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Studying avalanches in the ground state of the two-dimensional random-field
Ising model driven by an external field
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We study the exact ground state of the two-dimensional random-field Ising model as a function of both the
external applied fiel® and the standard deviatian of the Gaussian random-field distribution. The equilib-
rium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the
avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics.
We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior
for the same value of. The corresponding exponents are compared.

PACS numbegps): 64.60.Fr, 05.50+q, 75.10.Nr, 75.60.Ej

During the last decade, the word “avalanche,” originally =~ Nevertheless, SOC is not the only theory that explains
associated with a certain behavior of snow on mountairavalanche$3]. In many cases avalanches are associated with
slopes, has been widely used in physics and other areas tife existence of a first-order phase transition in a disordered
science for the description of different phenomena. Althougtsystem at very low temperature. For such cases many models
a common definition is difficult, avalanches are always assohave been developed which include the main ingredients for
ciated with a slowly driven system exhibiting a suddenthe appearance of the phenomen@ha model exhibiting a
change of magnitude with extremely random properties: itdirst-order phase transition when driven by an external field
appearance, size, and duration are difficult to predict. Manpuch as the Ising mode(ii) a certain amount of quenched
efforts have been directed towards the study of the statisticalisorder, typically local random fields, arii) irrelevance
distributions of such properties. In many cases power-lavwof thermal fluctuations, which allows comparison of the be-
distributions are encountered which indicate a certain degreleavior of experimental systems to the behavior of the models
of criticality, the absence of characteristic spatial and tempoat T=0. The original studies of the random-field Ising model
ral scales. In physics avalanches are related to the dynami¢RFIM) by Sethna and co-workergt] were followed by
of extended systems “out of equilibrium,” and are associ-many other model$5—9] and can be catalogued within a
ated with the existence of dissipation, metastability, andphysical framework called fluctuationless first-order phase
sometimes, hysteresis. Here we analyze the possibility thatansition (FLFOPT) theory. For the different models the
avalanche like phenomena also appear in the reversible anmdetastable evolution of the system when the external field is
quasistatic equilibrium evolution of extended systems driverswept forward and backward is studied by using a I¢aa
by an external field. Three factors are required for this tonot globa) relaxation dynamical rule: spins that decrease
happen: the existence of an underlying first-order phase trartheir energy under individual reversal are simultaneously
sition, disorder, and low thermal fluctuations. flipped. The evolution of the phase transition from the origi-

The most usual physical framework for the description ofnal phase to the transformed phase proceeds through ava-
avalanche phenomena is the so-called self-organized criticalanches joining metastable states until the whole system has
ity (SOO theory[1]. The theory applies to nonlinear dissi- been transformed. When the external field evolution is re-
pative extended systenfwith spatial and temporal degrees Versed the system exhibits hysteresis.
of freedom, which are kept in a nonequilibrium steady state  The amount of disorder in such FLFOPT models is con-
by the maintenance of an external input of energy whictirolled by one or a few parameters such as the standard de-
compensates dissipation. Under such conditions the systendition o of the Gaussian random-field distribution. The
naturally evolve to an intermediate state lying at the boundproperties of the hysteresis cycles depend on such disorder
ary between the stable and unstable states. This intermedigt@rameters, especially the statistical distributgs) of the
state exhibits, among other characteristics, avalanches. Tigzess of all the avalanches during the forwafdr back-
standard model for SOC is the so-called sandpile modeivard transition. For most of the models “critical” ava-
which, with appropriate modifications, has been applied notanche behaviop(s)~s™" is either obtained for a fixed
only to the study of many natural phenomena such as piles afmount of disorder¢?'®) (the superscript “met” stands for
granular materials, earthquakes, river networks, biologicainetastable evolutioror extends over a certain limited range
systems, etc., but also to the study of economics and sociaf the disorder parametef8]. This implies that for such
behavior[2]. FLFOPT models no self-organization is found but a tuning
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of the disorder is necessary in order to find criticality. Nev- R L RREEEEEE '
ertheless, power-law distributions of avalanches have been i
found experimentally in different systems such as ferromag- ;
nets [10], metallic alloys exhibiting martensitic transitions L l
[11], superconductorgl2], etc. This is not a result of good
luck, but probably is due to the large critical zones surround-
ing the critical point as suggested by Perkosical. [13] or
to a still to be described spontaneous evolution of the disor-
der in the system toward the critical configuration. More-
over, the different models studied exhibit universali#/.
For instance,7m®'=2.03+0.01 for the three-dimensional
(3D) RFIM [13], 7M®'=2.0+0.2[7] for the 3D random-bond
Ising model, 7"¢'=1.7+0.1 for a 3D site-diluted lsing
model [14], and 7M®=2.0+0.1 for the 3D random- Applied field B
anisotropy Ising mod€l15].

The two frameworks presented aboy8OC and FL-
FOPT) justify the existence of avalanche behavior in out-of-

magnetization m

FIG. 1. Equilibrium evolution of the magnetizatiomas a func-
tion of the applied field for a system of sizé& =64 and different

ilibri ¢ In the first 800 th t . amounts of disordes=0.8,1.0, and 1.2. The metastable hysteresis
equilibrium systems. In the first cas€0Q the system is cycles obtained by the local relaxation dynamics are also shown, for

constantly kept out of equilibrium by an external energy fILIX'comparison, with dashed lines. The curves corresponding to
In the second case the system cannot reach equilibrium du€y g and 1.0 have been shifted upward in order to clarify the

to the absence of thermal fluctuations and so remains metgjeyyre,
stable. Recently, the study of the equilibridire= 0 (ground
state of the RFIM has become computationally affordable fothe ground state magnetizatiomas a function oB for three
finite systems up to large sizedN{-10P). This has been sets of random fields correspondingde-0.8,1.0, and 1.2.
made possible due to the existence of a mapping between thiéhe corresponding metastable evolution of the three cases
RFIM and the problem of computing the maximum flow (using Sethna’set al. local relaxation dynamidsis also
through a networKa classical problem in graph theofg6]  shown for comparison. Of course, the equilibrium path does
and the more recent development of efficient max-flow minnot display hysteresis, but it exhibits similar magnetization
cut algorithmg 17]. The initial studies have concentrated onjumpsAm or “avalanches” to those occurring in the out-of-
the properties of the ground state with zero applied field an@quilibrium path. Such steplike behavior in equilibrium was
a lot of attention has been paid to the puzzling discussiomlready suspected in a very recent study of the 3D RFIM
concerning the possibility of a nonzero-magnetizationmodel although it was not analyzéd1]. Note that, in the
ground state in the two-dimensional cd48,19. Here, in-  metastable and equilibrium cases, for increasing amounts of
stead, we focus on the analysis of the ground state as a fungisordero the trajectory becomes smoother with a less pro-
tion of the applied external field, i.e., the equilibrium evolu- nounced slope. Figure 2 shows, as an example, the evolution
tion at T=0, and its possible relation to the existence ofof H and its two partsH, and —Bm for the same case
avalanches in metastable evolution. =1.2, in Fig. 1. Besides the magnetization jumps, the
The 2D Gaussian RFIM is defined on a square lattice obut-of-equilibrium avalanches show an internal energy jump
sizeN=LXL. At each site we define a spin varialg (i which is not compensated by the terFrBAm, thus imply-
=1,---,N) taking values+1 or —1. The relevant thermo- ing a discontinuity ofH. For the equilibrium evolution both
dynamic potential for a system in an external fi@ds the  the internal energH, and the energy input-BAm also
magnetic enthalpyi =H,—Bm whereH, is the internal en-  exhibit discontinuities. However, these are compensated so
ergy andm=%;S; the magnetization. For the RFIM the en- that the total enthalpy is continuous. The inset shows a
thalpy or HamiltoniarH reads detail of the evolution oH which is a sequence of linear
N segments with varying slope. This indicates that equilibrium
“avalanches” are associated with discontinuities of the first
H=-2 §S-2 Sh-B2 S. @ derivative ¢H/oB)7=—m.
The statistical distribution of avalanche sizgs) can be
The first term, which extends over all nearest-neighboistudied by measuring all the magnetization jumps Am)
pairs, stands for a basic ferromagnetic interaction. The sedn a full evolution fromB= —« to B=c« and averaging over
ond term stands for the interaction with the local quenchednany samples of the random fields for each valuesof
random fieldsh; , which we will consider Gaussian distrib- Figure 3a) shows a log-log plot op(s) corresponding to
uted with zero mean and standard deviatinThe last term  ¢=0.8,0.9,1.0, and 1.1. The curves corresponding to the
accounts for the interaction with an external applied feld out-of-equilibrium evolution for the same values af are
For a certain fixed set of the random fields} and for each  shown in Fig, 8b) for comparison. The same qualitative be-
value ofB in the whole range-«<B<, we find the con- havior is found for both the equilibrium and metastable
figuration{S;} that minimizes the HamiltoniaH. The algo- cases. For low values af the histogram exhibits a bump
rithm used determines not only the sequence of ground statmrresponding to the existence of large avalanches. For high
configurations, but also the exact values Bfwhere the values ofo only small avalanches appear and for a certain
changes take place. The details of the algorithm are exintermediate value . the distribution of avalanches will be a
plained in Ref[20]. Figure 1 shows the obtained values of power law (straight ling. The precise numerical values of
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FIG. 2. Equilibrium evolution o, Hy, and—Bm as a function 10° 100 100 100 10010° 100 100 100 10
of B for a system witho=1.2 andL =64. Data correspond to the s s
magnetization evolution shown at the bottom of Fig. 1 The corre- L . .
sponding evolution obtained with the local relaxation dynamics is G- 3. Distribution of avalanche sizes corresponding to the

shown with dashed lines for comparison. The inset shows a detail diquilibrium (2) and metastablb) evolution. Results correspond to
the equilibrium trajectonH vs B close to the maximum. a system withL =64 a_ndo=0.8,0.9,1.0, and 1.1. Histograms cor-
respond to the analysis of 4@nd 2x 10* samples for cases) and

(b) respectively. Thin continuous lines are the fits of equation
oS%and o"®' can be obtained by different methods. For in- N(s)~s~"e S obtained by using a maximum-likelihood method.
stance, one can analyze the behavior of the order parametéhe thick line indicates the slope=1.0. Data corresponding to
or susceptibility[6]. Another way is to fit the histograms o¢=1.0, 0.9, and 0.8 have been shifted upward 2, 4, and 6 decades,
with a normalized probability functiop(s)«s~7e s which ~ respectively, in order to clarify the picture.
has two free parameters: the exponerdnd the coefficient
of the exponential correction. Criticality corresponds to Nevertheless, the almost exact coincidence@{L) and
the value ofo for which A=0. Numerical fits have been of°{L) indicates that both kinds of studgquilibrium and
performed by using the maximum-likelihood method, whichmetastablerefer to the same physical phenomena. Surpris-
is independent of any binning process. Results are alsigly, the exponent corresponding to the power-law distri-
shown in Fig. 3. bution of avalanches has different values in equilibrium

The values ofr, obtained are quite sensitive to the size (7°%=0.9+0.1) and in the metastability studies*'=1.3

of the system. Nevertheless, for the valued aftudied, we ~+0.1). The proportion of small avalanches compared to

have obtainedrS%=¢™'. The numerical values are(L large avalanches is greater in the metastable path than in the
~16)=1.29+0.03, o (L=32)=1.07-0.03, and o (L  equilibrium path. o .
—64)=0.94+0.02. In contrast, the value of [at og(L)] The two dynamicgequilibrium and local relaxatigrthat

. — U, . 1 Cc

e : we have studied correspond to two extreme cases. In order to
exhibits a much smaller dependenceloVe have obtained model the behavior of real systems at low temperatures, one
7=0.98£0.02, 0.94:0.02, and 0.930.02 forL=16, 32, 4 P '

. may expect intermediate behavior. It would be very interest-

and 64, respectively. ing to study how the above statistical distribution of ava-

The extrapolation of such values of andr to the ther-  |3nches changes when, for instance, relaxation of pairs, trios,
modynamic limit is difficult, given the rather small system gt of spins is allowed. It should also be mentioned that the
sizes that we can afford to analyze. It should be mentionegh, value of 79 agrees reasonably well with that found by
that for the 2D RFIM with Out-Of-equilibrium dynamiCS ex- Studying a Very Simp'e mechanism for a first-order phase
trapolation ofo. has been tried in previous wofk3]. Using  transition: the so-called sequential partitionifig2]. This
sizes up toL=30000 the question of whether or nott  model takes into account the fact that the fraction of the
=0 in the thermodynamic limit has still not been answeredsystem that has transformed to the new phase cannot go
We expect that more sophisticated algorithms used for 3ack. A simple scaling hypothesis is made for the probability
systems up t&. =80 may help in such an extrapolatif?l].  of transforming a volume of a certain sizegiven that a
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certain amount of the systexhremains in the parent phase: and for increasing amounts of quenched disorder. From the
p(s;V)=g(gdV)/V whereg is any generic normalized func- comparison of the equilibrium trajectory with the trajectory
tion between 0 and 1. For this model the vatuel has been obtained by using local relaxation dynamics, we have found
found analytically[23]. that the distribution of avalanches becomes a power law, in
We have provided numerical evidences that avalanchesoth cases, at the same valuesofHowever, the exponent
may not be exclusively related to the relaxation of metastablgound is lower in equilibrium than when the metastable dy-
or unstable states. During first-order phase transitions in Sysjamics is used. A reliable finite size scaling analysis is lack-
tems for which thermal fluctuations are irrelevant, avalanching since the affordable system sizes are still far from the

elike phenomena may also appear along their quasistatic rges needed in order to solve this puzzling problem.
versible evolution. Such equilibrium avalanches are related L

to the existence of quenched disorder in the system. For the We acknowledge fruitful discussions with LiuMarosa,
case of the 2D random-field Ising model we have analyzedordi Ortn, and Antoni Planes. The authors also acknowl-
the statistics of such avalanchéer a finite systemmwhen  edge financial support from CICyT Project Nos. MAT97-
sweeping the external applied field froB= —«~ to B=« 0699(C.F) and MAT98-0315E.V.).

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381 [13] O. Perkovig K. A. Dahmen, and J. P. Sethna, Phys. Reb9

(1987). 6106 (1999.

[2] P. Bak, How Nature Works(Oxford Univ. Press, Oxford, [14] E. ObradgE. Vives, and A. Planes, Phys. Rev.5B, 13 901
1997). (1999.

[3] D. Sornette, J. Phys.4, 209 (1993. [15] E. Vives and A. Planetunpublishedl

[4] J. P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansl|, B. W[16] J. C. Picard and H. D. Ratliff, Networks 357 (1975.
Roberts, and J. D. Shore, Phys. Rev. L&€, 3347(1993. [17] R. E. TarjanData Structures and Network Algorithmedited

[5] K. Dahmen and J. P. Sethna, Phys. Rev. L&1£.3222(1993. by R. E. Tarjan(Society for Industrial and Applied Mathemat-

[6] E. Vives and A. Planes, Phys. Rev.38, 3839(1994). ics, Philadelphia, 1983

[7] E. Vives, J. Goicoechea, J. Ortiand A. Planes, Phys. Rev. E [18] E. T. Sepph, V. Petga, and M. J. Alava, Phys. Rev. B8,
52, R5(1995. R5217(1998.

[8] B. Tadig Phys. Rev. Lett77, 3843(1996. [19] C. Frontera and E. Vives, Phys. Rev5E, R1295(1999.

[9] J. Kushauer, R. van Bentum, W. Kleemann, and D. Bertand[20] C. Frontera, J. Goicoechea, J. @rtand E. Vives, J. Compuit.
Phys. Rev. B53, 11 647(1996. Phys.160, 117 (2000.

[10] P. J. Cote and L. V. Meisel, Phys. Rev. L&¥, 1334(199). [21] A. K. Hartmann and U. Nowak, Eur. Phys. J.7B105(1999.
[11] E. Vives, J. Orin, L. Marosa, |. Réols, R. Peez-Magrang  [22] B. Derrida and H. Flyvbjerg, J. Phys. 20, 5273(1987).

and A. Planes, Phys. Rev. Le®2, 1694(1994). [23] C. Frontera, J. Goicoechea, |.faks, and E. Vives, Phys. Rev.
[12] W. Wu and P. W. Adams, Phys. Rev. Letd, 610 (1995. E 52, 5671(1995.



