E [%] 4.48

close to the experimental difference of ≈4.3 MeV. The origin
of this difference can be ascribed mostly to the Coulomb
interaction, which is explicitly included in the mean-field
simulation using the standard exchange approximation. At the
TDDM level, we treat the Coulomb interaction in a cruder
way to avoid computing every (finite-range) proton-proton
Coulomb interaction matrix element. Instead, every proton-
proton interaction matrix element is given an equal proportion
of the Coulomb mean-field contribution including the density-
dependent exchange term. As a result, we find that the total
energy difference between the two isotopes remains very close
to 4 MeV, regardless of the model space, the same value
as obtained in the mean-field simulation within our method
uncertainties.

Looking at the specifics, we find that, with Nmax =
20, 21Ne produces −6.1 of correlation energy, while 21Na
yields −5.9 MeV. This is a very small difference of order a
few percent, close to the accuracy expected in the extraction of
these quantities from our adiabatic switch-on method. In other
words, we do not find a significant contribution of correlations
to the mass difference of isospin partners.

F. 22Na

To finish the discussion in the A = 20–22 mass region,
we discuss the proof-of-principle case of 22Na, a nucleus
with an odd number of neutrons and protons. We encountered
some technical issues in attempting to run simulations of this
isotope with Nmax = 14. We found, for instance, energy level
crossings, which precluded us from identifying the final state
of the evolution with the ground state of the system. In addi-
tion, as the single-particle energies crossed, the occupations
of both levels approached ≈0.5, indicating a strong departure
from the single-particle picture. Finally, the time evolution
of the energy departed significantly from the expected γ 2(t )
dependence associated with the Born term. All in all, the
Nmax = 14 results indicate that correlations are significantly
changing the structure of this nucleus. It is possible that an
insufficiently large model space cannot capture this significant
changes in the switching procedure.

In contrast, the numerics for the Nmax = 20 case were
remarkably more stable. Table VII provides a summary of
the energetics obtained for this isotope, focusing only on
the Nmax = 20 results. We find a relatively large correlation
energy of 7 MeV, which is about ≈1 MeV larger than the
neighboring A = 21 isotopes and in good agreement with the
20Ne result. In relative terms, this is about ≈4.5% of the total

TABLE VIII. The same as Table VII for 24O.

24O SV

Nmax 20
Ec [MeV] −4.6
EMF [MeV] −142.0
E [MeV] −146.6
Ec/E [%] 3.14

energy, close to the value that we have observed across this
mass region. In other words, it appears that the instability
in the Nmax = 14 results does not significantly reflect in the
converged results.

G. 24O

We finish our discussion with an exotic, neutron-rich iso-
tope: 24O. This provides a test case for a nucleus relatively far
from stability with a significant asymmetry between proton
and neutrons. This isotope is indeed close to the neutron drip
line and is at the center of a series of contemporary experimen-
tal developments [74–77]. Importantly, some results for this
isotope have been previously reported in other TDDM imple-
mentations [38,47,48]. Our calculations were performed with
the SV parametrization and a model space with Nmax = 20.
The results are summarized in Table VIII.

We predict a correlation energy in 24O which is ≈4.6 MeV.
This value is obtained by extrapolating data in the time evolu-
tion up to ≈250 fm/c. Tohyama and Umar report a correlation
energy of −3.5 MeV for 24O in Ref. [38], whereas Assié and
Lacroix find −4.6 MeV using the TDDMP approach. Both
values bode relatively well with our finding, even though they
have been obtained with different mean-field (and residual)
interactions. More importantly, these predictions rely on using
only a handful of active orbitals and, typically, an 16O inert
core.

Compared to the equivalent results for the symmetric iso-
tope 16O in Table III, the correlation energy has decreased
by about 0.5 MeV when increasing the neutron number from
N = 8 to 16. This follows the qualitative trend discussed in
previous isotopes, which indicates a reduction of correlation
energy as neutron number increases. These findings bode
well with the idea that, in increasing neutron number, there
are fewer orbitals to scatter into and, hence, less correlation
energy. This decrease is also consistent with the isotopic
evolution reported in oxygen both in Refs. [38] and [48].
The results shown in Ref. [38] when going from 22O to 24O
show a decrease of almost 1 MeV. The no-core simulations
in Ref. [48] also show a decrease of Ec with neutron number,
although the order of magnitude of the correlation is different.

Our simulations are also influenced by the closeness to
the drip line. In the HF simulation, all 16 neutron states are
bound. Upon switching correlations on with TDDM, however,
some of the unbound HF states become occupied through
beyond-mean-field scattering. In particular, there are four lev-
els that are very close to being bound with energies ≈0.25
MeV. These almost-bound levels also have a relative occu-
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pation which is two orders of magnitude larger than any of
the remaining unbound states. In a naive shell-model inter-
pretation, one would interpret these four additional as those
filling the neutron sd shell. The treatment of a box-discretized
continuum may be somewhat inadequate here, but it does not
preclude the convergence of our simulations. While we have
not explored these effects further, it is possible that adding
more neutrons to oxygen isotopes may shift occupations and
single-particle energies in a way that the mean-field simula-
tion cannot capture, providing perhaps a different neutron drip
line in TDDM than in HF.

H. Correlation entropy

Up to this point, we have looked at the effect of correla-
tions on specific, measurable single-particle and bulk nuclear
properties. There are, however, other theoretical measures of
correlations that provide independent characterizations. One
of such measures is the so-called correlation entropy [78,79],
which is computed from the diagonal occupation numbers
nαα as

Scor = − 1

A

∑
α

nαα ln nαα, (12)

where A is the number of nucleons. This quantity is, strictly
speaking, not an entropy from a thermodynamic point of
view, but rather an approximation of one as, among other
things, one neglects the off-diagonal occupation matrix ele-
ments [79]. The correlation entropy is exactly 0 for the HF
state and necessarily increases as one goes toward a correlated
eigenstate. The absolute numerical quantity does not have a
direct physical meaning, but comparison of values between
different calculations can be instructive. Naively, one expects
more “correlated” ground states to yield larger values for Scor,
in the sense that they depart more from the HF eigenstates of
0 entropy.

A graph of this quantity as a single 16O nucleus goes
from the HF eigenstate to the correlated eigenstate, for both
Nmax = 14 (dashed line) and 20 (solid), is shown in Fig. 7. As
expected, in the initial HF state both simulations yield 0 cor-
relation entropy. As the system evolves toward the correlated
ground state, the entropy steadily increases until it levels off
around 300 fm/c into the evolution. We note that the entropy
does not completely converge at the end of the calculation,
particularly for Nmax = 20, where the simulations suggest the
occurrence of a maximum of Scor at intermediate times. We
take this as an indication that the occupation numbers nαα are
not entirely converged, which in turn suggests that the adia-
batic switching time is relatively small. Neither the energy nor
the occupation numbers reported in Figs. 4 and 5, however,
showed a clear nonstationarity at the end of the simulation.

Figure 7 also suggests that the correlation entropy increases
with Nmax. We find that this is a generic feature at least in
the the two model spaces explored here. Table IX shows the
correlation entropy obtained numerically at the end of the
adiabatic evolution for the various nuclei studied in this work.
In all cases, the entropy computed with Nmax = 14 states is
smaller than that computed with Nmax = 20. In a sense, this
can be understood naively, in that additional levels necessarily

FIG. 7. Correlation entropy of 16O as a function of time for two
different model spaces with Nmax = 14 (dashed line) and 20 (solid
line).

provide more contributions to the correlation entropy. In this
sense, the correlation energy is not a good measure of the
model-space convergence of the results.

Two more features stand out from the results on Table IX.
First, we find that the nuclei with large correlation energies,
like 12C, also have large correlation entropies. Second, we find
that the relative increase in correlation entropy when going
from Nmax = 14 to 20 is very similar to the corresponding
relative increase in correlation energies. In other words, we
find that both the correlation energy and the correlation en-
tropy provide relatively similar measures of correlations in
the systems that we have studied. We note that this is not
necessarily trivial a priori. The calculation of the correla-
tion entropy relies entirely on one-body occupation numbers,
whereas the correlation energy is the result of the contraction
of two seemingly different two-body objects—the interaction
and the correlation tensors; see Eq. (8).

TABLE IX. Correlation entropies in the TDDM ground state of
all the isotopes considered in our work for two values of Nmax and
two Skyrme parametrizations.

SV

Nmax 14 20
SV

12C 0.088 0.132
16O 0.041 0.053
20Ne 0.020 0.073
21Ne 0.010 0.041
21Na 0.010 0.038

SHZ2

Nmax 14 20
SHZ2

16O 0.044 0.055
20Ne 0.020 0.065
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V. CONCLUSIONS AND FUTURE OUTLOOK

In this paper, we implemented the TDDM approach includ-
ing up to two-body correlations to study nuclear ground states.
Unlike some of the previous work in the field, our simula-
tions are performed without any spatial symmetry restrictions,
following well-established precursors in TDHF [17]. We also
use a self-consistent interaction, both at the mean-field level
and at the residual one. To this end, we work with density-
independent Skyrme interactions to avoid any issues related
to rearrangement terms. We compute the ground states using a
dynamical TDDM code. Our starting point is the correspond-
ing HF ground state. We then switch on beyond-mean-field
correlations adiabatically, by slowly incorporating beyond-
mean-field terms over time.

With this approach, we investigate light nuclei with masses
ranging from A = 12 to A = 24. Our approach can tackle
closed-shell nuclei, like 12C and 16O, but also open-shell
isotopes, like 20–21Ne, 21–22Na, and 24O. We find correlated
ground states for all these isotopes. We study the effect of
TDDM correlations using a variety of quantities, including
single-particle energies and occupations, but the main focus
of our analysis is on binding energies. For the majority of
nuclei, the correlation energy accounts for ≈4 to 5% of the
total energy. A clear exception to this trend is 12C, where
two-body correlations are significantly stronger and account
for ≈11% of the total energy. A quantitative metric based
on the correlation entropy provides similar results. Where
the comparisons are possible, our results provide qualitatively
similar predictions to previous TDDM implementations. We
also confirm a trend of diminishing correlations when the
neutron number increases.

We find two key limitations in this initial study that could
be improved in the future. On the one hand, the Skyrme
parametrizations that we have used are relatively poor. Among
other things, they have not been fitted to this mass region
or to account for beyond-mean-field correlations and, in this
sense, our predictions can only indicate qualitatively the size
of correlations in these nuclei. On the other hand, we find that
our adiabatic switching produces final states that may appear
static when it comes to one observable, like the energy, but
are not stationary in others, like the correlation entropy. This
indicates that longer evolution times are required, although
this comes at a significant larger numerical cost.

This work opens several potential avenues for immediate
future work. When it comes to computing ground-state prop-
erties, we have demonstrated that TDDM provides a stable
description of relatively light nuclear systems. The extension
to higher mass numbers is straightforward, if numerically
challenging. One could further characterize these TDDM
ground states by analyzing their cluster structures or by ex-
ploiting the connections between TDDM and different pairing
approximations. Furthermore, time-dependent techniques are
particularly suitable for the study of excitations on top of these
ground states. It may be interesting to excite and time-evolve
different modes using TDDM to test the validity of mean-field
approaches but also to identify correlation effects on reso-
nances. Finally, dynamical simulations can also tackle nuclear

collisions of interest for a variety of application, including
heavy-ion fusion reactions [49].

We can also envisage some additional formal developments
that could be useful in the context of nuclear physics. One
could attempt to overcome the limitations associated with
density-independent forces by extending the TDDM formal-
ism to include genuine three-nucleon interactions. This is
presumably challenging, since the BBGKY hierarchy would
likely have to be modified. The treatment of genuine three-
body correlations may be relevant in nuclear systems too [43].
To break away from the adiabatic evolution picture, one could
also attempt to devise an energy minimization process that
included two-body density matrices [80–83]. By implement-
ing beyond-mean-field simulations, like those presented here,
together with the aforementioned developments, one would
open the door to a truly first-principles understanding of these
applications.
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APPENDIX: FOURTH-ORDER RUNGE-KUTTA
TIME-STEP IMPLEMENTATION

In typical implementations of TDHF, the time-stepping
procedure involves an integration via the midpoint method.
We have found that the solution of the TDDM equations nec-
essarily requires time-stepping algorithms that provide more
accurate results for values of dt , the time-step size, that are
not prohibitively small. We have therefore implemented an
explicit fourth-order Runge-Kutta (RK4) algorithm to solve
the set of coupled differential equations of relevance. We note
that RK4 carries a cumulative error of order dt4 [84].

In the case of TDDM, one has a set of three differen-
tial equations for the evolution of the single-particle orbitals,
Eq. (2); occupations, Eq. (5); and correlation tensor elements,
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Eq. (6). We can schematically write this set of equations as
follows:

dψ

dt
= P (t, ψ, n,C), (A1)

dn

dt
= N (t, ψ, n,C), (A2)

dC

dt
= C(t, ψ, n,C). (A3)

Using a RK4 algorithm, given the initial conditions
(tp, ψp, np,Cp), the estimates for the functions at tp+1 read

ψp+1 = ψp + dt

6
[d1 + 2d2 + 2d3 + d4], (A4)

np+1 = np + dt

6
[e1 + 2e2 + 2e3 + e4], (A5)

Cp+1 = Cp + dt

6
[ f1 + 2 f2 + 2 f3 + f4]. (A6)

The coefficients d1 . . . d4 are given by the following four equa-
tions evaluated either at the initial step, the midpoints, or the

final step:

d1 = P (tp, ψp, np,Cp), (A7)

d2 = P
(

tp + dt

2
, ψp + dt

2
d1, np + dt

2
e1,Cp + dt

2
f1

)
,

(A8)

d3 = P
(

tp + dt

2
, ψp + dt

2
d2, np + dt

2
e2,Cp + dt

2
f2

)
,

(A9)

d4 = P (tp + dt, ψp + dt d3, np + dt e3,Cp + dt f3). (A10)

The remaining coefficients e1 . . . e4 and f1 . . . f4 are found
analogously using the replacements P → N and P → C,
respectively.

We note that, in addition to the single-particle orbitals,
occupation matrices, and correlation tensors, other auxiliary
quantities, such as densities and mean fields, need to be
recalculated in the four steps involving di, ei, and fi. This guar-
antees the stability of the RK4 algorithm within the TDDM
method. In all the simulations performed in this work, we
found that dt � 0.2 fm c−1 provided acceptable and numer-
ically stable results.
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